1
|
Li P, Yang R, Liu J, Huang C, Huang G, Deng Z, Zhao X, Xu L. Coexpression Regulation of New and Ancient Genes in the Dynamic Transcriptome Landscape of Stem and Rhizome Development in "Bainianzhe"-An Ancient Chinese Sugarcane Variety Ratooned for Nearly 300 Years. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39462914 DOI: 10.1111/pce.15232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The sucrose yield in sugarcane largely depends on stem morphology, including length, diameter and sugar content, making sugarcane stem a key trait in breeding. The "Bainianzhe" variety from Songxi County, Fujian Province, possesses both aerial stems and rhizomes, providing a unique model for studying stem development. We performed a spatiotemporal transcriptomic analysis of the base, middle and apical sections of both aerial stems and rhizomes. The analysis categorized transcriptomes by developmental stage-base, middle and apical-rather than environmental differences. Apical segments were enriched with genes related to cell proliferation, while base segments were linked to senescence and fibrosis. Gene regulatory networks revealed key TFs involved in stem development. Orphan genes may be involved in rhizome development through coexpression networks. Plant hormones, especially genes involved in ABA and GAs synthesis, were highly expressed in rhizomes. Thiamine-related genes were also more prevalent in rhizomes. Furthermore, the apical segments of rhizomes enriched in photosynthesis-related genes suggest adaptations to light exposure. Low average temperatures in Songxi have led to unique cold acclimation in Bainianzhe, with rhizomes showing higher expression of genes linked to unsaturated fatty acid synthesis and cold-responsive calcium signalling. This indicates that rhizomes may have enhanced cold tolerance, aiding in the plant's overwintering success.
Collapse
Affiliation(s)
- Peiting Li
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruiting Yang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiarui Liu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaohua Huang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoqiang Huang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
| | - Xinwang Zhao
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Liangnian Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Li Z, Qi L, Cui R, Zhang N, Song C, Li X, Lu X, Fan Y. De novo transcriptome assembly and molecular response mechanism analysis of a diatom Cyclotella meneghiniana Kützing exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116020. [PMID: 38306816 DOI: 10.1016/j.ecoenv.2024.116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Cadmium is a persistent heavy metal commonly found in aquatic ecosystems and has a strong toxic effect on organisms. The sensitivity of phytoplankton to environmental changes and its role as an indicator of aquatic ecosystem health have been well-established. However, the mechanisms by which phytoplankton respond to cadmium remain incompletely understood. In this study, we chose the typical planktonic diatom Cyclotella meneghiniana Kützing, by integrating physiological-biochemical data and transcriptome analysis, to reveal the molecular mechanisms of C. meneghiniana responing to cadmium. Under cadmium stress, the cell density and chlorophyll-a content of C. meneghiniana significantly decreased, while MDA content and SOD activity gradually increased. At 72 h of cadmium stress, we found that at this time point, cell abundance and physiological variation were very significant, therefore we selected 72 h for subsequent analysis. To better understand the cadmium stress response mechanisms of C. meneghiniana, a de novo transcriptome method was used to analyse C. meneghiniana under cadmium stress for 72 h, and 1704 (M vs. CK) and 4788 (H vs. CK) differentially expressed genes were found. Our results showed that the changes in gene expression were closely correlated to the physiological-biochemical changes. Although cadmium stress could promote the nitrogen metabolism pathway, ROS scavenging system, and photosynthesis. While, C. meneghiniana under medium and high concentrations of cadmium can also limit various intracellular metabolic pathways, such as the MAPK pathway and phosphatidylinositol metabolic pathway, and the degree of inhibition increases with the increase of stress concentration. In present study, the complete molecular mechanism of the planktonic diatom response to cadmium has been established, which provided important information for further studies on heavy metal pollutants and the multiple functional genes responsible for cadmium sensitivity and tolerance in planktonic diatoms.
Collapse
Affiliation(s)
- Zhenxiang Li
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Lin Qi
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Runbo Cui
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Nannan Zhang
- Modern Educational Technology and Experiment Center, Harbin Normal University, Harbin 150025, China
| | - Chunhua Song
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Xue Li
- Moutai Institute, Zunyi 564507, China
| | - Xinxin Lu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| | - Yawen Fan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
3
|
Zhang Z, Yuan L, Dang J, Zhang Y, Wen Y, Du Y, Liang Y, Wang Y, Liu T, Li T, Hu X. 5-Aminolevulinic acid improves cold resistance through regulation of SlMYB4/SlMYB88-SlGSTU43 module to scavenge reactive oxygen species in tomato. HORTICULTURE RESEARCH 2024; 11:uhae026. [PMID: 38495031 PMCID: PMC10940124 DOI: 10.1093/hr/uhae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/14/2024] [Indexed: 03/19/2024]
Abstract
Cold stress severely affects the growth and quality of tomato. 5-Aminolevulinic acid (ALA) can effectively improve tomato's cold stress tolerance. In this study, a tomato glutathione S-transferase gene, SlGSTU43, was identified. Results showed that ALA strongly induced the expression of SlGSTU43 under cold stress. SlGSTU43-overexpressing lines showed increased resistance to cold stress through an enhanced ability to scavenge reactive oxygen species. On the contrary, slgstu43 mutant lines were sensitive to cold stress, and ALA did not improve their cold stress tolerance. Thus, SlGSTU43 is a key gene in the process of ALA improving tomato cold tolerance. Through yeast library screening, SlMYB4 and SlMYB88 were preliminarily identified as transcription factors that bind to the SlGSTU43 promoter. Electrophoretic mobility shift, yeast one-hybrid, dual luciferase, and chromatin immunoprecipitation assays experiments verified that SlMYB4 and SlMYB88 can bind to the SlGSTU43 promoter. Further experiments showed that SlMYB4 and SlMYB88 are involved in the process of ALA-improving tomato's cold stress tolerance and they positively regulate the expression of SlGSTU43. The findings provide new insights into the mechanism by which ALA improves cold stress tolerance. SlGSTU43, as a valuable gene, could be added to the cold-responsive gene repository. Subsequently, it could be used in genetic engineering to enhance the cold tolerance of tomato.
Collapse
Affiliation(s)
- Zhengda Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Luqiao Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Jiao Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yuhui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yongshuai Wen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yu Du
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yufei Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Zhao Y, Chen Y, Gao M, Wang Y. Alcohol dehydrogenases regulated by a MYB44 transcription factor underlie Lauraceae citral biosynthesis. PLANT PHYSIOLOGY 2024; 194:1674-1691. [PMID: 37831423 DOI: 10.1093/plphys/kiad553] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023]
Abstract
Lineage-specific terpenoids have arisen throughout the evolution of land plants and are believed to play a role in interactions between plants and the environment. Species-specific gene clusters in plants have provided insight on the evolution of secondary metabolism. Lauraceae is an ecologically important plant family whose members are also of considerable economic value given their monoterpene contents. However, the gene cluster responsible for the biosynthesis of monoterpenes remains yet to be elucidated. Here, a Lauraceae-specific citral biosynthetic gene cluster (CGC) was identified and investigated using a multifaceted approach that combined phylogenetic, collinearity, and biochemical analyses. The CGC comprises MYB44 as a regulator and 2 alcohol dehydrogenases (ADHs) as modifying enzymes, which derived from species-specific tandem and proximal duplication events. Activity and substrate divergence of the ADHs has resulted in the fruit of mountain pepper (Litsea cubeba), a core Lauraceae species, consisting of more than 80% citral. In addition, MYB44 negatively regulates citral biosynthesis by directly binding to the promoters of the ADH-encoding genes. The aggregation of citral biosynthetic pathways suggests that they may form the basis of important characteristics that enhance adaptability. The findings of this study provide insights into the evolution of and the regulatory mechanisms involved in plant terpene biosynthesis.
Collapse
Affiliation(s)
- Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
5
|
Ndayambaza B, Si J, Deng Y, Jia B, He X, Zhou D, Wang C, Zhu X, Liu Z, Qin J, Wang B, Bai X. The Euphrates Poplar Responses to Abiotic Stress and Its Unique Traits in Dry Regions of China (Xinjiang and Inner Mongolia): What Should We Know? Genes (Basel) 2023; 14:2213. [PMID: 38137039 PMCID: PMC10743205 DOI: 10.3390/genes14122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
At the moment, drought, salinity, and low-temperature stress are ubiquitous environmental issues. In arid regions including Xinjiang and Inner Mongolia and other areas worldwide, the area of tree plantations appears to be rising, triggering tree growth. Water is a vital resource in the agricultural systems of countries impacted by aridity and salinity. Worldwide efforts to reduce quantitative yield losses on Populus euphratica by adapting tree plant production to unfavorable environmental conditions have been made in response to the responsiveness of the increasing control of water stress. Although there has been much advancement in identifying the genes that resist abiotic stresses, little is known about how plants such as P. euphratica deal with numerous abiotic stresses. P. euphratica is a varied riparian plant that can tolerate drought, salinity, low temperatures, and climate change, and has a variety of water stress adaptability abilities. To conduct this review, we gathered all available information throughout the Web of Science, the Chinese National Knowledge Infrastructure, and the National Center for Biotechnology Information on the impact of abiotic stress on the molecular mechanism and evolution of gene families at the transcription level. The data demonstrated that P. euphratica might gradually adapt its stomatal aperture, photosynthesis, antioxidant activities, xylem architecture, and hydraulic conductivity to endure extreme drought and salt stress. Our analyses will give readers an understanding of how to manage a gene family in desert trees and the influence of abiotic stresses on the productivity of tree plants. They will also give readers the knowledge necessary to improve biotechnology-based tree plant stress tolerance for sustaining yield and quality trees in China's arid regions.
Collapse
Affiliation(s)
- Boniface Ndayambaza
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Si
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
| | - Yanfang Deng
- Qilian Mountain National Park Qinghai Provincial Administration, Xining 810000, China;
| | - Bing Jia
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui He
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Resources and Environment, Baotou Teachers’ College, Inner Mongolia University of Science and Technology, Baotou 014030, China
| | - Dongmeng Zhou
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglin Zhu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijin Liu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Qin
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyang Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Bai
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Zhang X, Zhong J, Cao L, Ren C, Yu G, Gu Y, Ruan J, Zhao S, Wang L, Ru H, Cheng L, Wang Q, Zhang Y. Genome-wide characterization of aldehyde dehydrogenase gene family members in groundnut ( Arachis hypogaea) and the analysis under saline-alkali stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1097001. [PMID: 36875623 PMCID: PMC9978533 DOI: 10.3389/fpls.2023.1097001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Groundnut or peanut (Arachis hypogaea) is a legume crop. Its seeds are rich in protein and oil. Aldehyde dehydrogenase (ALDH, EC: 1.2.1.3) is an important enzyme involved in detoxification of aldehyde and cellular reactive oxygen species, as well as in attenuation of lipid peroxidation-meditated cellular toxicity under stress conditions. However, few studies have been identified and analyzed about ALDH members in Arachis hypogaea. In the present study, 71 members of the ALDH superfamily (AhALDH) were identified using the reference genome obtained from the Phytozome database. A systematic analysis of the evolutionary relationship, motif, gene structure, cis-acting elements, collinearity, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and expression patterns was conducted to understand the structure and function of AhALDHs. AhALDHs exhibited tissue-specific expression, and quantitative real-time PCR identified significant differences in the expression levels of AhALDH members under saline-alkali stress. The results revealed that some AhALDHs members could be involved in response to abiotic stress. Our findings on AhALDHs provide insights for further study.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- Agricultural College, Northeast Agricultural University, Harbin, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingwen Zhong
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Liang Cao
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chunyuan Ren
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Gaobo Yu
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanhua Gu
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Jingwen Ruan
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Siqi Zhao
- Agricultural College, Northeast Agricultural University, Harbin, China
| | - Lei Wang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Haishun Ru
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Lili Cheng
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qi Wang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
7
|
Functional characterization of secologanin synthase-like homologous genes suggests their involvement in the biosynthesis of diverse metabolites in the secoiridoid biosynthetic pathway of Camptotheca acuminata Decne. Int J Biol Macromol 2022; 222:2594-2602. [DOI: 10.1016/j.ijbiomac.2022.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
8
|
Sylvestre-Gonon E, Morette L, Viloria M, Mathiot S, Boutilliat A, Favier F, Rouhier N, Didierjean C, Hecker A. Biochemical and Structural Insights on the Poplar Tau Glutathione Transferase GSTU19 and 20 Paralogs Binding Flavonoids. Front Mol Biosci 2022; 9:958586. [PMID: 36032685 PMCID: PMC9412104 DOI: 10.3389/fmolb.2022.958586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Glutathione transferases (GSTs) constitute a widespread superfamily of enzymes notably involved in xenobiotic detoxification and/or in specialized metabolism. Populus trichocarpa genome (V4.1 assembly, Phytozome 13) consists of 74 genes coding for full-length GSTs and ten likely pseudogenes. These GSTs are divided into 11 classes, in which the tau class (GSTU) is the most abundant with 54 isoforms. PtGSTU19 and 20, two paralogs sharing more than 91% sequence identity (95% of sequence similarity), would have diverged from a common ancestor of P. trichocarpa and P. yatungensis species. These enzymes display the distinctive glutathione (GSH)-conjugation and peroxidase activities against model substrates. The resolution of the crystal structures of these proteins revealed significant structural differences despite their high sequence identity. PtGSTU20 has a well-defined deep pocket in the active site whereas the bottom of this pocket is disordered in PtGSTU19. In a screen of potential ligands, we were able to identify an interaction with flavonoids. Some of them, previously identified in poplar (chrysin, galangin, and pinocembrin), inhibited GSH-conjugation activity of both enzymes with a more pronounced effect on PtGSTU20. The crystal structures of PtGSTU20 complexed with these molecules provide evidence for their potential involvement in flavonoid transport in P. trichocarpa.
Collapse
Affiliation(s)
| | - Laura Morette
- Université de Lorraine, INRAE, IAM, Nancy, France
- Université de Lorraine, CNRS, CRM2, Nancy, France
| | | | | | | | | | | | - Claude Didierjean
- Université de Lorraine, CNRS, CRM2, Nancy, France
- *Correspondence: Claude Didierjean, ; Arnaud Hecker,
| | - Arnaud Hecker
- Université de Lorraine, INRAE, IAM, Nancy, France
- *Correspondence: Claude Didierjean, ; Arnaud Hecker,
| |
Collapse
|
9
|
Wang T, Zhang D, Chen L, Wang J, Zhang WH. Genome-wide analysis of the Glutathione S-Transferase family in wild Medicago ruthenica and drought-tolerant breeding application of MruGSTU39 gene in cultivated alfalfa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:853-864. [PMID: 34817619 DOI: 10.1007/s00122-021-04002-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Transformation of MruGSTU39 in M. ruthenica and alfalfa enhanced growth and survival of transgenic plants by up-regulating GST and glutathione peroxidase activity to detoxify ROS under drought stress. Glutathione S-transferases (GSTs) are ubiquitous supergene family which play crucial roles in detoxification of reactive oxygen species (ROS). Despite studies on GSTs, few studies have focused on them in perennial, wild plant species with high tolerance to environmental stress. Here, we identified 66 MruGST genes from the genome of Medicago ruthenica, a perennial legume species native to temperate grasslands with high tolerance to environmental stress. These genes were divided into eight classes based on their conserved domains, phylogenetic tree and gene structure, with the tau class being the most numerous. Duplication analysis revealed that GST family in M. ruthenica was expanded by segmental and tandem duplication. Several drought-responsive MruGSTs were identified by transcriptomic analyses. Of them, expression of MruGSTU39 was up-regulated much more in a tolerant accession by drought stress. Transformation of MruGSTU39 in M. ruthenica and alfalfa (Medicago sativa) enhanced growth and survival of transgenic seedlings than their wild-type counterparts under drought. We demonstrated that MruGSTU39 can detoxify ROS to reduce its damage to membrane by up-regulating activities of GST and glutathione peroxidase. Our findings provide full-scale knowledge on GST family in the wild legume M. ruthenica with high tolerance to drought, and highlight improvement tolerance of legume forages to drought using genomic information of M. ruthenica.
Collapse
Affiliation(s)
- Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Di Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Li Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
10
|
Zhuge XL, Xie T, Du X, Zhang XX, Hu JP, Yang HL. Non-synonymous substitution of evolutionarily conserved residue in Tau class glutathione transferases alters structural and catalytic features. Int J Biol Macromol 2022; 197:39-48. [PMID: 34896469 DOI: 10.1016/j.ijbiomac.2021.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/05/2022]
Abstract
Plant-specific tau glutathione transferases (GSTs) are basically involved in catalysing γ-glutathione (GSH)-dependent conjugation reactions with pesticides and herbicides, which play an important role in the detoxification of pollutants. Given the lack of systematic biochemical and structural information on tau GSTs, the study of their mediated defence mechanisms against toxic compounds has been greatly hindered. Here, we reveal the importance of the Ile residue closely interacting with GSH for the structural stability and catalytic function of GST. Evolutionary conservation analysis indicated that the crucial G-site Ile55 in the SbGSTU6 was converted to Thr53 of SbGSTU7. The comparative biochemical data on SbGSTU6, SbGSTU7 and their mutants showed that the substitution of Ile by Thr caused significant decrease in the affinity and catalytic efficiency of the GSTs. The unfavourable structural flexibility and pKa distribution of the active cavity residues were also demonstrated. Crystallography studies and molecular dynamics simulations showed that the conversion resulted in the hydrogen bond recombination with GSH and conformational rearrangement of GST active cavity, in which the Ile residue was more conducive to the formation of enzyme substrate complexes. The extensive biochemical and structural data not only reveal the critical role of the conserved G-site Ile residue in catalysing GSH-conjugate reactions but also provide valuable resources for the development of GST engineering in analytical and agricultural biotechnology.
Collapse
Affiliation(s)
- Xiang-Lin Zhuge
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tao Xie
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu 610106, China
| | - Xin Du
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiu-Xing Zhang
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jian-Ping Hu
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Chengdu University, Chengdu 610106, China
| | - Hai-Ling Yang
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Institute of Tree Development and Genome Editing, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
11
|
Han S, Jiao Z, Niu MX, Yu X, Huang M, Liu C, Wang HL, Zhou Y, Mao W, Wang X, Yin W, Xia X. Genome-Wide Comprehensive Analysis of the GASA Gene Family in Populus. Int J Mol Sci 2021; 22:ijms222212336. [PMID: 34830215 PMCID: PMC8624709 DOI: 10.3390/ijms222212336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
Gibberellic acid-stimulated Arabidopsis (GASA) proteins, as cysteine-rich peptides (CRPs), play roles in development and reproduction and biotic and abiotic stresses. Although the GASA gene family has been identified in plants, the knowledge about GASAs in Populus euphratica, the woody model plant for studying abiotic stress, remains limited. Here, we referenced the well-sequenced Populus trichocarpa genome, and identified the GASAs in the whole genome of P. euphratica and P. trichocarpa. 21 candidate genes in P. trichocarpa and 19 candidate genes in P. euphratica were identified and categorized into three subfamilies by phylogenetic analysis. Most GASAs with signal peptides were located extracellularly. The GASA genes in Populus have experienced multiple gene duplication events, especially in the subfamily A. The evolution of the subfamily A, with the largest number of members, can be attributed to whole-genome duplication (WGD) and tandem duplication (TD). Collinearity analysis showed that WGD genes played a leading role in the evolution of GASA genes subfamily B. The expression patterns of P. trichocarpa and P. euphratica were investigated using the PlantGenIE database and the real-time quantitative PCR (qRT-PCR), respectively. GASA genes in P. trichocarpa and P. euphratica were mainly expressed in young tissues and organs, and almost rarely expressed in mature leaves. GASA genes in P. euphratica leaves were also widely involved in hormone responses and drought stress responses. GUS activity assay showed that PeuGASA15 was widely present in various organs of the plant, especially in vascular bundles, and was induced by auxin and inhibited by mannitol dramatically. In summary, this present study provides a theoretical foundation for further research on the function of GASA genes in P. euphratica.
Collapse
Affiliation(s)
- Shuo Han
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
| | - Zhiyin Jiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
| | - Meng-Xue Niu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
| | - Xiao Yu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
| | - Mengbo Huang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
| | - Chao Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
| | - Hou-Ling Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
| | - Yangyan Zhou
- Salver Academy of Botany, Rizhao 276800, China; (Y.Z.); (W.M.); (X.W.)
| | - Wei Mao
- Salver Academy of Botany, Rizhao 276800, China; (Y.Z.); (W.M.); (X.W.)
| | - Xiaofei Wang
- Salver Academy of Botany, Rizhao 276800, China; (Y.Z.); (W.M.); (X.W.)
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
- Correspondence: (W.Y.); (X.X.); Tel.: +86-10-62336400 (X.X.)
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (S.H.); (Z.J.); (M.-X.N.); (X.Y.); (M.H.); (C.L.); (H.-L.W.)
- Correspondence: (W.Y.); (X.X.); Tel.: +86-10-62336400 (X.X.)
| |
Collapse
|
12
|
Jiang M, Li P, Wang W. Comparative analysis of MAPK and MKK gene families reveals differential evolutionary patterns in Brachypodium distachyon inbred lines. PeerJ 2021; 9:e11238. [PMID: 33868831 PMCID: PMC8034371 DOI: 10.7717/peerj.11238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) cascades are involved with signal transduction in almost every aspect of plant growth and development, as well as biotic and abiotic stress responses. The evolutionary analysis of MAPKs and MKKs in individual or entire plant species has been reported, but the evolutionary patterns in the diverse inbred lines of Brachypodium distachyon are still unclear. RESULTS We conducted the systematical molecular evolutionary analysis of B. distachyon. A total of 799 MAPKs and 618 MKKs were identified from 53 B. distachyon inbred lines. Remarkably, only three inbred lines had 16 MPKs and most of those inbred lines lacked MPK7-2 members, whereas 12 MKKs existed in almost all B. distachyon inbred lines. Phylogenetic analysis indicated that MAPKs and MKKs were divided into four groups as previously reported, grouping them in the same branch as corresponding members. MPK21-2 was the exception and fell into two groups, which may be due to their exon-intron patterns, especially the untranslated regions (UTRs). We also found that differential evolution patterns of MKK10 paralogues from ancient tandem duplicates may have undergone functional divergence. Expression analyses suggested that MAPKs and MKKs likely played different roles in different genetic contexts within various tissues and with abiotic stresses. CONCLUSION Our study revealed that UTRs affected the structure and evolution of MPK21-2 genes and the differential evolution of MKK10 paralogues with ancient tandem duplication might have functional divergences. Our findings provide new insights into the functional evolution of genes in closely inbred lines.
Collapse
Affiliation(s)
- Min Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai Chenshan Botanical Garden, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Wei Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
13
|
Shao D, Li Y, Zhu Q, Zhang X, Liu F, Xue F, Sun J. GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110827. [PMID: 33691961 DOI: 10.1016/j.plantsci.2021.110827] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 05/26/2023]
Abstract
Anthocyanins are flavonoid pigments providing plants a range of colors from red, pink, orange to blue. Anthocyanins are synthesized in the cytosol but accumulate predominantly in the vacuoles through vacuolar sequestration involving glutathione S-transferases (GSTs) and multidrug and toxic compound extrusion (MATE) and the ATP binding cassette (ABC) transporters. However, little is known about anthocyanin-related GSTs in Upland cotton (Gossypium hirsutum L.). In this study, we performed genome-wide identification of GST genes in Upland cotton and identified GST genes functioning in accumulation of anthocyanins. We demonstrated that GhGSTF12 was able to complement the defective leaf color phenotypes of the Arabidopsis tt19 mutant caused by mutation in a GSTF gene. Virus-induced silencing of GhGSTF12 in the red leaf cultivar turned its red color to green and transient overexpression of GhGSTF12 accelerated anthocyanin accumulation in the red leaf cultivar but not in the green leaf cultivar. Collectively, GhGSTF12 may be involved in transport of anthocyanins from cytosol to vacuoles in cotton. These results also demonstrated a conserved function of plant GSTF genes in anthocyanin accumulation and provide a candidate gene for manipulating pigmentation in cotton tissues.
Collapse
Affiliation(s)
- Dongnan Shao
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Qianhao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
14
|
Gangele K, Gulati K, Joshi N, Kumar D, Poluri KM. Molecular insights into the differential structure-dynamics-stability features of interleukin-8 orthologs: Implications to functional specificity. Int J Biol Macromol 2020; 164:3221-3234. [PMID: 32853623 DOI: 10.1016/j.ijbiomac.2020.08.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
Chemokines are a sub-group of chemotactic cytokines that regulate the leukocyte migration by binding to G-protein coupled receptors (GPCRs) and cell surface glycosaminoglycans (GAGs). Interleukin-8 (CXCL8/IL8) is one of the most essential CXC chemokine that has been reported to be involved in various pathophysiological conditions. Structure-function relationships of human IL8 have been studied extensively. However, no such detailed information is available on IL8 orthologs, although they exhibit significant functional divergence. In order to unravel the differential structure-dynamics-stability-function relationship of IL8 orthologs, comparative molecular analysis was performed on canine (laurasians) and human (primates) IL8 proteins using in-silico molecular evolutionary analysis and solution NMR spectroscopy methods. The residue level NMR studies suggested that, although the overall structural architecture of canine IL8 is similar to that of human IL8, systematic differences were observed in their backbone dynamics and low-energy excited states due to amino acid substitutions. Further, these substitutions also resulted in attenuation of stability and heparin binding affinity in the canine IL8 as compared to its human counterpart. Indeed, structural and sequence analysis evidenced for specificity of molecular interactions with cognate receptor (CXCR1) and glycosaminoglycan (heparin), thus providing evidence for a noticeable functional specificity and divergence between the two IL8 orthologs.
Collapse
Affiliation(s)
- Krishnakant Gangele
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Nidhi Joshi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
15
|
Sylvestre-Gonon E, Schwartz M, Girardet JM, Hecker A, Rouhier N. Is there a role for tau glutathione transferases in tetrapyrrole metabolism and retrograde signalling in plants? Philos Trans R Soc Lond B Biol Sci 2020; 375:20190404. [PMID: 32362257 DOI: 10.1098/rstb.2019.0404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In plants, tetrapyrrole biosynthesis occurs in chloroplasts, the reactions being catalysed by stromal and membrane-bound enzymes. The tetrapyrrole moiety is a backbone for chlorophylls and cofactors such as sirohaems, haems and phytochromobilins. Owing to this diversity, the potential cytotoxicity of some precursors and the associated synthesis costs, a tight control exists to adjust the demand and the fluxes for each molecule. After synthesis, haems and phytochromobilins are incorporated into proteins found in other subcellular compartments. However, there is only very limited information about the chaperones and membrane transporters involved in the trafficking of these molecules. After summarizing evidence indicating that glutathione transferases (GST) may be part of the transport and/or degradation processes of porphyrin derivatives, we provide experimental data indicating that tau glutathione transferases (GSTU) bind protoporphyrin IX and haem moieties and use structural modelling to identify possible residues responsible for their binding in the active site hydrophobic pocket. Finally, we discuss the possible roles associated with the binding, catalytic transformation (i.e. glutathione conjugation) and/or transport of tetrapyrroles by GSTUs, considering their subcellular localization and capacity to interact with ABC transporters. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
| | | | | | - Arnaud Hecker
- Université de Lorraine, INRAE, IAM, 54000 Nancy, France
| | | |
Collapse
|
16
|
Zhang Z, Tian C, Zhang Y, Li C, Li X, Yu Q, Wang S, Wang X, Chen X, Feng S. Transcriptomic and metabolomic analysis provides insights into anthocyanin and procyanidin accumulation in pear. BMC PLANT BIOLOGY 2020; 20:129. [PMID: 32220242 PMCID: PMC7099803 DOI: 10.1186/s12870-020-02344-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/17/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pear is one of the most important fruit crops worldwide. Anthocyanins and procyanidins (PAs) are important secondary metabolites that affect the appearance and nutritive quality of pear. However, few studies have focused on the molecular mechanism underlying anthocyanin and PA accumulation in pear. RESULTS We conducted metabolome and transcriptome analyses to identify candidate genes involved in anthocyanin and PA accumulation in young fruits of the pear cultivar 'Clapp Favorite' (CF) and its red mutation cultivar 'Red Clapp Favorite' (RCF). Gene-metabolite correlation analyses revealed a 'core set' of 20 genes that were strongly correlated with 10 anthocyanin and seven PA metabolites. Of these, PcGSTF12 was confirmed to be involved in anthocyanin and PA accumulation by complementation of the tt19-7 Arabidopsis mutant. Interestingly, PcGSTF12 was found to be responsible for the accumulation of procyanidin A3, but not petunidin 3, 5-diglucoside, opposite to the function of AtGSTs in Arabidopsis. Transformation with PcGSTF12 greatly promoted or repressed genes involved in anthocyanin and PA biosynthesis, regulation, and transport. Electrophoretic mobility shift and luciferase reporter assays confirmed positive regulation of PcGSTF12 by PcMYB114. CONCLUSION These findings identify a core set of genes for anthocyanin and PA accumulation in pear. Of these, PcGSTF12, was confirmed to be involved in anthocyanin and PA accumulation. Our results also identified an important anthocyanin and PA regulation node comprising two core genes, PcGSTF12 and PcMYB114. These results provide novel insights into anthocyanin and PA accumulation in pear and represent a valuable data set to guide future functional studies and pear breeding.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Changping Tian
- Cherry Research Department, Yantai Agricultural Science and Technology Institute, No.26, West Gangcheng Street, Yan'tai, 265500, China
| | - Ya Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Chenzhiyu Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Xi Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Qiang Yu
- Cherry Research Department, Yantai Agricultural Science and Technology Institute, No.26, West Gangcheng Street, Yan'tai, 265500, China
| | - Shuo Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Xinyu Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China
| | - Shouqian Feng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China.
- College of Horticulture Sciences, Shandong Agricultural University, No.61, Daizong Road, Tai'an, 271018, China.
| |
Collapse
|
17
|
Ghangal R, Rajkumar MS, Garg R, Jain M. Genome-wide analysis of glutathione S-transferase gene family in chickpea suggests its role during seed development and abiotic stress. Mol Biol Rep 2020; 47:2749-2761. [DOI: 10.1007/s11033-020-05377-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/12/2020] [Indexed: 01/01/2023]
|
18
|
Gallé Á, Benyó D, Csiszár J, Györgyey J. Genome-wide identification of the glutathione transferase superfamily in the model organism Brachypodium distachyon. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:1049-1062. [PMID: 31575388 DOI: 10.1071/fp19023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The detoxification of harmful metabolites can determine the effectiveness of plant stress responses. Scavenging some of these toxic stress by-products through the reduced form of glutathione is catalysed by members of the glutathione transferase (GST) enzyme superfamily. The involvement of these enzymes was studied in the model organism Brachypodium distachyon (L.)P.Beauv. Bd21 and in its derivative Bd21-3, a more drought tolerant line. Osmotic stress treatment resulted in a decrease in the water potential of both Brachypodium genotypes, the difference between the control and treated plant's ψw decreased by the last sampling day in Bd21-3, suggesting some degree of adaptation to the applied osmotic stress. Increased GST activity revealed a severe defence reaction against the harmful imbalance of the redox environment. Screening for the gene sequences led to the identification of 91 full-length or partial GST sequences. Although purple false brome has a relatively small genome, the number of identified GST genes was almost as high as the number predicted in wheat. The estimation of GST expression showed stress-induced differences: higher expression levels or the fast induction of BdGSTF8, BdGSTU35 and BdGSTU42 gene products presumably indicate a strong detoxification under osmotic stress.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; and Corresponding author.
| | - Dániel Benyó
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - János Györgyey
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary
| |
Collapse
|
19
|
Cao Q, Wang SX, Cheng YX. Abietane Diterpenoids With Potent Cytotoxic Activities From the Resins of Populus euphratica. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19850029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A new abietane norditerpenoid, 5-(6-isopropyl-2-methylnaphthalen-1-yl)pentan-2-one (1), with a rare 4,5-seco-19-norabietane skeleton possessing a rearranged angular methyl group at C-5, 2 new naturally occurring compounds, 19-norabieta-4,6,8,11,13-penttaen-3-one (2) and 14-hydroxy-7-oxo ester (3), along with 10 known analogs (4−13) were isolated from the resins of Populus euphratica. The new structures were elucidated by spectroscopic analysis (one-/two-dimensional nuclear magnetic resonance and high-reolution electrospray ionization mass spectrometry). Biological evaluation showed that compounds 1 and 2 display low cytotoxicity against normal cells and appreciable cytotoxicity in cancer cells, with 2 to be more sensitive in HepG2 cells with a half-maximal inhibitory concentration value of 27.0 μM.
Collapse
Affiliation(s)
- Qian Cao
- School of Chemical Science and Technology, Yunnan University, Kunming,
China
- School of Pharmaceutical Sciences, Shenzhen University Health Science
Center, China
| | - Shao-Xiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science
Center, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science
Center, China
| |
Collapse
|
20
|
Sylvestre-Gonon E, Law SR, Schwartz M, Robe K, Keech O, Didierjean C, Dubos C, Rouhier N, Hecker A. Functional, Structural and Biochemical Features of Plant Serinyl-Glutathione Transferases. FRONTIERS IN PLANT SCIENCE 2019; 10:608. [PMID: 31191562 PMCID: PMC6540824 DOI: 10.3389/fpls.2019.00608] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Glutathione transferases (GSTs) belong to a ubiquitous multigenic family of enzymes involved in diverse biological processes including xenobiotic detoxification and secondary metabolism. A canonical GST is formed by two domains, the N-terminal one adopting a thioredoxin (TRX) fold and the C-terminal one an all-helical structure. The most recent genomic and phylogenetic analysis based on this domain organization allowed the classification of the GST family into 14 classes in terrestrial plants. These GSTs are further distinguished based on the presence of the ancestral cysteine (Cys-GSTs) present in TRX family proteins or on its substitution by a serine (Ser-GSTs). Cys-GSTs catalyze the reduction of dehydroascorbate and deglutathionylation reactions whereas Ser-GSTs catalyze glutathione conjugation reactions and eventually have peroxidase activity, both activities being important for stress tolerance or herbicide detoxification. Through non-catalytic, so-called ligandin properties, numerous plant GSTs also participate in the binding and transport of small heterocyclic ligands such as flavonoids including anthocyanins, and polyphenols. So far, this function has likely been underestimated compared to the other documented roles of GSTs. In this review, we compiled data concerning the known enzymatic and structural properties as well as the biochemical and physiological functions associated to plant GSTs having a conserved serine in their active site.
Collapse
Affiliation(s)
- Elodie Sylvestre-Gonon
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
| | - Simon R. Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Mathieu Schwartz
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Kevin Robe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Claude Didierjean
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Christian Dubos
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Nicolas Rouhier
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| | - Arnaud Hecker
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| |
Collapse
|