1
|
Ding Y, Shi Y, Yang S. Regulatory Networks Underlying Plant Responses and Adaptation to Cold Stress. Annu Rev Genet 2024; 58:43-65. [PMID: 39018466 DOI: 10.1146/annurev-genet-111523-102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Cold is an important environmental factor limiting plant growth and development. Recent studies have revealed the complex regulatory networks associated with plant responses to cold and identified their interconnections with signaling pathways related to light, the circadian clock, plant hormones, and pathogen defense. In this article, we review recent advances in understanding the molecular basis of cold perception and signal transduction pathways. We also summarize recent developments in the study of cold-responsive growth and flowering. Finally, we propose future directions for the study of long-term cold sensing, RNA secondary structures in response to cold, and the development of cold-tolerant and high-yield crops.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; ,
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; ,
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; ,
| |
Collapse
|
2
|
Sakai T, Contreras MP, Martinez-Anaya C, Lüdke D, Kamoun S, Wu CH, Adachi H. The NRC0 gene cluster of sensor and helper NLR immune receptors is functionally conserved across asterid plants. THE PLANT CELL 2024; 36:3344-3361. [PMID: 38833594 PMCID: PMC11371149 DOI: 10.1093/plcell/koae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat-containing receptor (NLR) proteins can form complex receptor networks to confer innate immunity. An NLR-REQUIRED FOR CELL DEATH (NRC) is a phylogenetically related node that functions downstream of a massively expanded network of disease resistance proteins that protect against multiple plant pathogens. In this study, we used phylogenomic methods to reconstruct the macroevolution of the NRC family. One of the NRCs, termed NRC0, is the only family member shared across asterid plants, leading us to investigate its evolutionary history and genetic organization. In several asterid species, NRC0 is genetically clustered with other NLRs that are phylogenetically related to NRC-dependent disease resistance genes. This prompted us to hypothesize that the ancestral state of the NRC network is an NLR helper-sensor gene cluster that was present early during asterid evolution. We provide support for this hypothesis by demonstrating that NRC0 is essential for the hypersensitive cell death that is induced by its genetically linked sensor NLR partners in 4 divergent asterid species: tomato (Solanum lycopersicum), wild sweet potato (Ipomoea trifida), coffee (Coffea canephora), and carrot (Daucus carota). In addition, activation of a sensor NLR leads to higher-order complex formation of its genetically linked NRC0, similar to other NRCs. Our findings map out contrasting evolutionary dynamics in the macroevolution of the NRC network over the last 125 million years, from a functionally conserved NLR gene cluster to a massive genetically dispersed network.
Collapse
Affiliation(s)
- Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Claudia Martinez-Anaya
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62110, México
| | - Daniel Lüdke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
3
|
Nizan S, Amitzur A, Dahan-Meir T, Benichou JIC, Bar-Ziv A, Perl-Treves R. Mutagenesis of the melon Prv gene by CRISPR/Cas9 breaks papaya ringspot virus resistance and generates an autoimmune allele with constitutive defense responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4579-4596. [PMID: 37137337 PMCID: PMC10433930 DOI: 10.1093/jxb/erad156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
The majority of plant disease resistance (R) genes encode nucleotide binding-leucine-rich repeat (NLR) proteins. In melon, two closely linked NLR genes, Fom-1 and Prv, were mapped and identified as candidate genes that control resistance to Fusarium oxysporum f.sp. melonis races 0 and 2, and to papaya ringspot virus (PRSV), respectively. In this study, we validated the function of Prv and showed that it is essential for providing resistance against PRSV infection. We generated CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9] mutants using Agrobacterium-mediated transformation of a PRSV-resistant melon genotype, and the T1 progeny proved susceptible to PRSV, showing strong disease symptoms and viral spread upon infection. Three alleles having 144, 154, and ~3 kb deletions, respectively, were obtained, all of which caused loss of resistance. Interestingly, one of the Prv mutant alleles, prvΔ154, encoding a truncated product, caused an extreme dwarf phenotype, accompanied by leaf lesions, high salicylic acid levels, and defense gene expression. The autoimmune phenotype observed at 25 °C proved to be temperature dependent, being suppressed at 32 °C. This is a first report on the successful application of CRISPR/Cas9 to confirm R gene function in melon. Such validation opens up new opportunities for molecular breeding of disease resistance in this important vegetable crop.
Collapse
Affiliation(s)
- Shahar Nizan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Arie Amitzur
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Tal Dahan-Meir
- Plant and Environmental Sciences, Weizmann Institute of Science, Israel
| | | | - Amalia Bar-Ziv
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| | - Rafael Perl-Treves
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel
| |
Collapse
|
4
|
Li JM, Ye MY, Wang C, Ma XH, Wu NN, Zhong CL, Zhang Y, Cheng N, Nakata PA, Zeng L, Liu JZ. Soybean GmSAUL1, a Bona Fide U-Box E3 Ligase, Negatively Regulates Immunity Likely through Repressing the Activation of GmMPK3. Int J Mol Sci 2023; 24:ijms24076240. [PMID: 37047211 PMCID: PMC10094664 DOI: 10.3390/ijms24076240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
E3 ubiquitin ligases play important roles in plant immunity, but their role in soybean has not been investigated previously. Here, we used Bean pod mottle virus (BPMV)-mediated virus-induced gene silencing (VIGS) to investigate the function of GmSAUL1 (Senescence-Associated E3 Ubiquitin Ligase 1) homologs in soybean. When two closely related SAUL1 homologs were silenced simultaneously, the soybean plants displayed autoimmune phenotypes, which were significantly alleviated by high temperature, suggesting that GmSAUL1a/1b might be guarded by an R protein. Interestingly, silencing GmSAUL1a/1b resulted in the decreased activation of GmMPK6, but increased activation of GmMPK3 in response to flg22, suggesting that the activation of GmMPK3 is most likely responsible for the activated immunity observed in the GmSAUL1a/1b-silenced plants. Furthermore, we provided evidence that GmSAUL1a is a bona fide E3 ligase. Collectively, our results indicated that GmSAUL1 plays a negative role in regulating cell death and immunity in soybean.
Collapse
Affiliation(s)
- Jun-Mei Li
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mei-Yan Ye
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Chaofeng Wang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA
| | - Xiao-Han Ma
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ni-Ni Wu
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chen-Li Zhong
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanjun Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ninghui Cheng
- U.S. Department of Agriculture-Agricultural Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A. Nakata
- U.S. Department of Agriculture-Agricultural Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lirong Zeng
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA
| | - Jian-Zhong Liu
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
- Correspondence:
| |
Collapse
|
5
|
Adachi H, Sakai T, Harant A, Pai H, Honda K, Toghani A, Claeys J, Duggan C, Bozkurt TO, Wu CH, Kamoun S. An atypical NLR protein modulates the NRC immune receptor network in Nicotiana benthamiana. PLoS Genet 2023; 19:e1010500. [PMID: 36656829 PMCID: PMC9851556 DOI: 10.1371/journal.pgen.1010500] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/27/2022] [Indexed: 01/20/2023] Open
Abstract
The NRC immune receptor network has evolved in asterid plants from a pair of linked genes into a genetically dispersed and phylogenetically structured network of sensor and helper NLR (nucleotide-binding domain and leucine-rich repeat-containing) proteins. In some species, such as the model plant Nicotiana benthamiana and other Solanaceae, the NRC (NLR-REQUIRED FOR CELL DEATH) network forms up to half of the NLRome, and NRCs are scattered throughout the genome in gene clusters of varying complexities. Here, we describe NRCX, an atypical member of the NRC family that lacks canonical features of these NLR helper proteins, such as a functional N-terminal MADA motif and the capacity to trigger autoimmunity. In contrast to other NRCs, systemic gene silencing of NRCX in N. benthamiana markedly impairs plant growth resulting in a dwarf phenotype. Remarkably, dwarfism of NRCX silenced plants is partially dependent on NRCX paralogs NRC2 and NRC3, but not NRC4. Despite its negative impact on plant growth when silenced systemically, spot gene silencing of NRCX in mature N. benthamiana leaves doesn't result in visible cell death phenotypes. However, alteration of NRCX expression modulates the hypersensitive response mediated by NRC2 and NRC3 in a manner consistent with a negative role for NRCX in the NRC network. We conclude that NRCX is an atypical member of the NRC network that has evolved to contribute to the homeostasis of this genetically unlinked NLR network.
Collapse
Affiliation(s)
- Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- JST-PRESTO, Saitama, Japan
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Kodai Honda
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - AmirAli Toghani
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jules Claeys
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Cian Duggan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tolga O. Bozkurt
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Chih-hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
6
|
Vining KJ, Pandelova I, Lange I, Parrish AN, Lefors A, Kronmiller B, Liachko I, Kronenberg Z, Srividya N, Lange BM. Chromosome-level genome assembly of Mentha longifolia L. reveals gene organization underlying disease resistance and essential oil traits. G3 GENES|GENOMES|GENETICS 2022; 12:6584825. [PMID: 35551385 PMCID: PMC9339296 DOI: 10.1093/g3journal/jkac112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Mentha longifolia (L.) Huds., a wild, diploid mint species, has been developed as a model for mint genetic and genomic research to aid breeding efforts that target Verticillium wilt disease resistance and essential oil monoterpene composition. Here, we present a near-complete, chromosome-scale mint genome assembly for M. longifolia USDA accession CMEN 585. This new assembly is an update of a previously published genome draft, with dramatic improvements. A total of 42,107 protein-coding genes were annotated and placed on 12 chromosomal scaffolds. One hundred fifty-three genes contained conserved sequence domains consistent with nucleotide binding site-leucine-rich-repeat plant disease resistance genes. Homologs of genes implicated in Verticillium wilt resistance in other plant species were also identified. Multiple paralogs of genes putatively involved in p-menthane monoterpenoid biosynthesis were identified and several cases of gene clustering documented. Heterologous expression of candidate genes, purification of recombinant target proteins, and subsequent enzyme assays allowed us to identify the genes underlying the pathway that leads to the most abundant monoterpenoid volatiles. The bioinformatic and functional analyses presented here are laying the groundwork for using marker-assisted selection in improving disease resistance and essential oil traits in mints.
Collapse
Affiliation(s)
- Kelly J Vining
- Department of Horticulture, Oregon State University , Corvallis, OR 97331, USA
| | - Iovanna Pandelova
- Department of Horticulture, Oregon State University , Corvallis, OR 97331, USA
| | - Iris Lange
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - Amber N Parrish
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - Andrew Lefors
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - Brent Kronmiller
- Center for Quantitative Life Sciences, Oregon State University , Corvallis, OR 97331, USA
| | | | | | - Narayanan Srividya
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| | - B Markus Lange
- M.J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry, Washington State University , Pullman, WA 99164-6340, USA
| |
Collapse
|
7
|
Förderer A, Yu D, Li E, Chai J. Resistosomes at the interface of pathogens and plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102212. [PMID: 35462196 DOI: 10.1016/j.pbi.2022.102212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Nucleotide-binding and leucine-rich repeat (NLR) proteins are a large family of intracellular immune receptors that detect specific pathogen effector proteins secreted into plant cells. Upon direct or indirect recognition of effector proteins, NLRs form higher-order oligomeric complexes termed resistosomes that trigger defence responses typically associated with a regulated cell death. Here, we review recent advances in our understanding of signalling mediated by plant NLR resistosomes. Emphasis is placed on discussing the activation mechanisms and biochemical functions of resistosomes. We also summarize the most recent research in structure-based rational engineering of NLRs. At the end, we outline challenging questions concerning the elucidation of resistosome signalling.
Collapse
Affiliation(s)
- Alexander Förderer
- Institute of Biochemistry, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Dongli Yu
- Institute of Biochemistry, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ertong Li
- Institute of Biochemistry, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jijie Chai
- Institute of Biochemistry, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany; Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Wu Z, Tian L, Liu X, Huang W, Zhang Y, Li X. The N-terminally truncated helper NLR NRG1C antagonizes immunity mediated by its full-length neighbors NRG1A and NRG1B. THE PLANT CELL 2022; 34:1621-1640. [PMID: 34871452 PMCID: PMC9048947 DOI: 10.1093/plcell/koab285] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 05/19/2023]
Abstract
Both plants and animals utilize nucleotide-binding leucine-rich repeat immune receptors (NLRs) to perceive the presence of pathogen-derived molecules and induce immune responses. NLR genes are far more abundant and diverse in vascular plants than in animals. Truncated NLRs, which lack one or more of the canonical domains, are also commonly encoded in plant genomes. However, little is known about their functions, especially the N-terminally truncated ones. Here, we show that the Arabidopsis thaliana N-terminally truncated helper NLR (hNLR) gene N REQUIREMENT GENE1 (NRG1C) is highly induced upon pathogen infection and in autoimmune mutants. The immune response and cell death conferred by some Toll/interleukin-1 receptor-type NLRs (TNLs) were compromised in Arabidopsis NRG1C overexpression lines. Detailed genetic analysis revealed that NRG1C antagonizes the immunity mediated by its full-length neighbors NRG1A and NRG1B. Biochemical tests suggested that NRG1C might interfere with the EDS1-SAG101 complex, which functions in immunity signaling together with NRG1A/1B. Interestingly, Brassicaceae NRG1Cs are functionally exchangeable and that the Nicotiana benthamiana N-terminally truncated hNLR NRG2 also antagonizes NRG1 activity. Together, our study uncovers an unexpected negative role of N-terminally truncated hNLRs in immunity in different plant species.
Collapse
Affiliation(s)
- Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lei Tian
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xueru Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Weijie Huang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
9
|
Wu X, Han J, Guo C. Function of Nuclear Pore Complexes in Regulation of Plant Defense Signaling. Int J Mol Sci 2022; 23:3031. [PMID: 35328452 PMCID: PMC8953349 DOI: 10.3390/ijms23063031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
In eukaryotes, the nucleus is the regulatory center of cytogenetics and metabolism, and it is critical for fundamental biological processes, including DNA replication and transcription, protein synthesis, and biological macromolecule transportation. The eukaryotic nucleus is surrounded by a lipid bilayer called the nuclear envelope (NE), which creates a microenvironment for sophisticated cellular processes. The NE is perforated by the nuclear pore complex (NPC), which is the channel for biological macromolecule bi-directional transport between the nucleus and cytoplasm. It is well known that NPC is the spatial designer of the genome and the manager of genomic function. Moreover, the NPC is considered to be a platform for the continual adaptation and evolution of eukaryotes. So far, a number of nucleoporins required for plant-defense processes have been identified. Here, we first provide an overview of NPC organization in plants, and then discuss recent findings in the plant NPC to elaborate on and dissect the distinct defensive functions of different NPC subcomponents in plant immune defense, growth and development, hormone signaling, and temperature response. Nucleoporins located in different components of NPC have their unique functions, and the link between the NPC and nucleocytoplasmic trafficking promotes crosstalk of different defense signals in plants. It is necessary to explore appropriate components of the NPC as potential targets for the breeding of high-quality and broad spectrum resistance crop varieties.
Collapse
Affiliation(s)
- Xi Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Junyou Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Changkui Guo
- Laboratory of Plant Molecular and Developmental Biology, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
10
|
Ubiquitination of Receptorsomes, Frontline of Plant Immunity. Int J Mol Sci 2022; 23:ijms23062937. [PMID: 35328358 PMCID: PMC8948693 DOI: 10.3390/ijms23062937] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Sessile plants are constantly exposed to myriads of unfavorable invading organisms with different lifestyles. To survive, plants have evolved plasma membrane-resident pattern recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs) to initiate sophisticated downstream immune responses. Ubiquitination serves as one of the most important and prevalent posttranslational modifications (PTMs) to fine-tune plant immune responses. Over the last decade, remarkable progress has been made in delineating the critical roles of ubiquitination in plant immunity. In this review, we highlight recent advances in the understanding of ubiquitination in the modulation of plant immunity, with a particular focus on ubiquitination in the regulation of receptorsomes, and discuss how ubiquitination and other PTMs act in concert to ensure rapid, proper, and robust immune responses.
Collapse
|
11
|
Freh M, Gao J, Petersen M, Panstruga R. Plant autoimmunity-fresh insights into an old phenomenon. PLANT PHYSIOLOGY 2022; 188:1419-1434. [PMID: 34958371 PMCID: PMC8896616 DOI: 10.1093/plphys/kiab590] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
The plant immune system is well equipped to ward off the attacks of different types of phytopathogens. It primarily relies on two types of immune sensors-plasma membrane-resident receptor-like kinases and intracellular nucleotide-binding domain leucine-rich repeat (NLRs) receptors that engage preferentially in pattern- and effector-triggered immunity, respectively. Delicate fine-tuning, in particular of the NLR-governed branch of immunity, is key to prevent inappropriate and deleterious activation of plant immune responses. Inadequate NLR allele constellations, such as in the case of hybrid incompatibility, and the mis-activation of NLRs or the absence or modification of proteins guarded by these NLRs can result in the spontaneous initiation of plant defense responses and cell death-a phenomenon referred to as plant autoimmunity. Here, we review recent insights augmenting our mechanistic comprehension of plant autoimmunity. The recent findings broaden our understanding regarding hybrid incompatibility, unravel candidates for proteins likely guarded by NLRs and underline the necessity for the fine-tuning of NLR expression at various levels to avoid autoimmunity. We further present recently emerged tools to study plant autoimmunity and draw a cross-kingdom comparison to the role of NLRs in animal autoimmune conditions.
Collapse
Affiliation(s)
- Matthias Freh
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Jinlan Gao
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Morten Petersen
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| |
Collapse
|
12
|
Yan T, Zhou Z, Wang R, Bao D, Li S, Li A, Yu R, Wuriyanghan H. A cluster of atypical resistance genes in soybean confers broad-spectrum antiviral activity. PLANT PHYSIOLOGY 2022; 188:1277-1293. [PMID: 34730802 PMCID: PMC8825445 DOI: 10.1093/plphys/kiab507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/02/2021] [Indexed: 06/12/2023]
Abstract
Soybean mosaic virus (SMV) is a severe soybean (Glycine max) pathogen. Here we characterize a soybean SMV resistance cluster (SRC) that comprises five resistance (R) genes. SRC1 encodes a Toll/interleukin-1 receptor and nucleotide-binding site (TIR-NBS [TN]) protein, SRC4 and SRC6 encode TIR proteins with a short EF-hand domain, while SRC7 and SRC8 encode TNX proteins with a noncanonical basic secretory protein (BSP) domain at their C-termini. We mainly studied SRC7, which contains a noncanonical BSP domain and gave full resistance to SMV. SRC7 possessed broad-spectrum antiviral activity toward several plant viruses including SMV, plum pox virus, potato virus Y, and tobacco mosaic virus. The TIR domain alone was both necessary and sufficient for SRC7 immune signaling, while the NBS domain enhanced its activity. Nuclear oligomerization via the interactions of both TIR and NBS domains was essential for SRC7 function. SRC7 expression was transcriptionally inducible by SMV infection and salicylic acid (SA) treatment, and SA was required for SRC7 triggered virus resistance. SRC7 expression was posttranscriptionally regulated by miR1510a and miR2109, and the SRC7-miR1510a/miR2109 regulatory network appeared to contribute to SMV-soybean interactions in both resistant and susceptible soybean cultivars. In summary, we report a soybean R gene cluster centered by SRC7 that is regulated at both transcriptional and posttranscriptional levels, possesses a yet uncharacterized BSP domain, and has broad-spectrum antiviral activities. The SRC cluster is special as it harbors several functional R genes encoding atypical TIR-NBS-LRR (TNL) type R proteins, highlighting its importance in SMV-soybean interaction and plant immunity.
Collapse
Affiliation(s)
- Ting Yan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ru Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Duran Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Shanshan Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Aoga Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
13
|
Maruta N, Burdett H, Lim BYJ, Hu X, Desa S, Manik MK, Kobe B. Structural basis of NLR activation and innate immune signalling in plants. Immunogenetics 2022; 74:5-26. [PMID: 34981187 PMCID: PMC8813719 DOI: 10.1007/s00251-021-01242-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
Animals and plants have NLRs (nucleotide-binding leucine-rich repeat receptors) that recognize the presence of pathogens and initiate innate immune responses. In plants, there are three types of NLRs distinguished by their N-terminal domain: the CC (coiled-coil) domain NLRs, the TIR (Toll/interleukin-1 receptor) domain NLRs and the RPW8 (resistance to powdery mildew 8)-like coiled-coil domain NLRs. CC-NLRs (CNLs) and TIR-NLRs (TNLs) generally act as sensors of effectors secreted by pathogens, while RPW8-NLRs (RNLs) signal downstream of many sensor NLRs and are called helper NLRs. Recent studies have revealed three dimensional structures of a CNL (ZAR1) including its inactive, intermediate and active oligomeric state, as well as TNLs (RPP1 and ROQ1) in their active oligomeric states. Furthermore, accumulating evidence suggests that members of the family of lipase-like EDS1 (enhanced disease susceptibility 1) proteins, which are uniquely found in seed plants, play a key role in providing a link between sensor NLRs and helper NLRs during innate immune responses. Here, we summarize the implications of the plant NLR structures that provide insights into distinct mechanisms of action by the different sensor NLRs and discuss plant NLR-mediated innate immune signalling pathways involving the EDS1 family proteins and RNLs.
Collapse
Affiliation(s)
- Natsumi Maruta
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Hayden Burdett
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK
| | - Bryan Y J Lim
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiahao Hu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sneha Desa
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohammad Kawsar Manik
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
14
|
Wang W, Liu N, Gao C, Rui L, Jiang Q, Chen S, Zhang Q, Zhong G, Tang D. The truncated TNL receptor TN2-mediated immune responses require ADR1 function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:672-689. [PMID: 34396631 DOI: 10.1111/tpj.15463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The loss of function of exocyst subunit EXO70B1 leads to autoimmunity, which is dependent on TIR-NBS2 (TN2), a truncated intracellular nucleotide-binding and leucine-rich repeat receptor (NLR). However, how TN2 triggers plant immunity and whether typical NLRs are required in TN2-activated resistance remain unclear. Through the CRISPR/Cas9 gene editing system and knockout analysis, we found that the spontaneous cell death and enhanced resistance in exo70B1-3 were independent of the full-length NLR SOC3 and its closest homolog SOC3-LIKE 1 (SOC3-L1). Additionally, knocking out SOC3-L1 or TN2 did not suppress the chilling sensitivity conferred by chilling sensitive 1-2 (chs1-2). The ACTIVATED DISEASE RESISTANCE 1 (ADR1) family and the N REQUIREMENT GENE 1 (NRG1) family have evolved as helper NLRs for many typical NLRs. Through CRISPR/Cas9 gene editing methods, we discovered that the autoimmunity of exo70B1-3 fully relied on ADR1s, but not NRG1s, and ADR1s contributed to the upregulation of TN2 transcript levels in exo70B1-3. Furthermore, overexpression of TN2 also led to ADR1-dependent autoimmune responses. Taken together, our genetic analysis highlights that the truncated TNL protein TN2-triggered immune responses require ADR1s as helper NLRs to activate downstream signaling, revealing the importance and complexity of ADR1s in plant immunity regulation.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu Rui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiaochu Jiang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuling Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qin Zhang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guitao Zhong
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
15
|
Diao P, Sun H, Bao Z, Li W, Niu N, Li W, Wuriyanghan H. Expression of an Antiviral Gene GmRUN1 from Soybean Is Regulated via Intron-Mediated Enhancement (IME). Viruses 2021; 13:2032. [PMID: 34696462 PMCID: PMC8539222 DOI: 10.3390/v13102032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022] Open
Abstract
Most of R (resistance) genes encode the protein containing NBS-LRR (nucleotide binding site and leucine-rich repeat) domains. Here, N. benthamiana plants were used for transient expression assays at 3-4 weeks of age. We identified a TNL (TIR-NBS-LRR) encoding gene GmRUN1 that was resistant to both soybean mosaic virus (SMV) and tobacco mosaic virus (TMV). Truncation analysis indicated the importance of all three canonical domains for GmRUN1-mediated antiviral activity. Promoter-GUS analysis showed that GmRUN1 expression is inducible by both salicylic acid (SA) and a transcription factor GmDREB3 via the cis-elements as-1 and ERE (ethylene response element), which are present in its promoter region. Interestingly, GmRUN1 gDNA (genomic DNA) shows higher viral resistance than its cDNA (complementary DNA), indicating the existence of intron-mediated enhancement (IME) for GmRUN1 regulation. We provided evidence that intron2 of GmRUN1 increased the mRNA level of native gene GmRUN1, a soybean antiviral gene SRC7 and also a reporter gene Luciferase, indicating the general transcriptional enhancement of intron2 in different genes. In summary, we identified an antiviral TNL type soybean gene GmRUN1, expression of which was regulated at different layers. The investigation of GmRUN1 gene regulatory network would help to explore the mechanism underlying soybean-SMV interactions.
Collapse
Affiliation(s)
- Pengfei Diao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Hongyu Sun
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Zhuo Bao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Wenxia Li
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Niu Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| | - Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (P.D.); (H.S.); (Z.B.); (W.L.); (N.N.)
| |
Collapse
|
16
|
Cai H, Wang W, Rui L, Han L, Luo M, Liu N, Tang D. The TIR-NBS protein TN13 associates with the CC-NBS-LRR resistance protein RPS5 and contributes to RPS5-triggered immunity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:775-786. [PMID: 33982335 DOI: 10.1111/tpj.15345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding site (NBS)-leucine-rich repeat (LRR) domain receptor (NLR) proteins play important roles in plant innate immunity by recognizing pathogen effectors. The Toll/interleukin-1 receptor (TIR)-NBS (TN) proteins belong to a subtype of the atypical NLRs, but their function in plant immunity is poorly understood. The well-characterized Arabidopsis thaliana typical coiled-coil (CC)-NBS-LRR (CNL) protein Resistance to Pseudomonas syringae 5 (RPS5) is activated after recognizing the Pseudomonas syringae type III effector AvrPphB. To explore whether the truncated TN proteins function in CNL-mediated immune signaling, we examined the interactions between the Arabidopsis TN proteins and RPS5, and found that TN13 and TN21 interacted with RPS5. However, only TN13, but not TN21, was involved in the resistance to P. syringae pv. tomato (Pto) strain DC3000 carrying avrPphB, encoding the cognate effector recognized by RPS5. Moreover, the regulation of Pto DC3000 avrPphB resistance by TN13 appeared to be specific, as loss of function of TN13 did not compromise resistance to Pto DC3000 hrcC- or Pto DC3000 avrRpt2. In addition, we demonstrated that the CC and NBS domains of RPS5 play essential roles in the interaction between TN13 and RPS5. Taken together, our results uncover a direct functional link between TN13 and RPS5, suggesting that TN13 acts as a partner in modulating RPS5-activated immune signaling, which constitutes a previously unknown mechanism for TN-mediated regulation of plant immunity.
Collapse
Affiliation(s)
- Huiren Cai
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu Rui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Libo Han
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingyu Luo
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Na Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
17
|
Barragan AC, Weigel D. Plant NLR diversity: the known unknowns of pan-NLRomes. THE PLANT CELL 2021; 33:814-831. [PMID: 33793812 PMCID: PMC8226294 DOI: 10.1093/plcell/koaa002] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/23/2020] [Indexed: 05/20/2023]
Abstract
Plants and pathogens constantly adapt to each other. As a consequence, many members of the plant immune system, and especially the intracellular nucleotide-binding site leucine-rich repeat receptors, also known as NOD-like receptors (NLRs), are highly diversified, both among family members in the same genome, and between individuals in the same species. While this diversity has long been appreciated, its true extent has remained unknown. With pan-genome and pan-NLRome studies becoming more and more comprehensive, our knowledge of NLR sequence diversity is growing rapidly, and pan-NLRomes provide powerful platforms for assigning function to NLRs. These efforts are an important step toward the goal of comprehensively predicting from sequence alone whether an NLR provides disease resistance, and if so, to which pathogens.
Collapse
Affiliation(s)
- A Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
18
|
Chen Y, Zhong G, Cai H, Chen R, Liu N, Wang W, Tang D. A Truncated TIR-NBS Protein TN10 Pairs with Two Clustered TIR-NBS-LRR Immune Receptors and Contributes to Plant Immunity in Arabidopsis. Int J Mol Sci 2021; 22:4004. [PMID: 33924478 PMCID: PMC8069298 DOI: 10.3390/ijms22084004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 04/10/2021] [Indexed: 01/09/2023] Open
Abstract
The encoding genes of plant intracellular nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain receptors (NLRs) often exist in the form of a gene cluster. Several recent studies demonstrated that the truncated Toll/interleukin-1 receptor-NBS (TIR-NBS) proteins play important roles in immunity. In this study, we identified a large TN gene cluster on Arabidopsis ecotype Col-0 chromosome 1, which included nine TN genes, TN4 to TN12. Interestingly, this cluster also contained two typical TIR-NBS-LRR genes: At1g72840 and At1g72860 (hereinafter referred to as TNL40 and TNL60, respectively), which formed head-to-head genomic arrangement with TN4 to TN12. However, the functions of these TN and TNL genes in this cluster are still unknown. Here, we showed that the TIR domains of both TNL40 and TNL60 associated with TN10 specifically. Furthermore, both TNL40TIR and TNL60TIR induced cell death in Nicotiana tabacum leaves. Subcellular localization showed that TNL40 mainly localized in the cytoplasm, whereas TNL60 and TN10 localized in both the cytoplasm and nucleus. Additionally, the expression of TNL40, TNL60, and TN10 were co-regulated after inoculated with bacterial pathogens. Taken together, our study indicates that the truncated TIR-NBS protein TN10 associates with two clustered TNL immune receptors, and may work together in plant disease resistance.
Collapse
Affiliation(s)
- Yongming Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (G.Z.); (H.C.); (R.C.); (N.L.)
| | - Guitao Zhong
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (G.Z.); (H.C.); (R.C.); (N.L.)
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiren Cai
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (G.Z.); (H.C.); (R.C.); (N.L.)
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renjie Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (G.Z.); (H.C.); (R.C.); (N.L.)
| | - Na Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (G.Z.); (H.C.); (R.C.); (N.L.)
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (G.Z.); (H.C.); (R.C.); (N.L.)
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (G.Z.); (H.C.); (R.C.); (N.L.)
| |
Collapse
|
19
|
Barragan AC, Collenberg M, Wang J, Lee RRQ, Cher WY, Rabanal FA, Ashkenazy H, Weigel D, Chae E. A Truncated Singleton NLR Causes Hybrid Necrosis in Arabidopsis thaliana. Mol Biol Evol 2021; 38:557-574. [PMID: 32966577 PMCID: PMC7826191 DOI: 10.1093/molbev/msaa245] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hybrid necrosis in plants arises from conflict between divergent alleles of immunity genes contributed by different parents, resulting in autoimmunity. We investigate a severe hybrid necrosis case in Arabidopsis thaliana, where the hybrid does not develop past the cotyledon stage and dies 3 weeks after sowing. Massive transcriptional changes take place in the hybrid, including the upregulation of most NLR (nucleotide-binding site leucine-rich repeat) disease-resistance genes. This is due to an incompatible interaction between the singleton TIR-NLR gene DANGEROUS MIX 10 (DM10), which was recently relocated from a larger NLR cluster, and an unlinked locus, DANGEROUS MIX 11 (DM11). There are multiple DM10 allelic variants in the global A. thaliana population, several of which have premature stop codons. One of these, which has a truncated LRR-PL (leucine-rich repeat [LRR]-post-LRR) region, corresponds to the DM10 risk allele. The DM10 locus and the adjacent genomic region in the risk allele carriers are highly differentiated from those in the nonrisk carriers in the global A. thaliana population, suggesting that this allele became geographically widespread only relatively recently. The DM11 risk allele is much rarer and found only in two accessions from southwestern Spain-a region from which the DM10 risk haplotype is absent-indicating that the ranges of DM10 and DM11 risk alleles may be nonoverlapping.
Collapse
Affiliation(s)
- Ana Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maximilian Collenberg
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jinge Wang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Rachelle R Q Lee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Wei Yuan Cher
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fernando A Rabanal
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Haim Ashkenazy
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
20
|
SUSA2 is an F-box protein required for autoimmunity mediated by paired NLRs SOC3-CHS1 and SOC3-TN2. Nat Commun 2020; 11:5190. [PMID: 33060601 PMCID: PMC7562919 DOI: 10.1038/s41467-020-19033-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Both higher plants and mammals rely on nucleotide-binding leucine-rich repeat (NLR) immune receptors to detect pathogens and initiate immunity. Upon effector recognition, plant NLRs oligomerize for defense activation, the mechanism of which is poorly understood. We previously showed that disruption of the E3 ligase, Senescence-Associated E3 Ubiquitin Ligase 1 (SAUL1) leads to the activation of the NLR SOC3. Here, we report the identification of suppressor of saul1 2 (susa2) and susa3 from the saul1-1 suppressor screen. Pairwise interaction analysis suggests that both SUSA proteins interact with components of an SCFSUSA2 E3 ligase complex as well as CHS1 or TN2, truncated NLRs that pair with SOC3. susa2-2 only suppresses the autoimmunity mediated by either CHS1 or TN2, suggesting its specific involvement in SOC3-mediated immunity. In summary, our study indicates links between plant NLRs and an SCF complex that may enable ubiquitination and degradation of unknown downstream components to activate defense.
Collapse
|
21
|
Lapin D, Bhandari DD, Parker JE. Origins and Immunity Networking Functions of EDS1 Family Proteins. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:253-276. [PMID: 32396762 DOI: 10.1146/annurev-phyto-010820-012840] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The EDS1 family of structurally unique lipase-like proteins EDS1, SAG101, and PAD4 evolved in seed plants, on top of existing phytohormone and nucleotide-binding-leucine-rich-repeat (NLR) networks, to regulate immunity pathways against host-adapted biotrophic pathogens. Exclusive heterodimers between EDS1 and SAG101 or PAD4 create essential surfaces for resistance signaling. Phylogenomic information, together with functional studies in Arabidopsis and tobacco, identify a coevolved module between the EDS1-SAG101 heterodimer and coiled-coil (CC) HET-S and LOP-B (CCHELO) domain helper NLRs that is recruited by intracellular Toll-interleukin1-receptor (TIR) domain NLR receptors to confer host cell death and pathogen immunity. EDS1-PAD4 heterodimers have a different and broader activity in basal immunity that transcriptionally reinforces local and systemic defenses triggered by various NLRs. Here, we consider EDS1 family protein functions across seed plant lineages in the context of networking with receptor and helper NLRs and downstream resistance machineries. The different modes of action and pathway connectivities of EDS1 family members go some way to explaining their central role in biotic stress resilience.
Collapse
Affiliation(s)
- Dmitry Lapin
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824, USA
| | - Deepak D Bhandari
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Wang W, Feng B, Zhou JM, Tang D. Plant immune signaling: Advancing on two frontiers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:2-24. [PMID: 31846204 DOI: 10.1111/jipb.12898] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 05/21/2023]
Abstract
Plants have evolved multiple defense strategies to cope with pathogens, among which plant immune signaling that relies on cell-surface localized and intracellular receptors takes fundamental roles. Exciting breakthroughs were made recently on the signaling mechanisms of pattern recognition receptors (PRRs) and intracellular nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain receptors (NLRs). This review summarizes the current view of PRRs activation, emphasizing the most recent discoveries about PRRs' dynamic regulation and signaling mechanisms directly leading to downstream molecular events including mitogen-activated protein kinase (MAPK) activation and calcium (Ca2+ ) burst. Plants also have evolved intracellular NLRs to perceive the presence of specific pathogen effectors and trigger more robust immune responses. We also discuss the current understanding of the mechanisms of NLR activation, which has been greatly advanced by recent breakthroughs including structures of the first full-length plant NLR complex, findings of NLR sensor-helper pairs and novel biochemical activity of Toll/interleukin-1 receptor (TIR) domain.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baomin Feng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian-Min Zhou
- The State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
23
|
Yan J, Liu Y, Huang X, Li L, Hu Z, Zhang J, Qin Q, Yan L, He K, Wang Y, Hou S. An unreported NB-LRR protein SUT1 is required for the autoimmune response mediated by type one protein phosphatase 4 mutation (topp4-1) in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:357-373. [PMID: 31257685 DOI: 10.1111/tpj.14447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 06/08/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Our previous study indicates that protein phosphatase 1 (PP1) is involved in plant immunity. To elucidate the underlying molecular mechanism, a genetic screening assay was carried out to identify suppressors of type one protein phosphatase 4 mutation (topp4-1) (sut). Molecular and genetic approaches were used to investigate the mechanism of activation of autoimmune response in topp4-1. We performed a map-based cloning assay to identify the SUT1 gene, which encodes a coiled-coil nucleotide-binding leucine-rich-repeat (NB-LRR) protein (CNL). SUT1 physically interacts with TYPE ONE PROTEIN PHOSPHATASE 4 (TOPP4) and topp4-1. The mutated topp4-1 protein activates the autoimmune response in the cytoplasm and promotes the accumulation of SUT1 at both the transcription and the protein levels. Furthermore, our genetic and physical interactions confirm that the topp4-1-induced autoimmune responses are probably mediated by HEAT SHOCK PROTEIN 90 (HSP90) and REQUIRED FOR MLA12 RESISTANCE 1 (RAR1). This study reveals that TOPP4 phosphatase is likely guarded by SUT1 in plant immunity.
Collapse
Affiliation(s)
- Jia Yan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yaqiong Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lang Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhihong Hu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jing Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qianqian Qin
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Longfeng Yan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Suiwen Hou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
24
|
Premkumar A, Lindberg S, Lager I, Rasmussen U, Schulz A. Arabidopsis PLDs with C2-domain function distinctively in hypoxia. PHYSIOLOGIA PLANTARUM 2019; 167:90-110. [PMID: 30417386 DOI: 10.1111/ppl.12874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Hypoxia (oxygen deprivation) causes metabolic disturbances at physiological, biochemical and genetic levels and results in decreased plant growth and development. Phospholipase D (PLD)-mediated signaling was reported for abiotic and biotic stress signaling events in plants. To investigate the participatory role of PLDs also in hypoxia signaling, we used wild type of Arabidopsis thaliana and 10 pld isoform mutants containing C2-domain. Hypoxia-induced changes in three major signaling players, namely, cytosolic free calcium (Ca2+ cyt ), reactive oxygen species (ROS) and phosphatidic acid (PA), were determined in mesophyll protoplasts. The Ca2+ cyt and ROS levels were monitored by fluorescence microscopy and confocal imaging, while PA levels were quantified by an enzymatic method. Our findings reveal that the elevations of cytosolic calcium and PA are reduced in all the 10 mutants dysfunctional in PLD isoforms. The hypoxia-related changes in both calcium and ROS show different kinetic patterns depending on the type of PLD studied. Pharmacological experiments confirm that both external and internal sources contribute to calcium and ROS accumulation under hypoxia. PLDα1-3, PLDβ1 and PLDγ1-3 are likely involved in calcium signaling under hypoxia as well as in PA production, while all investigated PLDs, except for PLDγ3, take part in ROS elevation.
Collapse
Affiliation(s)
- Albert Premkumar
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Alexander Schulz
- Center for Advanced Bioimaging, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Fredriksberg, Denmark
| |
Collapse
|
25
|
Van de Weyer AL, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, Witek K, Jones JDG, Dangl JL, Weigel D, Bemm F. A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. Cell 2019; 178:1260-1272.e14. [PMID: 31442410 PMCID: PMC6709784 DOI: 10.1016/j.cell.2019.07.038] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/13/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes.
Collapse
Affiliation(s)
- Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Freddy Monteiro
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Oliver J Furzer
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA; The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Marc T Nishimura
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Volkan Cevik
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Milner Centre for Evolution & Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jeffery L Dangl
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
26
|
van Wersch S, Li X. Stronger When Together: Clustering of Plant NLR Disease resistance Genes. TRENDS IN PLANT SCIENCE 2019; 24:688-699. [PMID: 31266697 DOI: 10.1016/j.tplants.2019.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/05/2019] [Accepted: 05/16/2019] [Indexed: 05/14/2023]
Abstract
Gene clustering is rare in eukaryotes. However, nucleotide-binding leucine-rich repeat (NLR)-encoding disease resistance (R) genes show consistent clustering in plant genomes. These arrangements are likely to provide coregulatory benefits, as suggested by growing evidence that the gene products of both paired and larger clusters of NLRs act together in triggering immunity. Head-to-head gene pairs where one of the encoded NLRs includes an integrated decoy domain appear to behave differently than clusters evolved from closely related typical NLRs. These patterns may help to explain the broad resistance that most plants have despite their finite number of R genes. By taking into consideration the relationship between genomic arrangement and function, we can improve our understanding of and ability to predict plant immune detection.
Collapse
Affiliation(s)
- Solveig van Wersch
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
27
|
Adachi H, Derevnina L, Kamoun S. NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:121-131. [PMID: 31154077 DOI: 10.1016/j.pbi.2019.04.007] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/26/2019] [Accepted: 04/20/2019] [Indexed: 05/20/2023]
Abstract
NLRs are modular plant and animal proteins that are intracellular sensors of pathogen-associated molecules. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction known as the hypersensitive response. An emerging paradigm is that plant NLR immune receptors form networks with varying degrees of complexity. NLRs may have evolved from multifunctional singleton receptors, which combine pathogen detection (sensor activity) and immune signalling (helper or executor activity) into a single protein, to functionally specialized interconnected receptor pairs and networks. In this article, we highlight some of the recent advances in plant NLR biology by discussing models of NLR evolution, NLR complex formation, and how NLR (mis)regulation modulates immunity and autoimmunity. Multidisciplinary approaches are required to dissect the evolution, assembly, and regulation of the immune receptor circuitry of plants. With the new conceptual framework provided by the elucidation of the structure and activation mechanism of a plant NLR resistosome, this field is entering an exciting era of research.
Collapse
Affiliation(s)
- Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Lida Derevnina
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
28
|
McNeece BT, Sharma K, Lawrence GW, Lawrence KS, Klink VP. The mitogen activated protein kinase (MAPK) gene family functions as a cohort during the Glycine max defense response to Heterodera glycines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:25-41. [PMID: 30711881 DOI: 10.1016/j.plaphy.2019.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 05/23/2023]
Abstract
Mitogen activated protein kinases (MAPKs) play important signal transduction roles. However, little is known regarding how they influence the gene expression of other family members and the relationship to a biological process, including the Glycine max defense response to Heterodera glycines. Transcriptomics have identified MAPK gene expression occurring within root cells undergoing a defense response to a pathogenic event initiated by H. glycines in the allotetraploid Glycine max. Functional analyses are presented for its 32 MAPKs revealing 9 have a defense role, including homologs of Arabidopsis thaliana MAPK (MPK) MPK2, MPK3, MPK4, MPK5, MPK6, MPK13, MPK16 and MPK20. Defense signaling occurring through pathogen activated molecular pattern (PAMP) triggered immunity (PTI) and effector triggered immunity (ETI) have been determined in relation to these MAPKs. Five different types of gene expression relate to MAPK expression, influencing PTI and ETI gene expression and proven defense genes including an ABC-G transporter, 20S membrane fusion particle components, glycoside biosynthesis, carbon metabolism, hemicellulose modification, transcription and secretion. The experiments show MAPKs broadly influence defense MAPK gene expression, including the co-regulation of parologous MAPKs and reveal its relationship to proven defense genes. The experiments reveal each defense MAPK induces the expression of a G. max homolog of a PATHOGENESIS RELATED1 (PR1), itself shown to function in defense in the studied pathosystem.
Collapse
Affiliation(s)
- Brant T McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA
| | - Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
29
|
Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, Yang Y, Ding P, Jones JDG. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. THE NEW PHYTOLOGIST 2019; 222:966-980. [PMID: 30582759 DOI: 10.1111/nph.15659] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/13/2018] [Indexed: 05/09/2023]
Abstract
Most land plant genomes carry genes that encode RPW8-NLR Resistance (R) proteins. Angiosperms carry two RPW8-NLR subclasses: ADR1 and NRG1. ADR1s act as 'helper' NLRs for multiple TIR- and CC-NLR R proteins in Arabidopsis. In angiosperm families, NRG1 co-occurs with TIR-NLR Resistance (R) genes. We tested whether NRG1 is required for signalling of multiple TIR-NLRs. Using CRISPR mutagenesis, we obtained an nrg1a-nrg1b double mutant in two Arabidopsis accessions, and an nrg1 mutant in Nicotiana benthamiana. These mutants are compromised in signalling of all TIR-NLRs tested, including WRR4A, WRR4B, RPP1, RPP2, RPP4 and the pairs RRS1/RPS4, RRS1B/RPS4B, CHS1/SOC3 and CHS3/CSA1. In Arabidopsis, NRG1 is required for the hypersensitive cell death response (HR) and full oomycete resistance, but not for salicylic acid induction or bacterial resistance. By contrast, nrg1 loss of function does not compromise the CC-NLR R proteins RPS5 and MLA. RPM1 and RPS2 (CC-NLRs) function is slightly compromised in an nrg1 mutant. Thus, NRG1 is required for full TIR-NLR function and contributes to the signalling of some CC-NLRs. Some NRG1-dependent R proteins also signal partially via the NRG1 sister clade, ADR1. We propose that some NLRs signal via NRG1 only, some via ADR1 only and some via both or neither.
Collapse
Affiliation(s)
- Baptiste Castel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Pok-Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Volkan Cevik
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Amey Redkar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- Department of Genetics, University of Córdoba, Córdoba, 14071, Spain
| | - Dae-Sung Kim
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Yang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- Center for Plant Science Innovation, Beadle Center, University of Lincoln-Nebraska, Lincoln, NE, 68588, USA
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
30
|
Wu Z, Li M, Dong OX, Xia S, Liang W, Bao Y, Wasteneys G, Li X. Differential regulation of TNL-mediated immune signaling by redundant helper CNLs. THE NEW PHYTOLOGIST 2019; 222:938-953. [PMID: 30585636 DOI: 10.1111/nph.15665] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/23/2018] [Indexed: 05/09/2023]
Abstract
Higher plants utilize nucleotide-binding leucine-rich repeat domain proteins (NLRs) as intracellular immune receptors to recognize pathogen-derived effectors and trigger a robust defense. The Activated Disease Resistance 1 (ADR1) family of coiled-coil NLRs (CNLs) have evolved as helper NLRs that function downstream of many TIR-type sensor NLRs (TNLs). Close homologs of ADR1s form the N REQUIREMENT GENE 1 (NRG1) family in Arabidopsis, the function of which is unclear. Through CRISPR/Cas9 gene editing methods, we discovered that the tandemly repeated NRG1A and NRG1B are functionally redundant and operate downstream of TNLs with differential strengths. Interestingly, ADR1s and NRG1s function in two distinct parallel pathways contributing to TNL-specific immunity. Synergistic effects on basal and TNL-mediated defense were detected among ADR1s and NRG1s. An intact P-loop of NRG1s is not required for mediating signals from sensor TNLs, whereas auto-active NRG1A exhibits autoimmunity. Importantly, NRG1s localize to the cytosol and endomembrane network regardless of the presence of effectors, suggesting a cytosolic activation mechanism. Taken together, different sensor TNLs differentially use two groups of helper NLRs, ADR1s and NRG1s, to transduce downstream defense signals.
Collapse
Affiliation(s)
- Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Meng Li
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Oliver Xiaoou Dong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha, 410128, China
| | - Wanwan Liang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yongkang Bao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Geoffrey Wasteneys
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
31
|
Liang W, van Wersch S, Tong M, Li X. TIR-NB-LRR immune receptor SOC3 pairs with truncated TIR-NB protein CHS1 or TN2 to monitor the homeostasis of E3 ligase SAUL1. THE NEW PHYTOLOGIST 2019; 221:2054-2066. [PMID: 30317650 DOI: 10.1111/nph.15534] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/28/2018] [Indexed: 05/22/2023]
Abstract
Intracellular nucleotide binding (NB) and leucine-rich repeat (NLR) proteins function as immune receptors to recognize effectors from pathogens. They often guard host proteins that are the direct targets of those effectors. Recent findings have revealed that a typical NLR sometimes cooperates with another atypical NLR for effector recognition. Here, by using the CRISPR/Cas9 gene editing method, knockout analysis and biochemical assays, we uncovered differential pairings of typical Toll Interleukin1 receptor (TIR) type NLR (TNL) receptor SOC3 with atypical truncated TIR-NB (TN) proteins CHS1 or TN2 to guard the homeostasis of the E3 ligase SAUL1. Overaccumulation of SAUL1 is monitored by the SOC3-TN2 pair, while SAUL1's disappearance is guarded by the SOC3-CHS1 pair. SOC3 forms a head-to-head genomic arrangement with CHS1 and TN2, indicative of transcriptional co-regulation. Such intricate cooperative interactions can probably enlarge the recognition spectrum and increase the functional flexibility of NLRs, which can partly explain the overwhelming occurrence of NLR gene clustering in higher plants.
Collapse
Affiliation(s)
- Wanwan Liang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Solveig van Wersch
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Meixuezi Tong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
32
|
Pelgrom AJE, Eikelhof J, Elberse J, Meisrimler C, Raedts R, Klein J, Van den Ackerveken G. Recognition of lettuce downy mildew effector BLR38 in Lactuca serriola LS102 requires two unlinked loci. MOLECULAR PLANT PATHOLOGY 2019; 20:240-253. [PMID: 30251420 PMCID: PMC6637914 DOI: 10.1111/mpp.12751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant-pathogenic oomycetes secrete effector proteins to suppress host immune responses. Resistance proteins may recognize effectors and activate immunity, which is often associated with a hypersensitive response (HR). Transient expression of effectors in plant germplasm and screening for HR has proven to be a powerful tool in the identification of new resistance genes. In this study, 14 effectors from the lettuce downy mildew Bremia lactucae race Bl:24 were screened for HR induction in over 150 lettuce accessions. Three effectors-BLN06, BLR38 and BLR40-were recognized in specific lettuce lines. The recognition of effector BLR38 in Lactuca serriola LS102 did not co-segregate with resistance against race Bl:24, but was linked to resistance against multiple other B. lactucae races. Two unlinked loci are both required for effector recognition and are located near known major resistance clusters. Gene dosage affects the intensity of the BLR38-triggered HR, but is of minor importance for disease resistance.
Collapse
Affiliation(s)
- Alexandra J. E. Pelgrom
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Jelle Eikelhof
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Joyce Elberse
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Claudia‐Nicole Meisrimler
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Rob Raedts
- BASF Vegetable SeedsPO Box 4005, 6080 AA, Haelenthe Netherlands
| | - Joël Klein
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| | - Guido Van den Ackerveken
- Plant–Microbe Interactions, Department of BiologyUtrecht UniversityPadualaan 8, 3584 CH, Utrechtthe Netherlands
| |
Collapse
|
33
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
34
|
Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust ( Albugo candida). Proc Natl Acad Sci U S A 2019; 116:2767-2773. [PMID: 30692254 PMCID: PMC6377460 DOI: 10.1073/pnas.1812911116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most plants resist most plant pathogens. Barley resists wheat-infecting powdery mildew races (and vice versa), and both barley and wheat resist potato late blight. Such “nonhost” resistance could result because the pathogen fails to suppress defense or triggers innate immunity due to failure to evade detection. Albugo candida causes white rust on most Brassicaceae, and we investigated Arabidopsis NHR to Brassica-infecting races. Transgressive segregation for resistance in Arabidopsis recombinant inbred lines revealed genes encoding nucleotide-binding, leucine-rich repeat (NLR) immune receptors. Some of these NLR-encoding genes confer resistance to white rust in Brassica sp. This genetic method thus provides a route to reveal resistance genes for crops, widening the pool from which such genes might be obtained. Arabidopsis thaliana accessions are universally resistant at the adult leaf stage to white rust (Albugo candida) races that infect the crop species Brassica juncea and Brassica oleracea. We used transgressive segregation in recombinant inbred lines to test if this apparent species-wide (nonhost) resistance in A. thaliana is due to natural pyramiding of multiple Resistance (R) genes. We screened 593 inbred lines from an Arabidopsis multiparent advanced generation intercross (MAGIC) mapping population, derived from 19 resistant parental accessions, and identified two transgressive segregants that are susceptible to the pathogen. These were crossed to each MAGIC parent, and analysis of resulting F2 progeny followed by positional cloning showed that resistance to an isolate of A. candida race 2 (Ac2V) can be explained in each accession by at least one of four genes encoding nucleotide-binding, leucine-rich repeat (NLR) immune receptors. An additional gene was identified that confers resistance to an isolate of A. candida race 9 (AcBoT) that infects B. oleracea. Thus, effector-triggered immunity conferred by distinct NLR-encoding genes in multiple A. thaliana accessions provides species-wide resistance to these crop pathogens.
Collapse
|
35
|
Araújo ACD, Fonseca FCDA, Cotta MG, Alves GSC, Miller RNG. Plant NLR receptor proteins and their potential in the development of durable genetic resistance to biotic stresses. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2020.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Wang W, Liu N, Gao C, Rui L, Tang D. The Pseudomonas Syringae Effector AvrPtoB Associates With and Ubiquitinates Arabidopsis Exocyst Subunit EXO70B1. FRONTIERS IN PLANT SCIENCE 2019; 10:1027. [PMID: 31555308 PMCID: PMC6726739 DOI: 10.3389/fpls.2019.01027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/23/2019] [Indexed: 05/20/2023]
Abstract
Many bacterial pathogens secret effectors into host cells to disable host defenses and thus promote infection. The exocyst complex functions in the transport and secretion of defense molecules, and loss of function of the EXO70B1 subunit leads to autoimmunity by activation of a truncated Toll/interleukin-1 receptor-nucleotide-binding sequence protein (TIR-NBS2; herein referred to as TN2). Here, we show that EXO70B1 is required for pathogen-associated molecular pattern-triggered immune responses in Arabidopsis thaliana. The effector AvrPtoB, an E3 ligase from Pseudomonas syringae pv. tomato (Pto) strain DC3000, associates with EXO70B1. AvrPtoB ubiquitinates EXO70B1 and mediates EXO70B1 degradation via the host's 26S proteasome in a manner requiring E3 ligase activity. AvrPtoB enhances Pto DC3000 virulence by overcoming EXO70B1-mediated resistance. Moreover, overexpression of AvrPtoB in Arabidopsis leads to autoimmunity, which is partially dependent on TN2. Expression of TN2 in tobacco (Nicotiana tabacum and Nicotiana benthamiana) triggers strong and rapid cell death, which is suppressed by co-expression with EXO70B1 but reoccurs when co-expressed with AvrPtoB. Taken together, our data highlight that AvrPtoB targets the Arabidopsis thaliana EXO70 protein family member EXO70B1 to manipulate the defense molecule secretion machinery or immunity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Na Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Rui
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Dingzhong Tang,
| |
Collapse
|
37
|
Ma Y, Guo H, Hu L, Martinez PP, Moschou PN, Cevik V, Ding P, Duxbury Z, Sarris PF, Jones JDG. Distinct modes of derepression of an Arabidopsis immune receptor complex by two different bacterial effectors. Proc Natl Acad Sci U S A 2018; 115:10218-10227. [PMID: 30254172 PMCID: PMC6187137 DOI: 10.1073/pnas.1811858115] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors often function in pairs to detect pathogen effectors and activate defense. The Arabidopsis RRS1-R-RPS4 NLR pair recognizes the bacterial effectors AvrRps4 and PopP2 via an integrated WRKY transcription factor domain in RRS1-R that mimics the effector's authentic targets. How the complex activates defense upon effector recognition is unknown. Deletion of the WRKY domain results in an RRS1 allele that triggers constitutive RPS4-dependent defense activation, suggesting that in the absence of effector, the WRKY domain contributes to maintaining the complex in an inactive state. We show the WRKY domain interacts with the adjacent domain 4, and that the inactive state of RRS1 is maintained by WRKY-domain 4 interactions before ligand detection. AvrRps4 interaction with the WRKY domain disrupts WRKY-domain 4 association, thus derepressing the complex. PopP2-triggered activation is less easily explained by such disruption and involves the longer C-terminal extension of RRS1-R. Furthermore, some mutations in RPS4 and RRS1 compromise PopP2 but not AvrRps4 recognition, suggesting that AvrRps4 and PopP2 derepress the complex differently. Consistent with this, a "reversibly closed" conformation of RRS1-R, engineered in a method exploiting the high affinity of colicin E9 and Im9 domains, reversibly loses AvrRps4, but not PopP2 responsiveness. Following RRS1 derepression, interactions between domain 4 and the RPS4 C-terminal domain likely contribute to activation. Simultaneous relief of autoinhibition and activation may contribute to defense activation in many immune receptors.
Collapse
Affiliation(s)
- Yan Ma
- The Sainsbury Laboratory, NR4 7UH Norwich, United Kingdom
| | - Hailong Guo
- The Sainsbury Laboratory, NR4 7UH Norwich, United Kingdom
| | - Lanxi Hu
- The Sainsbury Laboratory, NR4 7UH Norwich, United Kingdom
| | | | | | - Volkan Cevik
- The Sainsbury Laboratory, NR4 7UH Norwich, United Kingdom
| | - Pingtao Ding
- The Sainsbury Laboratory, NR4 7UH Norwich, United Kingdom
| | - Zane Duxbury
- The Sainsbury Laboratory, NR4 7UH Norwich, United Kingdom
| | | | | |
Collapse
|
38
|
Zhu W, Zaidem M, Van de Weyer AL, Gutaker RM, Chae E, Kim ST, Bemm F, Li L, Todesco M, Schwab R, Unger F, Beha MJ, Demar M, Weigel D. Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR resistance gene. PLoS Genet 2018; 14:e1007628. [PMID: 30235212 PMCID: PMC6168153 DOI: 10.1371/journal.pgen.1007628] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/02/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023] Open
Abstract
Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system. Plants defend themselves against pathogens by activating immune responses. Unfortunately, these can cause unintended collateral damage to the plant itself. Nevertheless, some wild plants have genetic variants that confer a low threshold for the activation of immunity. While these enable a plant to respond particularly quickly to pathogen attack, such variants might be potentially dangerous. We are investigating one such variant of the immune gene ACCELERATED CELL DEATH 6 (ACD6) in the plant Arabidopsis thaliana. We discovered that there are variants at other genetic loci that can mask the effects of an overly active ACD6 gene. One of these genes, SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), codes for a known immune receptor. The SNC1 variant that attenuates ACD6 activity is rather common in A. thaliana populations, suggesting that new combinations of the hyperactive ACD6 variant and this antagonistic SNC1 variant will often arise by natural crosses. Similarly, because the two genes are unlinked, outcrossing will often lead to the hyperactive ACD6 variants being unmasked again. We propose that allelic diversity at SNC1 contributes to the maintenance of the hyperactive ACD6 variant in natural A. thaliana populations.
Collapse
Affiliation(s)
- Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rafal M. Gutaker
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marco Todesco
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Frederik Unger
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcel Janis Beha
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Monika Demar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
39
|
Monteiro F, Nishimura MT. Structural, Functional, and Genomic Diversity of Plant NLR Proteins: An Evolved Resource for Rational Engineering of Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:243-267. [PMID: 29949721 DOI: 10.1146/annurev-phyto-080417-045817] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants employ a diverse intracellular system of NLR (nucleotide binding-leucine-rich repeat) innate immune receptors to detect pathogens of all types. These receptors represent valuable agronomic traits that plant breeders rely on to maximize yield in the face of devastating pathogens. Despite their importance, the mechanistic underpinnings of NLR-based disease resistance remain obscure. The rapidly increasing numbers of plant genomes are revealing a diverse array of NLR-type immune receptors. In parallel, mechanistic studies are describing diverse functions for NLR immune receptors. In this review, we intend to broadly describe how the structural, functional, and genomic diversity of plant immune receptors can provide a valuable resource for rational engineering of plant immunity.
Collapse
Affiliation(s)
- Freddy Monteiro
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Marc T Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870;
| |
Collapse
|
40
|
Lawaju BR, Lawrence KS, Lawrence GW, Klink VP. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:331-348. [PMID: 29936240 DOI: 10.1016/j.plaphy.2018.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Soybean (Glycine max) infection by the charcoal rot (CR) ascomycete Macrophomina phaseolina is enhanced by the soybean cyst nematode (SCN) Heterodera glycines. We hypothesized that G. max genetic lines impairing infection by M. phaseolina would also limit H. glycines parasitism, leading to resistance. As a part of this M. phaseolina resistance process, the genetic line would express defense genes already proven to impair nematode parasitism. Using G. max[DT97-4290/PI 642055], exhibiting partial resistance to M. phaseolina, experiments show the genetic line also impairs H. glycines parasitism. Furthermore, comparative studies show G. max[DT97-4290/PI 642055] exhibits induced expression of the effector triggered immunity (ETI) gene NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) that functions in defense to H. glycines as compared to the H. glycines and M. phaseolina susceptible line G. max[Williams 82/PI 518671]. Other defense genes that are induced in G. max[DT97-4290/PI 642055] include the pathogen associated molecular pattern (PAMP) triggered immunity (PTI) genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), NONEXPRESSOR OF PR1 (NPR1) and TGA2. These observations link G. max defense processes that impede H. glycines parasitism to also potentially function toward impairing M. phaseolina pathogenicity. Testing this hypothesis, G. max[Williams 82/PI 518671] genetically engineered to experimentally induce GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 expression leads to impaired M. phaseolina pathogenicity. In contrast, G. max[DT97-4290/PI 642055] engineered to experimentally suppress the expression of GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 by RNA interference (RNAi) enhances M. phaseolina pathogenicity. The results show components of PTI and ETI impair both nematode and M. phaseolina pathogenicity.
Collapse
Affiliation(s)
- Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, College of Agriculture and Life Sciences, Mississippi State, MS, 39762, USA.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Vincent P Klink
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
41
|
Lüdke D, Roth C, Hartken D, Wiermer M. MOS6 and TN13 in plant immunity. PLANT SIGNALING & BEHAVIOR 2018; 13:e1454816. [PMID: 29557707 PMCID: PMC5933908 DOI: 10.1080/15592324.2018.1454816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
The Arabidopsis nuclear transport receptor IMPORTIN-α3/MOS6 (MODIFIER OF SNC1, 6) is required for constitutive defense responses of the auto-immune mutant snc1 (suppressor of npr1-1, constitutive 1) and contributes to basal disease resistance, suggesting a role in nuclear import of defense-regulatory cargo proteins. We recently showed that MOS6 selectively interacts with TN13, a TIR-NBS protein involved in basal resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 lacking the effectors AvrPto and AvrPtoB. Consistent with a predicted N-terminal transmembrane domain, TN13 localizes to the endoplasmic reticulum (ER) and the nuclear envelope (NE) where it interacts with MOS6 in a transient expression assay. Here, we propose a model that summarizes the subcellular localization, association and function of TN13 and MOS6 in plant defense signaling.
Collapse
Affiliation(s)
- Daniel Lüdke
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, Goettingen, Germany
| | - Charlotte Roth
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, Goettingen, Germany
| | - Denise Hartken
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, Goettingen, Germany
| | - Marcel Wiermer
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, Goettingen, Germany
| |
Collapse
|
42
|
Roth C, Lüdke D, Klenke M, Quathamer A, Valerius O, Braus GH, Wiermer M. The truncated NLR protein TIR-NBS13 is a MOS6/IMPORTIN-α3 interaction partner required for plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:808-821. [PMID: 28901644 DOI: 10.1111/tpj.13717] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 05/28/2023]
Abstract
Importin-α proteins mediate the translocation of nuclear localization signal (NLS)-containing proteins from the cytoplasm into the nucleus through nuclear pore complexes (NPCs). Genetically, Arabidopsis IMPORTIN-α3/MOS6 (MODIFIER OF SNC1, 6) is required for basal plant immunity and constitutive disease resistance activated in autoimmune mutant snc1 (suppressor of npr1-1, constitutive 1), suggesting that MOS6 plays a role in the nuclear import of proteins involved in plant defense signaling. Here, we sought to identify and characterize defense-regulatory cargo proteins and interaction partners of MOS6. We conducted both in silico database analyses and affinity purification of functional epitope-tagged MOS6 from pathogen-challenged stable transgenic plants coupled with mass spectrometry. We show that among the 13 candidate MOS6 interactors we selected for further functional characterization, the TIR-NBS-type protein TN13 is required for resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 lacking the type-III effector proteins AvrPto and AvrPtoB. When expressed transiently in N. benthamiana leaves, TN13 co-immunoprecipitates with MOS6, but not with its closest homolog IMPORTIN-α6, and localizes to the endoplasmic reticulum (ER), consistent with a predicted N-terminal transmembrane domain in TN13. Our work uncovered the truncated NLR protein TN13 as a component of plant innate immunity that selectively binds to MOS6/IMPORTIN-α3 in planta. We speculate that the release of TN13 from the ER membrane in response to pathogen stimulus, and its subsequent nuclear translocation, is important for plant defense signal transduction.
Collapse
Affiliation(s)
- Charlotte Roth
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Daniel Lüdke
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Melanie Klenke
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Annalena Quathamer
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, 37077, Goettingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, 37077, Goettingen, Germany
| | - Marcel Wiermer
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| |
Collapse
|
43
|
Tong M, Kotur T, Liang W, Vogelmann K, Kleine T, Leister D, Brieske C, Yang S, Lüdke D, Wiermer M, Zhang Y, Li X, Hoth S. E3 ligase SAUL1 serves as a positive regulator of PAMP-triggered immunity and its homeostasis is monitored by immune receptor SOC3. THE NEW PHYTOLOGIST 2017; 215:1516-1532. [PMID: 28691210 DOI: 10.1111/nph.14678] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/26/2017] [Indexed: 05/08/2023]
Abstract
In both plants and animals, intracellular nucleotide-binding leucine-rich repeat proteins (NLRs; or Nod-like receptors) serve as immune receptors to recognize pathogen-derived molecules and mount effective immune responses against microbial infections. Plant NLRs often guard the presence or activity of other host proteins, which are the direct virulence targets of pathogen effectors. These guardees are sometimes immune-promoting components such as those in a mitogen-activated protein kinase cascade. Plant E3 ligases serve many roles in immune regulation, but it is unclear whether they can also be guarded by NLRs. Here, we report on an immune-regulating E3 ligase SAUL1, whose homeostasis is monitored by a Toll interleukin 1 receptor (TIR)-type NLR (TNL), SOC3. SOC3 can associate with SAUL1, and either loss or overexpression of SAUL1 triggers autoimmunity mediated by SOC3. By contrast, SAUL1 functions redundantly with its close homolog PUB43 to promote PAMP-triggered immunity (PTI). Taken together, the E3 ligase SAUL1 serves as a positive regulator of PTI and its homeostasis is monitored by the TNL SOC3.
Collapse
Affiliation(s)
- Meixuezi Tong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tanja Kotur
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, 22609, Hamburg, Germany
| | - Wanwan Liang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Katja Vogelmann
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, 22609, Hamburg, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Catharina Brieske
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, 22609, Hamburg, Germany
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Daniel Lüdke
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Marcel Wiermer
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Stefan Hoth
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, 22609, Hamburg, Germany
| |
Collapse
|
44
|
Baggs E, Dagdas G, Krasileva KV. NLR diversity, helpers and integrated domains: making sense of the NLR IDentity. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:59-67. [PMID: 28494248 DOI: 10.1016/j.pbi.2017.04.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 05/21/2023]
Abstract
Plant innate immunity relies on genetically predetermined repertoires of immune receptors to detect pathogens and trigger an effective immune response. A large proportion of these receptors are from the Nucletoide Binding Leucine Rich Repeat (NLR) gene family. As plants live longer than most pathogens, maintaining diversity of NLRs and deploying efficient 'pathogen traps' is necessary to withstand the evolutionary battle. In this review, we summarize the sources of diversity in NLR plant immune receptors giving an overview of genomic, regulatory as well as functional studies, including the latest concepts of NLR helpers and NLRs with integrated domains.
Collapse
Affiliation(s)
- E Baggs
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UG, United Kingdom
| | - G Dagdas
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich NR4 7UH, United Kingdom
| | - K V Krasileva
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UG, United Kingdom; The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
45
|
Nishimura MT, Anderson RG, Cherkis KA, Law TF, Liu QL, Machius M, Nimchuk ZL, Yang L, Chung EH, El Kasmi F, Hyunh M, Osborne Nishimura E, Sondek JE, Dangl JL. TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:E2053-E2062. [PMID: 28137883 PMCID: PMC5347586 DOI: 10.1073/pnas.1620973114] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Detection of pathogens by plants is mediated by intracellular nucleotide-binding site leucine-rich repeat (NLR) receptor proteins. NLR proteins are defined by their stereotypical multidomain structure: an N-terminal Toll-interleukin receptor (TIR) or coiled-coil (CC) domain, a central nucleotide-binding (NB) domain, and a C-terminal leucine-rich repeat (LRR). The plant innate immune system contains a limited NLR repertoire that functions to recognize all potential pathogens. We isolated Response to the bacterial type III effector protein HopBA1 (RBA1), a gene that encodes a TIR-only protein lacking all other canonical NLR domains. RBA1 is sufficient to trigger cell death in response to HopBA1. We generated a crystal structure for HopBA1 and found that it has similarity to a class of proteins that includes esterases, the heme-binding protein ChaN, and an uncharacterized domain of Pasteurella multocida toxin. Self-association, coimmunoprecipitation with HopBA1, and function of RBA1 require two previously identified TIR-TIR dimerization interfaces. Although previously described as distinct in other TIR proteins, in RBA1 neither of these interfaces is sufficient when the other is disrupted. These data suggest that oligomerization of RBA1 is required for function. Our identification of RBA1 demonstrates that "truncated" NLRs can function as pathogen sensors, expanding our understanding of both receptor architecture and the mechanism of activation in the plant immune system.
Collapse
Affiliation(s)
- Marc T Nishimura
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599;
- Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Ryan G Anderson
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Karen A Cherkis
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Terry F Law
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Qingli L Liu
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Mischa Machius
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Li Yang
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Eui-Hwan Chung
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Farid El Kasmi
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Michael Hyunh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Erin Osborne Nishimura
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - John E Sondek
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599;
- Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC 27599
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|