1
|
Xu KW, Yang Y, Chen H, Lin CX, Jiang L, Guo ZL, Li M, Hao MZ, Meng KK. Extensive cytonuclear discordance revealed by phylogenomic analyses suggests complex evolutionary history in the holly genus Ilex (Aquifoliaceae). Mol Phylogenet Evol 2024; 204:108255. [PMID: 39622396 DOI: 10.1016/j.ympev.2024.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Ilex L., the exclusive genus of Aquifoliaceae, encompasses over 600 dioecious wood species with a highly irregular distribution, predominantly found in South America and Asia. The phylogeny and classification of this genus remain enigmatic due to significant early extinctions, constrained morphological diversity, recent hybridization/introgression, and conflicting signals from previously utilized markers. This study presents phylogenetic reconstructions based on complete chloroplast genome sequences and single nucleotide polymorphisms (SNPs) derived from genome resequencing data. A total of 116 accessions of Ilex, representing approximately 108 taxa, were included as the ingroup, with five accessions of two species serving as outgroups. Analysis of the chloroplast genome and nuclear SNP data individually resulted in two robust phylogenetic trees, revealing substantial discrepancies between the chloroplast genome and nuclear SNP phylogenies at both the species and clade levels. The chloroplast genome sequences successfully resolved relationships within this genus into eight strongly supported major clades, while the nuclear SNPs resolved relationships into seven highly supported major clades. Our nuclear SNP phylogenetic tree, in comparison to the chloroplast genome tree, aligns more closely with the recently updated classification of Ilex in multiple instances. The extensive cytonuclear discordance identified may be attributed to recent hybridization events and incomplete lineage sorting (ILS).
Collapse
Affiliation(s)
- Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Yi Yang
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Chen-Xue Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhong-Long Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Meng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Ming-Zhuo Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Kai-Kai Meng
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits/Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Guangxi Subtropical Crops Research Institute, Nanning 530001, China.
| |
Collapse
|
2
|
Wang H, Zhang W, Yu Y, Fang X, Zhang T, Xu L, Gong L, Xiao H. Biased Gene Introgression and Adaptation in the Face of Chloroplast Capture in Aquilegia amurensis. Syst Biol 2024; 73:886-900. [PMID: 39001664 DOI: 10.1093/sysbio/syae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 12/14/2024] Open
Abstract
-Chloroplast capture, a phenomenon that can occur through interspecific hybridization and introgression, is frequently invoked to explain cytonuclear discordance in plants. However, relatively few studies have documented the mechanisms of cytonuclear coevolution and its potential for driving species differentiation and possible functional differences in the context of chloroplast capture. To address this crucial question, we chose the Aquilegia genus, which is known for having minimal sterility among species, and inferred that A. amurensis captured the plastome of A. parviflora based on cytonuclear discordance and gene flow between the 2 species. We focused on the introgression region and its differentiation from corresponding regions in closely related species, especially its composition in a chloroplast capture scenario. We found that nuclear genes encoding cytonuclear enzyme complexes (CECs; i.e., organelle-targeted genes) of chloroplast donor species were selectively retained and displaced the original CEC genes in chloroplast-receiving species due to cytonuclear interactions during introgression. Notably, the intrinsic correlation of CEC introgression was a greater degree of evolutionary distance for these CECs between A. amurensis and A. parviflora. Terpene synthase activity genes (GO: 0010333) were overrepresented among the introgressed genes, and more than 30% of these genes were CEC genes. These findings support our observations that floral terpene release pattern is similar between A. amurensis and A. parviflora compared with A. japonica. Our study clarifies the mechanisms of cytonuclear coevolution, species differentiation, and functional differences in the context of chloroplast capture and highlights the potential role of chloroplast capture in adaptation.
Collapse
Affiliation(s)
- Huaying Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Wei Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yanan Yu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xiaoxue Fang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Tengjiao Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Luyuan Xu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hongxing Xiao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
3
|
Villa-Machío I, Heuertz M, Álvarez I, Nieto Feliner G. Demography-driven and adaptive introgression in a hybrid zone of the Armeria syngameon. Mol Ecol 2024; 33:e17167. [PMID: 37837272 DOI: 10.1111/mec.17167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Syngameons represent networks of otherwise distinct species connected by limited gene exchange. Although most studies have focused on how species maintain their cohesiveness despite gene flow, there are additional relevant questions regarding the evolutionary dynamics of syngameons and their drivers, as well as the success of their members and the network as a whole. Using a ddRADseq approach, we analysed the genetic structure, genomic clines and demographic history of a coastal hybrid zone involving two species of the Armeria (Plumbaginaceae) syngameon in southern Spain. We inferred that a peripheral population of the sand dune-adapted A. pungens diverged from the rest of the conspecific populations and subsequently hybridized with a locally more abundant pinewood congener, A. macrophylla. Both species display extensive plastid DNA haplotype sharing. Genomic cline analysis identified bidirectional introgression, but more outlier loci with excess A. pungens than A. macrophylla ancestry, suggesting the possibility of selection for A. pungens alleles. This is consistent with the finding that the A. pungens phenotype is selected for in open habitats, and with the strong correlation found between ancestry and phenotype. Taken together, our analyses suggest an intriguing scenario in which bidirectional introgression may, on the one hand, help to avoid reduced levels of genetic diversity due to the small size and isolated location of the A. pungens range-edge population, thereby minimizing demographic risks of stochastic extinction. On the other hand, the data also suggest that introgression into A. macrophylla may allow individuals to grow in open, highly irradiated, deep sandy, salt-exposed habitats.
Collapse
Affiliation(s)
- Irene Villa-Machío
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | | | - Inés Álvarez
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| |
Collapse
|
4
|
Yang S, Huang J, Qu Y, Zhang D, Tan Y, Wen S, Song Y. Phylogenetic incongruence in an Asiatic species complex of the genus Caryodaphnopsis (Lauraceae). BMC PLANT BIOLOGY 2024; 24:616. [PMID: 38937691 PMCID: PMC11212351 DOI: 10.1186/s12870-024-05050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Caryodaphnopsis, a group of tropical trees (ca. 20 spp.) in the family Lauraceae, has an amphi-Pacific disjunct distribution: ten species are distributed in Southeast Asia, while eight species are restricted to tropical rainforests in South America. Previously, phylogenetic analyses using two nuclear markers resolved the relationships among the five species from Latin America. However, the phylogenetic relationships between the species in Asia remain poorly known. RESULTS Here, we first determined the complete mitochondrial genome (mitogenome), plastome, and the nuclear ribosomal cistron (nrDNA) sequences of C. henryi with lengths of 1,168,029 bp, 154,938 bp, and 6495 bp, respectively. We found 2233 repeats and 368 potential SSRs in the mitogenome of C. henryi and 50 homologous DNA fragments between its mitogenome and plastome. Gene synteny analysis revealed a mass of rearrangements in the mitogenomes of Magnolia biondii, Hernandia nymphaeifolia, and C. henryi and only six conserved clustered genes among them. In order to reconstruct relationships for the ten Caryodaphnopsis species in Asia, we created three datasets: one for the mitogenome (coding genes and ten intergenic regions), another for the plastome (whole genome), and the other for the nuclear ribosomal cistron. All of the 22 Caryodaphnopsis individuals were divided into four, five, and six different clades in the phylogenies based on mitogenome, plastome, and nrDNA datasets, respectively. CONCLUSIONS The study showed phylogenetic conflicts within and between nuclear and organellar genome data of Caryodaphnopsis species. The sympatric Caryodaphnopsis species in Hekou and Malipo SW China may be related to the incomplete lineage sorting, chloroplast capture, and/or hybridization, which mixed the species as a complex in their evolutionary history.
Collapse
Affiliation(s)
- Shiting Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) and Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, Guangxi, China
| | - Jiepeng Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) and Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, Guangxi, China
| | - Yaya Qu
- Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Di Zhang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Yunhong Tan
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Shujun Wen
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Institute of Botany, Guilin, 541006, China.
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) and Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541004, Guangxi, China.
| |
Collapse
|
5
|
Sudmoon R, Kaewdaungdee S, Ho HX, Lee SY, Tanee T, Chaveerach A. The chloroplast genome sequences of Ipomoea alba and I. obscura (Convolvulaceae): genome comparison and phylogenetic analysis. Sci Rep 2024; 14:14078. [PMID: 38890502 PMCID: PMC11189557 DOI: 10.1038/s41598-024-64879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Ipomoea species have diverse uses as ornamentals, food, and medicine. However, their genomic information is limited; I. alba and I. obscura were sequenced and assembled. Their chloroplast genomes were 161,353 bp and 159,691 bp, respectively. Both genomes exhibited a quadripartite structure, consisting of a pair of inverted repeat (IR) regions, which are separated by the large single-copy (LSC) and small single-copy (SSC) regions. The overall GC content was 37.5% for both genomes. A total of 104 and 93 simple sequence repeats, 50 large repeats, and 30 and 22 short tandem repeats were identified in the two chloroplast genomes, respectively. G and T were more preferred than C and A at the third base position based on the Parity Rule 2 plot analysis, and the neutrality plot revealed correlation coefficients of 0.126 and 0.105, indicating the influence of natural selection in shaping the codon usage bias in most protein-coding genes (CDS). Genome comparative analyses using 31 selected Ipomoea taxa from Thailand showed that their chloroplast genomes are rather conserved, but the presence of expansion or contraction of the IR region was identified in some of these Ipomoea taxa. A total of five highly divergent regions were identified, including the CDS genes accD, ndhA, and ndhF, as well as the intergenic spacer regions psbI-atpA and rpl32-ccsA. Phylogenetic analysis based on both the complete chloroplast genome sequence and CDS datasets of 31 Ipomoea taxa showed that I. alba is resolved as a group member for series (ser.) Quamoclit, which contains seven other taxa, including I. hederacea, I. imperati, I. indica, I. nil, I. purpurea, I. quamoclit, and I. × sloteri, while I. obscura is grouped with I. tiliifolia, both of which are under ser. Obscura, and is closely related to I. biflora of ser. Pes-tigridis. Divergence time estimation using the complete chloroplast genome sequence dataset indicated that the mean age of the divergence for Ipomoeeae, Argyreiinae, and Astripomoeinae, was approximately 29.99 Mya, 19.81 Mya, and 13.40 Mya, respectively. The node indicating the divergence of I. alba from the other members of Ipomoea was around 10.06 Mya, and the split between I. obscura and I. tiliifolia is thought to have happened around 17.13 Mya. The split between the I. obscura accessions from Thailand and Taiwan is thought to have taken place around 0.86 Mya.
Collapse
Affiliation(s)
| | - Sanit Kaewdaungdee
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Hao Xuan Ho
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Tawatchai Tanee
- Faculty of Environment and Resource Studies, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
6
|
Marcionetti A, Bertrand JAM, Cortesi F, Donati GFA, Heim S, Huyghe F, Kochzius M, Pellissier L, Salamin N. Recurrent gene flow events occurred during the diversification of clownfishes of the skunk complex. Mol Ecol 2024; 33:e17347. [PMID: 38624248 DOI: 10.1111/mec.17347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Clownfish (subfamily Amphiprioninae) are an iconic group of coral reef fish that evolved a mutualistic interaction with sea anemones, which triggered the adaptive radiation of the clade. Within clownfishes, the "skunk complex" is particularly interesting. Besides ecological speciation, interspecific gene flow and hybrid speciation are thought to have shaped the evolution of the group. We investigated the mechanisms characterizing the diversification of this complex. By taking advantage of their disjunct geographical distribution, we obtained whole-genome data of sympatric and allopatric populations of the three main species of the complex (Amphiprion akallopisos, A. perideraion and A. sandaracinos). We examined population structure, genomic divergence and introgression signals and performed demographic modelling to identify the most realistic diversification scenario. We excluded scenarios of strict isolation or hybrid origin of A. sandaracinos. We discovered moderate gene flow from A. perideraion to the ancestor of A. akallopisos + A. sandaracinos and weak gene flow between the species in the Indo-Australian Archipelago throughout the diversification of the group. We identified introgressed regions in A. sandaracinos and detected in A. perideraion two large regions of high divergence from the two other species. While we found that gene flow has occurred throughout the species' diversification, we also observed that recent admixture was less pervasive than initially thought, suggesting a role of host repartition or behavioural barriers in maintaining the genetic identity of the species in sympatry.
Collapse
Affiliation(s)
- Anna Marcionetti
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Joris A M Bertrand
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
- Laboratoire Génome et Développement Des Plantes (UMR 5096 UPVD/CNRS), University of Perpignan via Domitia, Perpignan, France
| | - Fabio Cortesi
- School of the Environment and Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Giulia F A Donati
- EAWAG Swiss Federal Institute of Aquatic Science & Technology, Dübendorf, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Sara Heim
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Filip Huyghe
- Marine Biology - Ecology, Evolution and Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | - Marc Kochzius
- Marine Biology - Ecology, Evolution and Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Ecosystems and Landscape Evolution, Department of Environmental System Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Thureborn O, Wikström N, Razafimandimbison SG, Rydin C. Plastid phylogenomics and cytonuclear discordance in Rubioideae, Rubiaceae. PLoS One 2024; 19:e0302365. [PMID: 38768140 PMCID: PMC11104678 DOI: 10.1371/journal.pone.0302365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
In this study of evolutionary relationships in the subfamily Rubioideae (Rubiaceae), we take advantage of the off-target proportion of reads generated via previous target capture sequencing projects based on nuclear genomic data to build a plastome phylogeny and investigate cytonuclear discordance. The assembly of off-target reads resulted in a comprehensive plastome dataset and robust inference of phylogenetic relationships, where most intratribal and intertribal relationships are resolved with strong support. While the phylogenetic results were mostly in agreement with previous studies based on plastome data, novel relationships in the plastid perspective were also detected. For example, our analyses of plastome data provide strong support for the SCOUT clade and its sister relationship to the remaining members of the subfamily, which differs from previous results based on plastid data but agrees with recent results based on nuclear genomic data. However, several instances of highly supported cytonuclear discordance were identified across the Rubioideae phylogeny. Coalescent simulation analysis indicates that while ILS could, by itself, explain the majority of the discordant relationships, plastome introgression may be the better explanation in some cases. Our study further indicates that plastomes across the Rubioideae are, with few exceptions, highly conserved and mainly conform to the structure, gene content, and gene order present in the majority of the flowering plants.
Collapse
Affiliation(s)
- Olle Thureborn
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Niklas Wikström
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Bergius Foundation, The Royal Academy of Sciences, Stockholm, Sweden
| | | | - Catarina Rydin
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Bergius Foundation, The Royal Academy of Sciences, Stockholm, Sweden
| |
Collapse
|
8
|
Li E, Wang Y, Liu K, Liu Y, Xu C, Dong W, Zhang Z. Historical climate change and vicariance events contributed to the intercontinental disjunct distribution pattern of ash species (Fraxinus, Oleaceae). Commun Biol 2024; 7:603. [PMID: 38769470 PMCID: PMC11106067 DOI: 10.1038/s42003-024-06296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
The Northern Hemisphere temperate forests exhibit a disjunct distributional pattern in Europe, North America, and East Asia. Here, to reveal the promoter of intercontinental disjunct distribution, Fraxinus was used as a model organism to integrate abundant fossil evidence with high-resolution phylogenies in a phytogeographic analysis. We constructed a robust phylogenetic tree using genomic data, reconstructed the geographic ancestral areas, and evaluated the effect of incorporating fossil information on the reconstructed biogeographic history. The phylogenetic relationships of Fraxinus were highly resolved and divided into seven clades. Fraxinus originated in western North America during Eocene, and six intercontinental dispersal events and five intercontinental vicariance events were occured. Results suggest that climate change and vicariance contributed to the intercontinental disjunct distribution pattern of Fraxinus. Moreover, results highlight the necessity of integrating phylogenetic relationship and fossil to improve the reliability of inferred biogeographic events and our understanding of the processes underlying disjunct distributions.
Collapse
Affiliation(s)
- Enze Li
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yushuang Wang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Kangjia Liu
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yanlei Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wenpan Dong
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Zhixiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Jia L, Wang S, Hu J, Miao K, Huang Y, Ji Y. Plastid phylogenomics and fossil evidence provide new insights into the evolutionary complexity of the 'woody clade' in Saxifragales. BMC PLANT BIOLOGY 2024; 24:277. [PMID: 38605351 PMCID: PMC11010409 DOI: 10.1186/s12870-024-04917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The "woody clade" in Saxifragales (WCS), encompassing four woody families (Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae), is a phylogenetically recalcitrant node in the angiosperm tree of life, as the interfamilial relationships of the WCS remain contentious. Based on a comprehensive sampling of WCS genera, this study aims to recover a robust maternal backbone phylogeny of the WCS by analyzing plastid genome (plastome) sequence data using Bayesian inference (BI), maximum likelihood (ML), and maximum parsimony (MP) methods, and to explore the possible causes of the phylogenetic recalcitrance with respect to deep relationships within the WCS, in combination with molecular and fossil evidence. RESULTS Although the four WCS families were identically resolved as monophyletic, the MP analysis recovered different tree topologies for the relationships among Altingiaceae, Cercidiphyllaceae, and Daphniphyllaceae from the ML and BI phylogenies. The fossil-calibrated plastome phylogeny showed that the WCS underwent a rapid divergence of crown groups in the early Cretaceous (between 104.79 and 100.23 Ma), leading to the origin of the stem lineage ancestors of Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae within a very short time span (∼4.56 Ma). Compared with the tree topology recovered in a previous study based on nuclear genome data, cytonuclear discordance regarding the interfamilial relationships of the WCS was detected. CONCLUSIONS Molecular and fossil evidence imply that the early divergence of the WCS might have experienced radiative diversification of crown groups, extensive extinctions at the genus and species levels around the Cretaceous/Paleocene boundary, and ancient hybridization. Such evolutionarily complex events may introduce biases in topological estimations within the WCS due to incomplete lineage sorting, cytonuclear discordance, and long-branch attraction, potentially impacting the accurate reconstruction of deep relationships.
Collapse
Affiliation(s)
- Linbo Jia
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shuying Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinjin Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ke Miao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Yongjiang Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
10
|
Tayebi Z, Moghaddam M, Mahmoodi M, Kazempour-Osaloo S. Evolutionary history of an Irano-Turanian cushion-forming legume (Onobrychis cornuta). BMC PLANT BIOLOGY 2024; 24:204. [PMID: 38509474 PMCID: PMC10953250 DOI: 10.1186/s12870-024-04895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
The Irano-Turanian region is one of the largest floristic regions in the world and harbors a high percentage of endemics, including cushion-like and dwarf-shrubby taxa. Onobrychis cornuta is an important cushion-forming element of the subalpine/alpine flora of the Irano-Turanian floristic region. To specify the genetic diversity among the populations of this species (including individuals of O. elymaitica), we employed nrDNA ITS and two noncoding regions of plastid DNA (rpl32-trnL(UAG) and trnT(UGU)-trnL(UAA)). The most striking feature of O. cornuta assemblages was the unexpectedly high nucleotide diversity in both the nDNA and cpDNA dataset. In the analyses of nuclear and plastid regions, 25 ribotypes and 42 haplotypes were found among 77 and 59 accessions, respectively, from Iran, Turkey, and Afghanistan. Network analysis of the datasets demonstrated geographic differentiation within the species. Phylogenetic analyses of all dataset retrieved O. cornuta as a non-monophyletic species due to the inclusion of O. elymaitica, comprising four distinct lineages. In addition, our analyses showed cytonuclear discordance between both nuclear and plastid topologies regarding the position of some O. cornuta individuals. The underlying causes of this inconsistency remain unclear. However, we speculate that chloroplast capture, incomplete lineage sorting, and introgression were the main reasons for this event. Furthermore, molecular dating analysis indicated that O. cornuta originated in the early Pliocene (around 4.8 Mya) and started to diversify throughout the Pliocene and in particular the Pleistocene. Moreover, O. elymaitica was reduced to a subspecific rank within the species.
Collapse
Affiliation(s)
- Zahra Tayebi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran, 14115-154
| | - Mahtab Moghaddam
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran, 14115-154
| | - Mohammad Mahmoodi
- Botany Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 13185-116, Tehran, Iran
| | - Shahrokh Kazempour-Osaloo
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran, 14115-154.
| |
Collapse
|
11
|
Stanojković A, Skoupý S, Johannesson H, Dvořák P. The global speciation continuum of the cyanobacterium Microcoleus. Nat Commun 2024; 15:2122. [PMID: 38459017 PMCID: PMC10923798 DOI: 10.1038/s41467-024-46459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Speciation is a continuous process driven by genetic, geographic, and ecological barriers to gene flow. It is widely investigated in multicellular eukaryotes, yet we are only beginning to comprehend the relative importance of mechanisms driving the emergence of barriers to gene flow in microbial populations. Here, we explored the diversification of the nearly ubiquitous soil cyanobacterium Microcoleus. Our dataset consisted of 291 genomes, of which 202 strains and eight herbarium specimens were sequenced for this study. We found that Microcoleus represents a global speciation continuum of at least 12 lineages, which radiated during Eocene/Oligocene aridification and exhibit varying degrees of divergence and gene flow. The lineage divergence has been driven by selection, geographical distance, and the environment. Evidence of genetic divergence and selection was widespread across the genome, but we identified regions of exceptional differentiation containing candidate genes associated with stress response and biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Aleksandar Stanojković
- Palacký University Olomouc, Faculty of Sciences, Department of Botany, Olomouc, Czech Republic
| | - Svatopluk Skoupý
- Palacký University Olomouc, Faculty of Sciences, Department of Botany, Olomouc, Czech Republic
| | - Hanna Johannesson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Petr Dvořák
- Palacký University Olomouc, Faculty of Sciences, Department of Botany, Olomouc, Czech Republic.
| |
Collapse
|
12
|
Zhang G, Ma H. Nuclear phylogenomics of angiosperms and insights into their relationships and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:546-578. [PMID: 38289011 DOI: 10.1111/jipb.13609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Angiosperms (flowering plants) are by far the most diverse land plant group with over 300,000 species. The sudden appearance of diverse angiosperms in the fossil record was referred to by Darwin as the "abominable mystery," hence contributing to the heightened interest in angiosperm evolution. Angiosperms display wide ranges of morphological, physiological, and ecological characters, some of which have probably influenced their species richness. The evolutionary analyses of these characteristics help to address questions of angiosperm diversification and require well resolved phylogeny. Following the great successes of phylogenetic analyses using plastid sequences, dozens to thousands of nuclear genes from next-generation sequencing have been used in angiosperm phylogenomic analyses, providing well resolved phylogenies and new insights into the evolution of angiosperms. In this review we focus on recent nuclear phylogenomic analyses of large angiosperm clades, orders, families, and subdivisions of some families and provide a summarized Nuclear Phylogenetic Tree of Angiosperm Families. The newly established nuclear phylogenetic relationships are highlighted and compared with previous phylogenetic results. The sequenced genomes of Amborella, Nymphaea, Chloranthus, Ceratophyllum, and species of monocots, Magnoliids, and basal eudicots, have facilitated the phylogenomics of relationships among five major angiosperms clades. All but one of the 64 angiosperm orders were included in nuclear phylogenomics with well resolved relationships except the placements of several orders. Most families have been included with robust and highly supported placements, especially for relationships within several large and important orders and families. Additionally, we examine the divergence time estimation and biogeographic analyses of angiosperm on the basis of the nuclear phylogenomic frameworks and discuss the differences compared with previous analyses. Furthermore, we discuss the implications of nuclear phylogenomic analyses on ancestral reconstruction of morphological, physiological, and ecological characters of angiosperm groups, limitations of current nuclear phylogenomic studies, and the taxa that require future attention.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Ma
- Department of Biology, 510 Mueller Laboratory, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
13
|
Yoo N, Yoon JD, Yoo J, Kim KY, Heo JS, Kim KS. Development of molecular identification methods for Dryophytes suweonensis and D. japonicus, and their hybrids. PeerJ 2024; 12:e16728. [PMID: 38259669 PMCID: PMC10802155 DOI: 10.7717/peerj.16728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Background As hybridization can reduce biodiversity or cause extinction, it is important to identify both purebred parental species and their hybrids prior to conserving them. The Suwon tree frog, Dryophytes suweonensis, is an endangered wildlife species in Korea that shares its habitat and often hybridizes with the Japanese tree frog, D. japonicus. In particular, D. suweonensis, D. japonicus, and their hybrids often have abnormal ovaries and gonads, which are known causes that could threaten their existence. Methods We collected 57 individuals from six localities where D. suweonensis is known to be present. High-resolution melting curve (HRM) analysis of the mitochondrial 12S ribosomal RNA gene was performed to determine the maternal species. Thereafter, the DNA sequences of five nuclear genes (SIAH, TYR, POMC, RAG1, and C-MYC) were analyzed to determine their parental species and hybrid status. Results The HRM analysis showed that the melting temperature of D. suweonensis was in the range of 79.0-79.3 °C, and that of D. japonicus was 77.7-78.0 °C, which clearly distinguished the two tree frog species. DNA sequencing of the five nuclear genes revealed 37 single-nucleotide polymorphism (SNP) sites, and STRUCTURE analysis showed a two-group structure as the most likely grouping solution. No heterozygous position in the purebred parental sequences with Q values ≥ 0.995 were found, which clearly distinguished the two treefrog species from their hybrids; 11 individuals were found to be D. suweonensis, eight were found to be D. japonicus, and the remaining 38 individuals were found to be hybrids. Conclusion Thus, it was possible to unambiguously identify the parental species and their hybrids using HRM analysis and DNA sequencing methods. This study provided fundamental information for D. suweonensis conservation and restoration research.
Collapse
Affiliation(s)
- Nakyung Yoo
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| | - Ju-Duk Yoon
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| | - Jeongwoo Yoo
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| | - Keun-Yong Kim
- Department of Genetic Analysis, AquaGenTech Co., Ltd, Busan, Republic of Korea
| | - Jung Soo Heo
- Department of Genetic Analysis, AquaGenTech Co., Ltd, Busan, Republic of Korea
| | - Keun-Sik Kim
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| |
Collapse
|
14
|
Xiao Y, Wang X, He Z, Lv Y, Zhang C, Hu X. Assessing the phylogenetic relationship among varieties of Toona ciliata (Meliaceae) in sympatry with chloroplast genomes. Ecol Evol 2023; 13:e10828. [PMID: 38094154 PMCID: PMC10716671 DOI: 10.1002/ece3.10828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 07/03/2024] Open
Abstract
Toona ciliata is an endangered species due to over-cutting and low natural regeneration in China. Its genetic conservation is of an increasing concern. However, several varieties are recognized according to the leaf and flower traits, which complicates genetic conservation of T. ciliata. Here, we sequenced the whole chloroplast genome sequences of three samples for each of four varieties (T. ciliata var. ciliata, T. ciliata var. yunnanensis, T. ciliata var. pubescens, and T. ciliata var. henryi) in sympatry and assessed their phylogenetic relationship at a fine spatial scale. The four varieties had genome sizes ranged from 159,546 to 159,617 bp and had small variations in genome structure. Phylogenomic analysis indicated that the four varieties were genetically well-mixed in branch groups. Genetic diversity from the whole chloroplast genome sequences of 12 samples was low among varieties (average π = 0.0003). Besides, we investigated genetic variation of 58 samples of the four varieties in sympatry using two markers (psaA and trnL-trnF) and showed that genetic differentiation was generally insignificant among varieties (Ф st = 0%-5%). Purifying selection occurred in all protein-coding genes except for the ycf2 gene that was under weak positive selection. Most amino acid sites in all protein-coding genes were under purifying selection except for a few sites that were under positive selection. The chloroplast genome-based phylogeny did not support the morphology-based classification. The overall results implicated that a conservation strategy based on the T. ciliata complex rather than on intraspecific taxon was more appropriate.
Collapse
Affiliation(s)
- Yu Xiao
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Xi Wang
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Zi‐Han He
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Yan‐Wen Lv
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Chun‐Hua Zhang
- Institute of Highland Forest Science, Chinese Academy of ForestryKunmingChina
| | - Xin‐Sheng Hu
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| |
Collapse
|
15
|
Qin HT, Mӧller M, Milne R, Luo YH, Zhu GF, Li DZ, Liu J, Gao LM. Multiple paternally inherited chloroplast capture events associated with Taxus speciation in the Hengduan Mountains. Mol Phylogenet Evol 2023; 189:107915. [PMID: 37666379 DOI: 10.1016/j.ympev.2023.107915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/16/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Mountainous regions provide a multitude of habitats and opportunities for complex speciation scenarios. Hybridization leading to chloroplast capture, which can be revealed by incongruent phylogenetic trees, is one possible outcome. Four allopatric Taxus lineages (three species and an undescribed lineage) from the Hengduan Mountains, southwest China, exhibit conflicting phylogenetic relationships between nuclear and chloroplast phylogenies. Here, we use multi-omic data at the population level to investigate their historical speciation processes. Population genomic analysis based on ddRAD-seq data revealed limited contemporary inter-specific gene flow involving only populations located close to another species. In a historical context, chloroplast and nuclear data (transcriptome) consistently showed conflicting phylogenetic relationships for T. florinii and the Emei type lineage. ILS and chloroplast recombination were excluded as possible causes, and transcriptome and ddRAD-seq data revealed an absence of the mosaic nuclear genomes that characterize hybrid origin scenarios. Therefore, T. florinii appears to have originated when a lineage of T. florinii captured the T. chinensis plastid type, whereas plastid introgression in the opposite direction generated the Emei Type. All four species have distinct ecological niche based on community investigations and ecological niche analyses. We propose that the origins of both species represent very rare examples of chloroplast capture events despite the paternal cpDNA inheritance of gymnosperms. Specifically, allopatrically and/or ecologically diverged parental species experienced a rare secondary contact, subsequent hybridization and reciprocal chloroplast capture, generating two new lineages, each of which acquired a unique ecological niche. These events might have been triggered by orogenic activities of the Hengduan Mountains and an intensification of the Asian monsoon in the late Miocene, and may represent a scenario more common in these mountains than presently known.
Collapse
Affiliation(s)
- Han-Tao Qin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Michael Mӧller
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, United Kingdom
| | - Richard Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, Yunnan, China
| | - Guang-Fu Zhu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, Yunnan, China.
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, Yunnan, China.
| |
Collapse
|
16
|
Zhang C, Meng R, Meng Y, Guo BL, Liu QR, Nie ZL. Parallel evolution, atavism, and extensive introgression explain the radiation of Epimedium sect. Diphyllon (Berberidaceae) in southern East Asia. FRONTIERS IN PLANT SCIENCE 2023; 14:1234148. [PMID: 37915504 PMCID: PMC10616310 DOI: 10.3389/fpls.2023.1234148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
East Asia is the richest region of plant biodiversity in the northern temperate zone, and its radiation provides key insights for understanding rapid speciation, including evolutionary patterns and processes. However, it is challenging to investigate the recent evolutionary radiation among plants because of the lack of genetic divergence, phenotypic convergence, and interspecific gene flow. Epimedium sect. Diphyllon is a rarely studied plant lineage endemic to East Asia, especially highly diversified in its southern part. In this study, we report a robust phylogenomic analysis based on genotyping-by-sequencing data of this lineage. The results revealed a clear biogeographic pattern for Epimedium sect. Diphyllon with recognition into two major clades corresponding to the Sino-Himalayan and Sino-Japanese subkingdoms of East Asian Flora and rapid diversification of the extant species dated to the Pleistocene. Evolutionary radiation of Epimedium sect. Diphyllon is characterized by recent and predominant parallel evolution and atavism between the two subkingdom regions, with extensive reticulating hybridization within each region during the course of diversification in southern East Asia. A parallel-atavism-introgression hypothesis is referred to in explaining the radiation of plant diversity in southern East Asia, which represents a potential model for the rapid diversification of plants under global climate cooling in the late Tertiary. Our study advances our understanding of the evolutionary processes of plant radiation in East Asia as well as in other biodiversity hotspot regions.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Biodiversity Science and Ecological Engineering of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Ran Meng
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Ying Meng
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Bao-Lin Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Quan-Ru Liu
- Key Laboratory of Biodiversity Science and Ecological Engineering of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ze-Long Nie
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan, China
| |
Collapse
|
17
|
Escobari B, Borsch T, Kilian N. Generic concepts and species diversity within the Gynoxyoid clade (Senecioneae, Compositae). PHYTOKEYS 2023; 234:61-106. [PMID: 37860599 PMCID: PMC10582726 DOI: 10.3897/phytokeys.234.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/19/2023] [Indexed: 10/21/2023]
Abstract
The Gynoxyoid clade of the Senecioneae (Asteraceae) until now included the five genera Aequatorium, Gynoxys, Nordenstamia, Paracalia and Paragynoxys as diagnosed using selected morphological characters. In their pre-phylogenetic circumscription, the genera Aequatorium and Paragynoxys were considered to inhabit the northern Andes in contrast to Nordenstamia and Paracalia that occur in the central Andes. The most species-rich genus, Gynoxys, was believed to be distributed throughout the Andes. We use a recently established plastid phylogenomic framework that rendered Gynoxys paraphyletic to further evaluate the delimitation of genera in the Gynoxyoid clade. We examine the morphological variation of all members of the Gynoxyoid to identify characters potentially informative at genus level. This results in a matrix of eleven, mostly multistate characters, including those originally used to diagnose these genera. The ancestral character state inference displays a high level of homoplasy, but nevertheless supports the recognition of four genera. Aequatorium is characterised by white radiate capitula. Paracalia and Paragynoxys share white flowers and floral characteristics, such as flower opening and length of disc flowers lobes, as plesiomorphic states, but differ in habit (scandent shrubs vs. trees). Paracalia also retained white flowers, but its two species are characterised by the absence of outer phyllaries. The genera Gynoxys and Nordenstamia comprise species with yellow capitula which appear to be a derived feature in the Gynoxyoids. The genus Nordenstamia, with eight species, is synonymised under Gynoxys since molecular evidence shows its species nested within various parts of the Gynoxys subclade and the morphological variation of Nordenstamia falls well within that of Gynoxys. With the goal to assign all species to four genera (Aequatorium, Gynoxys, Paracalia and Paragynoxys), we assess the states for the eleven characters for all members of the Gynoxyoids and generate new ETS and ITS sequences for 171 specimens belonging to 49 species to further support their generic placement. We provide a taxonomic treatment for the four genera recognised here including amended diagnoses and morphological descriptions. Furthermore, a species-level taxonomic backbone is elaborated for all genera using electronic tools that list 158 currently accepted names and synonyms (209 names in total) with the respective protologue and type information, as well as notes on the current understanding of species limits. Eleven names are newly synonymised, two are lectotypified and eight are newly transferred to other genera.
Collapse
Affiliation(s)
- Belen Escobari
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin 14195, Germany
- Herbario Nacional de Bolivia, Universidad Mayor de San Andres, Casilla, La Paz, 10077, Bolivia
| | - Thomas Borsch
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin 14195, Germany
| | - Norbert Kilian
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
18
|
Zhang JW, Kilian N, Huang JH, Sun H. Ixeridiumsagittarioides (Asteraceae-Cichorieae) revisited: range extension and molecular evidence for its systematic position in the Lactuca alliance. PHYTOKEYS 2023; 230:115-130. [PMID: 37588040 PMCID: PMC10425873 DOI: 10.3897/phytokeys.230.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 08/18/2023]
Abstract
Our first record of the rare and scatteredly distributed Ixeridiumsagittarioides for Guizhou, China, triggered a study to assess its systematic position. The species was placed in four different genera in the course of its taxonomic history and was recently treated with doubts as a member of Ixeridium in the Flora of China. Comparative morphological investigation and phylogenetic analyses based on the nuclear ribosomal DNA internal transcribed spacer (nrITS) and five non-coding plastid DNA regions (petD region, psbA-trnH, trnL-trnF, rpl32-trnL (UAG) and 5´rps16-trnQ (UUG) spacers) provided evidence that the species is not a member of Ixeridium and the Crepidinae but has evolved by ancient hybridisation of members of the Lactuca alliance (Lactucinae). It is reinstated as Lactucasagittarioides and a comprehensive morphological description is provided, based on material from its entire range of distribution.
Collapse
Affiliation(s)
- Jian-Wen Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, ChinaCAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| | - Norbert Kilian
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Königin -Luise-Str. 6–8, 14195 Berlin, GermanyFreie Universitat BerlinBerlinGermany
| | - Jiang-Hua Huang
- Forestry Bureau of Wangmo County, Wangmo 552300, Guizhou, ChinaForestry Bureau of Wangmo CountyWangmoChina
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, ChinaCAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
19
|
Nie ZL, Hodel R, Ma ZY, Johnson G, Ren C, Meng Y, Ickert-Bond SM, Liu XQ, Zimmer E, Wen J. Climate-influenced boreotropical survival and rampant introgressions explain the thriving of New World grapes in the north temperate zone. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1183-1203. [PMID: 36772845 DOI: 10.1111/jipb.13466] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/08/2023] [Indexed: 05/13/2023]
Abstract
The north temperate region was characterized by a warm climate and a rich thermophilic flora before the Eocene, but early diversifications of the temperate biome under global climate change and biome shift remain uncertain. Moreover, it is becoming clear that hybridization/introgression is an important driving force of speciation in plant diversity. Here, we applied analyses from biogeography and phylogenetic networks to account for both introgression and incomplete lineage sorting based on genomic data from the New World Vitis, a charismatic component of the temperate North American flora with known and suspected gene flow among species. Biogeographic inference and fossil evidence suggest that the grapes were widely distributed from North America to Europe during the Paleocene to the Eocene, followed by widespread extinction and survival of relicts in the tropical New World. During the climate warming in the early Miocene, a Vitis ancestor migrated northward from the refugia with subsequent diversification in the North American region. We found strong evidence for widespread incongruence and reticulate evolution among nuclear genes within both recent and ancient lineages of the New World Vitis. Furthermore, the organellar genomes showed strong conflicts with the inferred species tree from the nuclear genomes. Our phylogenomic analyses provided an important assessment of the wide occurrence of reticulate introgression in the New World Vitis, which potentially represents one of the most important mechanisms for the diversification of Vitis species in temperate North America and even the entire temperate Northern Hemisphere. The scenario we report here may be a common model of temperate diversification of flowering plants adapted to the global climate cooling and fluctuation in the Neogene.
Collapse
Affiliation(s)
- Ze-Long Nie
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Richard Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Zhi-Yao Ma
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ying Meng
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Stefanie M Ickert-Bond
- Herbarium (ALA), University of Alaska Museum of the North, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Xiu-Qun Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Elizabeth Zimmer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA
| |
Collapse
|
20
|
Ambu J, Martínez-Solano Í, Suchan T, Hernandez A, Wielstra B, Crochet PA, Dufresnes C. Genomic phylogeography illuminates deep cyto-nuclear discordances in midwife toads (Alytes). Mol Phylogenet Evol 2023; 183:107783. [PMID: 37044190 DOI: 10.1016/j.ympev.2023.107783] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
The advent of genomic methods allows us to revisit the evolutionary history of organismal groups for which robust phylogenies are still lacking, particularly in species complexes that frequently hybridize. In this study, we conduct RAD-sequencing (RAD-seq) analyses of midwife toads (genus Alytes), an iconic group of western Mediterranean amphibians famous for their parental care behavior, but equally infamous for the difficulties to reconstruct their evolutionary history. Through admixture and phylogenetic analyses of thousands of loci, we provide the most comprehensive phylogeographic framework for the A. obstetricans complex to date, as well as the first fully resolved phylogeny for the entire genus. As part of this effort, we carefully explore the influence of different sampling schemes and data filtering thresholds on tree reconstruction, showing that several, slightly different, yet robust topologies may be retrieved with small datasets obtained by stringent SNP calling parameters, especially when admixed individuals are included. In contrast, analyses of incomplete but larger datasets converged on the same phylogeny, irrespective of the reconstruction method used or the proportion of missing data. The Alytes tree features three Miocene-diverged clades corresponding to the proposed subgenera Ammoryctis (A. cisternasii), Baleaphryne (A. maurus, A. dickhilleni and A. muletensis), and Alytes (A. obstetricans complex). The latter consists of six evolutionary lineages, grouped into three clades of Pliocene origin, and currently delimited as two species: (1) A. almogavarii almogavarii and A. a. inigoi; (2) A. obstetricans obstetricans and A. o. pertinax; (3) A. o. boscai and an undescribed taxon (A. o. cf. boscai). These results contradict the mitochondrial tree, due to past mitochondrial captures in A. a. almogavarii (central Pyrenees) and A. o. boscai (central Iberia) by A. obstetricans ancestors during the Pleistocene. Patterns of admixture between subspecies appear far more extensive than previously assumed from microsatellites, causing nomenclatural uncertainties, and even underlying the reticulate evolution of one taxon (A. o. pertinax). All Ammoryctis and Baleaphryne species form shallow clades, so their taxonomy should remain stable. Amid the prevalence of cyto-nuclear discordance among terrestrial vertebrates and the usual lack of resolution of conventional nuclear markers, our study advocates for phylogeography based on next-generation sequencing, but also encourages properly exploring parameter space and sampling schemes when building and analyzing genomic datasets.
Collapse
Affiliation(s)
- Johanna Ambu
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Íñigo Martínez-Solano
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Axel Hernandez
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Ben Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | | | - Christophe Dufresnes
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Srivastav M, Clement WL, Landrein S, Zhang J, Howarth DG, Donoghue MJ. A phylogenomic analysis of Lonicera and its bearing on the evolution of organ fusion. AMERICAN JOURNAL OF BOTANY 2023; 110:e16143. [PMID: 36807121 DOI: 10.1002/ajb2.16143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 05/11/2023]
Abstract
PREMISE The ~140 species of Lonicera are characterized by variously fused leaves, bracteoles, and ovaries, making it a model system for studying the evolution and development of organ fusion. However, previous phylogenetic analyses, based mainly on chloroplast DNA markers, have yielded uncertain and conflicting results. A well-supported phylogeny of Lonicera will allow us to trace the evolutionary history of organ fusion. METHODS We inferred the phylogeny of Lonicera using restriction site-associated DNA sequencing (RADSeq), sampling all major clades and 18 of the 23 subsections. This provided the basis for inferring the evolution of five fusion-related traits. RESULTS RADSeq data yielded a well-resolved and well-supported phylogeny. The two traditionally recognized subgenera (Periclymenum and Chamaecerasus), three of the four sections (Isoxylosteum, Coeloxylosteum, and Nintooa), and half of the subsections sampled were recovered as monophyletic. However, the large and heterogeneous section Isika was strongly supported as paraphyletic. Nintooa, a clade of ~22 mostly vine-forming species, including L. japonica, was recovered in a novel position, raising the possibility of cytonuclear discordance. We document the parallel evolution of fused leaves, bracteoles, and ovaries, with rare reversals. Most strikingly, complete cupules, in which four fused bracteoles completely enclose two unfused ovaries, arose at least three times. Surprisingly, these appear to have evolved directly from ancestors with free bracteoles instead of partial cupules. CONCLUSIONS We provide the most comprehensive and well-supported phylogeny of Lonicera to date. Our inference of multiple evolutionary shifts in organ fusion provides a solid foundation for in depth developmental and functional analyses.
Collapse
Affiliation(s)
- Mansa Srivastav
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 06520, USA
| | - Wendy L Clement
- Department of Biology, The College of New Jersey, Ewing, New Jersey, 08628, USA
| | - Sven Landrein
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Jingbo Zhang
- Department of Biological Sciences, St. John's University, Queens, New York, 11439, USA
| | - Dianella G Howarth
- Department of Biological Sciences, St. John's University, Queens, New York, 11439, USA
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
22
|
Phylogenomics of Aralia sect. Aralia (Araliaceae): Signals of hybridization and insights into its species delimitations and intercontinental biogeography. Mol Phylogenet Evol 2023; 181:107727. [PMID: 36754338 DOI: 10.1016/j.ympev.2023.107727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Genome-scale data have significantly increased the number of informative characters for phylogenetic analyses and recent studies have also revealed widespread phylogenomic discordance in many plant lineages. Aralia sect. Aralia is a small plant lineage (14 spp.) of the ginseng family Araliaceae with a disjunct distribution between eastern Asia (11 spp.) and North America (3 spp.). We herein employ sequences of hundreds of nuclear loci and the complete plastomes using targeted sequence capture and genome skimming to reconstruct the phylogenetic and biogeographic history of this section. We detected substantial conflicts among nuclear genes, yet different analytical strategies generated largely congruent topologies from the nuclear data. Significant cytonuclear discordance was detected, especially concerning the positions of the three North American species. The phylogenomic results support two intercontinental disjunctions: (1) Aralia californica of western North America is sister to the eastern Asian clade consisting of A. cordata and A. continentalis in the nuclear tree, and (2) the eastern North American A. racemosa forms a clade with A. bicrenata from southwestern North America, and the North American A. racemosa - A. bicrenata clade is then sister to the eastern Asian clade consisting of A. glabra (Japan), A. fargesii (C China), and A. apioides and A. atropurpurea (the Hengduan Mountains). Aralia cordata is supported to be disjunctly distributed in Japan, Taiwan, the Ulleung island of Korea, and in Central, Southwest and South China, and Aralia continentalis is redefined with a narrower distribution in Northeast China, eastern Russia and peninsular Korea.
Collapse
|
23
|
Osuna-Mascaró C, Rubio de Casas R, Gómez JM, Loureiro J, Castro S, Landis JB, Hopkins R, Perfectti F. Hybridization and introgression are prevalent in Southern European Erysimum (Brassicaceae) species. ANNALS OF BOTANY 2023; 131:171-184. [PMID: 35390125 PMCID: PMC9904350 DOI: 10.1093/aob/mcac048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/31/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Hybridization is a common and important force in plant evolution. One of its outcomes is introgression - the transfer of small genomic regions from one taxon to another by hybridization and repeated backcrossing. This process is believed to be common in glacial refugia, where range expansions and contractions can lead to cycles of sympatry and isolation, creating conditions for extensive hybridization and introgression. Polyploidization is another genome-wide process with a major influence on plant evolution. Both hybridization and polyploidization can have complex effects on plant evolution. However, these effects are often difficult to understand in recently evolved species complexes. METHODS We combined flow cytometry, analyses of transcriptomic sequences and pollen tube growth assays to investigate the consequences of polyploidization, hybridization and introgression on the recent evolution of several Erysimum (Brassicaceae) species from the South of the Iberian Peninsula, a well-known glacial refugium. This species complex differentiated in the last 2 million years, and its evolution has been hypothesized to be determined mainly by polyploidization, interspecific hybridization and introgression. KEY RESULTS Our results support a scenario of widespread hybridization involving both extant and 'ghost' taxa. Several taxa studied here, most notably those with purple corollas, are polyploids, probably of allopolyploid origin. Moreover, hybridization in this group might be an ongoing phenomenon, as pre-zygotic barriers appeared weak in many cases. CONCLUSIONS The evolution of Erysimum spp. has been determined by hybridization to a large extent. Species with purple (polyploids) and yellow flowers (mostly diploid) exhibit a strong signature of introgression in their genomes, indicating that hybridization occurred regardless of colour and across ploidy levels. Although the adaptive value of such genomic exchanges remains unclear, our results demonstrate the significance of hybridization for plant diversification, which should be taken into account when studying plant evolution.
Collapse
Affiliation(s)
| | - Rafael Rubio de Casas
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Ecología, Universidad de Granada, Granada, Spain
| | - José M Gómez
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA‐CSIC), Almería, Spain
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Silvia Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Jacob B Landis
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY 14853, USA
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- The Arnold Arboretum, 1300 Centre Street, Boston, MA, USA
| | | |
Collapse
|
24
|
Next-generation sequencing data show rapid radiation and several long-distance dispersal events in early Costaceae. Mol Phylogenet Evol 2023; 179:107664. [PMID: 36403710 DOI: 10.1016/j.ympev.2022.107664] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/12/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
The monocot family Costaceae Nakai consists of seven genera but their mutual relationships have not been satisfactorily resolved in previous studies employing classical molecular markers. Phylogenomic analyses of 365 nuclear genes and nearly-complete plastome data provide almost fully resolved insights into their diversification. Paracostus is identified as sister to all other taxa, followed by several very short branches leading to discrete lineages, suggesting an ancient rapid radiation of these early lineages and leaving the exact relationships among them unresolved. Relationships among Chamaecostus, Dimerocostus and Monocostus confirmed earlier findings that these genera form a monophyletic group. The Afro-American Costus is also monophyletic. By contrast, Tapeinochilos appeared as a well-supported crown lineage of Cheilocostus rendering it paraphyletic. As these two genera differ morphologically from one another owing to a shift from insect- to bird-pollination, we propose to keep both names. The divergence time within Costaceae was estimated using penalized likelihood utilizing two fossils within Zingiberales, †Spirematospermum chandlerae and †Ensete oregonense, indicated a relatively recent diversification of Costaceae, between 18 and 9 Mya. Based on these data, the current pantropical distribution of the family is hypothesized to be the result of several long-distance intercontinental dispersal events, which do not correlate with global geoclimatic changes.
Collapse
|
25
|
Owens GL, Huang K, Todesco M, Rieseberg LH. Re-evaluating Homoploid Reticulate Evolution in Helianthus Sunflowers. Mol Biol Evol 2023; 40:6989481. [PMID: 36648104 PMCID: PMC9907532 DOI: 10.1093/molbev/msad013] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Sunflowers of the genus Helianthus are models for hybridization research and contain three of the best-studied examples of homoploid hybrid speciation. To understand a broader picture of hybridization within the annual sunflowers, we used whole-genome resequencing to conduct a phylogenomic analysis and test for gene flow between lineages. We find that all annual sunflower species tested have evidence of admixture, suggesting hybridization was common during the radiation of the genus. Support for the major species tree decreases with increasing recombination rate, consistent with hybridization and introgression contributing to discordant topologies. Admixture graphs found hybridization to be associated with the origins of the three putative hybrid species (Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxus). However, the hybridization events are more ancient than suggested by previous work. Furthermore, H. anomalus and H. deserticola appear to have arisen from a single hybridization event involving an unexpected donor, rather than through multiple independent events as previously proposed. This means our results are consistent with, but not definitive proof of, two ancient independent homoploid hybrid speciation events in the genus. Using a broader data set that covers the whole Helianthus genus, including perennial species, we find that signals of introgression span the genus and beyond, suggesting highly divergent introgression and/or the sorting of ancient haplotypes. Thus, Helianthus can be viewed as a syngameon in which largely reproductively isolated species are linked together by occasional or frequent gene flow.
Collapse
Affiliation(s)
| | - Kaichi Huang
- Department of Botany and Beaty Biodiversity Center, University of British Columbia, Vancouver, BC, Canada
| | - Marco Todesco
- Department of Botany and Beaty Biodiversity Center, University of British Columbia, Vancouver, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Beaty Biodiversity Center, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Stubbs RL, Theodoridis S, Mora‐Carrera E, Keller B, Yousefi N, Potente G, Léveillé‐Bourret É, Celep F, Kochjarová J, Tedoradze G, Eaton DAR, Conti E. Whole-genome analyses disentangle reticulate evolution of primroses in a biodiversity hotspot. THE NEW PHYTOLOGIST 2023; 237:656-671. [PMID: 36210520 PMCID: PMC10099377 DOI: 10.1111/nph.18525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Biodiversity hotspots, such as the Caucasus mountains, provide unprecedented opportunities for understanding the evolutionary processes that shape species diversity and richness. Therefore, we investigated the evolution of Primula sect. Primula, a clade with a high degree of endemism in the Caucasus. We performed phylogenetic and network analyses of whole-genome resequencing data from the entire nuclear genome, the entire chloroplast genome, and the entire heterostyly supergene. The different characteristics of the genomic partitions and the resulting phylogenetic incongruences enabled us to disentangle evolutionary histories resulting from tokogenetic vs cladogenetic processes. We provide the first phylogeny inferred from the heterostyly supergene that includes all species of Primula sect. Primula. Our results identified recurrent admixture at deep nodes between lineages in the Caucasus as the cause of non-monophyly in Primula. Biogeographic analyses support the 'out-of-the-Caucasus' hypothesis, emphasizing the importance of this hotspot as a cradle for biodiversity. Our findings provide novel insights into causal processes of phylogenetic discordance, demonstrating that genome-wide analyses from partitions with contrasting genetic characteristics and broad geographic sampling are crucial for disentangling the diversification of species-rich clades in biodiversity hotspots.
Collapse
Affiliation(s)
- Rebecca L. Stubbs
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Spyros Theodoridis
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F)Frankfurt am Main60325Germany
| | - Emiliano Mora‐Carrera
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Narjes Yousefi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Giacomo Potente
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| | - Étienne Léveillé‐Bourret
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale (IRBV)Université de MontréalQuébecH1X 2B2Canada
| | - Ferhat Celep
- Department of Biology, Faculty of Arts and SciencesKırıkkale UniversityKırıkkale71450Turkey
| | - Judita Kochjarová
- Department of Phytology, Faculty of ForestryTechnical University in ZvolenZvolen96001Slovak Republic
| | - Giorgi Tedoradze
- Department of Plant Systematics and Geography, Institute of BotanyIlia State UniversityTbilisi0105Georgia
| | - Deren A. R. Eaton
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNY10027USA
| | - Elena Conti
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107Zurich8008Switzerland
| |
Collapse
|
27
|
Lu WX, Hu XY, Wang ZZ, Rao GY. Hyb-Seq provides new insights into the phylogeny and evolution of the Chrysanthemum zawadskii species complex in China. Cladistics 2022; 38:663-683. [PMID: 35766338 DOI: 10.1111/cla.12514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
A species complex is an assemblage of closely related species with blurred boundaries, and from which species could arise from different speciation processes and/or a speciation continuum. Such a complex can provide an opportunity to investigate evolutionary mechanisms acting on speciation. The Chrysanthemum zawadskii species complex in China, a monophyletic group of Chrysanthemum, consists of seven species with considerable morphological variation, diverse habitats and different distribution patterns. Here, we used Hyb-Seq data to construct a well-resolved phylogeny of the C. zawadskii complex. Then, we performed comparative analyses of variation patterns in morphology, ecology and distribution to investigate the roles of geography and ecology in this complex's diversification. Lastly, we implemented divergence time estimation, species distribution modelling and ancestral area reconstruction to trace the evolutionary history of this complex. We concluded that the C. zawadskii complex originated in the Qinling-Daba mountains during the early Pliocene and then spread west and northward along the mountain ranges to northern China. During this process, geographical and ecological factors imposing different influences resulted in the current diversification and distribution patterns of this species complex, which is composed of both well-diverged species and diverging lineages on the path of speciation.
Collapse
Affiliation(s)
- Wen-Xun Lu
- School of Life Sciences, Peking University, Beijing, China
| | - Xue-Ying Hu
- School of Life Sciences, Peking University, Beijing, China
| | - Zi-Zhao Wang
- School of Life Sciences, Peking University, Beijing, China
| | - Guang-Yuan Rao
- School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
28
|
Xiao J, Lyu R, He J, Li M, Ji J, Cheng J, Xie L. Genome-partitioning strategy, plastid and nuclear phylogenomic discordance, and its evolutionary implications of Clematis (Ranunculaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:1059379. [PMID: 36452086 PMCID: PMC9703796 DOI: 10.3389/fpls.2022.1059379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Clematis is one of the largest genera of Ranunculaceae with many phylogenetic problems left to be resolved. Clematis species have considerable genome size of more than 7 Gbp, and there was no whole-genome reference sequence published in this genus. This raises difficulties in acquiring nuclear genome data for its phylogenetic analysis. Previous studies based on Sanger sequencing data, plastid genome data, and nrDNA sequences did not well resolve the phylogeny of Clematis. In this study, we used genome skimming and transcriptome data to assemble the plastid genome sequences, nuclear single nucleotide polymorphisms (SNPs) datasets, and single-copy nuclear orthologous genes (SCOGs) to reconstruct the phylogenetic backbone of Clematis, and test effectiveness of these genome partitioning methods. We also further analyzed the discordance among nuclear gene trees and between plastid and nuclear phylogenies. The results showed that the SCOGs datasets, assembled from transcriptome method, well resolved the phylogenetic backbone of Clematis. The nuclear SNPs datasets from genome skimming method can also produce similar results with the SCOGs data. In contrast to the plastid phylogeny, the phylogeny resolved by nuclear genome data is more robust and better corresponds to morphological characters. Our results suggested that rapid species radiation may have generated high level of incomplete lineage sorting, which was the major cause of nuclear gene discordance. Our simulation also showed that there may have been frequent interspecific hybridization events, which led to some of the cyto-nuclear discordances in Clematis. This study not only provides the first robust phylogenetic backbone of Clematis based on nuclear genome data, but also provides suggestions of genome partitioning strategies for the phylogenomic study of other plant taxa.
Collapse
Affiliation(s)
- Jiamin Xiao
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Rudan Lyu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jian He
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Mingyang Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiaxin Ji
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jin Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lei Xie
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
29
|
Wilson TC, Rossetto M, Bain D, Yap JS, Wilson PD, Stimpson ML, Weston PH, Croft L. A turn in species conservation for hairpin banksias: demonstration of oversplitting leads to better management of diversity. AMERICAN JOURNAL OF BOTANY 2022; 109:1652-1671. [PMID: 36164832 PMCID: PMC9828017 DOI: 10.1002/ajb2.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Understanding evolutionary history and classifying discrete units of organisms remain overwhelming tasks, and lags in this workload concomitantly impede an accurate documentation of biodiversity and conservation management. Rapid advances and improved accessibility of sensitive high-throughput sequencing tools are fortunately quickening the resolution of morphological complexes and thereby improving the estimation of species diversity. The recently described and critically endangered Banksia vincentia is morphologically similar to the hairpin banksia complex (B. spinulosa s.l.), a group of eastern Australian flowering shrubs whose continuum of morphological diversity has been responsible for taxonomic controversy and possibly questionable conservation initiatives. METHODS To assist conservation while testing the current taxonomy of this group, we used high-throughput sequencing to infer a population-scale evolutionary scenario for a sample set that is comprehensive in its representation of morphological diversity and a 2500-km distribution. RESULTS Banksia spinulosa s.l. represents two clades, each with an internal genetic structure shaped through historical separation by biogeographic barriers. This structure conflicts with the existing taxonomy for the group. Corroboration between phylogeny and population statistics aligns with the hypothesis that B. collina, B. neoanglica, and B. vincentia should not be classified as species. CONCLUSIONS The pattern here supports how morphological diversity can be indicative of a locally expressed suite of traits rather than relationship. Oversplitting in the hairpin banksias is atypical since genomic analyses often reveal that species diversity is underestimated. However, we show that erring on overestimation can yield negative consequences, such as the disproportionate prioritization of a geographically anomalous population.
Collapse
Affiliation(s)
- Trevor C. Wilson
- Plant Discovery and Evolution, Australian Institute of Botanical ScienceRoyal Botanic Gardens and Domain TrustSydneyAustralia
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - David Bain
- Ecosystems and Threatened Species, Biodiversity Conservation and ScienceNSW Department of Planning and EnvironmentWollongongAustralia
| | - Jia‐Yee S. Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - Peter D. Wilson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical ScienceThe Royal Botanic Garden SydneyAustralia
| | - Margaret L. Stimpson
- Botany, School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNSW2351Australia
| | - Peter H. Weston
- Plant Discovery and Evolution, Australian Institute of Botanical ScienceRoyal Botanic Gardens and Domain TrustSydneyAustralia
| | - Larry Croft
- Centre of Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelong3125VictoriaAustralia
| |
Collapse
|
30
|
Chen YP, Zhao F, Paton AJ, Sunojkumar P, Gao LM, Xiang CL. Plastome sequences fail to resolve shallow level relationships within the rapidly radiated genus Isodon (Lamiaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:985488. [PMID: 36160976 PMCID: PMC9493350 DOI: 10.3389/fpls.2022.985488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
As one of the largest genera of Lamiaceae and of great medicinal importance, Isodon is also phylogenetically and taxonomically recalcitrant largely ascribed to its recent rapid radiation in the Hengduan Mountains. Previous molecular phylogenetic studies using limited loci have only successfully resolved the backbone topology of the genus, but the interspecific relationships suffered from low resolution, especially within the largest clade (Clade IV) which comprises over 80% species. In this study, we attempted to further elucidate the phylogenetic relationships within Isodon especially Clade IV using plastome sequences with a broad taxon sampling of ca. 80% species of the genus. To reduce systematic errors, twelve different plastome data sets (coding and non-coding regions with ambiguously aligned regions and saturated loci removed or not) were employed to reconstruct phylogeny using maximum likelihood and Bayesian inference. Our results revealed largely congruent topologies of the 12 data sets and recovered major lineages of Isodon consistent with previous studies, but several incongruences are also found among these data sets and among single plastid loci. Most of the shallow nodes within Clade IV were resolved with high support but extremely short branch lengths in plastid trees, and showed tremendous conflicts with the nrDNA tree, morphology and geographic distribution. These incongruences may largely result from stochasticity (due to insufficient phylogenetic signal) and hybridization and plastid capture. Therefore, the uniparental-inherited plastome sequences are insufficient to disentangle relationships within a genus which has undergone recent rapid diversification. Our findings highlight a need for additional data from nuclear genome to resolve the relationships within Clade IV and more focused studies to assess the influences of multiple processes in the evolutionary history of Isodon. Nevertheless, the morphology of the shape and surface sculpture/indumentum of nutlets is of systematic importance that they can distinguish the four major clades of Isodon.
Collapse
Affiliation(s)
- Ya-Ping Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Fei Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Alan J. Paton
- Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
31
|
Yang L, Abduraimov O, Tojibaev K, Shomurodov K, Zhang YM, Li WJ. Analysis of complete chloroplast genome sequences and insight into the phylogenetic relationships of Ferula L. BMC Genomics 2022; 23:643. [PMID: 36076164 PMCID: PMC9461113 DOI: 10.1186/s12864-022-08868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022] Open
Abstract
Background Ferula L. is one of the largest and most taxonomically complicated genera as well as being an important medicinal plant resource in the family Apiaceae. To investigate the plastome features and phylogenetic relationships of Ferula and its neighboring genera Soranthus Ledeb., Schumannia Kuntze., and Talassia Korovin, we sequenced 14 complete plastomes of 12 species. Results The size of the 14 complete chloroplast genomes ranged from 165,607 to 167,013 base pairs (bp) encoding 132 distinct genes (87 protein-coding, 37 tRNA, and 8 rRNA genes), and showed a typical quadripartite structure with a pair of inverted repeats (IR) regions. Based on comparative analysis, we found that the 14 plastomes were similar in codon usage, repeat sequence, simple sequence repeats (SSRs), and IR borders, and had significant collinearity. Based on our phylogenetic analyses, Soranthus, Schumannia, and Talassia should be considered synonymous with Ferula. Six highly divergent regions (rps16/trnQ-UUG, trnS-UGA/psbZ, psbH/petB, ycf1/ndhF, rpl32, and ycf1) were also detected, which may represent potential molecular markers, and combined with selective pressure analysis, the weak positive selection gene ccsA may be a discriminating DNA barcode for Ferula species. Conclusion Plastids contain abundant informative sites for resolving phylogenetic relationships. Combined with previous studies, we suggest that there is still much room for improvement in the classification of Ferula. Overall, our study provides new insights into the plastome evolution, phylogeny, and taxonomy of this genus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08868-z.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, No.818 South Beijing Road, Urumqi, 830011, China.,Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, No.818 South Beijing Road, Urumqi, 830011, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Ozodbek Abduraimov
- Institute of Botany, Uzbekistan Academy of Sciences, No.32 Durmon Yuli Street, Tashkent, Uzbekistan, 100125
| | - Komiljon Tojibaev
- Institute of Botany, Uzbekistan Academy of Sciences, No.32 Durmon Yuli Street, Tashkent, Uzbekistan, 100125
| | - Khabibullo Shomurodov
- Institute of Botany, Uzbekistan Academy of Sciences, No.32 Durmon Yuli Street, Tashkent, Uzbekistan, 100125
| | - Yuan-Ming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, No.818 South Beijing Road, Urumqi, 830011, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, No.19(A) Yuquan Road, Beijing, 100049, China.,Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, No.818 South Beijing Road, Urumqi, 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, No.818 South Beijing Road, Urumqi, 830011, China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Shijingshan District, No.19(A) Yuquan Road, Beijing, 100049, China. .,Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, No.818 South Beijing Road, Urumqi, 830011, China. .,The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
32
|
Zhang D, Ren Y, Zhang J. Nonadaptive molecular evolution of plastome during the speciation of Actaea purpurea and its relatives. Ecol Evol 2022; 12:e9321. [PMID: 36177132 PMCID: PMC9482002 DOI: 10.1002/ece3.9321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/02/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
We have seen an explosive increase of plant plastid genome (plastome) sequences in the last decade, and the view that sequence variation in plastomes is maintained by the mutation-drift balance has been challenged by new evidence. Although comparative genomic and population-level studies provided us with evidence for positive evolution of plastid genes at both the macro- and micro-evolution levels, less studies have systematically investigated how plastomes have evolved during the speciation process. We here sequenced 13 plastomes of Actaea purpurea (P.K. Hsiao) J. Compton, and its closest relatives, and conducted a systematic survey of positive selection in their plastid genes using the McDonald-Kreitman test and codon-based methods using maximum likelihood to estimate the ratio of nonsynonymous to synonymous substitutions (ω) across a phylogeny. We found that during the speciation of A. purpurea and its relatives, all plastid genes evolved neutrally or were under purifying selection. Genome size, gene order, and number were highly conserved. Comparing to A. purpurea, plastomes of Actaea japonica and Actaea biternata had low genetic diversity, consistent with previous studies. Our work not only sheds important light on the evolutionary history of A. purpurea and its kin, but also on the evolution of plastomes during plant speciation.
Collapse
Affiliation(s)
- Dan‐Qing Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest ChinaCollege of Life Sciences, Shaanxi Normal UniversityXi'anChina
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of EducationShaanxi Normal UniversityXi'anChina
| | - Yi Ren
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest ChinaCollege of Life Sciences, Shaanxi Normal UniversityXi'anChina
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of EducationShaanxi Normal UniversityXi'anChina
| | - Jian‐Qiang Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest ChinaCollege of Life Sciences, Shaanxi Normal UniversityXi'anChina
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of EducationShaanxi Normal UniversityXi'anChina
| |
Collapse
|
33
|
Ringelberg JJ, Koenen EJM, Iganci JR, de Queiroz LP, Murphy DJ, Gaudeul M, Bruneau A, Luckow M, Lewis GP, Hughes CE. Phylogenomic analysis of 997 nuclear genes reveals the need for extensive generic re-delimitation in Caesalpinioideae (Leguminosae). PHYTOKEYS 2022; 205:3-58. [PMID: 36762007 PMCID: PMC9848904 DOI: 10.3897/phytokeys.205.85866] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 05/05/2023]
Abstract
Subfamily Caesalpinioideae with ca. 4,600 species in 152 genera is the second-largest subfamily of legumes (Leguminosae) and forms an ecologically and economically important group of trees, shrubs and lianas with a pantropical distribution. Despite major advances in the last few decades towards aligning genera with clades across Caesalpinioideae, generic delimitation remains in a state of considerable flux, especially across the mimosoid clade. We test the monophyly of genera across Caesalpinioideae via phylogenomic analysis of 997 nuclear genes sequenced via targeted enrichment (Hybseq) for 420 species and 147 of the 152 genera currently recognised in the subfamily. We show that 22 genera are non-monophyletic or nested in other genera and that non-monophyly is concentrated in the mimosoid clade where ca. 25% of the 90 genera are found to be non-monophyletic. We suggest two main reasons for this pervasive generic non-monophyly: (i) extensive morphological homoplasy that we document here for a handful of important traits and, particularly, the repeated evolution of distinctive fruit types that were historically emphasised in delimiting genera and (ii) this is an artefact of the lack of pantropical taxonomic syntheses and sampling in previous phylogenies and the consequent failure to identify clades that span the Old World and New World or conversely amphi-Atlantic genera that are non-monophyletic, both of which are critical for delimiting genera across this large pantropical clade. Finally, we discuss taxon delimitation in the phylogenomic era and especially how assessing patterns of gene tree conflict can provide additional insights into generic delimitation. This new phylogenomic framework provides the foundations for a series of papers reclassifying genera that are presented here in Advances in Legume Systematics (ALS) 14 Part 1, for establishing a new higher-level phylogenetic tribal and clade-based classification of Caesalpinioideae that is the focus of ALS14 Part 2 and for downstream analyses of evolutionary diversification and biogeography of this important group of legumes which are presented elsewhere.
Collapse
Affiliation(s)
- Jens J. Ringelberg
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008, Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
| | - Erik J. M. Koenen
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008, Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
- Present address: Evolutionary Biology & Ecology, Université Libre de Bruxelles, Faculté des Sciences, Campus du Solbosch - CP 160/12, Avenue F.D. Roosevelt, 50, 1050 Bruxelles, BelgiumUniversité Libre de BruxellesBruxellesBelgium
| | - João R. Iganci
- Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Travessa André Dreyfus s/n, Capão do Leão 96010-900, Rio Grande do Sul, BrazilUniversidade Federal de PelotasRio Grande do SulBrazil
- Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, 91501-970, BrazilUniversidade Federal do Rio Grande do SulRio Grande do SulBrazil
| | - Luciano P. de Queiroz
- Departamento Ciências Biológicas, Universidade Estadual de Feira de Santana, Avenida Transnordestina s/n – Novo Horizonte, 44036-900, Feira de Santana, BrazilUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
| | - Daniel J. Murphy
- Royal Botanic Gardens Victoria, Birdwood Ave., Melbourne, VIC 3004, AustraliaRoyal Botanic Gardens VictoriaMelbourneAustralia
| | - Myriam Gaudeul
- Institut de Systématique, Evolution, Biodiversité (ISYEB), MNHN-CNRS-SU-EPHE-UA, 57 rue Cuvier, CP 39, 75231 Paris, Cedex 05, FranceInstitut de Systématique, Evolution, Biodiversité (ISYEB)ParisFrance
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke St E, Montreal, QC H1X 2B2, CanadaUniversité de MontréalMontrealCanada
| | - Melissa Luckow
- School of Integrative Plant Science, Plant Biology Section, Cornell University, 215 Garden Avenue, Roberts Hall 260, Ithaca, NY 14853, USACornell UniversityIthacaUnited States of America
| | - Gwilym P. Lewis
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UKAccelerated Taxonomy Department, Royal Botanic GardensRichmondUnited Kingdom
| | - Colin E. Hughes
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH 8008, Zurich, SwitzerlandUniversity of ZurichZurichSwitzerland
| |
Collapse
|
34
|
Kao T, Wang T, Ku C. Rampant nuclear-mitochondrial-plastid phylogenomic discordance in globally distributed calcifying microalgae. THE NEW PHYTOLOGIST 2022; 235:1394-1408. [PMID: 35556250 PMCID: PMC9539906 DOI: 10.1111/nph.18219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Incongruent phylogenies have been widely observed between nuclear and plastid or mitochondrial genomes in terrestrial plants and animals. However, few studies have examined these patterns in microalgae or the discordance between the two organelles. Here we investigated the nuclear-mitochondrial-plastid phylogenomic incongruence in Emiliania-Gephyrocapsa, a group of cosmopolitan calcifying phytoplankton with enormous populations and recent speciations. We assembled mitochondrial and plastid genomes of 27 strains from across global oceans and temperature regimes, and analyzed the phylogenomic histories of the three compartments using concatenation and coalescence methods. Six major clades with varying morphology and distribution are well recognized in the nuclear phylogeny, but such relationships are absent in the mitochondrial and plastid phylogenies, which also differ substantially from each other. The rampant phylogenomic discordance is due to a combination of organellar capture (introgression), organellar genome recombination, and incomplete lineage sorting of ancient polymorphic organellar genomes. Hybridization can lead to replacements of whole organellar genomes without introgression of nuclear genes and the two organelles are not inherited as a single cytoplasmic unit. This study illustrates the convoluted evolution and inheritance of organellar genomes in isogamous haplodiplontic microalgae and provides a window into the phylogenomic complexity of marine unicellular eukaryotes.
Collapse
Affiliation(s)
- Tzu‐Tong Kao
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Tzu‐Haw Wang
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial BiologyAcademia SinicaTaipei11529Taiwan
| |
Collapse
|
35
|
Hatami E, Jones KE, Kilian N. New Insights Into the Relationships Within Subtribe Scorzonerinae (Cichorieae, Asteraceae) Using Hybrid Capture Phylogenomics (Hyb-Seq). FRONTIERS IN PLANT SCIENCE 2022; 13:851716. [PMID: 35873957 PMCID: PMC9298463 DOI: 10.3389/fpls.2022.851716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Subtribe Scorzonerinae (Cichorieae, Asteraceae) contains 12 main lineages and approximately 300 species. Relationships within the subtribe, either at inter- or intrageneric levels, were largely unresolved in phylogenetic studies to date, due to the lack of phylogenetic signal provided by traditional Sanger sequencing markers. In this study, we employed a phylogenomics approach (Hyb-Seq) that targets 1,061 nuclear-conserved ortholog loci designed for Asteraceae and obtained chloroplast coding regions as a by-product of off-target reads. Our objectives were to evaluate the potential of the Hyb-Seq approach in resolving the phylogenetic relationships across the subtribe at deep and shallow nodes, investigate the relationships of major lineages at inter- and intrageneric levels, and examine the impact of the different datasets and approaches on the robustness of phylogenetic inferences. We analyzed three nuclear datasets: exon only, excluding all potentially paralogous loci; exon only, including loci that were only potentially paralogous in 1-3 samples; exon plus intron regions (supercontigs); and the plastome CDS region. Phylogenetic relationships were reconstructed using both multispecies coalescent and concatenation (Maximum Likelihood and Bayesian analyses) approaches. Overall, our phylogenetic reconstructions recovered the same monophyletic major lineages found in previous studies and were successful in fully resolving the backbone phylogeny of the subtribe, while the internal resolution of the lineages was comparatively poor. The backbone topologies were largely congruent among all inferences, but some incongruent relationships were recovered between nuclear and plastome datasets, which are discussed and assumed to represent cases of cytonuclear discordance. Considering the newly resolved phylogenies, a new infrageneric classification of Scorzonera in its revised circumscription is proposed.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Katy E. Jones
- Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Norbert Kilian
- Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
36
|
Garrett P, Becher H, Gussarova G, dePamphilis CW, Ness RW, Gopalakrishnan S, Twyford AD. Pervasive Phylogenomic Incongruence Underlies Evolutionary Relationships in Eyebrights ( Euphrasia, Orobanchaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:869583. [PMID: 35720561 PMCID: PMC9197813 DOI: 10.3389/fpls.2022.869583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Disentangling the phylogenetic relationships of taxonomically complex plant groups is often mired by challenges associated with recent speciation, hybridization, complex mating systems, and polyploidy. Here, we perform a phylogenomic analysis of eyebrights (Euphrasia), a group renowned for taxonomic complexity, with the aim of documenting the extent of phylogenetic discordance at both deep and at shallow phylogenetic scales. We generate whole-genome sequencing data and integrate this with prior genomic data to perform a comprehensive analysis of nuclear genomic, nuclear ribosomal (nrDNA), and complete plastid genomes from 57 individuals representing 36 Euphrasia species. The species tree analysis of 3,454 conserved nuclear scaffolds (46 Mb) reveals that at shallow phylogenetic scales postglacial colonization of North Western Europe occurred in multiple waves from discrete source populations, with most species not being monophyletic, and instead combining genomic variants from across clades. At a deeper phylogenetic scale, the Euphrasia phylogeny is structured by geography and ploidy, and partially by taxonomy. Comparative analyses show Southern Hemisphere tetraploids include a distinct subgenome indicative of independent polyploidy events from Northern Hemisphere taxa. In contrast to the nuclear genome analyses, the plastid genome phylogeny reveals limited geographic structure, while the nrDNA phylogeny is informative of some geographic and taxonomic affinities but more thorough phylogenetic inference is impeded by the retention of ancestral polymorphisms in the polyploids. Overall our results reveal extensive phylogenetic discordance at both deeper and shallower nodes, with broad-scale geographic structure of genomic variation but a lack of definitive taxonomic signal. This suggests that Euphrasia species either have polytopic origins or are maintained by narrow genomic regions in the face of extensive homogenizing gene flow. Moreover, these results suggest genome skimming will not be an effective extended barcode to identify species in groups such as Euphrasia, or many other postglacial species groups.
Collapse
Affiliation(s)
- Phen Garrett
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Hannes Becher
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Galina Gussarova
- Natural History Museum, University of Oslo, Oslo, Norway
- Botany Department, Faculty of Biology and Soil Science, St Petersburg State University, St Petersburg, Russia
- Tromsø University Museum, University of Tromsø, Tromsø, Norway
| | - Claude W. dePamphilis
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Rob W. Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | - Alex D. Twyford
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Lagomarsino LP, Frankel L, Uribe-Convers S, Antonelli A, Muchhala N. Increased resolution in the face of conflict: phylogenomics of the Neotropical bellflowers (Campanulaceae: Lobelioideae), a rapid plant radiation. ANNALS OF BOTANY 2022; 129:723-736. [PMID: 35363863 PMCID: PMC9113290 DOI: 10.1093/aob/mcac046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/24/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS The centropogonid clade (Lobelioideae: Campanulaceae) is an Andean-centred rapid radiation characterized by repeated convergent evolution of morphological traits, including fruit type and pollination syndromes. While previous studies have resolved relationships of lineages with fleshy fruits into subclades, relationships among capsular species remain unresolved. This lack of resolution has impeded reclassification of non-monophyletic genera, whose current taxonomy relies heavily on traits that have undergone convergent evolution. METHODS Targeted sequence capture using a probe-set recently developed for the centropogonid clade was used to obtain phylogenomic data from DNA extracted from both silica-dried and herbarium leaf tissue. These data were used to infer relationships among species using concatenated and partitioned species tree methods, and to quantify gene tree discordance. KEY RESULTS While silica-dried leaf tissue resulted in longer assembled sequence data, the inclusion of herbarium samples improved taxonomic representation. Relationships among baccate lineages are similar to those inferred in previous studies, although they differ for lineages within and among capsular clades. We improve the phylogenetic resolution of Siphocampylus, which forms ten groups of closely related species which we informally name. Two subclades of Siphocampylus and two individual species are rogue taxa whose placement differs widely across analyses. Gene tree discordance (including cytonuclear discordance) is rampant. CONCLUSIONS This first phylogenomic study of the centropogonid clade considerably improves our understanding of relationships in this rapid radiation. Differences across analyses and the possibility of additional lineage discoveries still hamper a solid and stable reclassification. Rapid morphological innovation corresponds with a high degree of phylogenomic complexity, including cytonuclear discordance, nuclear gene tree conflict and well-supported differences between analyses based on different nuclear loci. Together, these results point to a potential role of hemiplasy underlying repeated convergent evolution. This hallmark of rapid radiations is probably present in many other species-rich Andean plant radiations.
Collapse
Affiliation(s)
- Laura P Lagomarsino
- Shirley C. Tucker Herbarium, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Lauren Frankel
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Simon Uribe-Convers
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
- Invitae Corporation, San Francisco, CA, USA
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, TW9 3AE, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
- Department of Plant Science, University of Oxford, Oxford, UK
| | - Nathan Muchhala
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA
| |
Collapse
|
38
|
Dong W, Li E, Liu Y, Xu C, Wang Y, Liu K, Cui X, Sun J, Suo Z, Zhang Z, Wen J, Zhou S. Phylogenomic approaches untangle early divergences and complex diversifications of the olive plant family. BMC Biol 2022; 20:92. [PMID: 35468824 PMCID: PMC9040247 DOI: 10.1186/s12915-022-01297-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/13/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Deep-branching phylogenetic relationships are often difficult to resolve because phylogenetic signals are obscured by the long history and complexity of evolutionary processes, such as ancient introgression/hybridization, polyploidization, and incomplete lineage sorting (ILS). Phylogenomics has been effective in providing information for resolving both deep- and shallow-scale relationships across all branches of the tree of life. The olive family (Oleaceae) is composed of 25 genera classified into five tribes with tribe Oleeae consisting of four subtribes. Previous phylogenetic analyses showed that ILS and/or hybridization led to phylogenetic incongruence in the family. It was essential to distinguish phylogenetic signal conflicts, and explore mechanisms for the uncertainties concerning relationships of the olive family, especially at the deep-branching nodes. RESULTS We used the whole plastid genome and nuclear single nucleotide polymorphism (SNP) data to infer the phylogenetic relationships and to assess the variation and rates among the main clades of the olive family. We also used 2608 and 1865 orthologous nuclear genes to infer the deep-branching relationships among tribes of Oleaceae and subtribes of tribe Oleeae, respectively. Concatenated and coalescence trees based on the plastid genome, nuclear SNPs and multiple nuclear genes suggest events of ILS and/or ancient introgression during the diversification of Oleaceae. Additionally, there was extreme heterogeneity in the substitution rates across the tribes. Furthermore, our results supported that introgression/hybridization, rather than ILS, is the main factor for phylogenetic discordance among the five tribes of Oleaceae. The tribe Oleeae is supported to have originated via ancient hybridization and polyploidy, and its most likely parentages are the ancestral lineage of Jasmineae or its sister group, which is a "ghost lineage," and Forsythieae. However, ILS and ancient introgression are mainly responsible for the phylogenetic discordance among the four subtribes of tribe Oleeae. CONCLUSIONS This study showcases that using multiple sequence datasets (plastid genomes, nuclear SNPs and thousands of nuclear genes) and diverse phylogenomic methods such as data partition, heterogeneous models, quantifying introgression via branch lengths (QuIBL) analysis, and species network analysis can facilitate untangling long and complex evolutionary processes of ancient introgression, paleopolyploidization, and ILS.
Collapse
Affiliation(s)
- Wenpan Dong
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Enze Li
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yanlei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yushuang Wang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Kangjia Liu
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Xingyong Cui
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jiahui Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhili Suo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhixiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA.
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
39
|
Wang Y, Ruhsam M, Milne R, Graham SW, Li J, Tao T, Zhang Y, Mao K. Incomplete lineage sorting and local extinction shaped the complex evolutionary history of the Paleogene relict conifer genus, Chamaecyparis (Cupressaceae). Mol Phylogenet Evol 2022; 172:107485. [PMID: 35452840 DOI: 10.1016/j.ympev.2022.107485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022]
Abstract
Inferring accurate biogeographic history of plant taxa with an East Asia (EA)-North America (NA) is usually hindered by conflicting phylogenies and a poor fossil record. The current distribution of Chamaecyparis (false cypress; Cupressaceae) with four species in EA, and one each in western and eastern NA, and its relatively rich fossil record, make it an excellent model for studying the EA-NA disjunction. Here we reconstruct phylogenomic relationships within Chamaecyparis using > 1400 homologous nuclear and 61 plastid genes. Our phylogenomic analyses using concatenated and coalescent approaches revealed strong cytonuclear discordance and conflicting topologies between nuclear gene trees. Incomplete lineage sorting (ILS) and hybridization are possible explanations of conflict; however, our coalescent analyses and simulations suggest that ILS is the major contributor to the observed phylogenetic discrepancies. Based on a well-resolved species tree and four fossil calibrations, the crown lineage of Chamaecyparis is estimated to have originated in the upper Cretaceous, followed by diversification events in the early and middle Paleogene. Ancestral area reconstructions suggest that Chamaecyparis had an ancestral range spanning both EA and NA. Fossil records further indicate that this genus is a relict of the "boreotropical" flora, and that local extinctions of European species were caused by global cooling. Overall, our results unravel a complex evolutionary history of a Paleogene relict conifer genus, which may have involved ILS, hybridization and the extinction of local species.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Richard Milne
- Institute of Molecular Plant Science, School of Biological Science, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Tongzhou Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yujiao Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China; College of Science, Tibet University, Lhasa 850000, Xizang Autonomous Region, PR China.
| |
Collapse
|
40
|
Chen YP, Turdimatovich TO, Nuraliev MS, Lazarević P, Drew BT, Xiang CL. Phylogeny and biogeography of the northern temperate genus Dracocephalum s.l. (Lamiaceae). Cladistics 2022; 38:429-451. [PMID: 35358338 DOI: 10.1111/cla.12502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/28/2022] Open
Abstract
The northern temperate genus Dracocephalum consists of approximately 70 species mainly distributed in the steppe-desert biomes of Central and West Asia and the alpine region of the Qinghai-Tibetan Plateau (QTP). Previous work has shown that Dracocephalum is not monophyletic and might include Hyssopus and Lallemantia. This study attempts to clarify the phylogenetic relationships, diversification patterns, and the biogeographical history of the three genera (defined as Dracocephalum s.l.). Based on a sampling of 66 taxa comprising more than 80% from extant species of Dracocephalum s.l., morphological, phylogenetic (maximum parsimony, likelihood, and Bayesian inference based on nuclear ITS and ETS, plastid rpl32-trnL, trnL-trnF, ycf1, and ycf1-rps15, and two low-copy nuclear markers AT3G09060 and AT1G09680), molecular dating, diversification, and ancestral range estimation analyses were carried out. Our results demonstrate that both Hyssopus and Lallemantia are embedded within Dracocephalum and nine well-supported clades can be recognized within Dracocephalum s.l. Analyses of divergence times suggest that the genus experienced an early rapid radiation during the middle to late Miocene with major lineages diversifying within a relatively narrow timescale. Ancestral area reconstruction analyses indicate that Dracocephalum s.l. originated in Central and West Asia and southern Siberia, and dispersed from Central and West Asia into the QTP and adjacent areas twice independently during the Pliocene. The aridification of the Asian interior possibly promoted the rapid radiation of Dracocephalum within this region, and the uplift of the QTP appears to have triggered the dispersal and recent rapid diversification of the genus in the QTP and adjacent regions. Combining molecular phylogenetic and morphological evidence, a revised infrageneric classification of Dracocephalum s.l. is proposed, which recognizes nine sections within the genus.
Collapse
Affiliation(s)
- Ya-Ping Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | | | - Maxim S Nuraliev
- Department of Higher Plants, Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Predrag Lazarević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia
| | - Bryan T Drew
- Department of Biology, University of Nebraska-Kearney, Kearney, 68849, USA
| | - Chun-Lei Xiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
41
|
Comparative Plastome Analysis of Three Amaryllidaceae Subfamilies: Insights into Variation of Genome Characteristics, Phylogeny, and Adaptive Evolution. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3909596. [PMID: 35372568 PMCID: PMC8970886 DOI: 10.1155/2022/3909596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
In the latest APG IV classification system, Amaryllidaceae is placed under the order of Asparagus and includes three subfamilies: Agapanthoideae, Allioideae, and Amaryllidoideae, which include many economically important crops. With the development of molecular phylogeny, research on the phylogenetic relationship of Amaryllidaceae has become more convenient. However, the current comparative analysis of Amaryllidaceae at the whole chloroplast genome level is still lacking. In this study, we sequenced 18 Allioideae plastomes and combined them with publicly available data (a total of 41 plastomes), including 21 Allioideae species, 1 Agapanthoideae species, 14 Amaryllidoideae species, and 5 Asparagaceae species. Comparative analyses were performed including basic characteristics of genome structure, codon usage, repeat elements, IR boundary, and genome divergence. Phylogenetic relationships were detected using single-copy genes (SCGs) and ribosomal internal transcribed spacer sequences (ITS), and the branch-site model was also employed to conduct the positive selection analysis. The results indicated that all Amaryllidaceae species showed a highly conserved typical tetrad structure. The GC content and five codon usage indexes in Allioideae species were lower than those in the other two subfamilies. Comparison analysis of Bayesian and ML phylogeny based on SCGs strongly supports the monophyly of three subfamilies and the sisterhood among them. Besides, positively selected genes (PSGs) were detected in each of the three subfamilies. Almost all genes with significant posterior probabilities for codon sites were associated with self-replication and photosynthesis. Our study investigated the three subfamilies of Amaryllidaceae at the whole chloroplast genome level and suggested the key role of selective pressure in the adaptation and evolution of Amaryllidaceae.
Collapse
|
42
|
Xia MZ, Li Y, Zhang FQ, Yu JY, Khan G, Chi XF, Xu H, Chen SL. Reassessment of the Phylogeny and Systematics of Chinese Parnassia (Celastraceae): A Thorough Investigation Using Whole Plastomes and Nuclear Ribosomal DNA. FRONTIERS IN PLANT SCIENCE 2022; 13:855944. [PMID: 35371115 PMCID: PMC8971841 DOI: 10.3389/fpls.2022.855944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Parnassia L., a perennial herbaceous genus in the family Celastraceae, consists of about 60 species and is mainly distributed in the Pan-Himalayan and surrounding mountainous regions. The taxonomic position and phylogenetic relationships of the genus are still controversial. Herein, we reassessed the taxonomic status of Parnassia and its intra- and inter-generic phylogeny within Celastraceae. To that end, we sequenced and assembled the whole plastid genomes and nuclear ribosomal DNA (nrDNA) of 48 species (74 individuals), including 25 species of Parnassia and 23 species from other genera of Celastraceae. We integrated high throughput sequence data with advanced statistical toolkits and performed the analyses. Our results supported the Angiosperm Phylogeny Group IV (APG IV) taxonomy which kept the genus to the family Celastraceae. Although there were topological conflicts between plastid and nrDNA phylogenetic trees, Parnassia was fully supported as a monophyletic group in all cases. We presented a first attempt to estimate the divergence of Parnassia, and molecular clock analysis indicated that the diversification occurred during the Eocene. The molecular phylogenetic results confirmed numerous taxonomic revisions, revealing that the morphological characters used in Parnassia taxonomy and systematics might have evolved multiple times. In addition, we speculated that hybridization/introgression might exist during genus evolution, which needs to be further studied. Similarly, more in-depth studies will clarify the diversification of characters and species evolution models of this genus.
Collapse
Affiliation(s)
- Ming-Ze Xia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Fa-Qi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining, China
| | - Jing-Ya Yu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gulzar Khan
- Institute for Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Xiao-Feng Chi
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
| | - Hao Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Long Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
43
|
Opening a door to the spatiotemporal history of plants from the tropical Indochina Peninsula to subtropical China. Mol Phylogenet Evol 2022; 171:107458. [DOI: 10.1016/j.ympev.2022.107458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
|
44
|
Sun QH, Morales-Briones DF, Wang HX, Landis JB, Wen J, Wang HF. Phylogenomic analyses of the East Asian endemic Abelia (Caprifoliaceae) shed insights into the temporal and spatial diversification history with widespread hybridization. ANNALS OF BOTANY 2022; 129:201-216. [PMID: 34950959 PMCID: PMC8796676 DOI: 10.1093/aob/mcab139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/15/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Abelia (Caprifoliaceae) is a small genus with five species, including one artificial hybrid and several natural hybrids. The genus has a discontinuous distribution in Mainland China, Taiwan Island and the Ryukyu Islands, providing a model system to explore the mechanisms of species dispersal in the East Asian flora. However, the current phylogenetic relationships within Abelia remain uncertain. METHODS We reconstructed the phylogenetic relationships within Abelia using nuclear loci generated by target enrichment and plastomes from genome skimming. Divergence time estimation, ancestral area reconstruction and ecological niche modelling (ENM) were used to examine the diversification history of Abelia. KEY RESULTS We found extensive cytonuclear discordance across the genus. By integrating lines of evidence from molecular phylogenies, divergence times and morphology, we propose to merge Abelia macrotera var. zabelioides into A. uniflora. Network analyses suggested that there have been multiple widespread hybridization events among Abelia species. These hybridization events may have contributed to the speciation mechanism and resulted in the high observed morphological diversity. The diversification of Abelia began in the early Eocene, followed by A. chinensis var. ionandra colonizing Taiwan Island during the Middle Miocene. The ENM results suggested an expansion of climatically suitable areas during the Last Glacial Maximum and range contraction during the Last Interglacial. Disjunction between the Himalayan-Hengduan Mountain region and Taiwan Island is probably the consequence of topographical isolation and postglacial contraction. CONCLUSIONS We used genomic data to reconstruct the phylogeny of Abelia and found a clear pattern of reticulate evolution in the group. In addition, our results suggest that shrinkage of postglacial range and the heterogeneity of the terrain have led to the disjunction between Mainland China and Taiwan Island. This study provides important new insights into the speciation process and taxonomy of Abelia.
Collapse
Affiliation(s)
- Qing-Hui Sun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Tropical Crops, Hainan University, Haikou, China
| | - Diego F Morales-Briones
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, 140 Gortner Laboratory, Saint Paul, MN, USA
- Systematics, Biodiversity and Evolution of Plants, Department of Biology I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638, Munich, Germany
| | - Hong-Xin Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Tropical Crops, Hainan University, Haikou, China
- Zhai Mingguo Academician Work Station, Sanya University, Sanya, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, USA
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, Washington, DC, USA
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
45
|
Hodel RGJ, Zimmer EA, Liu BB, Wen J. Synthesis of Nuclear and Chloroplast Data Combined With Network Analyses Supports the Polyploid Origin of the Apple Tribe and the Hybrid Origin of the Maleae-Gillenieae Clade. FRONTIERS IN PLANT SCIENCE 2022; 12:820997. [PMID: 35145537 PMCID: PMC8822239 DOI: 10.3389/fpls.2021.820997] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/20/2021] [Indexed: 05/17/2023]
Abstract
Plant biologists have debated the evolutionary origin of the apple tribe (Maleae; Rosaceae) for over a century. The "wide-hybridization hypothesis" posits that the pome-bearing members of Maleae (base chromosome number x = 17) resulted from a hybridization and/or allopolyploid event between progenitors of other tribes in the subfamily Amygdaloideae with x = 8 and x = 9, respectively. An alternative "spiraeoid hypothesis" proposed that the x = 17 of Maleae arose via the genome doubling of x = 9 ancestors to x = 18, and subsequent aneuploidy resulting in x = 17. We use publicly available genomic data-448 nuclear genes and complete plastomes-from 27 species representing all major tribes within the Amygdaloideae to investigate evolutionary relationships within the subfamily containing the apple tribe. Specifically, we use network analyses and multi-labeled trees to test the competing wide-hybridization and spiraeoid hypotheses. Hybridization occurred between an ancestor of the tribe Spiraeeae (x = 9) and an ancestor of the clade Sorbarieae (x = 9) + Exochordeae (x = 8) + Kerrieae (x = 9), giving rise to the clade Gillenieae (x = 9) + Maleae (x = 17). The ancestor of the Maleae + Gillenieae arose via hybridization between distantly related tribes in the Amygdaloideae (i.e., supporting the wide hybridization hypothesis). However, some evidence supports an aspect of the spiraeoid hypothesis-the ancestors involved in the hybridization event were likely both x = 9, so genome doubling was followed by aneuploidy to result in x = 17 observed in Maleae. By synthesizing existing genomic data with novel analyses, we resolve the nearly century-old mystery regarding the origin of the apple tribe. Our results also indicate that nuclear gene tree-species tree conflict and/or cytonuclear conflict are pervasive at several other nodes in subfamily Amygdaloideae of Rosaceae.
Collapse
Affiliation(s)
- Richard G. J. Hodel
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Elizabeth A. Zimmer
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Bin-Bin Liu
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
46
|
Xi J, Lv S, Zhang W, Zhang J, Wang K, Guo H, Hu J, Yang Y, Wang J, Xia G, Fan G, Wang X, Xiao L. Comparative plastomes of Carya species provide new insights into the plastomes evolution and maternal phylogeny of the genus. FRONTIERS IN PLANT SCIENCE 2022; 13:990064. [PMID: 36407576 PMCID: PMC9667483 DOI: 10.3389/fpls.2022.990064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 05/03/2023]
Abstract
Carya, in the Juglandiodeae subfamily, is to a typical temperate-subtropical forest-tree genus for studying the phylogenetic evolution and intercontinental disjunction between eastern Asia (EA) and North America (NA). Species of the genus have high economic values worldwide for their high-quality wood and the rich healthy factors of their nuts. Although previous efforts based on multiple molecular markers or genome-wide SNPs supported the monophyly of Carya and its two EA and NA major subclades, the maternal phylogeny of Carya still need to be comprehensively evaluated. The variation of Carya plastome has never been thoroughly characterized. Here, we novelly present 19 newly generated plastomes of congeneric Carya species, including the recently rediscovered critically endangered C. poilanei. The overall assessment of plastomes revealed highly conservative in the general structures. Our results indicated that remarkable differences in several plastome features are highly consistent with the EA-NA disjunction and showed the relatively diverse matrilineal sources among EA Carya compared to NA Carya. The maternal phylogenies were conducted with different plastome regions and full-length plastome datasets from 30 plastomes, representing 26 species in six genera of Juglandoideae and Myrica rubra (as root). Six out of seven phylogenetic topologies strongly supported the previously reported relationships among genera of Juglandoideae and the two subclades of EA and NA Carya, but displayed significant incongruencies between species within the EA and NA subclades. The phylogenetic tree generated from full-length plastomes demonstrated the optimal topology and revealed significant geographical maternal relationships among Carya species, especially for EA Carya within overlapping distribution areas. The full-length plastome-based phylogenetic topology also strongly supported the taxonomic status of five controversial species as separate species of Carya. Historical and recent introgressive hybridization and plastid captures might contribute to plastome geographic patterns and inconsistencies between topologies built from different datasets, while incomplete lineage sorting could account for the discordance between maternal topology and the previous nuclear genome data-based phylogeny. Our findings highlight full-length plastomes as an ideal tool for exploring maternal relationships among the subclades of Carya, and potentially in other outcrossing perennial woody plants, for resolving plastome phylogenetic relationships.
Collapse
Affiliation(s)
- Jianwei Xi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Saibin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Weiping Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingbo Zhang
- Department of Biological Sciences, St. John’s University - Queens, NY, United States
- *Correspondence: Lihong Xiao, ; Jingbo Zhang,
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Haobing Guo
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Jie Hu
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Yang Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jianhua Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Guohua Xia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Guangyi Fan
- The Beijing Genomics Institute (BGI) -Qingdao, The Beijing Genomics Institute (BGI)-Shenzhen, Qingdao, China
| | - Xinwang Wang
- Pecan Breeding and Genetics, Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, United States
| | - Lihong Xiao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Lihong Xiao, ; Jingbo Zhang,
| |
Collapse
|
47
|
Yin ZJ, Wang ZH, Kilian N, Liu Y, Peng H, Zhao MX. Mojiangia oreophila (Crepidinae, Cichorieae, Asteraceae), a new species and genus from Mojiang County, SW Yunnan, China, and putative successor of the maternal Faberia ancestor. PLANT DIVERSITY 2022; 44:83-93. [PMID: 35281119 PMCID: PMC8897168 DOI: 10.1016/j.pld.2021.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 05/31/2023]
Abstract
A single small population of chasmophytic plants is described as M ojiangia oreophila, a monotypic genus in the subtribe Crepidinae, characterised by a unique combination of morphological features, in particular densely long-papillose homomorphic achenes with five main ribs each accompanied by two secondary ribs, coarse brownish pappus bristles, moderately many-flowered capitula, a small involucre with numerous outer phyllaries, perennial rosette herb growth and brown-woolly caudex and leaf axils. Molecular phylogenetic analysis detected that in the nrITS phylogeny M. oreophila forms a clade of its own in the Crepidinae; in the plastid DNA phylogeny it is nested in the clade formed by the hybridogenous genus Faberia, the maternal ancestor of which comes from the Crepidinae and the paternal ancestor from the Lactucinae, where Faberia is placed in nrITS phylogenies. M. oreophila shares several morphological features with Faberia and also shares the expected chromosome number of 2n = 16 with its hitherto unknown maternal ancestor. M. oreophila may therefore be a successor of the maternal ancestor of Faberia. Alternatively, cytonuclear discordance is to be assumed in Mojiangia, caused by chloroplast capture as a result of hybridisation and introgression with Faberia.
Collapse
Affiliation(s)
- Zhi-Jian Yin
- China Forest Exploration and Design Institute in Kunming, Kunming, 650200, Yunnan, China
| | - Ze-Huan Wang
- Department of Medicinal Plants and Cultivation, College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Norbert Kilian
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Königin-Luise-Str. 6–8, 14195, Berlin, Germany
| | - Ying Liu
- CAS State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hua Peng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ming-Xu Zhao
- China Forest Exploration and Design Institute in Kunming, Kunming, 650200, Yunnan, China
| |
Collapse
|
48
|
Bush SJ, Murren CJ, Urrutia AO, Kover PX. Contrasting gene-level signatures of selection with reproductive fitness. Mol Ecol 2021; 31:1515-1526. [PMID: 34918851 PMCID: PMC9304172 DOI: 10.1111/mec.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Selection leaves signatures in the DNA sequence of genes, with many test statistics devised to detect its action. While these statistics are frequently used to support hypotheses about the adaptive significance of particular genes, the effect these genes have on reproductive fitness is rarely quantified experimentally. Consequently, it is unclear how gene-level signatures of selection are associated with empirical estimates of gene effect on fitness. Eukaryotic datasets that permit this comparison are very limited. Using the model plant Arabidopsis thaliana, for which these resources are available, we calculated seven gene-level substitution and polymorphism-based statistics commonly used to infer selection (dN/dS, NI, DOS, Tajima's D, Fu and Li's D*, Fay and Wu's H, and Zeng's E) and, using knockout lines, compared these to gene-level estimates of effect on fitness. We found that consistent with expectations, essential genes were more likely to be classified as negatively selected. By contrast, using 379 Arabidopsis genes for which data was available, we found no evidence that genes predicted to be positively selected had a significantly different effect on fitness than genes evolving more neutrally. We discuss these results in the context of the analytic challenges posed by Arabidopsis, one of the only systems in which this study could be conducted, and advocate for examination in additional systems. These results are relevant to the evaluation of genome-wide studies across species where experimental fitness data is unavailable, as well as highlighting an increasing need for the latter.
Collapse
Affiliation(s)
- Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Courtney J Murren
- Department of Biology, College of Charleston, Charleston, SC, USA, 29424
| | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.,Instituto de Ecologia, UNAM, Ciudad de Mexico, 04510, Mexico
| | - Paula X Kover
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
49
|
Nickel J, Schell T, Holtzem T, Thielsch A, Dennis SR, Schlick-Steiner BC, Steiner FM, Möst M, Pfenninger M, Schwenk K, Cordellier M. Hybridization Dynamics and Extensive Introgression in the Daphnia longispina Species Complex: New Insights from a High-Quality Daphnia galeata Reference Genome. Genome Biol Evol 2021; 13:6448229. [PMID: 34865004 PMCID: PMC8695838 DOI: 10.1093/gbe/evab267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Hybridization and introgression are recognized as an important source of variation that influence adaptive processes; both phenomena are frequent in the genus Daphnia, a keystone zooplankton taxon in freshwater ecosystems that comprises several species complexes. To investigate genome-wide consequences of introgression between species, we provide here the first high-quality genome assembly for a member of the Daphnia longispina species complex, Daphnia galeata. We further resequenced 49 whole genomes of three species of the complex and their interspecific hybrids both from genotypes sampled in the water column and from single resting eggs extracted from sediment cores. Populations from habitats with diverse ecological conditions offered an opportunity to study the dynamics of hybridization linked to ecological changes and revealed a high prevalence of hybrids. Using phylogenetic and population genomic approaches, we provide first insights into the intra- and interspecific genome-wide variability in this species complex and identify regions of high divergence. Finally, we assess the length of ancestry tracts in hybrids to characterize introgression patterns across the genome. Our analyses uncover a complex history of hybridization and introgression reflecting multiple generations of hybridization and backcrossing in the Daphnia longispina species complex. Overall, this study and the new resources presented here pave the way for a better understanding of ancient and contemporary gene flow in the species complex and facilitate future studies on resting egg banks accumulating in lake sediment.
Collapse
Affiliation(s)
- Jana Nickel
- Institute of Zoology, Universität Hamburg, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Tania Holtzem
- Department of Ecology, University of Innsbruck, Austria
| | - Anne Thielsch
- Molecular Ecology, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Stuart R Dennis
- Department of Aquatic Ecology, EAWAG, Dübendorf, Switzerland
| | | | | | - Markus Möst
- Department of Ecology, University of Innsbruck, Austria
| | - Markus Pfenninger
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany.,Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany.,IoME, Gutenberg University, Mainz, Germany
| | - Klaus Schwenk
- Molecular Ecology, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | | |
Collapse
|
50
|
Rose JP, Kriebel R, Kahan L, DiNicola A, González-Gallegos JG, Celep F, Lemmon EM, Lemmon AR, Sytsma KJ, Drew BT. Sage Insights Into the Phylogeny of Salvia: Dealing With Sources of Discordance Within and Across Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:767478. [PMID: 34899789 PMCID: PMC8652245 DOI: 10.3389/fpls.2021.767478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Next-generation sequencing technologies have facilitated new phylogenomic approaches to help clarify previously intractable relationships while simultaneously highlighting the pervasive nature of incongruence within and among genomes that can complicate definitive taxonomic conclusions. Salvia L., with ∼1,000 species, makes up nearly 15% of the species diversity in the mint family and has attracted great interest from biologists across subdisciplines. Despite the great progress that has been achieved in discerning the placement of Salvia within Lamiaceae and in clarifying its infrageneric relationships through plastid, nuclear ribosomal, and nuclear single-copy genes, the incomplete resolution has left open major questions regarding the phylogenetic relationships among and within the subgenera, as well as to what extent the infrageneric relationships differ across genomes. We expanded a previously published anchored hybrid enrichment dataset of 35 exemplars of Salvia to 179 terminals. We also reconstructed nearly complete plastomes for these samples from off-target reads. We used these data to examine the concordance and discordance among the nuclear loci and between the nuclear and plastid genomes in detail, elucidating both broad-scale and species-level relationships within Salvia. We found that despite the widespread gene tree discordance, nuclear phylogenies reconstructed using concatenated, coalescent, and network-based approaches recover a common backbone topology. Moreover, all subgenera, except for Audibertia, are strongly supported as monophyletic in all analyses. The plastome genealogy is largely resolved and is congruent with the nuclear backbone. However, multiple analyses suggest that incomplete lineage sorting does not fully explain the gene tree discordance. Instead, horizontal gene flow has been important in both the deep and more recent history of Salvia. Our results provide a robust species tree of Salvia across phylogenetic scales and genomes. Future comparative analyses in the genus will need to account for the impacts of hybridization/introgression and incomplete lineage sorting in topology and divergence time estimation.
Collapse
Affiliation(s)
- Jeffrey P. Rose
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
- Department of Botany, University of Wisconsin–Madison, Madison, WI, United States
| | - Ricardo Kriebel
- Department of Botany, University of Wisconsin–Madison, Madison, WI, United States
| | - Larissa Kahan
- Department of Botany, University of Wisconsin–Madison, Madison, WI, United States
| | - Alexa DiNicola
- Department of Botany, University of Wisconsin–Madison, Madison, WI, United States
| | | | - Ferhat Celep
- Department of Biology, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, Turkey
| | - Emily M. Lemmon
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Alan R. Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, United States
| | - Kenneth J. Sytsma
- Department of Botany, University of Wisconsin–Madison, Madison, WI, United States
| | - Bryan T. Drew
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| |
Collapse
|