1
|
Carneiro LT, Cocucci AA, Sérsic AN, Machado IC, Alves-Dos-Santos I. Pollinator-mediated selection on Krameria oil flowers: a flower-pollinator fit adaptation to an atypical oil-collecting behaviour? ANNALS OF BOTANY 2024; 134:603-614. [PMID: 38916514 PMCID: PMC11523623 DOI: 10.1093/aob/mcae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND AND AIMS Spatial variation in plant-pollinator interactions is a key driver of floral trait diversification. A so far overlooked qualitative aspect of this variation is the behavioural component on flowers that relates to the pollinator fit. We tested the hypothesis that variation in pollinator behaviour influences the geographical pattern of phenotypic selection across the distribution range of the oil-producing Krameria grandiflora (Krameriaceae). This variation mainly involves the presence or absence of flag petal grasping, which is only performed by representatives of Centris (Centridini, Apidae), an oil-collecting bee group highly associated with Krameriaceae pollination. METHODS We quantified variation in floral traits and fitness and estimated pollinator-mediated selection in five populations at a large geographical scale comprising the entire species range. In each population, we sampled individual pollen arrival and germination as a fitness measure, indicating pollination success and pollination performance, which was then relativized and regressed on standardized flower-pollinator fit (flag-stigma distance), advertisement (sepal length) and reward (oil volume) traits. This generated mean-scaled selection gradients used to calculate geographical selection dispersion. KEY RESULTS Unexpectedly, stronger selection was detected on the flower-pollinator fit trait in populations highly associated with the absence of flag petal grasping. Geographical variation in selection was mainly attributed to differential selection on the flag-stigma distance generating a selection mosaic. This may involve influences of a spatial variation in pollinator behaviour as well as composition and morphology. CONCLUSIONS Our results show the adaptive significance of the specialized flag petals of Krameria in the absence of the grasping behaviour and highlight the contribution of geographical variation in pollinator behaviour on flowers in driving selection mosaics, with implications for floral evolution, adaptation to pollinator fit and phenotypic diversity in specialized systems.
Collapse
Affiliation(s)
| | - Andrea Aristides Cocucci
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, Ciudad de Córdoba, Córdoba 5000, Argentina
| | - Alicia N Sérsic
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, Ciudad de Córdoba, Córdoba 5000, Argentina
| | - Isabel Cristina Machado
- Programa de Pós-Graduação em Biologia Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Isabel Alves-Dos-Santos
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
2
|
Wu Y, Liu G, Sletvold N, Duan X, Tong Z, Li Q. Soil water and nutrient availability interactively modify pollinator-mediated directional and correlational selection on floral display. THE NEW PHYTOLOGIST 2023; 237:672-683. [PMID: 36229922 DOI: 10.1111/nph.18537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The individual and combined effects of abiotic factors on pollinator-mediated selection on floral traits are not well documented. To examine potential interactive effects of water and nutrient availability on pollinator-mediated selection on three floral display traits of Primula tibetica, we manipulated pollination and nutrient availability in a factorial experiment, conducted at two common garden sites with different soil water content (natural vs addition). We found that both water and nutrient availability affected floral trait expression in P. tibetica and that hand pollination increased seed production most when both nutrient content and water content were high, indicating joint pollen and resource limitation. We documented selection on all floral traits, and pollinators contributed to directional and correlational selection on plant height and number of flowers. Soil water and nutrient availability interactively influenced the strength of both pollinator-mediated directional and correlational selection, with significant selection observed when nutrient or water availability was high, but not when none or both were added. The results suggest that resource limitation constrains the response of P. tibetica to among-individual variation in pollen receipt, that addition of nutrients or water leads to pollinator-mediated selection and that effects of the two abiotic factors are nonadditive.
Collapse
Affiliation(s)
- Yun Wu
- School of Architecture and Civil Engineering, Xihua University, Chengdu, 610039, China
| | - Guangli Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Nina Sletvold
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Xuyu Duan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhaoli Tong
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650091, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Qingjun Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, 650091, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| |
Collapse
|
3
|
Koski MH. Pollinators exert selection on floral traits in a pollen-limited, narrowly endemic spring ephemeral. AMERICAN JOURNAL OF BOTANY 2023; 110:e16101. [PMID: 36371765 PMCID: PMC10108127 DOI: 10.1002/ajb2.16101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Floral traits are frequently under pollinator-mediated selection, especially in taxa subject to strong pollen-limitation, such as those reliant on pollinators. However, antagonists can be agents of selection on floral traits as well. The causes of selection acting on spring ephemerals are understudied though these species can experience particularly strong pollen-limitation. I examined pollinator- and antagonist-mediated selection in a narrowly endemic spring ephemeral, Trillium discolor. METHODS I measured pollen limitation in T. discolor across two years and evaluated its breeding system. I compared selection on floral traits (display height, petal size, petal color, flowering time) between open-pollinated, and pollen-supplemented plants to measure the strength and mode of pollinator-mediated selection. I assessed whether natural levels of antagonism impacted selection on floral traits. RESULTS Trillium discolor was self-incompatible and experienced pollen limitation in both years of the study. Pollinators exerted negative disruptive selection on display height and petals size. In one year, pollinator-mediated selection favored lighter petals but in the second year pollinators favored darker petals. Antagonist damage did not alter selection on floral traits. CONCLUSIONS Results demonstrate that pollinators mediate the strength and mode of selection on floral traits in T. discolor. Interannual variation in the strength, mode, and direction of pollinator-mediated selection on floral traits could be important for maintaining of floral diversity in this system. Observed levels of antagonism were weak agents of selection on floral traits.
Collapse
Affiliation(s)
- Matthew H. Koski
- Department of Biological SciencesClemson UniversityClemsonSouth Carolina29634USA
| |
Collapse
|
4
|
Spigler RB, Maguiña R. Changes in female function and autonomous selfing across floral lifespan interact to drive variation in the cost of selfing. AMERICAN JOURNAL OF BOTANY 2022; 109:616-627. [PMID: 35075632 PMCID: PMC9315013 DOI: 10.1002/ajb2.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Morphological and developmental changes as flowers age can impact patterns of mating. At the same time, direct or indirect costs of floral longevity can alter their fitness outcomes. This influence has been less appreciated, particularly with respect to the timing of selfing. We investigated changes in stigma events, autonomous selfing, outcross seed set capacity, and autofertility-a measure representing the potential for reproductive assurance-across floral lifespan in the mixed-mating biennial Sabatia angularis. METHODS We examined stigma morphology and receptivity, autonomous self-pollen deposition, and seed number and size under autonomous self-pollination and hand outcross-pollination for flowers of different ages, from 1 d of female phase until 14 d. We compared autonomous seed production to maximal outcross seed production at each flower age to calculate an index of autofertility. RESULTS The stigmatic lobes begin to untwist 1 d post anthesis. They progressively open, sextend, coil, and increase in receptivity, peaking or saturating at 8-11 d, depending on the measure. Autonomous seed production can occur early, but on average remains low until 6 d, when it doubles. In contrast, outcross seed number and size start out high, then decline precipitously. Consequently, autofertility increases steeply across floral lifespan. CONCLUSIONS Changes in stigma morphology and receptivity, timing of autonomous self-pollen deposition, and floral senescence can interact to influence the relative benefit of autonomous selfing across floral lifespan. Our work highlights the interplay between evolution of floral longevity and the mating system, with implications for the maintenance of mixed mating in S. angularis.
Collapse
Affiliation(s)
- Rachel B. Spigler
- Department of BiologyTemple University1900 N 12th St.PhiladelphiaPA19122USA
| | - Rossana Maguiña
- Department of BiologyTemple University1900 N 12th St.PhiladelphiaPA19122USA
- Present address:
Rossana Maguiña, Ecology and Evolutionary Biology DepartmentUniversity of California Santa Cruz130 McAllister WaySanta CruzCA95060USA
| |
Collapse
|
5
|
Wu Y, Barrett SCH, Duan X, Zhang J, Cha Y, Tu C, Li Q. Herbivore-Mediated Selection on Floral Display Covaries Nonlinearly With Plant-Antagonistic Interaction Intensity Among Primrose Populations. FRONTIERS IN PLANT SCIENCE 2021; 12:727957. [PMID: 34868113 PMCID: PMC8636000 DOI: 10.3389/fpls.2021.727957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Quantifying the relations between plant-antagonistic interactions and natural selection among populations is important for predicting how spatial variation in ecological interactions drive adaptive differentiation. Here, we investigate the relations between the opportunity for selection, herbivore-mediated selection, and the intensity of plant-herbivore interaction among 11 populations of the insect-pollinated plant Primula florindae over 2 years. We experimentally quantified herbivore-mediated directional selection on three floral traits (two display and one phenological) within populations and found evidence for herbivore-mediated selection for a later flowering start date and a greater number of flowers per plant. The opportunity for selection and strength of herbivore-mediated selection on number of flowers varied nonlinearly with the intensity of herbivory among populations. These parameters increased and then decreased with increasing intensity of plant-herbivore interactions, defined as an increase in the ratio of herbivore-damaged flowers per individual. Our results provide novel insights into how plant-antagonistic interactions can shape spatial variation in selection on floral traits and contribute toward understanding the mechanistic basis of geographic variation in angiosperm flowers.
Collapse
Affiliation(s)
- Yun Wu
- School of Civil Engineering, Architecture and Environment, Xihua University, Chengdu, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Spencer C. H. Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Xuyu Duan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yongpeng Cha
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Chengyi Tu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Qingjun Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
6
|
Mitchell N, Chamberlain SA, Whitney KD. Proximity to crop relatives determines some patterns of natural selection in a wild sunflower. Evol Appl 2021; 14:1328-1342. [PMID: 34025771 PMCID: PMC8127714 DOI: 10.1111/eva.13201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/27/2022] Open
Abstract
Abiotic and biotic heterogeneity result in divergent patterns of natural selection in nature, with important consequences for fundamental evolutionary processes including local adaptation, speciation, and diversification. However, increasing amounts of the global terrestrial surface are homogenized by agriculture (which covers nearly 50% of terrestrial vegetated land surface) and other anthropogenic activities. Agricultural intensification leads to highly simplified biotic communities for many taxa, which may alter natural selection through biotic selective agents. In particular, the presence of crops may alter selection on traits of closely related wild relatives via shared mutualists and antagonists such as pollinators and herbivores. We asked how the presence of crop sunflowers (Helianthus annuus) alters natural selection on reproductive traits of wild sunflowers (Helianthus annuus texanus). Across two years and multiple sites, we planted replicated paired populations of wild H. a. texanus bordering sunflower crop fields versus approximately 2.5 km away. We measured fitness, floral traits, and interactions of the plants with insect pollinators and seed predators. We found limited evidence that proximity to crop sunflowers altered selection on individual traits, as total or direct selection differed by proximity for only three of eleven traits: ray length (a marginally significant effect), Isophrictis (Gelechiidae, moth) attack, and Neolasioptera (Cecidomyiidae, midge) attack. Direct (but not total) selection was significantly more heterogenous far from crop sunflowers relative to near crop sunflowers. Both mutualist pollinators and antagonist seed predators mediated differences in selection in some population-pairs near versus far from crop sunflowers. Here, we demonstrate that agriculture can influence the evolution of wild species via altered selection arising from shared biotic interactions, complementing previously demonstrated evolutionary effects via hybridization.
Collapse
Affiliation(s)
- Nora Mitchell
- Department of BiologyUniversity of Wisconsin – Eau ClaireEau ClaireWIUSA
| | - Scott A. Chamberlain
- Department of Ecology & Evolutionary BiologyRice UniversityHoustonTXUSA
- Present address:
rOpenSciDepartment of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | | |
Collapse
|
7
|
Emel SL, Wang S, Metz RP, Spigler RB. Type and intensity of surrounding human land use, not local environment, shape genetic structure of a native grassland plant. Mol Ecol 2021; 30:639-655. [PMID: 33245827 DOI: 10.1111/mec.15753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 11/01/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022]
Abstract
Landscape heterogeneity can shape genetic structure and functional connectivity of populations. When this heterogeneity imposes variable costs of moving across the landscape, populations can be structured according to a pattern of "isolation by resistance" (IBR). At the same time, divergent local environmental filters can limit gene flow, creating an alternative pattern of "isolation by environment" (IBE). Here, we evaluate IBR and IBE in the insect-pollinated, biennial plant Sabatia angularis (L.) Pursh (Gentianaceae) across serpentine grasslands in the fragmented landscape of SE Pennsylvania, USA using ~4500 neutral SNP loci. Specifically, we test the extent to which radical alteration of the landscape matrix by humans has fundamentally altered the cost of movement, imprinting a pattern of IBR dictated by land use type and intensity, and the potential for IBE in relation to a gradient of heavy metal concentrations found in serpentine soil. We reveal a strong signal of IBR and a weak signal of IBE across sites, indicating the greater importance of the landscape matrix in shaping genetic structure of S. angularis populations in the study region. Based on Circuitscape and least cost path approaches, we find that both low- and high-intensity urbanization resist gene flow by orders of magnitude greater than "natural" habitats, although resistance to low-intensity urbanization weakens at larger spatial scales. While cropland presents a substantially lower barrier than urban development, cumulative human land use surrounding populations predicts within-population genetic diversity and inbreeding in S. angularis. Our results emphasize the role of forest buffers and corridors in facilitating gene flow between serpentine grassland patches and averting local extinction of plant populations.
Collapse
Affiliation(s)
- Sarah L Emel
- Department of Biology, Temple University, Philadelphia, PA, USA.,Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Shichen Wang
- Genomics and Bioinformatics Service, Texas A&M AgriLife Research, TX, USA
| | - Richard P Metz
- Genomics and Bioinformatics Service, Texas A&M AgriLife Research, TX, USA
| | | |
Collapse
|
8
|
Albertsen E, Opedal ØH, Bolstad GH, Pérez-Barrales R, Hansen TF, Pélabon C, Armbruster WS. Using ecological context to interpret spatiotemporal variation in natural selection. Evolution 2020; 75:294-309. [PMID: 33230820 DOI: 10.1111/evo.14136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022]
Abstract
Spatiotemporal variation in natural selection is expected, but difficult to estimate. Pollinator-mediated selection on floral traits provides a good system for understanding and linking variation in selection to differences in ecological context. We studied pollinator-mediated selection in five populations of Dalechampia scandens (Euphorbiaceae) in Costa Rica and Mexico. Using a nonlinear path-analytical approach, we assessed several functional components of selection, and linked variation in pollinator-mediated selection across time and space to variation in pollinator assemblages. After correcting for estimation error, we detected moderate variation in net selection on two out of four blossom traits. Both the opportunity for selection and the mean strength of selection decreased with increasing reliability of cross-pollination. Selection for pollinator attraction was consistently positive and stronger on advertisement than reward traits. Selection on traits affecting pollen transfer from the pollinator to the stigmas was strong only when cross-pollination was unreliable and there was a mismatch between pollinator and blossom size. These results illustrate how consideration of trait function and ecological context can facilitate both the detection and the causal understanding of spatiotemporal variation in natural selection.
Collapse
Affiliation(s)
- Elena Albertsen
- Norwegian Institute for Bioeconomy Research, Trondheim, 7031, Norway.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Øystein H Opedal
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway.,Department of Biology, Lund University, Lund, SE-22362, Sweden
| | - Geir H Bolstad
- Norwegian Institute for Nature Research (NINA), Trondheim, 7485, Norway
| | - Rocío Pérez-Barrales
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Thomas F Hansen
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Oslo, 0316, Norway
| | - Christophe Pélabon
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom.,Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, 99775, USA
| |
Collapse
|
9
|
Soteras F, Rubini Pisano MA, Bariles JB, Moré M, Cocucci AA. Phenotypic selection mosaic for flower length influenced by geographically varying hawkmoth pollinator proboscis length and abiotic environment. THE NEW PHYTOLOGIST 2020; 225:985-998. [PMID: 31514238 DOI: 10.1111/nph.16192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Biotic and abiotic context may affect the intensity of interspecific interactions and subsequently drive locally particular phenotypic selection patterns on interacting traits. We evaluated the geographical variation of matching traits of the brush-type flowers of Caesalpinia gilliesii and of the proboscis length of its guild of hawkmoth pollinators, as well as their relationship with environmental variables. We assessed the geographical variation of interacting traits (style and filament vs mean proboscis length of the guild of hawkmoths) across seven populations and estimated phenotypic selection on the plant side. Interacting traits showed similar relationships with environmental variables. Phenotypic selection on the plant side was influenced by proboscis length and by environmental conditions. Mean proboscis length of the guild was shorter than previously recorded for the same study area, thus probably shifting the selective optima of flower length. We observed two presumptive coevolutionary cold spots where one-sided negative directional selection is acting on style length. The lack of selection on the pollinator side should be further confirmed. We provided joint evidence, mostly lacking, about the geographical variation of selective pressures on the plant side associated with both proboscis length and abiotic conditions. We suggest that recent environmental change may be shifting floral length optima.
Collapse
Affiliation(s)
- Florencia Soteras
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Malén Aluhé Rubini Pisano
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Julieta Belén Bariles
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marcela Moré
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Arístides Cocucci
- Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
10
|
Presotto A, Hernández F, Mercer KL. Phenotypic selection under two contrasting environments in wild sunflower and its crop-wild hybrid. Evol Appl 2019; 12:1703-1717. [PMID: 31462924 PMCID: PMC6708420 DOI: 10.1111/eva.12828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 01/20/2023] Open
Abstract
Hybridization is a common phenomenon in plants and can lead to the introgression of alleles from one population into another, generate new hybrid lineages, or cause species extinction. The environmental conditions and the genetic background of the participating populations may influence these outcomes since they can affect the fitness of hybrids, thereby increasing or decreasing the chances of introgression. Thus, it is important to understand the context-dependent prospects for introgression of alleles into diverse populations and under multiple ecological environments. Crop-wild hybridization presents an opportunity to explore these dynamics in agroecosystems. To this end, we used diverse wild and hybrid sunflowers from across the northern United States as a basis for evaluating variation in morphological traits and assessing context-dependent selection. These crop-wild hybrids and their wild counterparts were grown under agricultural conditions in the field with and without wheat competition. Interactions between origin and cross type affected expression of early functional traits, while interactions between competition and cross type acted on reproductive traits. A smattering of early and reproductive traits was affected by interactions between cross type and competition that varied by origin (i.e., 3-way interactions). Seven functional traits, especially number of branches and tertiary head diameter, underwent net and direct directional selection, while six out of these seven traits appear to also be experiencing nonlinear selection dynamics. In general, wild-like traits were favored under both sets of conditions, while, under wheat competition, some crop-like traits related to fast growth and primary head diameter became important. These data reaffirm the hypothesis that stressful conditions establish a scenario more suitable for crop introgression and clarify that nonlinear selection dynamics may play a role in this process.
Collapse
Affiliation(s)
- Alejandro Presotto
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de AgronomíaUniversidad Nacional del Sur (UNS)‐ CONICETBahía BlancaBuenos AiresArgentina
| | - Fernando Hernández
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de AgronomíaUniversidad Nacional del Sur (UNS)‐ CONICETBahía BlancaBuenos AiresArgentina
| | - Kristin L. Mercer
- Department of Horticulture and Crop ScienceOhio State UniversityColumbusOH
| |
Collapse
|
11
|
Is there spatial variation in phenotypic selection on floral traits in a generalist plant–pollinator system? Evol Ecol 2019. [DOI: 10.1007/s10682-019-10002-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Hervías-Parejo S, Heleno R, Nogales M, Olesen JM, Traveset A. Divergence in floral trait preferences between nonflower-specialized birds and insects on the Galápagos. AMERICAN JOURNAL OF BOTANY 2019; 106:540-546. [PMID: 30985925 DOI: 10.1002/ajb2.1270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY The characteristic scarcity of insects on remote oceanic islands has driven nonflower-specialized vertebrates to broaden their trophic niches and explore floral resources. From our previous studies in the Galápagos, we know that native insectivorous and frugivorous birds visit a wide range of entomophilous flowers and can also act as effective pollinators. Here, we tested whether opportunistic Galápagos birds show any preference for specific floral traits, and if so, this preference differs from that of insects. METHODS Sixteen floral morphology and nectar traits of 26 native species were studied, as well as the frequency with which they are visited by birds and insects. Nonmetric multidimensional scaling (NMDS) was used to evaluate the distribution of flower traits values along two main dimensions and measure the similarity between the plants visited mostly by birds versus those by insects. KEY RESULTS NMDS of floral traits resulted in two species groups: (1) bell-shaped, white flowers with wider corollas at nectary level and higher nectar volume, associated with high bird visitation rates; and (2) bowl and tubular-shaped flowers with narrower corollas at nectary level and lower nectar volume, associated with high insect visitation rates. CONCLUSIONS Despite the divergence in floral trait preferences between opportunistic Galápagos birds and insects, bird-visited flowers display mixed traits not fitting the classical ornithophilous syndrome. This finding is compatible with the existence of a transitional or bet-hedging phenotype between insect and bird visitors and underscores the importance of coevolution and floral diversification in nonspecialized plant-visitor interactions.
Collapse
Affiliation(s)
- Sandra Hervías-Parejo
- Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Global Change Research Group, Mallorca, Balearic Islands, Spain
| | - Ruben Heleno
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal
| | - Manuel Nogales
- Instituto de Productos Naturales y Agrobiología (CSIC-IPNA), Island Ecology and Evolution Research Group, Canary Islands, Spain
| | - Jens M Olesen
- Department of Bioscience, Aarhus University, Denmark
| | - Anna Traveset
- Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Global Change Research Group, Mallorca, Balearic Islands, Spain
| |
Collapse
|
13
|
Spigler RB, Woodard AJ. Context-dependency of resource allocation trade-offs highlights constraints to the evolution of floral longevity in a monocarpic herb. THE NEW PHYTOLOGIST 2019; 221:2298-2307. [PMID: 30256414 DOI: 10.1111/nph.15498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Floral longevity is a critical component of floral display, yet there is a conspicuous paucity of empirical research on its evolution within species. Evolutionary models of floral longevity are grounded in resource allocation theory and propose that selection acts on heritable variation to optimize longevity in light of competing floral construction and maintenance costs. Key assumptions remain untested within wild species. We measured maximum floral longevity alongside protandry, flower size, flower number and flowering rate across families of the monocarpic herb Sabatia angularis grown under high and low resources. We evaluated genetic variation, plasticity and correlations between display traits, including fundamental resource-allocation trade-offs and their interactions with resource availability. All display traits showed significant genetic variation. Resource availability influenced mean floral longevity and flower number, with genetic variation in these responses. Importantly, both floral longevity-flower number and flower number-size trade-offs were significant and stronger under low resources. This study reinforces the application of resource allocation theory to floral display trait evolution. Our work highlights the context-dependency of trade-offs and the potential importance of plasticity in resource allocation, with plants investing in the construction of new flowers at faster rates when resources are high rather than in the maintenance of longer-lived flowers.
Collapse
Affiliation(s)
- Rachel B Spigler
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Alyssa J Woodard
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
14
|
Spigler RB. Small and surrounded: population size and land use intensity interact to determine reliance on autonomous selfing in a monocarpic plant. ANNALS OF BOTANY 2018; 121:513-524. [PMID: 29346506 PMCID: PMC5838805 DOI: 10.1093/aob/mcx184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND AIMS Habitat fragmentation has transformed landscapes globally, leaving remnants embedded within a complex matrix that is rapidly becoming more developed. For many plant populations, the associated factors of decreased size and intensification of land use surrounding them are expected to increase pollen limitation ('PL'), unless autonomous self-pollination provides reproductive assurance ('RA'). Decreased pollinator visitation is often assumed to drive these patterns, but other, less studied mechanisms might include increased heterospecific pollen transfer or decreased conspecific pollen availability via florivory. I investigate how PL and RA and their potential underlying mechanisms vary with population size and land use intensity surrounding populations in the biennial Sabatia angularis (Gentianaceae). METHODS I estimated the capacity for seed production via autonomous self-pollination (i.e. autofertility). Over 2 years in 22 S. angularis populations across a fragmented landscape, I performed emasculation and pollen supplementation experiments measuring RA and PL, and quantified visitation rates of potential pollinators and a pollen consumer, conspecific pollen loads and rates of heterospecific pollen deposition. KEY RESULTS Autofertility based on fruit mass was 93 % under PL but only 51.6 % relative to maximal conditions. PL and RA were significant on average across populations in the first year of study. Variation in RA was significantly influenced by the interaction between population size and land use intensity, which in turn rendered PL independent of these factors. Visitation and heterospecific pollen deposition rates were greatest in small populations and declined with population size, while conspecific pollen loads were greatest in intermediate sized populations. CONCLUSIONS Increased reliance on RA is predicted in small S. angularis populations surrounded by intense development, which can explain elevated selfing rates in fragmented populations of plant species more generally. Results from this study point toward forces such as heterospecific pollen transfer, self-pollen limitation or resource availability influencing the need and ability to rely on RA.
Collapse
|