1
|
Gómez-Fernández A, Aranda I, Milla R. Early human selection of crops' wild progenitors explains the acquisitive physiology of modern cultivars. NATURE PLANTS 2024; 10:25-36. [PMID: 38172574 DOI: 10.1038/s41477-023-01588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Crops have resource-acquisitive leaf traits, which are usually attributed to the process of domestication. However, early choices of wild plants amenable for domestication may also have played a key role in the evolution of crops' physiological traits. Here we compiled data on 1,034 annual herbs to place the ecophysiological traits of 69 crops' wild progenitors in the context of global botanical variation, and we conducted a common-garden experiment to measure the effects of domestication on crop ecophysiology. Our study found that crops' wild progenitors already had high leaf nitrogen, photosynthesis, conductance and transpiration and soft leaves. After domestication, ecophysiological traits varied little and in idiosyncratic ways. Crops did not surpass the trait boundaries of wild species. Overall, the resource-acquisitive strategy of crops is largely due to the inheritance from their wild progenitors rather than to further breeding improvements. Our study concurs with recent literature highlighting constraints of crop breeding for faster ecophysiological traits.
Collapse
Affiliation(s)
- Alicia Gómez-Fernández
- Grupo de investigación en Ecología Evolutiva, Departamento de Biología y Geología, Física y Química Inorgánica, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Madrid, Spain.
| | - Ismael Aranda
- Instituto de Ciencias Forestales, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rubén Milla
- Grupo de investigación en Ecología Evolutiva, Departamento de Biología y Geología, Física y Química Inorgánica, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Madrid, Spain.
| |
Collapse
|
2
|
Hu W, Zhao M, Zhang S, Li Y, Dai J, Gu C, Li X, Yang L, Qin L, Liao X. Optimized leaf storage and photosynthetic nitrogen trade-off promote synergistic increases in photosynthetic rate and photosynthetic nitrogen use efficiency. PHYSIOLOGIA PLANTARUM 2023; 175:e14013. [PMID: 37882267 DOI: 10.1111/ppl.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 10/27/2023]
Abstract
A coordinated increase in the photosynthetic rate (A) and photosynthetic nitrogen use efficiency (PNUE) is an effective strategy for improving crop yield and nitrogen (N) utilization efficiency. PNUE tends to decrease with increasing N levels, but there are natural variations. Consequently, leaf functional N partitioning in Brassica napus genotypes under different N rates was measured to explore the optimized N allocation model for synchronously increasing A and PNUE values. The results showed that genotypes whose PNUE increased with increasing N supply (PNUE-I) produced an approximate A value with a relatively low leaf N content, owing to reduced storage N (Nstore ) and close photosynthetic N (Npsn ) content. Partial least squares path modeling showed that A was dominated by the Npsn content, and PNUE was directly influenced by A and Nstore . The A value increased with the Npsn content until the Npsn content exceeded the threshold value. The boundary line of PNUE varied with the Npsn and Nstore proportions, indicating that the optimum Npsn and Nstore proportions were 51.6% and 40.3%, respectively. The Nstore proportion of PNUE-I was closer to the thresholds and benefited from lower increments in Rubisco content and nonprotein form storage N content with improved N supply. Optimized Nstore and Npsn trade-off by regulating increments in Nstore content with increased N supply, thereby promoting coordinated increases in A and PNUE.
Collapse
Affiliation(s)
- Wenshi Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, China
| | - Manli Zhao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, China
| | - Shanshan Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, China
| | - Yinshui Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, China
| | - Jing Dai
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, China
| | - Chiming Gu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, China
| | - Xiaoyong Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, China
| | - Lu Yang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, China
| | - Lu Qin
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, China
| | - Xing Liao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetics Improvement of Oil Crops of the Ministry of Agriculture, Wuhan, China
| |
Collapse
|
3
|
Perez-Borroto LS, Guzzo MC, Posada G, Peña Malavera AN, Castagnaro AP, Gonzalez-Olmedo JL, Coll-García Y, Pardo EM. A brassinosteroid functional analogue increases soybean drought resilience. Sci Rep 2022; 12:11294. [PMID: 35788151 PMCID: PMC9253120 DOI: 10.1038/s41598-022-15284-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
Drought severely affects soybean productivity, challenging breeding/management strategies to increase crop resilience. Hormone-based biostimulants like brassinosteroids (BRs) modulate growth/defence trade-off, mitigating yield losses; yet, natural molecule's low stability challenges the development of cost-effective and long-lasting analogues. Here, we investigated for the first time the effects of BR functional analogue DI-31 in soybean physiology under drought by assessing changes in growth, photosynthesis, water relations, antioxidant metabolism, nodulation, and nitrogen homeostasis. Moreover, DI-31 application frequencies' effects on crop cycle and commercial cultivar yield stabilisation under drought were assessed. A single foliar application of DI-31 favoured plant drought tolerance, preventing reductions in canopy development and enhancing plant performance and water use since the early stages of stress. The analogue also increased the antioxidant response, favouring nitrogen homeostasis maintenance and attenuating the nodular senescence. Moreover, foliar applications of DI-31 every 21 days enhanced the absolute yield by ~ 9% and reduced drought-induced yield losses by ~ 7% in four commercial cultivars, increasing their drought tolerance efficiency by ~ 12%. These findings demonstrated the practical value of DI-31 as an environmentally friendly alternative for integrative soybean resilience management under drought.
Collapse
Affiliation(s)
| | - María Carla Guzzo
- Instituto de Fisiología y Recursos Genéticos Vegetales Victorio S. Trippi - Unidad de Estudios Agropecuarios (IFRGV-UDEA, INTA-CONICET), Av. 11 de septiembre 4755, CP X5014MGO, Córdoba, Argentina
| | - Gisella Posada
- Instituto de Fisiología y Recursos Genéticos Vegetales Victorio S. Trippi - Unidad de Estudios Agropecuarios (IFRGV-UDEA, INTA-CONICET), Av. 11 de septiembre 4755, CP X5014MGO, Córdoba, Argentina
| | - Andrea Natalia Peña Malavera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) /Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Las Talitas, Tucumán, Argentina
| | - Atilio Pedro Castagnaro
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) /Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Las Talitas, Tucumán, Argentina
| | | | - Yamilet Coll-García
- Centro de Estudios de Productos Naturales, Facultad de Química, Universidad de La Habana, Havana, Cuba
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) /Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Las Talitas, Tucumán, Argentina.
| |
Collapse
|
4
|
Yao X, Lan Y, Liao L, Huang Y, Yu S, Ye S, Yang M. Effects of nitrogen supply rate on photosynthesis, nitrogen uptake and growth of seedlings in a Eucalyptus/Dalbergia odorifera intercropping system. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:192-204. [PMID: 34569130 DOI: 10.1111/plb.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The introduction of N2 -fixing species into a Eucalyptus plantation resulted in a successful planting system. It is essential to understand the contribution of nitrogen (N) competition and photosynthetic efficiency to plant dry matter yield to shed more light on the growth mechanism of the Eucalyptus/legume system. We compared N competition, photosynthesis and dry matter yield of Eucalyptus urophylla × E. grandis and the N2 -fixing tree species Dalbergia odorifera in intercropping and monoculture systems under different N levels. The photosynthesis of E. urophylla × E. grandis was improved, while that of D. odorifera was inhibited in the intercropping system. Intercropped E. urophylla × E. grandis increased the N utilization and the dry matter yield by 6.57-48.46% and 7.59-97.26%, and decreased those of D. odorifera by 10.21-30.33% and 0.48-13.19%, respectively. Furthermore, N application enhanced the competitive ability of E. urophylla × E. grandis relative to D. odorifera and changed the N contents and chlorophyll synthesis to optimize the photosynthetic structure of both species. Our results reveal Eucalyptus for photosynthesis, N absorption and increasing the growth benefit from the introduction of N2 -fixing species, which hence can be considered to be an effective sustainable management option of Eucalyptus plantations.
Collapse
Affiliation(s)
- X Yao
- College of Forestry, Guangxi University, Nanning, Guangxi, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Y Lan
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - L Liao
- College of Forestry, Guangxi University, Nanning, Guangxi, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Y Huang
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - S Yu
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - S Ye
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - M Yang
- College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Lei ZY, Wang H, Wright IJ, Zhu XG, Niinemets Ü, Li ZL, Sun DS, Dong N, Zhang WF, Zhou ZL, Liu F, Zhang YL. Enhanced photosynthetic nitrogen use efficiency and increased nitrogen allocation to photosynthetic machinery under cotton domestication. PHOTOSYNTHESIS RESEARCH 2021; 150:239-250. [PMID: 34669149 DOI: 10.1007/s11120-021-00872-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Domestication involves dramatic phenotypic and physiological diversifications due to successive selection by breeders toward high yield and quality. Although photosynthetic nitrogen use efficiency (PNUE) is a major trait for understanding leaf nitrogen economy, it is unclear whether PNUE of cotton has been improved under domestication. Here, we investigated the effect of domestication on nitrogen allocation to photosynthetic machinery and PNUE in 25 wild and 37 domesticated cotton genotypes. The results showed that domesticated genotypes had higher nitrogen content per mass (Nm), net photosynthesis under saturated light (Asat), and PNUE but similar nitrogen content per area (Na) compared with wild genotypes. As expected, in both genotypes, PNUE was positively related to Asat but negatively correlated with Na. However, the relative contribution of Asat to PNUE was greater than the contribution from Na. Domesticated genotypes had higher nitrogen allocation to light-harvesting (NL, nitrogen in light-harvesting chlorophyll-protein complex), to bioenergetics (Nb, total nitrogen of cytochrome f, ferredoxin NADP reductase, and the coupling factor), and to Rubisco (Nr) than wild genotypes; however, the two genotype groups did not differ in PNUEp, the ratio of Asat to Np (itself the sum of NL, Nb, and Nr). Our results suggest that more nitrogen allocation to photosynthetic machinery has boosted Asat under cotton domestication. Improving the efficiency of nitrogen use in photosynthetic machinery might be future aim to enhance Asat of cotton.
Collapse
Affiliation(s)
- Zhang-Ying Lei
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, People's Republic of China
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Heng Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Zi-Liang Li
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Dong-Sheng Sun
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Ning Dong
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Wang-Feng Zhang
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Zhong-Li Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China.
| | - Ya-Li Zhang
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, People's Republic of China.
| |
Collapse
|
6
|
Urban A, Rogowski P, Wasilewska-Dębowska W, Romanowska E. Understanding Maize Response to Nitrogen Limitation in Different Light Conditions for the Improvement of Photosynthesis. PLANTS 2021; 10:plants10091932. [PMID: 34579465 PMCID: PMC8471034 DOI: 10.3390/plants10091932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022]
Abstract
The photosynthetic capacity of leaves is determined by their content of nitrogen (N). Nitrogen involved in photosynthesis is divided between soluble proteins and thylakoid membrane proteins. In C4 plants, the photosynthetic apparatus is partitioned between two cell types: mesophyll cells and bundle sheath. The enzymes involved in the C4 carbon cycle and assimilation of nitrogen are localized in a cell-specific manner. Although intracellular distribution of enzymes of N and carbon assimilation is variable, little is known about the physiological consequences of this distribution caused by light changes. Light intensity and nitrogen concentration influence content of nitrates in leaves and can induce activity of the main enzymes involved in N metabolism, and changes that reduce the photosynthesis rate also reduce photosynthetic N use efficiency. In this review, we wish to highlight and discuss how/whether light intensity can improve photosynthesis in maize during nitrogen limitation. We described the general regulation of changes in the main photosynthetic and nitrogen metabolism enzymes, their quantity and localization, thylakoid protein abundance, intracellular transport of organic acids as well as specific features connected with C4 photosynthesis, and addressed the major open questions related to N metabolism and effects of light on photosynthesis in C4 plants.
Collapse
|
7
|
Yu-Zheng Z, Han-Qing Z, Ping L, Dong-Sheng Z, Xing-Yu H, Zhi-Qiang G. Leaf nitrogen have a better relationship with photosynthesis performance across wheat species under elevated CO 2 and drought. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:964-973. [PMID: 34256250 DOI: 10.1016/j.plaphy.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/26/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Elevated CO2 concentrations and persistent drought are predicted to inhibit the photosynthetic performance and yield of crops. Such effects vary considerably between species groups. Modern cultivated (Triticum aestivum L., AABBDD) and wild (Triticum dicoccoides Korn L., AABB and Triticum monococcum L., AA) species of wheat were subjected to elevated CO2 concentration (ambient concentration +200 μmol mol-1) and drought (well watered: 75-85% of the field water capacity; drought: 50-60% of the field water capacity) at open-top chamber experimental facilities. Elevated CO2 concentration decreased the limitation of stomatal morphology traits on stomatal conductance regulation. This could compensate the disadvantage of plants who has low stomatal density and large single stomatal area as well as low leaf water use efficiency such as modern wheat Z9023 in drought acclimation in the future CO2 rising world. Moreover, elevated CO2 concentration largely increased the dependence of light harvesting and electron transportation performance per photosynthesis system II reaction center, maximum rubisco carboxylation rate, and maximum Ribulose-1,5-bisphosphate regeneration rate on leaf nitrogen concentration across the selected wheat species and water regimes. Modern cultivated cultivars Z9023 and CH58 have higher photosynthetic performance per unit of leaf nitrogen than wild species under elevated CO2 concentrations. The increasing CO2 may present opportunities to breeders and possibly allow them to select for cultivars with better photosynthetic nitrogen use efficiency response to future CO2 rising climate.
Collapse
Affiliation(s)
- Zong Yu-Zheng
- College of Agriculture, Shanxi Agricultrual University, Taigu, 030801, Shanxi, PR China.
| | - Zhang Han-Qing
- College of Agriculture, Shanxi Agricultrual University, Taigu, 030801, Shanxi, PR China
| | - Li Ping
- College of Agriculture, Shanxi Agricultrual University, Taigu, 030801, Shanxi, PR China
| | - Zhang Dong-Sheng
- College of Agriculture, Shanxi Agricultrual University, Taigu, 030801, Shanxi, PR China
| | - Hao Xing-Yu
- College of Agriculture, Shanxi Agricultrual University, Taigu, 030801, Shanxi, PR China.
| | - Gao Zhi-Qiang
- College of Agriculture, Shanxi Agricultrual University, Taigu, 030801, Shanxi, PR China
| |
Collapse
|
8
|
Garibaldi LA, Aizen MA, Sáez A, Gleiser G, Strelin MM, Harder LD. The influences of progenitor filtering, domestication selection and the boundaries of nature on the domestication of grain crops. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Lucas A. Garibaldi
- Universidad Nacional de Río Negro Instituto de Investigaciones en Recursos Naturales Agroecología y Desarrollo Rural San Carlos de Bariloche Río Negro Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas Instituto de Investigaciones en Recursos Naturales Agroecología y Desarrollo Rural San Carlos de Bariloche Río Negro Argentina
| | - Marcelo A. Aizen
- Grupo de Ecología de la Polinización Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA)Universidad Nacional del Comahue ‐ CONICET San Carlos de Bariloche, Rio Negro Argentina
- Wissenschaftskolleg zu Berlin Berlin Germany
| | - Agustín Sáez
- Grupo de Ecología de la Polinización Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA)Universidad Nacional del Comahue ‐ CONICET San Carlos de Bariloche, Rio Negro Argentina
| | - Gabriela Gleiser
- Grupo de Ecología de la Polinización Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA)Universidad Nacional del Comahue ‐ CONICET San Carlos de Bariloche, Rio Negro Argentina
| | - Marina M. Strelin
- Grupo de Ecología de la Polinización Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA)Universidad Nacional del Comahue ‐ CONICET San Carlos de Bariloche, Rio Negro Argentina
| | - Lawrence D. Harder
- Department of Biological Sciences University of Calgary Calgary AB Canada
| |
Collapse
|
9
|
Cun Z, Zhang JY, Wu HM, Zhang L, Chen JW. High nitrogen inhibits photosynthetic performance in a shade-tolerant and N-sensitive species Panax notoginseng. PHOTOSYNTHESIS RESEARCH 2021; 147:283-300. [PMID: 33587246 DOI: 10.1007/s11120-021-00823-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/18/2021] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism of high-N-driven inhibition on photosynthetic efficiency and photoprotection is still unclear in the shade-tolerant and N-sensitive species such as Panax notoginseng. Leaf chlorophyll (Chl) content, Ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activity and content, N allocation in the photosynthetic apparatus, photosynthetic performance and Chl fluorescence were comparatively analyzed in a shade-tolerant and N-sensitive species P. notoginseng grown under the levels of moderate nitrogen (MN) and high nitrogen (HN). The results showed that Rubisco content, Chl content and specific leaf nitrogen (SLN) were greater in the HN individuals. Rubisco activity, net photosynthetic rate (Anet), photosynthetic N use efficiency (PNUE), maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax) were lower when plants were exposed to HN as compared with ones to MN. A large proportion of leaf N was allocated to the carboxylation component under the levels of MN. More N was only served as a form of N storage and not contributed to photosynthesis in HN individuals. Compared with the MN plants, the maximum quantum yield of photosystem II (Fv/Fm), non-photochemical quenching of PSII (NPQ), effective quantum yield and electron transport rate were obviously reduced in the HN plants. Cycle electron flow (CEF) was considerably enhanced in the MN individuals. There was not a significant difference in maximum photo-oxidation P700+ (Pm) between the HN and MN individuals. Most importantly, the HN individuals showed higher K phase in the fast chlorophyll fluorescence induction kinetic curve (OJIP kinetic curve) than the MN ones. The results obtained suggest that photosynthetic capacity might be primarily inhibited by the inactivated Rubisco in the HN individuals, and HN-induced depression of photoprotection might be caused by the photodamage to the donor side of PSII oxygen-evolving complex.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Min Wu
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Ling Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
10
|
Ye J, Chen W, Feng L, Liu G, Wang Y, Li H, Ye Z, Zhang Y. The chaperonin 60 protein SlCpn60α1 modulates photosynthesis and photorespiration in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7224-7240. [PMID: 32915204 DOI: 10.1093/jxb/eraa418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis, an indispensable biological process of plants, produces organic substances for plant growth, during which photorespiration occurs to oxidize carbohydrates to achieve homeostasis. Although the molecular mechanism underlying photosynthesis and photorespiration has been widely explored, the crosstalk between the two processes remains largely unknown. In this study, we isolated and characterized a T-DNA insertion mutant of tomato (Solanum lycopersicum) named yellow leaf (yl) with yellowish leaves, retarded growth, and chloroplast collapse that hampered both photosynthesis and photorespiration. Genetic and expression analyses demonstrated that the phenotype of yl was caused by a loss-of-function mutation resulting from a single-copy T-DNA insertion in chaperonin 60α1 (SlCPN60α1). SlCPN60α1 showed high expression levels in leaves and was located in both chloroplasts and mitochondria. Silencing of SlCPN60α1using virus-induced gene silencing and RNA interference mimicked the phenotype of yl. Results of two-dimensional electrophoresis and yeast two-hybrid assays suggest that SlCPN60α1 potentially interacts with proteins that are involved in chlorophyll synthesis, photosynthetic electron transport, and the Calvin cycle, and further affect photosynthesis. Moreover, SlCPN60α1 directly interacted with serine hydroxymethyltransferase (SlSHMT1) in mitochondria, thereby regulating photorespiration in tomato. This study outlines the importance of SlCPN60α1 for both photosynthesis and photorespiration, and provides molecular insights towards plant genetic improvement.
Collapse
Affiliation(s)
- Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Weifang Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Longwei Feng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Genzhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ying Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Moenga SM, Gai Y, Carrasquilla-Garcia N, Perilla-Henao LM, Cook DR. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1195-1214. [PMID: 32920943 DOI: 10.1111/tpj.14988] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Ancestral adaptations in crop wild relatives can provide a genetic reservoir for crop improvement. Here we document physiological changes to mild and severe drought stress, and the associated transcriptome dynamics in both wild and cultivated chickpea. Over 60% of transcriptional changes were related to metabolism, indicating that metabolic plasticity is a core and conserved drought response. In addition, changes in RNA processing and protein turnover were predominant in the data, suggestive of broad restructuring of the chickpea proteome in response to drought. While 12% of the drought-responsive transcripts have similar dynamics in cultivated and wild accessions, numerous transcripts had expression patterns unique to particular genotypes, or that distinguished wild from cultivated genotypes and whose divergence may be a consequence of domestication. These and other comparisons provide a transcriptional correlate of previously described species' genetic diversity, with wild accessions well differentiated from each other and from cultivars, and cultivars essentially indistinguishable at the broad transcriptome level. We identified metabolic pathways such as phenylpropanoid metabolism, and biological processes such as stomatal development, which are differentially regulated across genotypes with potential consequences on drought tolerance. These data indicate that wild Cicer reticulatum may provide both conserved and divergent mechanisms as a resource in breeding for drought tolerance in cultivated chickpea.
Collapse
Affiliation(s)
- Susan M Moenga
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Yunpeng Gai
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Noelia Carrasquilla-Garcia
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Laura M Perilla-Henao
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Douglas R Cook
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
12
|
Wen B, Xiao W, Mu Q, Li D, Chen X, Wu H, Li L, Peng F. How does nitrate regulate plant senescence? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:60-69. [PMID: 33091797 DOI: 10.1016/j.plaphy.2020.08.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 05/19/2023]
Abstract
Nitrogen is an essential macronutrient for plant growth and development and plays an important role in the whole life process of plants. Nitrogen is an important component of amino acids, chlorophyll, plant hormones and secondary metabolites. Nitrogen deficiency leads to early senescence in plants, which is accompanied by changes in gene expression, metabolism, growth, development, and physiological and biochemical traits, which ensures efficient nitrogen recycling and enhances the plant's tolerance to low nitrogen. Therefore, it is very important to understand the adaptation mechanisms of plants under nitrogen deficiency for the efficient utilization of nitrogen and gene regulation. With the popularization of molecular biology, bioinformatics and transgenic technology, the metabolic pathways of nitrogen-deficient plants have been verified, and important progress has been made. However, how the responses of plants to nitrogen deficiency affect the biological processes of the plants is not well understood. The current research also cannot completely explain how the metabolic pathways identified show other reactions or phenotypes through interactions or cascades after nitrogen inhibition. Nitrate is the main form of nitrogen absorption. In this review, we discuss the role of nitrate in plant senescence. Understanding how nitrate inhibition affects nitrate absorption, transport, and assimilation; chlorophyll synthesis; photosynthesis; anthocyanin synthesis; and plant hormone synthesis is key to sustainable agriculture.
Collapse
Affiliation(s)
- Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Qin Mu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Hongyu Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
13
|
Manolaki P, Mouridsen MB, Nielsen E, Olesen A, Jensen SM, Lauridsen TL, Baattrup-Pedersen A, Sorrell BK, Riis T. A comparison of nutrient uptake efficiency and growth rate between different macrophyte growth forms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111181. [PMID: 32810679 DOI: 10.1016/j.jenvman.2020.111181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/16/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Aquatic macrophytes grow abundantly in many lowland streams and play a key role in ecosystem functioning, such as nutrient retention. In this study, we performed a microcosm experiment to quantify and compare the contribution of two freshwater macrophyte growth forms to nutrient cycling. We measured and compared inorganic nitrogen (NH4-N and NO3-N) and phosphorus (PO4-P) uptake kinetic parameters (Vmax and Cmin) in 12 submerged and seven amphibious plant species. We tested whether relative growth rate (RGR) was related to high Vmax and low Cmin, and quantified changes in nutrient uptake kinetic in a subset of six out of 19 plants species during the growth season. Uptake rates of NH4-N were higher in submerged compared to amphibious plants, whereas uptake rates of NO3-N were significantly higher in amphibious species; PO4-P uptake kinetics were not significantly different between the two growth forms. There were also significant seasonal differences in Vmax NH4-N rate among both submerged and amphibious species and in Vmax NO3-N among amphibious species. Highest uptake rates were observed in summer for both submerged and amphibious species. Overall, we found that nutrient uptake kinetics differed between the two growth forms within and between seasons. Consequently, the presence of both growth forms should extend the period of nutrient uptake across the year and enhance nutrient uptake within seasons. We conclude that higher functional diversity enhances annual nutrient uptake in streams and that stream restoration efforts should consider increasing the niche space available for both submerged and amphibious species.
Collapse
Affiliation(s)
- P Manolaki
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark; Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark.
| | - M B Mouridsen
- Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| | - E Nielsen
- Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| | - A Olesen
- Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| | - S M Jensen
- Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| | - T L Lauridsen
- Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| | - A Baattrup-Pedersen
- Department of Bioscience, Aarhus University, Vejlsøvej 25, P.O. Box 314, DK-8600, Silkeborg, Denmark
| | - B K Sorrell
- Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| | - T Riis
- Department of Biology, Aarhus University, Ole Worms Allé 1, Aarhus, Denmark
| |
Collapse
|
14
|
Khan A, Wang Z, Xu K, Li L, He L, Hu H, Wang G. Validation of an Enzyme-Driven Model Explaining Photosynthetic Rate Responses to Limited Nitrogen in Crop Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:533341. [PMID: 33101324 PMCID: PMC7546270 DOI: 10.3389/fpls.2020.533341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The limited availability of nitrogen (N) is a fundamental challenge for many crop plants. We have hypothesized that the relative crop photosynthetic rate (P) is exponentially constrained by certain plant-specific enzyme activities, such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-G3PDH), 3-phosphoglyceric acid (PGA) kinase, and chloroplast fructose-1,6-bisphosphatase (cpFBPase), in Triticum aestivum and Oryza sativa. We conducted a literature search to compile information from previous studies on C3 and C4 crop plants, to examine the photosynthetic rate responses to limited leaf [N] levels. We found that in Zea mays, NADP-malic enzyme (NADP-ME), PEP carboxykinase (PCK), and Rubisco activities were positively correlated with P. A positive correlation was also observed between both phosphoenolpyruvate carboxylase (PEPC) and Rubisco activity with leaf [N] in Sorghum bicolor. Key enzyme activities responded differently to P in C3 and C4 plants, suggesting that other factors, such as leaf [N] and the stage of leaf growth, also limited specific enzyme activities. The relationships followed the best fitting exponential relationships between key enzymes and the P rate in both C3 and C4 plants. It was found that C4 species absorbed less leaf [N] but had higher [N] assimilation rates (A rate) and higher maximum photosynthesis rates (Pmax ), i.e., they were able to utilize and invest more [N] to sustain higher carbon gains. All C3 species studied herein had higher [N] storage (Nstore) and higher absorption of [N], when compared with the C4 species. Nstore was the main [N] source used for maintaining photosynthetic capacity and leaf expansion. Of the nine C3 species assessed, rice had the greatest Pmax , thereby absorbing more leaf [N]. Elevated CO2 (eCO2) was also found to reduce the leaf [N] and Pmax in rice but enhanced the leaf [N] and N use efficiency of photosynthesis in maize. We concluded that eCO2 affects [N] allocation, which directly or indirectly affects Pmax . These results highlight the need to further study these physiological and biochemical processes, to better predict how crops will respond to eCO2 concentrations and limited [N].
Collapse
Affiliation(s)
| | | | | | | | | | | | - Genxuan Wang
- Plant Physiology and Ecology Laboratory, Department of Ecology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Zhang JY, Cun Z, Chen JW. Photosynthetic performance and photosynthesis-related gene expression coordinated in a shade-tolerant species Panax notoginseng under nitrogen regimes. BMC PLANT BIOLOGY 2020; 20:273. [PMID: 32593292 PMCID: PMC7321538 DOI: 10.1186/s12870-020-02434-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Nitrogen (N) is an essential component of photosynthetic apparatus. However, the mechanism that photosynthetic capacity is suppressed by N is not completely understood. Photosynthetic capacity and photosynthesis-related genes were comparatively analyzed in a shade-tolerant species Panax notoginseng grown under the levels of low N (LN), moderate N (MN) and high N (HN). RESULTS Photosynthetic assimilation was significantly suppressed in the LN- and HN-grown plants. Compared with the MN-grown plants, the HN-grown plants showed thicker anatomic structure and larger chloroplast accompanied with decreased ratio of mesophyll conductance (gm) to Rubisco content (gm/Rubisco) and lower Rubisco activity. Meanwhile, LN-grown plants displayed smaller chloroplast and accordingly lower internal conductance (gi). LN- and HN-grown individuals allocated less N to light-harvesting system (NL) and carboxylation system (NC), respectively. N surplus negatively affected the expression of genes in Car biosynthesis (GGPS, DXR, PSY, IPI and DXS). The LN individuals outperformed others with respect to non-photochemical quenching. The expression of genes (FBA, PGK, RAF2, GAPC, CAB, PsbA and PsbH) encoding enzymes of Calvin cycle and structural protein of light reaction were obviously repressed in the LN individuals, accompanying with a reduction in Rubisco content and activity. Correspondingly, the expression of genes encoding RAF2, RPI4, CAB and PetE were repressed in the HN-grown plants. CONCLUSIONS LN-induced depression of photosynthetic capacity might be caused by the deceleration on Calvin cycle and light reaction of photosynthesis, and HN-induced depression of ones might derive from an increase in the form of inactivated Rubisco.
Collapse
Affiliation(s)
- Jin-Yan Zhang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medical Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhu Cun
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Medical Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Medical Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
16
|
Busch FA. Photorespiration in the context of Rubisco biochemistry, CO 2 diffusion and metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:919-939. [PMID: 31910295 DOI: 10.1111/tpj.14674] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 05/11/2023]
Abstract
Photorespiratory metabolism is essential for plants to maintain functional photosynthesis in an oxygen-containing environment. Because the oxygenation reaction of Rubisco is followed by the loss of previously fixed carbon, photorespiration is often considered a wasteful process and considerable efforts are aimed at minimizing the negative impact of photorespiration on the plant's carbon uptake. However, the photorespiratory pathway has also many positive aspects, as it is well integrated within other metabolic processes, such as nitrogen assimilation and C1 metabolism, and it is important for maintaining the redox balance of the plant. The overall effect of photorespiratory carbon loss on the net CO2 fixation of the plant is also strongly influenced by the physiology of the leaf related to CO2 diffusion. This review outlines the distinction between Rubisco oxygenation and photorespiratory CO2 release as a basis to evaluate the costs and benefits of photorespiration.
Collapse
Affiliation(s)
- Florian A Busch
- Research School of Biology and ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
17
|
Tang GL, Guo ZC, Zhang B, Li XY, Zeng FJ. Long-term clipping causes carbohydrate accumulation and induced transition of Alhagi sparsifolia from herbs to shrubs. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:967-985. [PMID: 31288904 DOI: 10.1071/fp18072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
A field experiment was conducted on Alhagi sparsifolia Shap. with a long-term clipping history (5-8 years) to investigate the adaptation strategy of A. sparsifolia to long-term clipping. The present study found that long-term clipping can reduce self-shading and increase the photosynthesis rate (Pn) in May. During the whole growth season, clipped plants can maintain a high Pn with less variation, which we denote as a 'stable photosynthesis strategy'. Although Pn in unclipped plants was higher than in the long-term clipping treatment in August, clipped plants accumulated more carbohydrates in shoots. The enhanced amount of carbohydrates could be correlated with the greater amount of lignin synthesis in stems. Therefore, long-term clipping induced the transition of A. sparsifolia from herbs to shrubs. After long-term clipping, plants allocated more resources to plant defence against stress, whereas the ratio of resources allocated to leaf growth decreased. Consequently, photosynthesis in long-term clipped plants decreased in August. In PSII, the energy used for both photochemical quenching and non-photochemical quenching decreased in the clipped plants during the early stage of the growth season. In addition, due to the lower stomatal conductance (gs), clipped plants retained more water in their leaves and suffered less water stress. Thus, clipped plants produced less reactive oxygen species (ROS), which in turn, delayed leaf senescence. Plants also exhibited over-compensatory growth after long-term clipping, but this phenomenon was not caused by the increase in specific leaf area (SLA). The stable photosynthesis strategy helped to extend the lifespan of plants in the growth season and improve their adaptation to light, temperature, and water stress.
Collapse
Affiliation(s)
- Gang-Liang Tang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; and Cele National Station of Observation and Research for Desert-Grassland Ecosystem in Xinjiang, Cele 848300, Xinjiang, China; and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Chun Guo
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; and Cele National Station of Observation and Research for Desert-Grassland Ecosystem in Xinjiang, Cele 848300, Xinjiang, China; and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; and Cele National Station of Observation and Research for Desert-Grassland Ecosystem in Xinjiang, Cele 848300, Xinjiang, China; and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yi Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; and Cele National Station of Observation and Research for Desert-Grassland Ecosystem in Xinjiang, Cele 848300, Xinjiang, China; and University of Chinese Academy of Sciences, Beijing 100049, China; and Corresponding authors. Emails: ;
| | - Fan-Jiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; and Cele National Station of Observation and Research for Desert-Grassland Ecosystem in Xinjiang, Cele 848300, Xinjiang, China; and University of Chinese Academy of Sciences, Beijing 100049, China; and Corresponding authors. Emails: ;
| |
Collapse
|
18
|
Stahl A, Vollrath P, Samans B, Frisch M, Wittkop B, Snowdon RJ. Effect of breeding on nitrogen use efficiency-associated traits in oilseed rape. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1969-1986. [PMID: 30753580 PMCID: PMC6436158 DOI: 10.1093/jxb/erz044] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/06/2019] [Indexed: 05/21/2023]
Abstract
Oilseed rape is one of the most important dicotyledonous field crops in the world, where it plays a key role in productive cereal crop rotations. However, its production requires high nitrogen fertilization and its nitrogen footprint exceeds that of most other globally important crops. Hence, increased nitrogen use efficiency (NUE) in this crop is of high priority for sustainable agriculture. We report a comprehensive study of macrophysiological characteristics associated with breeding progress, conducted under contrasting nitrogen fertilization levels in a large panel of elite oilseed rape varieties representing breeding progress over the past 20 years. The results indicate that increased plant biomass at flowering, along with increases in primary yield components, have increased NUE in modern varieties. Nitrogen uptake efficiency has improved through breeding, particularly at high nitrogen. Despite low heritability, the number of seeds per silique is associated positively with increased yield in modern varieties. Seed weight remains unaffected by breeding progress; however, recent selection for high seed oil content and for high seed yields appears to have promoted a negative correlation (r= -0.39 at high and r= -0.49 at low nitrogen) between seed weight and seed oil concentration. Overall, our results reveal valuable breeding targets to improve NUE in oilseed rape.
Collapse
Affiliation(s)
- Andreas Stahl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
- Correspondence:
| | - Paul Vollrath
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Birgit Samans
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Matthias Frisch
- Department of Biometry and Population Genetics, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Benjamin Wittkop
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
19
|
Aires A, Morais MC, Barreales D, Rodrigues MÂ, Ribeiro AC, Gonçalves B, Silva AP. Variation of almond yield, biometry, α‐tocopherol levels, and antioxidant properties with nitrogen fertilization. J Food Biochem 2018. [DOI: 10.1111/jfbc.12685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alfredo Aires
- Centre for the Research and Technology for Agro‐Environmental and Biological Sciences CITAB, Universidade de Trás‐os‐Montes e Alto Douro Vila Real Portugal
| | - Maria Cristina Morais
- Centre for the Research and Technology for Agro‐Environmental and Biological Sciences CITAB, Universidade de Trás‐os‐Montes e Alto Douro Vila Real Portugal
| | - David Barreales
- Mountain Research Centre CIMO, Escola Superior Agrária, Instituto Politécnico de Bragança Bragança Portugal
| | - Manuel Ângelo Rodrigues
- Mountain Research Centre CIMO, Escola Superior Agrária, Instituto Politécnico de Bragança Bragança Portugal
| | - António Castro Ribeiro
- Mountain Research Centre CIMO, Escola Superior Agrária, Instituto Politécnico de Bragança Bragança Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology for Agro‐Environmental and Biological Sciences CITAB, Universidade de Trás‐os‐Montes e Alto Douro Vila Real Portugal
- Departament of Biology and Environment Escola das Ciências da Vida e Ambiente, Universidade de Trás‐os‐Montes e Alto Douro Vila Real Portugal
| | - Ana Paula Silva
- Centre for the Research and Technology for Agro‐Environmental and Biological Sciences CITAB, Universidade de Trás‐os‐Montes e Alto Douro Vila Real Portugal
- Departament of Agronomy Universidade de Trás‐os‐Montes e Alto Douro, UTAD Vila Real Portugal
| |
Collapse
|
20
|
Xiong D, Flexas J. Leaf economics spectrum in rice: leaf anatomical, biochemical, and physiological trait trade-offs. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5599-5609. [PMID: 30189099 PMCID: PMC6255696 DOI: 10.1093/jxb/ery322] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/28/2018] [Indexed: 05/23/2023]
Abstract
The leaf economics spectrum (LES) is an ecophysiological concept describing the trade-offs of leaf structural and physiological traits, and has been widely investigated on multiple scales. However, the effects of the breeding process on the LES in crops, as well as the mechanisms of the trait trade-offs underlying the LES, have not been thoroughly elucidated to date. In this study, a dataset that included leaf anatomical, biochemical, and functional traits was constructed to evaluate the trait covariations and trade-offs in domesticated species, namely rice (Oryza species). The slopes and intercepts of the major bivariate correlations of the leaf traits in rice were significantly different from the global LES dataset (Glopnet), which is based on multiple non-crop species in natural ecosystems, although the general patterns were similar. The photosynthetic traits responded differently to leaf structural and biochemical changes, and mesophyll conductance was the most sensitive to leaf nitrogen (N) status. A further analysis revealed that the relative limitation of mesophyll conductance declined with leaf N content; however, the limitation of the biochemistry increased relative to leaf N content. These findings indicate that breeding selection and high-resource agricultural environments lead crops to deviate from the leaf trait covariation in wild species, and future breeding to increase the photosynthesis of rice should primarily focus on improvement of the efficiency of photosynthetic enzymes.
Collapse
Affiliation(s)
- Dongliang Xiong
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Centre for Carbon, Water and Food, University of Sydney, Brownlow Hill, New South Wales, Australia
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean conditions, Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA)–Universitat de les Illes Balears (UIB), Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
21
|
Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nat Ecol Evol 2018; 2:1808-1817. [PMID: 30349093 DOI: 10.1038/s41559-018-0690-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/06/2018] [Indexed: 11/08/2022]
Abstract
The origins of agriculture were key events in human history, during which people came to depend for their food on small numbers of animal and plant species. However, the biological traits determining which species were domesticated for food provision, and which were not, are unclear. Here, we investigate the phylogenetic distribution of livestock and crops, and compare their phenotypic traits with those of wild species. Our results indicate that phylogenetic clustering is modest for crop species but more intense for livestock. Domesticated species explore a reduced portion of the phenotypic space occupied by their wild counterparts and have particular traits in common. For example, herbaceous crops are globally characterized by traits including high leaf nitrogen concentration and tall canopies, which make them fast-growing species and proficient competitors. Livestock species are relatively large mammals with low basal metabolic rates, which indicate moderate to slow life histories. Our study therefore reveals ecological differences in domestication potential between plants and mammals. Domesticated plants belong to clades with traits that are advantageous in intensively managed high-resource habitats, whereas domesticated mammals are from clades adapted to moderately productive environments. Combining comparative phylogenetic methods with ecologically relevant traits has proven useful to unravel the causes and consequences of domestication.
Collapse
|
22
|
Abstract
Genome and transcript sequences are composed of long strings of nucleotide monomers (A, C, G, and T/U) that require different quantities of nitrogen atoms for biosynthesis. Here, it is shown that the strength of selection acting on transcript nitrogen content is influenced by the amount of nitrogen plants require to conduct photosynthesis. Specifically, plants that require more nitrogen to conduct photosynthesis experience stronger selection on transcript sequences to use synonymous codons that cost less nitrogen to biosynthesize. It is further shown that the strength of selection acting on transcript nitrogen cost constrains molecular sequence evolution such that genes experiencing stronger selection evolve at a slower rate. Together these findings reveal that the plant molecular clock is set by photosynthetic efficiency, and provide a mechanistic explanation for changes in plant speciation rates that occur concomitant with improvements in photosynthetic efficiency and changes in the environment such as light, temperature, and atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Adams MA, Buchmann N, Sprent J, Buckley TN, Turnbull TL. Crops, Nitrogen, Water: Are Legumes Friend, Foe, or Misunderstood Ally? TRENDS IN PLANT SCIENCE 2018; 23:539-550. [PMID: 29559299 DOI: 10.1016/j.tplants.2018.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Biological nitrogen fixation (BNF) by crop legumes reduces demand for industrial nitrogen fixation (INF). Nonetheless, rates of BNF in agriculture remain low, with strong negative feedback to BNF from reactive soil nitrogen (N) and drought. We show that breeding for yield has resulted in strong relationships between photosynthesis and leaf N in non-leguminous crops, whereas grain legumes show strong relations between leaf N and water use efficiency (WUE). We contrast these understandings with other studies that draw attention to the water costs of grain legume crops, and their potential for polluting the biosphere with N. We propose that breeding grain legumes for reduced stomatal conductance can increase WUE without compromising production or BNF. Legume crops remain a better bet than relying on INF.
Collapse
Affiliation(s)
- Mark A Adams
- Swinburne University, PO Box 218, Hawthorn, VIC 3122, Australia; Centre for Carbon Water and Food, The University of Sydney, 380 Werombi Road, Camden, NSW 2480, Australia.
| | - Nina Buchmann
- ETH Zurich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Janet Sprent
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA, UK
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Tarryn L Turnbull
- Centre for Carbon Water and Food, The University of Sydney, 380 Werombi Road, Camden, NSW 2480, Australia
| |
Collapse
|
24
|
Liu T, Ren T, White PJ, Cong R, Lu J. Storage nitrogen co-ordinates leaf expansion and photosynthetic capacity in winter oilseed rape. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2995-3007. [PMID: 29669007 PMCID: PMC5972566 DOI: 10.1093/jxb/ery134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/06/2018] [Indexed: 05/20/2023]
Abstract
Storage nitrogen (N) is a buffer pool for maintaining leaf growth and synthesizing photosynthetic proteins, but the dynamics of its forms within the life cycle of a single leaf and how it is influenced by N supply remain poorly understood. A field experiment was conducted to estimate the influence of N supply on leaf growth, photosynthetic characteristics, and N partitioning inthe sixth leaf of winter oilseed rape (Brassica napus L.) from emergence through senescence. Storage N content (Nstore) decreased gradually along with leaf expansion. The relative growth rate based on leaf area (RGRa) was positively correlated with Nstore during leaf expansion. The water-soluble protein form of storage N was the main N source for leaf expansion. After the leaves fully expanded, the net photosynthetic rate (An) followed a linear-plateau response to Nstore, with An stabilizing at the highest value above a threshold and declining below the threshold. Non-protein and SDS (detergent)-soluble protein forms of storage N were the main N sources for maintaining photosynthesis. For the leaf N economy, storage N is used for co-ordinating leaf expansion and photosynthetic capacity. N supply can improve Nstore, thereby promoting leaf growth and biomass.
Collapse
Affiliation(s)
- Tao Liu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
| | - Tao Ren
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
| | | | - Rihuan Cong
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
| | - Jianwei Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|