1
|
Trudeau ED, Brumer H, Berbee ML. Origins of xyloglucan-degrading enzymes in fungi. THE NEW PHYTOLOGIST 2025; 245:458-464. [PMID: 39550623 DOI: 10.1111/nph.20251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 11/18/2024]
Abstract
The origin story of land plants - the pivotal evolutionary event that paved the way for terrestrial ecosystems of today to flourish - lies within their closest living relatives: the streptophyte algae. Streptophyte cell wall composition has evolved such that profiles of cell wall polysaccharides can be used as taxonomic markers. Since xyloglucan is restricted to the streptophyte lineage, we hypothesized that fungal enzymes evolved in response to xyloglucan availability in streptophyte algal or land plant cell walls. The record of the origins of these enzymes is embedded in fungal genomes, and comparing genomes of fungi that share an ancient common ancestor can provide insights into fungal interactions with early plants. This Viewpoint contributes a review of evidence underlying current assumptions about the distribution of xyloglucan in plant and algal cell walls. We evaluate evolutionary scenarios that may have given rise to the observed distribution of putative xyloglucanases in fungi and discuss possible biological contexts in which these enzymes could have evolved. Our findings suggest that fungal xyloglucanase evolution was more likely driven by land plant diversification and biomass accumulation than by the first origins of xyloglucan in streptophyte algal cell walls.
Collapse
Affiliation(s)
- Emily D Trudeau
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Harry Brumer
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Mary L Berbee
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
2
|
Zhang W, Fan Y, Deng W, Chen Y, Wang S, Kang S, Steenwyk JL, Xiang M, Liu X. Characterization of genome-wide phylogenetic conflict uncovers evolutionary modes of carnivorous fungi. mBio 2024; 15:e0213324. [PMID: 39207102 PMCID: PMC11481490 DOI: 10.1128/mbio.02133-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mass extinction has often paved the way for rapid evolutionary radiation, resulting in the emergence of diverse taxa within specific lineages. The emergence and diversification of carnivorous nematode-trapping fungi (NTF) in Ascomycota have been linked to the Permian-Triassic (PT) extinction, but the processes underlying NTF radiation remain unclear. We conducted phylogenomic analyses using 23 genomes that represent three NTF lineages, each employing distinct nematode traps-mechanical traps (Drechslerella spp.), three-dimensional (3D) adhesive traps (Arthrobotrys spp.), and two-dimensional (2D) adhesive traps (Dactylellina spp.), and the genome of one non-NTF species as the outgroup. These analyses revealed multiple mechanisms that likely contributed to the tempo of the NTF evolution and rapid radiation. The species tree of NTFs based on 2,944 single-copy orthologous genes suggested that Drechslerella emerged earlier than Arthrobotrys and Dactylellina. Extensive genome-wide phylogenetic discordance was observed, mainly due to incomplete lineage sorting (ILS) between lineages. Two modes of non-vertical evolution (introgression and horizontal gene transfer) also contributed to phylogenetic discordance. The ILS genes that are associated with hyphal growth and trap morphogenesis (e.g., those associated with the cell membrane system and polarized cell division) exhibited signs of positive selection.IMPORTANCEBy conducting a comprehensive phylogenomic analysis of 23 genomes across three NTF lineages, the research reveals how diverse evolutionary mechanisms, including ILS and non-vertical evolution (introgression and horizontal gene transfer), contribute to the swift diversification of NTFs. These findings highlight the complex evolutionary dynamics that drive the rapid radiation of NTFs, providing valuable insights into the processes underlying their diversity and adaptation.
Collapse
Affiliation(s)
- Weiwei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology, and Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology, and Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology, and Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Shunxian Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology, and Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jacob Lucas Steenwyk
- Howards Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology, and Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Thompson J, Ramírez-Barahona S. The meaning of mass extinctions and what the fossil record tells us about angiosperm survival at K-Pg: a reply to Hagen (2024). Biol Lett 2024; 20:20240265. [PMID: 39192833 DOI: 10.1098/rsbl.2024.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Last year, we published research using phylogenetic comparative methods (PCMs) to reveal no phylogenetic evidence for elevated lineage-level extinction rates in angiosperms across K-Pg (Thompson JB, Ramírez-Barahona S. 2023 No phylogenetic evidence for angiosperm mass extinction at the Cretaceous-Palaeogene (K-Pg) boundary. Biol. Lett. 19, 20230314. (doi:10.1098/rsbl.2023.0314)), results that are in step with the global angiosperm fossil record. In a critique of our paper (Hagen ER. 2024 A critique of Thompson and Ramírez-Barahona (2023) or: how I learned to stop worrying and love the fossil record. EcoEvoRxiv. (doi:10.32942/X2631W)), simulation work is presented to argue we erred in our methodological choices and interpretations, and that we should have deferred to fossil evidence. In our opinion, underlying this critique are poor methodological choices on simulations and philosophical problems surrounding the definition of a mass extinction event, which leads to incorrect interpretations of both the fossil record and PCMs. We further argue that deferring to one source of evidence in favour of the other shuts the door to important evolutionary and philosophical questions.
Collapse
Affiliation(s)
- Jamie Thompson
- School of Biological Sciences, University of Reading, Whiteknights , Reading, Berkshire, UK
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath , Bath, UK
| | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México , Ciudad de México, México
| |
Collapse
|
4
|
Hagen ER. A critique of Thompson and Ramírez-Barahona (2023) or: how I learned to stop worrying and love the fossil record. Biol Lett 2024; 20:20240039. [PMID: 39192834 DOI: 10.1098/rsbl.2024.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 05/02/2024] [Indexed: 08/29/2024] Open
Abstract
A recent study published in Biology Letters by Thompson and Ramírez-Barahona (2023) argued that, according to analyses of diversification on two massive molecular phylogenies comprising thousands of species, there is no evidence that angiosperms (i.e. flowering plants) were affected by the Cretaceous-Paleogene mass extinction. Here, I critique these conclusions from both methodological and philosophical perspectives. I demonstrate that the methods used in their study possess statistical limitations that strongly reduce the power to detect a true mass extinction event using data similar to those analysed by Thompson and Ramírez-Barahona (2023). Additionally, I use their study as a springboard to examine the relationship between phylogenetic and fossil evidence in diversification studies.
Collapse
Affiliation(s)
- Eric Robert Hagen
- Department of Ecology & Evolutionary Biology, University of Toronto , Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
5
|
Jouault C, Condamine FL, Legendre F, Perrichot V. The Angiosperm Terrestrial Revolution buffered ants against extinction. Proc Natl Acad Sci U S A 2024; 121:e2317795121. [PMID: 38466878 PMCID: PMC10990090 DOI: 10.1073/pnas.2317795121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
With ~14,000 extant species, ants are ubiquitous and of tremendous ecological importance. They have undergone remarkable diversification throughout their evolutionary history. However, the drivers of their diversity dynamics are not well quantified or understood. Previous phylogenetic analyses have suggested patterns of diversity dynamics associated with the Angiosperm Terrestrial Revolution (ATR), but these studies have overlooked valuable information from the fossil record. To address this gap, we conducted a comprehensive analysis using a large dataset that includes both the ant fossil record (~24,000 individual occurrences) and neontological data (~14,000 occurrences), and tested four hypotheses proposed for ant diversification: co-diversification, competitive extinction, hyper-specialization, and buffered extinction. Taking into account biases in the fossil record, we found three distinct diversification periods (the latest Cretaceous, Eocene, and Oligo-Miocene) and one extinction period (Late Cretaceous). The competitive extinction hypothesis between stem and crown ants is not supported. Instead, we found support for the co-diversification, buffered extinction, and hyper-specialization hypotheses. The environmental changes of the ATR, mediated by the angiosperm radiation, likely played a critical role in buffering ants against extinction and favoring their diversification by providing new ecological niches, such as forest litter and arboreal nesting sites, and additional resources. We also hypothesize that the decline and extinction of stem ants during the Late Cretaceous was due to their hyper-specialized morphology, which limited their ability to expand their dietary niche in changing environments. This study highlights the importance of a holistic approach when studying the interplay between past environments and the evolutionary trajectories of organisms.
Collapse
Affiliation(s)
- Corentin Jouault
- Institut de Systématique Évolution, Biodiversité, UMR 7205, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, Paris75005, France
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Montpellier34095, France
- Géosciences Rennes, UMR 6118, Univ. Rennes, CNRS, Rennes35000, France
| | - Fabien L. Condamine
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, CNRS, Montpellier34095, France
| | - Frédéric Legendre
- Institut de Systématique Évolution, Biodiversité, UMR 7205, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, Paris75005, France
| | - Vincent Perrichot
- Géosciences Rennes, UMR 6118, Univ. Rennes, CNRS, Rennes35000, France
| |
Collapse
|
6
|
Peris D, Condamine FL. The angiosperm radiation played a dual role in the diversification of insects and insect pollinators. Nat Commun 2024; 15:552. [PMID: 38253644 PMCID: PMC10803743 DOI: 10.1038/s41467-024-44784-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Interactions with angiosperms have been hypothesised to play a crucial role in driving diversification among insects, with a particular emphasis on pollinator insects. However, support for coevolutionary diversification in insect-plant interactions is weak. Macroevolutionary studies of insect and plant diversities support the hypothesis that angiosperms diversified after a peak in insect diversity in the Early Cretaceous. Here, we used the family-level fossil record of insects as a whole, and insect pollinator families in particular, to estimate diversification rates and the role of angiosperms on insect macroevolutionary history using a Bayesian process-based approach. We found that angiosperms played a dual role that changed through time, mitigating insect extinction in the Cretaceous and promoting insect origination in the Cenozoic, which is also recovered for insect pollinator families only. Although insects pollinated gymnosperms before the angiosperm radiation, a radiation of new pollinator lineages began as angiosperm lineages increased, particularly significant after 50 Ma. We also found that global temperature, increases in insect diversity, and spore plants were strongly correlated with origination and extinction rates, suggesting that multiple drivers influenced insect diversification and arguing for the investigation of different explanatory variables in further studies.
Collapse
Affiliation(s)
- David Peris
- Institut Botànic de Barcelona (CSIC-CMCNB), 08038, Barcelona, Spain.
| | - Fabien L Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| |
Collapse
|
7
|
Dimitrov D, Xu X, Su X, Shrestha N, Liu Y, Kennedy JD, Lyu L, Nogués-Bravo D, Rosindell J, Yang Y, Fjeldså J, Liu J, Schmid B, Fang J, Rahbek C, Wang Z. Diversification of flowering plants in space and time. Nat Commun 2023; 14:7609. [PMID: 37993449 PMCID: PMC10665465 DOI: 10.1038/s41467-023-43396-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
The rapid diversification and high species richness of flowering plants is regarded as 'Darwin's second abominable mystery'. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous-Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics.
Collapse
Affiliation(s)
- Dimitar Dimitrov
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, 5020, Bergen, Norway
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318, Oslo, Norway
| | - Xiaoting Xu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiangyan Su
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing, 100035, China
| | - Nawal Shrestha
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yunpeng Liu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jonathan D Kennedy
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Lisha Lyu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, Shenzhen, China
| | - David Nogués-Bravo
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - James Rosindell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Yong Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, 159 Longpan Rd., Nanjing, 210037, China
| | - Jon Fjeldså
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318, Oslo, Norway
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Bernhard Schmid
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jingyun Fang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Natural History Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| |
Collapse
|
8
|
Coiro M, Allio R, Mazet N, Seyfullah LJ, Condamine FL. Reconciling fossils with phylogenies reveals the origin and macroevolutionary processes explaining the global cycad biodiversity. THE NEW PHYTOLOGIST 2023; 240:1616-1635. [PMID: 37302411 PMCID: PMC10953041 DOI: 10.1111/nph.19010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
The determinants of biodiversity patterns can be understood using macroevolutionary analyses. The integration of fossils into phylogenies offers a deeper understanding of processes underlying biodiversity patterns in deep time. Cycadales are considered a relict of a once more diverse and globally distributed group but are restricted to low latitudes today. We still know little about their origin and geographic range evolution. Combining molecular data for extant species and leaf morphological data for extant and fossil species, we study the origin of cycad global biodiversity patterns through Bayesian total-evidence dating analyses. We assess the ancestral geographic origin and trace the historical biogeography of cycads with a time-stratified process-based model. Cycads originated in the Carboniferous on the Laurasian landmass and expanded in Gondwana in the Jurassic. Through now-vanished continental connections, Antarctica and Greenland were crucial biogeographic crossroads for cycad biogeography. Vicariance is an essential speciation mode in the deep and recent past. Their latitudinal span increased in the Jurassic and restrained toward subtropical latitudes in the Neogene in line with biogeographic inferences of high-latitude extirpations. We show the benefits of integrating fossils into phylogenies to estimate ancestral areas of origin and to study evolutionary processes explaining the global distribution of present-day relict groups.
Collapse
Affiliation(s)
- Mario Coiro
- Department of PalaeontologyUniversity of Vienna1090ViennaAustria
- Ronin Institute for Independent ScholarshipMontclairNJ07043USA
| | - Rémi Allio
- Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgroUniversité de Montpellier34988MontpellierFrance
| | - Nathan Mazet
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de MontpellierPlace Eugène Bataillon34095MontpellierFrance
| | | | - Fabien L. Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de MontpellierPlace Eugène Bataillon34095MontpellierFrance
| |
Collapse
|
9
|
Raman G, Choi KS, Lee EM, Morden CW, Shim H, Kang JS, Yang TJ, Park S. Extensive characterization of 28 complete chloroplast genomes of Hydrangea species: A perspective view of their organization and phylogenetic and evolutionary relationships. Comput Struct Biotechnol J 2023; 21:5073-5091. [PMID: 37867966 PMCID: PMC10589384 DOI: 10.1016/j.csbj.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
The tribe Hydrangeeae displays a unique, distinctive disjunct distribution encompassing East Asia, North America and Hawaii. Despite its complex trait variations and polyphyletic nature, comprehensive phylogenomic and biogeographical studies on this tribe have been lacking. To address this gap, we sequenced and characterized 28 plastomes of Hydrangeeae. Our study highlights the highly conserved nature of Hydrangeaceae chloroplast (cp) genomes in terms of gene content and arrangement. Notably, synapomorphic characteristics of tandem repeats in the conserved domain of accD were observed in the Macrophyllae, Chinenses, and Dichroa sections within the Hydrangeeae tribe. Additionally, we found lower expression of accD in these sections using structure prediction and quantitative real-time PCR analysis. Phylogenomic analyses revealed the subdivision of the Hydrangeeae tribe into two clades with robust support values. Consistent with polyphyletic relationships, sect. Broussaisia was identified as the basal group in the tribe Hydrangeeae. Our study also provides insights into the phylogenetic relationships of Hydrangea petiolaris in the Jeju and Ulleung Island populations, suggesting the need for further studies with more samples and molecular data. Divergence time estimation and biogeographical analyses suggested that the common ancestors of the tribe Hydrangeeae likely originated from North America and East Asia during the Paleocene period via the Bering Land Bridge, potentially facilitating migration within the tribe between these regions. In conclusion, this study enhances our understanding of the evolutionary history and biogeography of the tribe Hydrangeeae, shedding light on the dispersal patterns and origins of this intriguing plant group with its unique disjunct distribution.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Kyoung-Su Choi
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- Plant Research Team, Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Eun Mi Lee
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Clifford W. Morden
- School of Life Sciences, University of Hawai]i at Mānoa, Honolulu, HI, USA
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| |
Collapse
|
10
|
Hu GL, Brown J, Heikkilä M, Aarvik L, Mutanen M. Molecular phylogeny, divergence time, biogeography and trends in host plant usage in the agriculturally important tortricid tribe Grapholitini (Lepidoptera: Tortricidae: Olethreutinae). Cladistics 2023; 39:359-381. [PMID: 37209356 DOI: 10.1111/cla.12543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023] Open
Abstract
The leaf-roller moth tribe Grapholitini comprises about 1200 described species and contains numerous notorious pests of fruits and seeds. The phylogeny of the tribe has been little studied using contemporary methods, and the monophyly of several genera remains questionable. In order to provide a more robust phylogenetic framework for the group, we conducted a multiple-gene phylogenetic analysis of 104 species representing 27 genera of Grapholitini and 29 outgroup species. Divergence time, ancestral area, and host plant usage were also inferred to explore evolutionary trends in the tribe. Our analyses indicate that Larisa and Corticivora, traditionally assigned to Grapholitini, are best excluded from the tribe. After removal of these two genera, the tribe is found to be monophyletic, represented by two major lineages-a Dichrorampha clade and a Cydia clade, the latter of which can be divided into seven generic groups. The genus Grapholita was found to be polyphyletic, comprising three different clades, and we propose three genera to accommodate these groups: Grapholita (sensu stricto), Aspila (formerly a subgenus of Grapholita) and Ephippiphora (formerly considered a synonym of Grapholita). We summarize each generic group, including related genera not included in our analysis, providing morphological, pheromone and food plant characters that support particular branches within the molecular hypotheses. Biogeographical analyses indicate that Grapholitini probably originated in the Nearctic, Afrotropical and Neotropical regions in the Lutetian of the middle Eocene (ca. 44.3 Ma). Our results also indicate that most groups in Grapholitini originated from Fabaceae-feeding monophagous or oligophagous ancestors, and that host plant shifts probably promoted species diversification within the tribe.
Collapse
Affiliation(s)
- Gui-Lin Hu
- School of Life Sciences, Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, China
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - John Brown
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Maria Heikkilä
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Leif Aarvik
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Marko Mutanen
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
11
|
Thompson JB, Ramírez-Barahona S. No phylogenetic evidence for angiosperm mass extinction at the Cretaceous-Palaeogene (K-Pg) boundary. Biol Lett 2023; 19:20230314. [PMID: 37700701 PMCID: PMC10498348 DOI: 10.1098/rsbl.2023.0314] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
The Cretaceous-Palaeogene mass extinction event (K-Pg) witnessed upwards of 75% of animal species going extinct, most notably among these are the non-avian dinosaurs. A major question in macroevolution is whether this extinction event influenced the rise of flowering plants (angiosperms). The fossil record suggests that the K-Pg event had a strong regional impact on angiosperms with up to 75% species extinctions, but only had a minor impact on the extinction rates of major lineages (families and orders). Phylogenetic evidence for angiosperm extinction dynamics through time remains unexplored. By analysing two angiosperm mega-phylogenies containing approximately 32 000-73 000 extant species, here we show relatively constant extinction rates throughout geological time and no evidence for a mass extinction at the K-Pg boundary. Despite high species-level extinction observed in the fossil record, our results support the macroevolutionary resilience of angiosperms to the K-Pg mass extinction event via survival of higher lineages.
Collapse
Affiliation(s)
- Jamie B. Thompson
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | | |
Collapse
|
12
|
López-Martínez AM, Schönenberger J, von Balthazar M, González-Martínez CA, Ramírez-Barahona S, Sauquet H, Magallón S. Integrating Fossil Flowers into the Angiosperm Phylogeny Using Molecular and Morphological Evidence. Syst Biol 2023; 72:837-855. [PMID: 36995161 DOI: 10.1093/sysbio/syad017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Fossils are essential to infer past evolutionary processes. The assignment of fossils to extant clades has traditionally relied on morphological similarity and on apomorphies shared with extant taxa. The use of explicit phylogenetic analyses to establish fossil affinities has so far remained limited. In this study, we built a comprehensive framework to investigate the phylogenetic placement of 24 exceptionally preserved fossil flowers. For this, we assembled a new species-level data set of 30 floral traits for 1201 extant species that were sampled to capture the stem and crown nodes of all angiosperm families. We explored multiple analytical approaches to integrate the fossils into the phylogeny, including different phylogenetic estimation methods, topological-constrained analyses, and combining molecular and morphological data of extant and fossil species. Our results were widely consistent across approaches and showed minor differences in the support of fossils at different phylogenetic positions. The placement of some fossils agrees with previously suggested relationships, but for others, a new placement is inferred. We also identified fossils that are well supported within particular extant families, whereas others showed high phylogenetic uncertainty. Finally, we present recommendations for future analyses combining molecular and morphological evidence, regarding the selection of fossils and appropriate methodologies, and provide some perspectives on how to integrate fossils into the investigation of divergence times and the temporal evolution of morphological traits. [Angiosperms; fossil flowers; phylogenetic uncertainty; RoguePlots.].
Collapse
Affiliation(s)
- Andrea M López-Martínez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Maria von Balthazar
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - César A González-Martínez
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Susana Magallón
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
13
|
Ghosh Dasgupta M, Senthilkumar S, Muthulakshmi E, Balasubramanian A. The draft genome reveals early duplication event in Pterocarpus santalinus: an endemic timber species. PLANTA 2023; 258:27. [PMID: 37358820 DOI: 10.1007/s00425-023-04190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION A 541 Mb draft genome of Pterocarpus santalinus is presented and evidence of whole-genome duplication in the Eocene period with expansion of drought responsive gene families is documented. Pterocarpus santalinus Linn. f., popularly known as Red Sanders, is a deciduous tree, endemic to southern parts of Eastern Ghats in India. The heartwood is highly valued in the international market due to its deep red colour, fragrant heartwood and wavy grained texture. In the present study, a high-quality draft genome of P. santalinus was assembled using short and long reads generated from Illumina and Oxford Nanopore Sequencing platforms, respectively. The haploid genome size was estimated at 541 Mb and the hybrid assembly showed 99.60% genome completeness. A total of 51,713 consensus gene set were predicted with 31,437 annotated genes. The age of the whole-genome duplication event in the species was dated at 30-39 mya with 95% confidence suggesting early genome duplication event during the Eocene period. Concurrently, phylogenomic assessment of seven Papilionoideae members including P. santalinus grouped the species based on the tribal classification and established divergence of the tribe Dalbergieae from tribe Trifolieae at ~ 54.20 mya. A significant expansion of water deprivation/drought responsive gene families documented in the study probably explains the occurrence of the species in dry rocky patches. Additionally, re-sequencing of six diverse genotypes predicted one variant every 27 bases. This report presents the first draft genome in the genus Pterocarpus and the unprecedented genomic information generated is expected to accelerate population divergence studies in the species in relation to its endemic nature, support trait-based breeding programme and aid in development of diagnostic tools for timber forensics.
Collapse
Affiliation(s)
- Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology and Cytogenetics, ICFRE-Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, Tamil Nadu, India.
| | - Shanmugavel Senthilkumar
- Division of Plant Biotechnology and Cytogenetics, ICFRE-Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, Tamil Nadu, India
| | - Eswaran Muthulakshmi
- Division of Plant Biotechnology and Cytogenetics, ICFRE-Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, Tamil Nadu, India
| | - Aiyar Balasubramanian
- Division of Plant Biotechnology and Cytogenetics, ICFRE-Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, Tamil Nadu, India
| |
Collapse
|
14
|
Liu Y, Xu X, Dimitrov D, Pellissier L, Borregaard MK, Shrestha N, Su X, Luo A, Zimmermann NE, Rahbek C, Wang Z. An updated floristic map of the world. Nat Commun 2023; 14:2990. [PMID: 37253755 PMCID: PMC10229591 DOI: 10.1038/s41467-023-38375-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Floristic regions reflect the geographic organization of floras and provide essential tools for biological studies. Previous global floristic regions are generally based on floristic endemism, lacking a phylogenetic consideration that captures floristic evolution. Moreover, the contribution of tectonic dynamics and historical and current climate to the division of floristic regions remains unknown. Here, by integrating global distributions and a phylogeny of 12,664 angiosperm genera, we update global floristic regions and explore their temporal changes. Eight floristic realms and 16 nested sub-realms are identified. The previously-defined Holarctic, Neotropical and Australian realms are recognized, but Paleotropical, Antarctic and Cape realms are not. Most realms have formed since Paleogene. Geographic isolation induced by plate tectonics dominates the formation of floristic realms, while current/historical climate has little contribution. Our study demonstrates the necessity of integrating distributions and phylogenies in regionalizing floristic realms and the interplay of macroevolutionary and paleogeographic processes in shaping regional floras.
Collapse
Affiliation(s)
- Yunpeng Liu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory of Earth Surface Processes of Ministry of Education, Peking University, 100871, Beijing, China
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Xiaoting Xu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory of Earth Surface Processes of Ministry of Education, Peking University, 100871, Beijing, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, China
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, Postbox 7800, 5020, Bergen, Norway
| | - Loic Pellissier
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, 8092, Zurich, Switzerland
- Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Michael K Borregaard
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Nawal Shrestha
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory of Earth Surface Processes of Ministry of Education, Peking University, 100871, Beijing, China
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Innovation Ecology, Lanzhou University, 730000, Lanzhou, China
| | - Xiangyan Su
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory of Earth Surface Processes of Ministry of Education, Peking University, 100871, Beijing, China
- Land Consolidations and Rehabilitation Center, Ministry of Natural Resources, 100035, Beijing, China
| | - Ao Luo
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory of Earth Surface Processes of Ministry of Education, Peking University, 100871, Beijing, China
| | | | - Carsten Rahbek
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory of Earth Surface Processes of Ministry of Education, Peking University, 100871, Beijing, China.
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark.
- Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
- Danish Institute for Advanced Study, University of Southern Denmark, 5230, Odense M, Denmark.
| | - Zhiheng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory of Earth Surface Processes of Ministry of Education, Peking University, 100871, Beijing, China.
| |
Collapse
|
15
|
Aros-Mualin D, Guadagno CR, Silvestro D, Kessler M. Light, rather than circadian rhythm, regulates gas exchange in ferns and lycophytes. PLANT PHYSIOLOGY 2023; 191:1634-1647. [PMID: 36691320 PMCID: PMC10022864 DOI: 10.1093/plphys/kiad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Circadian regulation plays a vital role in optimizing plant responses to the environment. However, while circadian regulation has been extensively studied in angiosperms, very little is known for lycophytes and ferns, leaving a gap in our understanding of the evolution of circadian rhythms across the plant kingdom. Here, we investigated circadian regulation in gas exchange through stomatal conductance and photosynthetic efficiency in a phylogenetically broad panel of 21 species of lycophytes and ferns over a 46 h period under constant light and a selected few under more natural conditions with day-night cycles. No rhythm was detected under constant light for either lycophytes or ferns, except for two semi-aquatic species of the family Marsileaceae (Marsilea azorica and Regnellidium diphyllum), which showed rhythms in stomatal conductance. Furthermore, these results indicated the presence of a light-driven stomatal control for ferns and lycophytes, with a possible passive fine-tuning through leaf water status adjustments. These findings support previous evidence for the fundamentally different regulation of gas exchange in lycophytes and ferns compared to angiosperms, and they suggest the presence of alternative stomatal regulations in Marsileaceae, an aquatic family already well known for numerous other distinctive physiological traits. Overall, our study provides evidence for heterogeneous circadian regulation across plant lineages, highlighting the importance of broad taxonomic scope in comparative plant physiology studies.
Collapse
Affiliation(s)
| | | | - Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Department of Biological and Environmental Sciences and Global Gothenburg Biodiversity Centre, University of Gothenburg, Gothenburg SE-405 30, Sweden
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| | - Michael Kessler
- Department of Systematics and Evolutionary Botany, University of Zurich, Zurich 8008, Switzerland
| |
Collapse
|
16
|
Zecca G, Panzeri D, Grassi F. Detecting signals of adaptive evolution in grape plastomes with a focus on the Cretaceous-Palaeogene (K/Pg) transition. ANNALS OF BOTANY 2022; 130:965-980. [PMID: 36282948 PMCID: PMC9851337 DOI: 10.1093/aob/mcac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Although plastid genes are widely used in phylogenetic studies, signals of positive selection have been scarcely investigated in the grape family. The plastomes from 91 accessions of Vitaceae were examined to understand the extent to which positive selection is present and to identify which genes are involved. Moreover, the changes through time of genes under episodic positive selection were investigated and the hypothesis of an adaptive process following the Cretaceous-Palaeogene (K/Pg) transition about 66 million years ago was tested. METHODS Different codon-substitution models were used to assess pervasive and episodic positive selection events on 70 candidate plastid genes. Divergence times between lineages were estimated and stochastic character mapping analysis was used to simulate variation over time of the genes found to be under episodic positive selection. KEY RESULTS A total of 20 plastid genes (29 %) showed positive selection. Among them, 14 genes showed pervasive signatures of positive selection and nine genes showed episodic signatures of positive selection. In particular, four of the nine genes (psbK, rpl20, rpoB, rps11) exhibited a similar pattern showing an increase in the rate of variation close to the K/Pg transition. CONCLUSION Multiple analyses have shown that the grape family has experienced ancient and recent positive selection events and that the targeted genes are involved in essential functions such as photosynthesis, self-replication and metabolism. Our results are consistent with the idea that the K/Pg transition has favoured an increased rate of change in some genes. Intense environmental perturbations have influenced the rapid diversification of certain lineages, and new mutations arising on some plastid genes may have been fixed by natural selection over the course of many generations.
Collapse
Affiliation(s)
- Giovanni Zecca
- University of Milan-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126, Milano, Italy
| | - Davide Panzeri
- University of Milan-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126, Milano, Italy
| | - Fabrizio Grassi
- University of Milan-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126, Milano, Italy
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
17
|
Brée B, Condamine FL, Guinot G. Combining palaeontological and neontological data shows a delayed diversification burst of carcharhiniform sharks likely mediated by environmental change. Sci Rep 2022; 12:21906. [PMID: 36535995 PMCID: PMC9763247 DOI: 10.1038/s41598-022-26010-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Estimating deep-time species-level diversification processes remains challenging. Both the fossil record and molecular phylogenies allow the estimation of speciation and extinction rates, but each type of data may still provide an incomplete picture of diversification dynamics. Here, we combine species-level palaeontological (fossil occurrences) and neontological (molecular phylogenies) data to estimate deep-time diversity dynamics through process-based birth-death models for Carcharhiniformes, the most speciose shark order today. Despite their abundant fossil record dating back to the Middle Jurassic, only a small fraction of extant carcharhiniform species is recorded as fossils, which impedes relying only on the fossil record to study their recent diversification. Combining fossil and phylogenetic data, we recover a complex evolutionary history for carcharhiniforms, exemplified by several variations in diversification rates with an early low diversity period followed by a Cenozoic radiation. We further reveal a burst of diversification in the last 30 million years, which is partially recorded with fossil data only. We also find that reef expansion and temperature change can explain variations in speciation and extinction through time. These results pinpoint the primordial importance of these environmental variables in the evolution of marine clades. Our study also highlights the benefit of combining the fossil record with phylogenetic data to address macroevolutionary questions.
Collapse
Affiliation(s)
- Baptiste Brée
- grid.462058.d0000 0001 2188 7059Institut des Sciences de l’Evolution de Montpellier, CNRS, IRD, EPHE, Université de Montpellier, 34095 Montpellier, France
| | - Fabien L. Condamine
- grid.462058.d0000 0001 2188 7059Institut des Sciences de l’Evolution de Montpellier, CNRS, IRD, EPHE, Université de Montpellier, 34095 Montpellier, France
| | - Guillaume Guinot
- grid.462058.d0000 0001 2188 7059Institut des Sciences de l’Evolution de Montpellier, CNRS, IRD, EPHE, Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
18
|
Jouault C, Nel A, Perrichot V, Legendre F, Condamine FL. Multiple drivers and lineage-specific insect extinctions during the Permo-Triassic. Nat Commun 2022; 13:7512. [PMID: 36473862 PMCID: PMC9726944 DOI: 10.1038/s41467-022-35284-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The Permo-Triassic interval encompasses three extinction events including the most dramatic biological crisis of the Phanerozoic, the latest Permian mass extinction. However, their drivers and outcomes are poorly quantified and understood for terrestrial invertebrates, which we assess here for insects. We find a pattern with three extinctions: the Roadian/Wordian (≈266.9 Ma; extinction of 64.5% insect genera), the Permian/Triassic (≈252 Ma; extinction of 82.6% insect genera), and the Ladinian/Carnian boundaries (≈237 Ma; extinction of 74.8% insect genera). We also unveil a heterogeneous effect of these extinction events across the major insect clades. Because extinction events have impacted Permo-Triassic ecosystems, we investigate the influence of abiotic and biotic factors on insect diversification dynamics and find that changes in floral assemblages are likely the strongest drivers of insects' responses throughout the Permo-Triassic. We also assess the effect of diversity dependence between three insect guilds; an effect ubiquitously found in current ecosystems. We find that herbivores held a central position in the Permo-Triassic interaction network. Our study reveals high levels of insect extinction that profoundly shaped the evolutionary history of the most diverse non-microbial lineage.
Collapse
Affiliation(s)
- Corentin Jouault
- grid.462844.80000 0001 2308 1657Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France ,grid.462934.e0000 0001 1482 4447Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, F-35000 Rennes, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 5554 Institut des Sciences de l’Évolution de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - André Nel
- grid.462844.80000 0001 2308 1657Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Vincent Perrichot
- grid.462934.e0000 0001 1482 4447Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Frédéric Legendre
- grid.462844.80000 0001 2308 1657Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Fabien L. Condamine
- grid.4444.00000 0001 2112 9282CNRS, UMR 5554 Institut des Sciences de l’Évolution de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
19
|
Short-term paleogeographic reorganizations and climate events shaped diversification of North American freshwater gastropods over deep time. Sci Rep 2022; 12:15572. [PMID: 36114216 PMCID: PMC9481594 DOI: 10.1038/s41598-022-19759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
What controls species diversity and diversification is one of the major questions in evolutionary biology and paleontology. Previous studies have addressed this issue based on various plant and animal groups, geographic regions, and time intervals. However, as most previous research focused on terrestrial or marine ecosystems, our understanding of the controls on diversification of biota (and particularly invertebrates) in freshwater environments in deep time is still limited. Here, we infer diversification rates of North American freshwater gastropods from the Late Triassic to the Pleistocene and explore potential links between shifts in speciation and extinction and major changes in paleogeography, climate, and biotic interactions. We found that variation in the speciation rate is best explained by changes in continental fragmentation, with rate shifts coinciding with major paleogeographic reorganizations in the Mesozoic, in particular the retreat of the Sundance Sea and subsequent development of the Bighorn wetland and the advance of the Western Interior Seaway. Climatic events in the Cenozoic (Middle Eocene Climate Optimum, Miocene Climate Optimum) variably coincide with shifts in speciation and extinction as well, but no significant long-term association could be detected. Similarly, no influence of diversity dependence was found across the entire time frame of ~ 214 Myr. Our results indicate that short-term climatic events and paleogeographic changes are relevant to the diversification of continental freshwater biota, while long-term trends have limited effect.
Collapse
|
20
|
Flannery‐Sutherland JT, Raja NB, Kocsis ÁT, Kiessling W. fossilbrush
: An R package for automated detection and resolution of anomalies in palaeontological occurrence data. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Nussaïbah B. Raja
- GeoZentrum Nordbayern, Department of Geography and Geosciences Friedrich‐Alexander University Erlangen‐Nürnberg Erlangen Germany
| | - Ádám T. Kocsis
- GeoZentrum Nordbayern, Department of Geography and Geosciences Friedrich‐Alexander University Erlangen‐Nürnberg Erlangen Germany
| | - Wolfgang Kiessling
- GeoZentrum Nordbayern, Department of Geography and Geosciences Friedrich‐Alexander University Erlangen‐Nürnberg Erlangen Germany
| |
Collapse
|
21
|
Ambika, Aski MS, Gayacharan, Hamwieh A, Talukdar A, Kumar Gupta S, Sharma BB, Joshi R, Upadhyaya HD, Singh K, Kumar R. Unraveling Origin, History, Genetics, and Strategies for Accelerated Domestication and Diversification of Food Legumes. Front Genet 2022; 13:932430. [PMID: 35979429 PMCID: PMC9376740 DOI: 10.3389/fgene.2022.932430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Domestication is a dynamic and ongoing process of transforming wild species into cultivated species by selecting desirable agricultural plant features to meet human needs such as taste, yield, storage, and cultivation practices. Human plant domestication began in the Fertile Crescent around 12,000 years ago and spread throughout the world, including China, Mesoamerica, the Andes and Near Oceania, Sub-Saharan Africa, and eastern North America. Indus valley civilizations have played a great role in the domestication of grain legumes. Crops, such as pigeon pea, black gram, green gram, lablab bean, moth bean, and horse gram, originated in the Indian subcontinent, and Neolithic archaeological records indicate that these crops were first domesticated by early civilizations in the region. The domestication and evolution of wild ancestors into today’s elite cultivars are important contributors to global food supply and agricultural crop improvement. In addition, food legumes contribute to food security by protecting human health and minimize climate change impacts. During the domestication process, legume crop species have undergone a severe genetic diversity loss, and only a very narrow range of variability is retained in the cultivars. Further reduction in genetic diversity occurred during seed dispersal and movement across the continents. In general, only a few traits, such as shattering resistance, seed dormancy loss, stem growth behavior, flowering–maturity period, and yield traits, have prominence in the domestication process across the species. Thus, identification and knowledge of domestication responsive loci were often useful in accelerating new species’ domestication. The genes and metabolic pathways responsible for the significant alterations that occurred as an outcome of domestication might aid in the quick domestication of novel crops. Further, recent advances in “omics” sciences, gene-editing technologies, and functional analysis will accelerate the domestication and crop improvement of new crop species without losing much genetic diversity. In this review, we have discussed about the origin, center of diversity, and seed movement of major food legumes, which will be useful in the exploration and utilization of genetic diversity in crop improvement. Further, we have discussed about the major genes/QTLs associated with the domestication syndrome in pulse crops and the future strategies to improve the food legume crops.
Collapse
|
22
|
Bippus AC, Flores JR, Hyvönen J, Tomescu AMF. The role of paleontological data in bryophyte systematics. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4273-4290. [PMID: 35394022 DOI: 10.1093/jxb/erac137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Systematics reconstructs tempo and mode in biological evolution by resolving the phylogenetic fabric of biodiversity. The staggering duration and complexity of evolution, coupled with loss of information (extinction), render exhaustive reconstruction of the evolutionary history of life unattainable. Instead, we sample its products-phenotypes and genotypes-to generate phylogenetic hypotheses, which we sequentially reassess and update against new data. Current consensus in evolutionary biology emphasizes fossil integration in total-evidence analyses, requiring in-depth understanding of fossils-age, phenotypes, and systematic affinities-and a detailed morphological framework uniting fossil and extant taxa. Bryophytes present a special case: deep evolutionary history but sparse fossil record and phenotypic diversity encompassing small dimensional scales. We review how these peculiarities shape fossil inclusion in bryophyte systematics. Paucity of the bryophyte fossil record, driven primarily by phenotypic (small plant size) and ecological constraints (patchy substrate-hugging populations), and incomplete exploration, results in many morphologically isolated, taxonomically ambiguous fossil taxa. Nevertheless, instances of exquisite preservation and pioneering studies demonstrate the feasibility of including bryophyte fossils in evolutionary inference. Further progress will arise from developing extensive morphological matrices for bryophytes, continued exploration of the fossil record, re-evaluation of previously described fossils, and training specialists in identification and characterization of bryophyte fossils, and in bryophyte morphology.
Collapse
Affiliation(s)
- Alexander C Bippus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Department of Biological Sciences, California State Polytechnic University-Humboldt, Arcata, CA, USA
| | - Jorge R Flores
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
- Viikki Plant Science Center & Organismal & Evolutionary Biology, University of Helsinki, Helsinki, Finland
| | - Alexandru M F Tomescu
- Department of Biological Sciences, California State Polytechnic University-Humboldt, Arcata, CA, USA
| |
Collapse
|
23
|
Meseguer AS, Carrillo R, Graham SW, Sanmartín I. Macroevolutionary dynamics in the transition of angiosperms to aquatic environments. THE NEW PHYTOLOGIST 2022; 235:344-355. [PMID: 35292979 PMCID: PMC9320795 DOI: 10.1111/nph.18100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Angiosperm lineages in aquatic environments are characterized by high structural and functional diversity, and wide distributions. A long-standing evolutionary riddle is what processes have caused the relatively low diversity of aquatic angiosperms compared to their terrestrial relatives. We use diversification and ancestral reconstruction models with a comprehensive > 10 000 genus angiosperm phylogeny to elucidate the macroevolutionary dynamics associated with transitions of terrestrial plants to water. Our study reveals that net diversification rates are significantly lower in aquatic than in terrestrial angiosperms due to lower speciation and higher extinction. Shifts from land to water started early in angiosperm evolution, but most events were concentrated during the last c. 25 million years. Reversals to a terrestrial habitat started only 40 million years ago, but occurred at much higher rates. Within aquatic angiosperms, the estimated pattern is one of gradual accumulation of lineages, and relatively low and constant diversification rates throughout the Cenozoic. Low diversification rates, together with infrequent water transitions, account for the low diversity of aquatic angiosperms today. The stressful conditions and small global surface of the aquatic habitat available for angiosperms are hypothesized to explain this pattern.
Collapse
Affiliation(s)
| | - Rubén Carrillo
- Real Jardín Botánico de Madrid (RJB)CSIC28014MadridSpain
| | - Sean W. Graham
- Biodiversity Research CentreUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | | |
Collapse
|
24
|
Sauquet H, Ramírez-Barahona S, Magallón S. What is the age of flowering plants? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3840-3853. [PMID: 35438718 DOI: 10.1093/jxb/erac130] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The origin of flowering plants (angiosperms) was one of the most transformative events in the history of our planet. Despite considerable interest from multiple research fields, numerous questions remain, including the age of the group as a whole. Recent studies have reported a perplexing range of estimates for the crown-group age of angiosperms, from ~140 million years (Ma; Early Cretaceous) to 270 Ma (Permian). Both ends of the spectrum are now supported by both macroevolutionary analyses of the fossil record and fossil-calibrated molecular dating analyses. Here, we first clarify and distinguish among the three ages of angiosperms: the age of their divergence with acrogymnosperms (stem age); the age(s) of emergence of their unique, distinctive features including flowers (morphological age); and the age of the most recent common ancestor of all their living species (crown age). We then demonstrate, based on recent studies, that fossil-calibrated molecular dating estimates of the crown-group age of angiosperms have little to do with either the amount of molecular data or the number of internal fossil calibrations included. Instead, we argue that this age is almost entirely conditioned by its own prior distribution (typically a calibration density set by the user in Bayesian analyses). Lastly, we discuss which future discoveries or novel types of analyses are most likely to bring more definitive answers. In the meantime, we propose that the age of angiosperms is best described as largely unknown (140-270 Ma) and that contrasting age estimates in the literature mostly reflect conflicting prior distributions. We also suggest that future work that depends on the time scale of flowering plant diversification be designed to integrate over this vexing uncertainty.
Collapse
Affiliation(s)
- Hervé Sauquet
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | | | - Susana Magallón
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
25
|
Buatois LA, Davies NS, Gibling MR, Krapovickas V, Labandeira CC, MacNaughton RB, Mángano MG, Minter NJ, Shillito AP. The Invasion of the Land in Deep Time: Integrating Paleozoic Records of Paleobiology, Ichnology, Sedimentology, and Geomorphology. Integr Comp Biol 2022; 62:297-331. [PMID: 35640908 DOI: 10.1093/icb/icac059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The invasion of the land was a complex, protracted process, punctuated by mass extinctions, that involved multiple routes from marine environments. We integrate paleobiology, ichnology, sedimentology, and geomorphology to reconstruct Paleozoic terrestrialization. Cambrian landscapes were dominated by laterally mobile rivers with unstable banks in the absence of significant vegetation. Temporary incursions by arthropods and worm-like organisms into coastal environments apparently did not result in establishment of continental communities. Contemporaneous lacustrine faunas may have been inhibited by limited nutrient delivery and high sediment loads. The Ordovician appearance of early land plants triggered a shift in the primary locus of the global clay mineral factory, increasing the amount of mudrock on the continents. The Silurian-Devonian rise of vascular land plants, including the first forests and extensive root systems, was instrumental in further retaining fine sediment on alluvial plains. These innovations led to increased architectural complexity of braided and meandering rivers. Landscape changes were synchronous with establishment of freshwater and terrestrial arthropod faunas in overbank areas, abandoned fluvial channels, lake margins, ephemeral lakes, and inland deserts. Silurian-Devonian lakes experienced improved nutrient availability, due to increased phosphate weathering and terrestrial humic matter. All these changes favoured frequent invasions to permament establishment of jawless and jawed fishes in freshwater habitats and the subsequent tetrapod colonization of the land. The Carboniferous saw rapid diversification of tetrapods, mostly linked to aquatic reproduction, and land plants, including gymnosperms. Deeper root systems promoted further riverbank stabilization, contributing to the rise of anabranching rivers and braided systems with vegetated islands. New lineages of aquatic insects developed and expanded novel feeding modes, including herbivory. Late Paleozoic soils commonly contain pervasive root and millipede traces. Lacustrine animal communities diversified, accompanied by increased food-web complexity and improved food delivery which may have favored permanent colonization of offshore and deep-water lake environments. These trends continued in the Permian, but progressive aridification favored formation of hypersaline lakes, which were stressful for colonization. The Capitanian and end-Permian extinctions affected lacustrine and fluvial biotas, particularly the invertebrate infauna, although burrowing may have allowed some tetrapods to survive associated global warming and increased aridification.
Collapse
Affiliation(s)
- Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Neil S Davies
- Department of Earth Sciences, University of Cambridge, Cambridge, Cambridgeshire CB2 3EQ, UK
| | - Martin R Gibling
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Verónica Krapovickas
- Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Argentina
| | - Conrad C Labandeira
- Department of Paleobiology, Smithsonian Institution, Washington DC 20013-7012, USA.,Department of Entomology and BEES Program, University of Maryland, College Park, Maryland 21740, USA.,College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Robert B MacNaughton
- Geological Survey of Canada (Calgary), Natural Resources Canada, Calgary, Alberta T2L 2A7, Canada
| | - M Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Nicholas J Minter
- School of the Environment, Geography, and Geosciences, University of Portsmouth, Portsmouth, Hampshire PO1 3QL, UK
| | - Anthony P Shillito
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
26
|
Benton MJ, Wilf P, Sauquet H. The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. THE NEW PHYTOLOGIST 2022; 233:2017-2035. [PMID: 34699613 DOI: 10.1111/nph.17822] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Biodiversity today has the unusual property that 85% of plant and animal species live on land rather than in the sea, and half of these live in tropical rainforests. An explosive boost to terrestrial diversity occurred from c. 100-50 million years ago, the Late Cretaceous and early Palaeogene. During this interval, the Earth-life system on land was reset, and the biosphere expanded to a new level of productivity, enhancing the capacity and species diversity of terrestrial environments. This boost in terrestrial biodiversity coincided with innovations in flowering plant biology and evolutionary ecology, including their flowers and efficiencies in reproduction; coevolution with animals, especially pollinators and herbivores; photosynthetic capacities; adaptability; and ability to modify habitats. The rise of angiosperms triggered a macroecological revolution on land and drove modern biodiversity in a secular, prolonged shift to new, high levels, a series of processes we name here the Angiosperm Terrestrial Revolution.
Collapse
Affiliation(s)
- Michael J Benton
- School of Earth Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Peter Wilf
- Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hervé Sauquet
- National Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, NSW, 2000, Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
27
|
Schneider JV, Jungcurt T, Cardoso D, Amorim AM, Paule J, Zizka G. Predominantly Eastward Long-Distance Dispersal in Pantropical Ochnaceae Inferred From Ancestral Range Estimation and Phylogenomics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.813336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ochnaceae is a pantropical family with multiple transoceanic disjunctions at deep and shallow levels. Earlier attempts to unravel the processes that led to such biogeographic patterns suffered from insufficient phylogenetic resolution and unclear delimitation of some of the genera. In the present study, we estimated divergence time and ancestral ranges based on a phylogenomic framework with a well-resolved phylogenetic backbone to tackle issues of the timing and direction of dispersal that may explain the modern global distribution of Ochnaceae. The nuclear data provided the more robust framework for divergence time estimation compared to the plastome-scale data, although differences in the inferred clade ages were mostly small. While Ochnaceae most likely originated in West Gondwana during the Late Cretaceous, all crown-group disjunctions are inferred as dispersal-based, most of them as transoceanic long-distance dispersal (LDD) during the Cenozoic. All LDDs occurred in an eastward direction except for the SE Asian clade of Sauvagesieae, which was founded by trans-Pacific dispersal from South America. The most species-rich clade by far, Ochninae, originated from either a widespread neotropical-African ancestor or a solely neotropical ancestor which then dispersed to Africa. The ancestors of this clade then diversified in Africa, followed by subsequent dispersal to the Malagasy region and tropical Asia on multiple instances in three genera during the Miocene-Pliocene. In particular, Ochna might have used the South Arabian land corridor to reach South Asia. Thus, the pantropical distribution of Ochnaceae is the result of LDD either transoceanic or via land bridges/corridors, whereas vicariance might have played a role only along the stem of the family.
Collapse
|
28
|
Griffiths AR, Silman MR, Farfan-Rios W, Feeley KJ, Cabrera KG, Meir P, Salinas N, Segovia RA, Dexter KG. Evolutionary Diversity Peaks at Mid-Elevations Along an Amazon-to-Andes Elevation Gradient. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.680041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Elevation gradients present enigmatic diversity patterns, with trends often dependent on the dimension of diversity considered. However, focus is often on patterns of taxonomic diversity and interactions between diversity gradients and evolutionary factors, such as lineage age, are poorly understood. We combine forest census data with a genus level phylogeny representing tree ferns, gymnosperms, angiosperms, and an evolutionary depth of 382 million years, to investigate taxonomic and evolutionary diversity patterns across a long tropical montane forest elevation gradient on the Amazonian flank of the Peruvian Andes. We find that evolutionary diversity peaks at mid-elevations and contrasts with taxonomic richness, which is invariant from low to mid-elevation, but then decreases with elevation. We suggest that this trend interacts with variation in the evolutionary ages of lineages across elevation, with contrasting distribution trends between younger and older lineages. For example, while 53% of young lineages (originated by 10 million years ago) occur only below ∼1,750 m asl, just 13% of old lineages (originated by 110 million years ago) are restricted to below ∼1,750 m asl. Overall our results support an Environmental Crossroads hypothesis, whereby a mid-gradient mingling of distinct floras creates an evolutionary diversity in mid-elevation Andean forests that rivals that of the Amazonian lowlands.
Collapse
|
29
|
Condamine FL, Guinot G, Benton MJ, Currie PJ. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat Commun 2021; 12:3833. [PMID: 34188028 PMCID: PMC8242047 DOI: 10.1038/s41467-021-23754-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
The question why non-avian dinosaurs went extinct 66 million years ago (Ma) remains unresolved because of the coarseness of the fossil record. A sudden extinction caused by an asteroid is the most accepted hypothesis but it is debated whether dinosaurs were in decline or not before the impact. We analyse the speciation-extinction dynamics for six key dinosaur families, and find a decline across dinosaurs, where diversification shifted to a declining-diversity pattern ~76 Ma. We investigate the influence of ecological and physical factors, and find that the decline of dinosaurs was likely driven by global climate cooling and herbivorous diversity drop. The latter is likely due to hadrosaurs outcompeting other herbivores. We also estimate that extinction risk is related to species age during the decline, suggesting a lack of evolutionary novelty or adaptation to changing environments. These results support an environmentally driven decline of non-avian dinosaurs well before the asteroid impact.
Collapse
Affiliation(s)
- Fabien L Condamine
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS|IRD|EPHE), Montpellier, France.
| | - Guillaume Guinot
- Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS|IRD|EPHE), Montpellier, France
| | - Michael J Benton
- Department of Earth Sciences, University of Bristol, Bristol, UK
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Černý D, Madzia D, Slater GJ. Empirical and Methodological Challenges to the Model-Based Inference of Diversification Rates in Extinct Clades. Syst Biol 2021; 71:153-171. [PMID: 34110409 DOI: 10.1093/sysbio/syab045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/01/2023] Open
Abstract
Changes in speciation and extinction rates are key to the dynamics of clade diversification, but attempts to infer them from phylogenies of extant species face challenges. Methods capable of synthesizing information from extant and fossil species have yielded novel insights into diversification rate variation through time, but little is known about their behavior when analyzing entirely extinct clades. Here, we use empirical and simulated data to assess how two popular methods, PyRate and Fossil BAMM, perform in this setting. We inferred the first tip-dated trees for ornithischian dinosaurs, and combined them with fossil occurrence data to test whether the clade underwent an end-Cretaceous decline. We then simulated phylogenies and fossil records under empirical constraints to determine whether macroevolutionary and preservation rates can be teased apart under paleobiologically realistic conditions. We obtained discordant inferences about ornithischian macroevolution including a long-term speciation rate decline (BAMM), mostly flat rates with a steep diversification drop (PyRate) or without one (BAMM), and episodes of implausibly accelerated speciation and extinction (PyRate). Simulations revealed little to no conflation between speciation and preservation, but yielded spuriously correlated speciation and extinction estimates while time-smearing tree-wide shifts (BAMM) or overestimating their number (PyRate). Our results indicate that the small phylogenetic datasets available to vertebrate paleontologists and the assumptions made by current model-based methods combine to yield potentially unreliable inferences about the diversification of extinct clades. We provide guidelines for interpreting the results of the existing approaches in light of their limitations, and suggest how the latter may be mitigated.
Collapse
Affiliation(s)
- David Černý
- Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA
| | - Daniel Madzia
- Institute of Paleobiology, Polish Academy of Sciences, Warsaw 00-818, Poland
| | - Graham J Slater
- Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA
| |
Collapse
|
31
|
Weppe R, Orliac MJ, Guinot G, Condamine FL. Evolutionary drivers, morphological evolution and diversity dynamics of a surviving mammal clade: cainotherioids at the Eocene-Oligocene transition. Proc Biol Sci 2021; 288:20210173. [PMID: 34074121 PMCID: PMC8170207 DOI: 10.1098/rspb.2021.0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/10/2021] [Indexed: 11/12/2022] Open
Abstract
The Eocene-Oligocene transition (EOT) represents a period of global environmental changes particularly marked in Europe and coincides with a dramatic biotic turnover. Here, using an exceptional fossil preservation, we document and analyse the diversity dynamics of a mammal clade, Cainotherioidea (Artiodactyla), that survived the EOT and radiated rapidly immediately after. We infer their diversification history from Quercy Konzentrat-Lagerstätte (south-west France) at the species level using Bayesian birth-death models. We show that cainotherioid diversity fluctuated through time, with extinction events at the EOT and in the late Oligocene, and a major speciation burst in the early Oligocene. The latter is in line with our finding that cainotherioids had a high morphological adaptability following environmental changes throughout the EOT, which probably played a key role in the survival and evolutionary success of this clade in the aftermath. Speciation is positively associated with temperature and continental fragmentation in a time-continuous way, while extinction seems to synchronize with environmental change in a punctuated way. Within-clade interactions negatively affected the cainotherioid diversification, while inter-clade competition might explain their final decline during the late Oligocene. Our results provide a detailed dynamic picture of the evolutionary history of a mammal clade in a context of global change.
Collapse
Affiliation(s)
- R. Weppe
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - M. J. Orliac
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - G. Guinot
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - F. L. Condamine
- Institut des Sciences de l’évolution de Montpellier, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
32
|
Niu G, Jiang S, Doğan Ö, Korkmaz EM, Budak M, Wu D, Wei M. Mitochondrial Phylogenomics of Tenthredinidae (Hymenoptera: Tenthredinoidea) Supports the Monophyly of Megabelesesinae as a Subfamily. INSECTS 2021; 12:495. [PMID: 34073280 PMCID: PMC8227683 DOI: 10.3390/insects12060495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
Tenthredinidae represents one of the external feeders of the most diverse superfamily, Tenthredinoidea, with diverse host plant utilization. In this study, four complete mitochondrial genomes (mitogenomes), those of Cladiucha punctata, Cladiucha magnoliae, Megabeleses magnoliae, and Megabeleses liriodendrovorax, are newly sequenced and comparatively analyzed with previously reported tenthredinid mitogenomes. The close investigation of mitogenomes and the phylogeny of Tenthredinidae leads us to the following conclusions: The subfamilial relationships and phylogenetic placements within Tenthredinidae are mostly found to be similar to the previously suggested phylogenies. However, the present phylogeny supports the monophyly of Megabelesesinae as a subfamily, with the sister-group placement of Cladiucha and Megabeleses outside of Allantinae. The occurrence of the same type of tRNA rearrangements (MQI and ANS1ERF) in the mitogenomes of Megabelesesinae species and the presence of apomorphic morphological characters also provide robust evidence for this new subfamily. The divergence and diversification times of the subfamilies appear to be directly related to colonization of the flowering plants following the Early Cretaceous. The origin time and diversification patterns of Megabelesesinae were also well matched with the divergence times of their host plants from Magnoliaceae.
Collapse
Affiliation(s)
- Gengyun Niu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (G.N.); (D.W.)
| | - Sijia Jiang
- College of Forestry, Beijing Forestry University, Beijing 100083, China;
| | - Özgül Doğan
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey; (Ö.D.); (M.B.); (E.M.K.)
| | - Ertan Mahir Korkmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey; (Ö.D.); (M.B.); (E.M.K.)
| | - Mahir Budak
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey; (Ö.D.); (M.B.); (E.M.K.)
| | - Duo Wu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (G.N.); (D.W.)
| | - Meicai Wei
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (G.N.); (D.W.)
| |
Collapse
|
33
|
Köhler C, Dziasek K, Del Toro-De León G. Postzygotic reproductive isolation established in the endosperm: mechanisms, drivers and relevance. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200118. [PMID: 33866810 DOI: 10.1098/rstb.2020.0118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The endosperm is a developmental innovation of angiosperms that supports embryo growth and germination. Aside from this essential reproductive function, the endosperm fuels angiosperm evolution by rapidly establishing reproductive barriers between incipient species. Specifically, the endosperm prevents hybridization of newly formed polyploids with their non-polyploid progenitors, a phenomenon termed the triploid block. Furthermore, recently diverged diploid species are frequently reproductively isolated by endosperm-based hybridization barriers. Current genetic approaches have revealed a prominent role for epigenetic processes establishing these barriers. In particular, imprinted genes, which are expressed in a parent-of-origin-specific manner, underpin the interploidy barrier in the model species Arabidopsis. We will discuss the mechanisms establishing hybridization barriers in the endosperm, the driving forces for these barriers and their impact for angiosperm evolution. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Katarzyna Dziasek
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Gerardo Del Toro-De León
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
34
|
Silvestro D, Bacon CD, Ding W, Zhang Q, Donoghue PCJ, Antonelli A, Xing Y. Fossil data support a pre-Cretaceous origin of flowering plants. Nat Ecol Evol 2021; 5:449-457. [PMID: 33510432 DOI: 10.1038/s41559-020-01387-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023]
Abstract
Flowering plants (angiosperms) are the most diverse of all land plants, becoming abundant in the Cretaceous and achieving dominance in the Cenozoic. However, the exact timing of their origin remains a controversial topic, with molecular clocks generally placing their origin much further back in time than the oldest unequivocal fossils. To resolve this discrepancy, we developed a Bayesian method to estimate the ages of angiosperm families on the basis of the fossil record (a newly compiled dataset of ~15,000 occurrences in 198 families) and their living diversity. Our results indicate that several families originated in the Jurassic, strongly rejecting a Cretaceous origin for the group. We report a marked increase in lineage accumulation from 125 to 72 million years ago, supporting Darwin's hypothesis of a rapid Cretaceous angiosperm diversification. Our results demonstrate that a pre-Cretaceous origin of angiosperms is supported not only by molecular clock approaches but also by analyses of the fossil record that explicitly correct for incomplete sampling.
Collapse
Affiliation(s)
- Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
- Swiss Institute of Bioinformatics, Fribourg, Switzerland.
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.
| | - Christine D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Wenna Ding
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Qiuyue Zhang
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Yaowu Xing
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
35
|
Couvreur TL, Dauby G, Blach‐Overgaard A, Deblauwe V, Dessein S, Droissart V, Hardy OJ, Harris DJ, Janssens SB, Ley AC, Mackinder BA, Sonké B, Sosef MS, Stévart T, Svenning J, Wieringa JJ, Faye A, Missoup AD, Tolley KA, Nicolas V, Ntie S, Fluteau F, Robin C, Guillocheau F, Barboni D, Sepulchre P. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol Rev Camb Philos Soc 2021; 96:16-51. [PMID: 32924323 PMCID: PMC7821006 DOI: 10.1111/brv.12644] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022]
Abstract
Tropical Africa is home to an astonishing biodiversity occurring in a variety of ecosystems. Past climatic change and geological events have impacted the evolution and diversification of this biodiversity. During the last two decades, around 90 dated molecular phylogenies of different clades across animals and plants have been published leading to an increased understanding of the diversification and speciation processes generating tropical African biodiversity. In parallel, extended geological and palaeoclimatic records together with detailed numerical simulations have refined our understanding of past geological and climatic changes in Africa. To date, these important advances have not been reviewed within a common framework. Here, we critically review and synthesize African climate, tectonics and terrestrial biodiversity evolution throughout the Cenozoic to the mid-Pleistocene, drawing on recent advances in Earth and life sciences. We first review six major geo-climatic periods defining tropical African biodiversity diversification by synthesizing 89 dated molecular phylogeny studies. Two major geo-climatic factors impacting the diversification of the sub-Saharan biota are highlighted. First, Africa underwent numerous climatic fluctuations at ancient and more recent timescales, with tectonic, greenhouse gas, and orbital forcing stimulating diversification. Second, increased aridification since the Late Eocene led to important extinction events, but also provided unique diversification opportunities shaping the current tropical African biodiversity landscape. We then review diversification studies of tropical terrestrial animal and plant clades and discuss three major models of speciation: (i) geographic speciation via vicariance (allopatry); (ii) ecological speciation impacted by climate and geological changes, and (iii) genomic speciation via genome duplication. Geographic speciation has been the most widely documented to date and is a common speciation model across tropical Africa. We conclude with four important challenges faced by tropical African biodiversity research: (i) to increase knowledge by gathering basic and fundamental biodiversity information; (ii) to improve modelling of African geophysical evolution throughout the Cenozoic via better constraints and downscaling approaches; (iii) to increase the precision of phylogenetic reconstruction and molecular dating of tropical African clades by using next generation sequencing approaches together with better fossil calibrations; (iv) finally, as done here, to integrate data better from Earth and life sciences by focusing on the interdisciplinary study of the evolution of tropical African biodiversity in a wider geodiversity context.
Collapse
Affiliation(s)
| | - Gilles Dauby
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - Anne Blach‐Overgaard
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Vincent Deblauwe
- Center for Tropical Research (CTR), Institute of the Environment and SustainabilityUniversity of California, Los Angeles (UCLA)Los AngelesCA90095U.S.A.
- International Institute of Tropical Agriculture (IITA)YaoundéCameroon
| | | | - Vincent Droissart
- AMAP Lab, IRD, CIRAD, CNRS, INRAUniversity of MontpellierMontpellierFrance
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Oliver J. Hardy
- Laboratoire d'évolution Biologique et Ecologie, Faculté des SciencesUniversité Libre de BruxellesCP160/12, Avenue F.D. Roosevelt 50Brussels1050Belgium
| | - David J. Harris
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghU.K.
| | | | - Alexandra C. Ley
- Institut für Geobotanik und Botanischer GartenUniversity Halle‐WittenbergNeuwerk 21Halle06108Germany
| | | | - Bonaventure Sonké
- Laboratoire de Botanique Systématique et d'Écologie, École Normale SupérieureUniversité de Yaoundé IPO Box 047YaoundéCameroon
| | | | - Tariq Stévart
- Herbarium et Bibliothèque de Botanique AfricaineUniversité Libre de BruxellesBoulevard du TriompheBrusselsB‐1050Belgium
- Africa & Madagascar DepartmentMissouri Botanical GardenSt. LouisMOU.S.A.
| | - Jens‐Christian Svenning
- Section for Ecoinformatics & Biodiversity, Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityNy Munkegade 114Aarhus CDK‐8000Denmark
| | - Jan J. Wieringa
- Naturalis Biodiversity CenterDarwinweg 2Leiden2333 CRThe Netherlands
| | - Adama Faye
- Laboratoire National de Recherches sur les Productions Végétales (LNRPV)Institut Sénégalais de Recherches Agricoles (ISRA)Route des Hydrocarbures, Bel Air BP 1386‐ CP18524DakarSenegal
| | - Alain D. Missoup
- Zoology Unit, Laboratory of Biology and Physiology of Animal Organisms, Faculty of ScienceUniversity of DoualaPO Box 24157DoualaCameroon
| | - Krystal A. Tolley
- South African National Biodiversity InstituteKirstenbosch Research CentrePrivate Bag X7, ClaremontCape Town7735South Africa
- School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandPrivate Bag 3Wits2050South Africa
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHEUniversité des AntillesCP51, 57 rue CuvierParis75005France
| | - Stéphan Ntie
- Département de Biologie, Faculté des SciencesUniversité des Sciences et Techniques de MasukuFrancevilleBP 941Gabon
| | - Frédiéric Fluteau
- Institut de Physique du Globe de Paris, CNRSUniversité de ParisParisF‐75005France
| | - Cécile Robin
- CNRS, Géosciences Rennes, UMR6118University of RennesRennes35042France
| | | | - Doris Barboni
- CEREGE, Aix‐Marseille University, CNRS, IRD, Collège de France, INRA, Technopole Arbois MéditerranéeBP80Aix‐en‐Provence cedex413545France
| | - Pierre Sepulchre
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA‐CNRS‐UVSQUniversité Paris‐SaclayGif‐sur‐YvetteF‐91191France
| |
Collapse
|
36
|
Onstein RE. Darwin's second 'abominable mystery': trait flexibility as the innovation leading to angiosperm diversity. THE NEW PHYTOLOGIST 2020; 228:1741-1747. [PMID: 31664713 DOI: 10.1111/nph.16294] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
The fact that angiosperms are so species-rich and ecologically diverse - Darwin's second abominable mystery - could be explained by their ability to 'reinvent' themselves by evolving functional traits repeatedly over time, space and taxonomic clades. These trait innovations may facilitate adaptation and increase diversification rates. In this article, I quantify this 'trait flexibility' by reviewing the literature on trait transition rates and trait-dependent diversification rates in angiosperms and their extant sister clade, acrogymnosperms. I show that angiosperms indeed evolved elevated trait transition and trait-dependent diversification rates compared to gymnosperms, and rates are highest within species-rich angiosperm orders (e.g. Fabales, Lamiales). The (genetic) ability of certain angiosperm lineages to repeatedly evolve adaptive traits may have facilitated sustained high net diversification resulting from numerous episodic radiations.
Collapse
Affiliation(s)
- Renske E Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
37
|
Condamine FL, Silvestro D, Koppelhus EB, Antonelli A. The rise of angiosperms pushed conifers to decline during global cooling. Proc Natl Acad Sci U S A 2020; 117:28867-28875. [PMID: 33139543 PMCID: PMC7682372 DOI: 10.1073/pnas.2005571117] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Competition among species and entire clades can impact species diversification and extinction, which can shape macroevolutionary patterns. The fossil record shows successive biotic turnovers such that a dominant group is replaced by another. One striking example involves the decline of gymnosperms and the rapid diversification and ecological dominance of angiosperms in the Cretaceous. It is generally believed that angiosperms outcompeted gymnosperms, but the macroevolutionary processes and alternative drivers explaining this pattern remain elusive. Using extant time trees and vetted fossil occurrences for conifers, we tested the hypotheses that clade competition or climate change led to the decline of conifers at the expense of angiosperms. Here, we find that both fossil and molecular data show high congruence in revealing 1) low diversification rates, punctuated by speciation pulses, during warming events throughout the Phanerozoic and 2) that conifer extinction increased significantly in the Mid-Cretaceous (100 to 110 Ma) and remained high ever since. Their extinction rates are best explained by the rise of angiosperms, rejecting alternative models based on either climate change or time alone. Our results support the hypothesis of an active clade replacement, implying that direct competition with angiosperms increased the extinction of conifers by pushing their remaining species diversity and dominance out of the warm tropics. This study illustrates how entire branches on the Tree of Life may actively compete for ecological dominance under changing climates.
Collapse
Affiliation(s)
- Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier), 34095 Montpellier, France;
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, SE-405 30 Gothenburg, Sweden
| | - Eva B Koppelhus
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, SE-405 30 Gothenburg, Sweden
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom
| |
Collapse
|
38
|
Griffiths AR, Silman MR, Farfán Rios W, Feeley KJ, García Cabrera K, Meir P, Salinas N, Dexter KG. Evolutionary heritage shapes tree distributions along an Amazon‐to‐Andes elevation gradient. Biotropica 2020. [DOI: 10.1111/btp.12843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Miles R. Silman
- Biology Department and Center for Energy, Environment and Sustainability Wake Forest University Winston‐Salem NC USA
| | - William Farfán Rios
- Living Earth Collaborative Washington University in Saint Louis St. Louis MO USA
- Center for Conservation and Sustainable Development Missouri Botanical Garden St. Louis MO USA
- Herbario Vargas (CUZ), Escuela Profesional de Biología Universidad Nacional de San Antonio Abad del Cusco Cusco Peru
| | - Kenneth J. Feeley
- Department of Biology University of Miami Coral Gables FL USA
- Fairchild Tropical Botanic Garden Coral Gables FL USA
| | - Karina García Cabrera
- Biology Department and Center for Energy, Environment and Sustainability Wake Forest University Winston‐Salem NC USA
| | - Patrick Meir
- School of Geosciences University of Edinburgh Edinburgh UK
- Research School of Biology Australian National University Canberra ACT Australia
| | - Norma Salinas
- Instituto de Ciencias de la Naturaleza, Territorio y Energías Renovables Pontificia Universidad Católica del Peru Lima Peru
| | - Kyle G. Dexter
- School of Geosciences University of Edinburgh Edinburgh UK
- Royal Botanic Garden Edinburgh Edinburgh UK
| |
Collapse
|
39
|
S Meseguer A, Condamine FL. Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient. Evolution 2020; 74:1966-1987. [PMID: 32246727 DOI: 10.1111/evo.13967] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 03/04/2020] [Accepted: 03/21/2020] [Indexed: 01/15/2023]
Abstract
Global biodiversity currently peaks at the equator and decreases toward the poles. Growing fossil evidence suggest this hump-shaped latitudinal diversity gradient (LDG) has not been persistent through time, with similar diversity across latitudes flattening out the LDG during past greenhouse periods. However, when and how diversity declined at high latitudes to generate the modern LDG remains an open question. Although diversity-loss scenarios have been proposed, they remain mostly undemonstrated. We outline the "asymmetric gradient of extinction and dispersal" framework that contextualizes previous ideas behind the LDG under a time-variable scenario. Using phylogenies and fossils of Testudines, Crocodilia, and Lepidosauria, we find that the hump-shaped LDG could be explained by (1) disproportionate extinctions of high-latitude tropical-adapted clades when climate transitioned from greenhouse to icehouse, and (2) equator-ward biotic dispersals tracking their climatic preferences when tropical biomes became restricted to the equator. Conversely, equivalent diversification rates across latitudes can account for the formation of an ancient flat LDG. The inclusion of fossils in macroevolutionary studies allows revealing time-dependent extinction rates hardly detectable from phylogenies only. This study underscores that the prevailing evolutionary processes generating the LDG during greenhouses differed from those operating during icehouses.
Collapse
Affiliation(s)
- Andrea S Meseguer
- INRA, UMR 1062 Centre de Biologie pour la Gestion des Populations (INRA | IRD | CIRAD | Montpellier SupAgro), Montferrier-sur-Lez, France
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Montpellier, France
- Real Jardín Botánico de Madrid (RJB-CSIC), Madrid, Spain
| | - Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier | CNRS | IRD | EPHE), Montpellier, France
| |
Collapse
|
40
|
Koenen EJM, Ojeda DI, Bakker FT, Wieringa JJ, Kidner C, Hardy OJ, Pennington RT, Herendeen PS, Bruneau A, Hughes CE. The Origin of the Legumes is a Complex Paleopolyploid Phylogenomic Tangle Closely Associated with the Cretaceous-Paleogene (K-Pg) Mass Extinction Event. Syst Biol 2020; 70:508-526. [PMID: 32483631 PMCID: PMC8048389 DOI: 10.1093/sysbio/syaa041] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/06/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
The consequences of the Cretaceous–Paleogene (K–Pg) boundary (KPB) mass extinction for the evolution of plant diversity remain poorly understood, even though evolutionary turnover of plant lineages at the KPB is central to understanding assembly of the Cenozoic biota. The apparent concentration of whole genome duplication (WGD) events around the KPB may have played a role in survival and subsequent diversification of plant lineages. To gain new insights into the origins of Cenozoic biodiversity, we examine the origin and early evolution of the globally diverse legume family (Leguminosae or Fabaceae). Legumes are ecologically (co-)dominant across many vegetation types, and the fossil record suggests that they rose to such prominence after the KPB in parallel with several well-studied animal clades including Placentalia and Neoaves. Furthermore, multiple WGD events are hypothesized to have occurred early in legume evolution. Using a recently inferred phylogenomic framework, we investigate the placement of WGDs during early legume evolution using gene tree reconciliation methods, gene count data and phylogenetic supernetwork reconstruction. Using 20 fossil calibrations we estimate a revised timeline of legume evolution based on 36 nuclear genes selected as informative and evolving in an approximately clock-like fashion. To establish the timing of WGDs we also date duplication nodes in gene trees. Results suggest either a pan-legume WGD event on the stem lineage of the family, or an allopolyploid event involving (some of) the earliest lineages within the crown group, with additional nested WGDs subtending subfamilies Papilionoideae and Detarioideae. Gene tree reconciliation methods that do not account for allopolyploidy may be misleading in inferring an earlier WGD event at the time of divergence of the two parental lineages of the polyploid, suggesting that the allopolyploid scenario is more likely. We show that the crown age of the legumes dates to the Maastrichtian or early Paleocene and that, apart from the Detarioideae WGD, paleopolyploidy occurred close to the KPB. We conclude that the early evolution of the legumes followed a complex history, in which multiple auto- and/or allopolyploidy events coincided with rapid diversification and in association with the mass extinction event at the KPB, ultimately underpinning the evolutionary success of the Leguminosae in the Cenozoic. [Allopolyploidy; Cretaceous–Paleogene (K–Pg) boundary; Fabaceae, Leguminosae; paleopolyploidy; phylogenomics; whole genome duplication events]
Collapse
Affiliation(s)
- Erik J M Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Dario I Ojeda
- Service Évolution Biologique et Écologie, Faculté des Sciences, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium.,Norwegian Institute of Bioeconomy Research, Høgskoleveien 8, 1433 Ås, Norway
| | - Freek T Bakker
- Biosystematics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jan J Wieringa
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
| | - Catherine Kidner
- Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK.,School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Rd, Edinburgh, EH9 3JU, UK
| | - Olivier J Hardy
- Service Évolution Biologique et Écologie, Faculté des Sciences, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium
| | - R Toby Pennington
- Royal Botanic Gardens Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK.,Geography, University of Exeter, Amory Building, Rennes Drive, Exeter, EX4 4RJ, UK
| | | | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montreal, QC H1X 2B2, Canada
| | - Colin E Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| |
Collapse
|
41
|
Condamine FL, Nel A, Grandcolas P, Legendre F. Fossil and phylogenetic analyses reveal recurrent periods of diversification and extinction in dictyopteran insects. Cladistics 2020; 36:394-412. [PMID: 34619806 DOI: 10.1111/cla.12412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 01/22/2023] Open
Abstract
Variations of speciation and extinction rates determine the fate of clades through time. Periods of high diversification and extinction (possibly mass-extinction events) can punctuate the evolutionary history of various clades, but they remain loosely defined for many biological groups, especially nonmarine invertebrates like insects. Here, we examine whether the cockroaches, mantises and termites (altogether included in Dictyoptera) have experienced episodic pulses of speciation or extinction and how these pulses may be associated with environmental fluctuations or mass extinctions. We relied on molecular phylogeny and fossil data to shed light on the times and rates at which dictyopterans diversified. The diversification of Dictyoptera has alternated between (i) periods of high diversification in the late Carboniferous, Early-Middle Triassic, Early Cretaceous and middle Palaeogene, and (ii) periods of high extinction rates particularly at the Permian-Triassic boundary, but not necessarily correlated with the major global biodiversity crises as in the mid-Cretaceous. This study advocates the importance of analyzing, when possible, both molecular phylogeny and fossil data to unveil diversification and extinction periods for a given group. The causes and consequences of extinction must be studied beyond mass-extinction events alone to gain a broader understanding of how clades wax and wane.
Collapse
Affiliation(s)
- Fabien L Condamine
- CNRS, UMR 5554 Institut des Sciences de l'Évolution de Montpellier (Université de Montpellier
- CNRS
- IRD
- EPHE), Place Eugène Bataillon, 34095, Montpellier, France
| | - André Nel
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, 75231, Paris Cedex 05, France
| | - Philippe Grandcolas
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, 75231, Paris Cedex 05, France
| | - Frédéric Legendre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, 75231, Paris Cedex 05, France
| |
Collapse
|
42
|
The delayed and geographically heterogeneous diversification of flowering plant families. Nat Ecol Evol 2020; 4:1232-1238. [PMID: 32632260 DOI: 10.1038/s41559-020-1241-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/03/2020] [Indexed: 11/08/2022]
Abstract
The Early Cretaceous (145-100 million years ago (Ma)) witnessed the rise of flowering plants (angiosperms), which ultimately lead to profound changes in terrestrial plant communities. However, palaeobotanical evidence shows that the transition to widespread angiosperm-dominated biomes was delayed until the Palaeocene (66-56 Ma). Important aspects of the timing and geographical setting of angiosperm diversification during this period, and the groups involved, remain uncertain. Here we address these aspects by constructing and dating a new and complete family-level phylogeny, which we integrate with 16 million geographic occurrence records for angiosperms on a global scale. We show substantial time lags (mean, 37-56 Myr) between the origin of families (stem age) and the diversification leading to extant species (crown ages) across the entire angiosperm tree of life. In turn, our results show that families with the shortest lags are overrepresented in temperate and arid biomes compared with tropical biomes. Our results imply that the diversification and ecological expansion of extant angiosperms was geographically heterogeneous and occurred long after most of their phylogenetic diversity originated during the Cretaceous Terrestrial Revolution.
Collapse
|
43
|
Soto Gomez M, Lin Q, Silva Leal E, Gallaher TJ, Scherberich D, Mennes CB, Smith SY, Graham SW. A bi‐organellar phylogenomic study of Pandanales: inference of higher‐order relationships and unusual rate‐variation patterns. Cladistics 2020; 36:481-504. [DOI: 10.1111/cla.12417] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Marybel Soto Gomez
- Department of Botany University of British Columbia 6270 University Boulevard Vancouver BC V6T 1Z4 Canada
- UBC Botanical Garden & Centre for Plant Research University of British Columbia 6804 Marine Drive SW Vancouver BC V6T 1Z4 Canada
| | - Qianshi Lin
- Department of Botany University of British Columbia 6270 University Boulevard Vancouver BC V6T 1Z4 Canada
- UBC Botanical Garden & Centre for Plant Research University of British Columbia 6804 Marine Drive SW Vancouver BC V6T 1Z4 Canada
| | - Eduardo Silva Leal
- Universidade Federal Rural da Amazônia, Campus Capanema Avenida Barão de Capanema s/n Capanema68700-665 PA Brazil
| | | | - David Scherberich
- Jardin Botanique de la Ville de Lyon Mairie de Lyon69205 Lyon Cedex 01 France
| | | | - Selena Y. Smith
- Department of Earth & Environmental Sciences and Museum of Paleontology University of Michigan Ann Arbor MI 48109 USA
| | - Sean W. Graham
- Department of Botany University of British Columbia 6270 University Boulevard Vancouver BC V6T 1Z4 Canada
- UBC Botanical Garden & Centre for Plant Research University of British Columbia 6804 Marine Drive SW Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
44
|
Cannon CH, Petit RJ. The oak syngameon: more than the sum of its parts. THE NEW PHYTOLOGIST 2020; 226:978-983. [PMID: 31378946 DOI: 10.1111/nph.16091] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/23/2019] [Indexed: 05/10/2023]
Abstract
One of Anthropocene's most daunting challenges for conservation biology is habitat extinction, caused by rapid global change. Tree diversity has persisted through previous episodes of rapid change, even global extinctions. Given the pace of current change, our management of extant diversity needs to facilitate and even enhance the natural ability of trees to adapt and diversify. Numerous processes contribute to this evolutionary flexibility, including introgression, a widespread yet under-studied process. Reproductive networks, in which species remain distinct despite interspecific gene flow, are called syngameons, a concept largely inspired from work focusing on Quercus. Delineating and analyzing such species groups, empirically and theoretically, will provide insights into the nonadditive effects on evolution of numerous partially interfertile species exchanging genetic material episodically under changing environmental conditions. To conserve tree diversity, crossing experiments designed with an empirical and theoretical understanding of the constituent syngameon should be set up to assist diversification and adaptation in the Anthropocene. Our increasingly detailed knowledge of the oak genome and of oak interspecific and intraspecific phenotypic variation will improve our ability to sustain the diversity of this tree through an unpredictable and unprecedented future.
Collapse
Affiliation(s)
- Charles H Cannon
- Center for Tree Science, The Morton Arboretum, Lisle, IL, 60532, USA
| | - Rémy J Petit
- BIOGECO, INRA, Université Bordeaux, F-33610, Cestas, France
| |
Collapse
|
45
|
Marshall JEA, Lakin J, Troth I, Wallace-Johnson SM. UV-B radiation was the Devonian-Carboniferous boundary terrestrial extinction kill mechanism. SCIENCE ADVANCES 2020; 6:eaba0768. [PMID: 32518822 PMCID: PMC7253167 DOI: 10.1126/sciadv.aba0768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/23/2020] [Indexed: 05/28/2023]
Abstract
There is an unexplained terrestrial mass extinction at the Devonian-Carboniferous boundary (359 million years ago). The discovery in east Greenland of malformed land plant spores demonstrates that the extinction was coincident with elevated UV-B radiation demonstrating ozone layer reduction. Mercury data through the extinction level prove that, unlike other mass extinctions, there were no planetary scale volcanic eruptions. Importantly, the Devonian-Carboniferous boundary terrestrial mass extinction was coincident with a major climatic warming that ended the intense final glacial cycle of the latest Devonian ice age. A mechanism for ozone layer reduction during rapid warming is increased convective transport of ClO. Hence, ozone loss during rapid warming is an inherent Earth system process with the unavoidable conclusion that we should be alert for such an eventuality in the future warming world.
Collapse
Affiliation(s)
- John E. A. Marshall
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK
| | - Jon Lakin
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK
| | - Ian Troth
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK
| | | |
Collapse
|
46
|
Fu CN, Mo ZQ, Yang JB, Ge XJ, Li DZ, Xiang QY(J, Gao LM. Plastid phylogenomics and biogeographic analysis support a trans-Tethyan origin and rapid early radiation of Cornales in the Mid-Cretaceous. Mol Phylogenet Evol 2019; 140:106601. [DOI: 10.1016/j.ympev.2019.106601] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
|
47
|
Hernández-Gutiérrez R, Magallón S. The timing of Malvales evolution: Incorporating its extensive fossil record to inform about lineage diversification. Mol Phylogenet Evol 2019; 140:106606. [DOI: 10.1016/j.ympev.2019.106606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/05/2023]
|
48
|
Yiotis C, McElwain JC. A Novel Hypothesis for the Role of Photosynthetic Physiology in Shaping Macroevolutionary Patterns. PLANT PHYSIOLOGY 2019; 181:1148-1162. [PMID: 31484680 PMCID: PMC6836816 DOI: 10.1104/pp.19.00749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/25/2019] [Indexed: 05/08/2023]
Abstract
The fossil record and models of atmospheric concentrations of O2 and CO2 suggest that past shifts in plant ecological dominance often coincided with dramatic changes in Earth's atmospheric composition. This study tested the effects of past changes in atmospheric composition on the photosynthetic physiology of a limited range of early-diverging angiosperms (eight), gymnosperms (three), and ferns (two). We performed physiological measurements on all species and used the results to parameterize simulations of their photosynthetic paleophysiology using three independent modeling approaches. Unique physiological attributes were identified for the three evolutionary groups: angiosperm taxa displayed significantly higher mesophyll conductance (g m), yet their stomatal conductance (g s) was lower than that of ferns. Gymnosperm taxa displayed low g s and g m, but they partially offset their significant diffusional limitations on photosynthesis through their higher maximum Rubisco carboxylation rate. Despite their high total conductance to CO2, fern taxa lacked an optimized control of g s, which was reflected in their low intrinsic water use efficiency. Simulations of the photosynthetic physiology of ferns, angiosperms, and gymnosperms through Earth's history demonstrated that past fluctuations in O2 and CO2 concentrations may have resulted in significant shifts in the relative competitiveness of the three evolutionary groups. Although preliminary because of limited species sampling, these findings hint at a potential mechanistic basis for the observed broad temporal correlation between atmospheric change and shifts in plant evolutionary group-level richness observed in the fossil record and are presented as a framework to be tested with paleophotosynthetic proxies and through increased species sampling.
Collapse
Affiliation(s)
- Charilaos Yiotis
- Botany Department, School of Natural Sciences, Trinity College, Dublin 2, Ireland
| | - Jennifer C McElwain
- Botany Department, School of Natural Sciences, Trinity College, Dublin 2, Ireland
| |
Collapse
|
49
|
Climate cooling and clade competition likely drove the decline of lamniform sharks. Proc Natl Acad Sci U S A 2019; 116:20584-20590. [PMID: 31548392 DOI: 10.1073/pnas.1902693116] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding heterogeneity in species richness between closely related clades is a key research question in ecology and evolutionary biology. Multiple hypotheses have been proposed to interpret such diversity contrasts across the tree of life, with most studies focusing on speciation rates to explain clades' evolutionary radiations, while often neglecting extinction rates. Here we study a notorious biological model as exemplified by the sister relationships between mackerel sharks (Lamniformes, 15 extant species) and ground sharks (Carcharhiniformes, ∼290 extant species). Using a comprehensive fossil dataset, we found that the diversity dynamics of lamniforms waxed and waned following repeated cycles of radiation phases and declining phases. Radiation phases peaked up to 3 times the current diversity in the early Late Cretaceous. In the last 20 million years, the group declined to its present-day diversity. Along with a higher extinction risk for young species, we further show that this declining pattern is likely attributed to a combination of abiotic and biotic factors, with a cooling-driven extinction (negative correlation between temperature and extinction) and clade competition with some ground sharks. Competition from multiple clades successively drove the demise and replacement of mackerel sharks due to a failure to originate facing the rise of ground sharks, particularly since the Eocene. These effects came from ecologically similar carcharhiniform species inhibiting diversification of medium- and large-sized lamniforms. These results imply that the interplay between abiotic and biotic drivers had a substantial role in extinction and speciation, respectively, which determines the sequential rise and decline of marine apex predators.
Collapse
|
50
|
Nyman T, Onstein RE, Silvestro D, Wutke S, Taeger A, Wahlberg N, Blank SM, Malm T. The early wasp plucks the flower: disparate extant diversity of sawfly superfamilies (Hymenoptera: ‘Symphyta’) may reflect asynchronous switching to angiosperm hosts. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe insect order Hymenoptera originated during the Permian nearly 300 Mya. Ancestrally herbivorous hymenopteran lineages today make up the paraphyletic suborder ‘Symphyta’, which encompasses c. 8200 species with very diverse host-plant associations. We use phylogeny-based statistical analyses to explore the drivers of diversity dynamics within the ‘Symphyta’, with a particular focus on the hypothesis that diversification of herbivorous insects has been driven by the explosive radiation of angiosperms during and after the Cretaceous. Our ancestral-state estimates reveal that the first symphytans fed on gymnosperms, and that shifts onto angiosperms and pteridophytes – and back – have occurred at different time intervals in different groups. Trait-dependent analyses indicate that average net diversification rates do not differ between symphytan lineages feeding on angiosperms, gymnosperms or pteridophytes, but trait-independent models show that the highest diversification rates are found in a few angiosperm-feeding lineages that may have been favoured by the radiations of their host taxa during the Cenozoic. Intriguingly, lineages-through-time plots show signs of an early Cretaceous mass extinction, with a recovery starting first in angiosperm-associated clades. Hence, the oft-invoked assumption of herbivore diversification driven by the rise of flowering plants may overlook a Cretaceous global turnover in insect herbivore communities during the rapid displacement of gymnosperm- and pteridophyte-dominated floras by angiosperms.
Collapse
Affiliation(s)
- Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Renske E Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, Germany
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg and Gothenburg Global Biodiversity Centre, Sweden
| | - Saskia Wutke
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Andreas Taeger
- Senckenberg Deutsches Entomologisches Institut Müncheberg, Germany
| | | | - Stephan M Blank
- Senckenberg Deutsches Entomologisches Institut Müncheberg, Germany
| | - Tobias Malm
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|