1
|
Cui Q, Jiang LJ, Wen LL, Tian XL, Yuan Q, Liu JZ. Metabolomic profiles and differential metabolites of volatile components in Citrus aurantium Changshan-huyou pericarp during different growth and development stages. Food Chem X 2024; 23:101631. [PMID: 39130723 PMCID: PMC11315122 DOI: 10.1016/j.fochx.2024.101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Citrus fruits possess a distinctive aroma and flavor, with Citrus aurantium Changshan-huyou (CACH) standing out due to their considerable edible and medicinal value. However, the volatile components (VOCs) in the CACH pericarp (CP) remain underexplored. In this study, gas chromatography-mass spectrometry (GC-MS) was utilized to qualitatively analyze VOCs in 27 CP samples across different growth stages. A total of 544 VOCs were identified, including 91 terpenoids. The types, quantities and distributions of VOCs were conducted. Detailed discussions on the major terpenoids in CP were also presented. A metabolomics approach combining multivariate statistical analysis with univariate analysis was employed for screening the differential metabolites. The study provides comprehensive insights into the VOCs in CP and citrus plants. Moreover, it delivers the first in-depth analysis of differential metabolites in CP throughout the entire CACH growth and development process, laying a foundation for ongoing research and development of the VOCs in CP.
Collapse
Affiliation(s)
| | | | | | - Xiao-Li Tian
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Qiang Yuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Ju-Zhao Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| |
Collapse
|
2
|
Wang A, Tang H, Sun J, Wang L, Rasmann S, Ruan W, Wei X. Entomopathogenic Nematodes-Killed Insect Cadavers in the Rhizosphere Activate Plant Direct and Indirect Defences Aboveground. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39370758 DOI: 10.1111/pce.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Plants can perceive and respond to external stimuli by activating both direct and indirect defences against herbivores. Soil-dwelling entomopathogenic nematodes (EPNs), natural enemies of root-feeding herbivores, carry symbiotic bacteria that grow and reproduce once inside arthropod hosts. We hypothesized that the metabolites produced by EPN-infected insect cadavers could be perceived by plants, thereby activating plant defences systemically. We tested this hypothesis by adding three EPN-infected Galleria mellonella cadavers to maize plants and testing plant responses against a major maize pest (Spodoptera frugiperda) and one of its parasitoids (Trichogramma dendrolimi). We found that S. frugiperda females deposited fewer, and caterpillars fed less on maize plants growing near EPN-infected cadavers than on control plants. Accordingly, EPN-infected cadavers triggered the systemic accumulation of defence hormones (SA), genes (PR1), and enzymes (SOD, POD, and CAT) in maize leaves. Furthermore, four volatile organic compounds produced by plants exposed to EPN-infected cadavers deterred S. frugiperda caterpillars and female adults. However, these compounds were more attractive to T. dendrolimi parasitoids. Our study enhances the understanding of the intricate relationships within the above- and belowground ecosystems and provides crucial insights for advancing sustainable pest management strategies.
Collapse
Affiliation(s)
- Ailing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbo Tang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Sun
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xianqin Wei
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Sánchez-Pérez R, Neilson EH. The case for sporadic cyanogenic glycoside evolution in plants. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102608. [PMID: 39089185 DOI: 10.1016/j.pbi.2024.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/03/2024]
Abstract
Cyanogenic glycosides are α-hydroxynitrile glucosides present in approximately 3000 different plant species. Upon tissue disruption, cyanogenic glycosides are hydrolyzed to release toxic hydrogen cyanide as a means of chemical defense. Over 100 different cyanogenic glycosides have been reported, with structural diversity dependent on the precursor amino acid, and subsequent modifications. Cyanogenic glycosides represent a prime example of sporadic metabolite evolution, with the metabolic trait arising multiple times throughout the plant lineage as evidenced by recruitment of different enzyme families for biosynthesis. Here, we review the latest developments within cyanogenic glycoside biosynthesis, and argue possible factors driving sporadic evolution including shared intermediates and crossovers with other metabolic pathways crossovers, and metabolite multifunctionality beyond chemical defense.
Collapse
Affiliation(s)
| | - Elizabeth Hj Neilson
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, University of Copenhagen.
| |
Collapse
|
4
|
Arora R. Glucosinolates and Their Hydrolytic Products-A Love Story of Environmental, Biological, and Chemical Conditions. J AOAC Int 2024; 107:867-875. [PMID: 38913875 DOI: 10.1093/jaoacint/qsae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Glucosinolates (GSL) play an important role in providing defense to plants and helping them to cope with various biotic, as well as abiotic, stresses. Many living beings including humans and animals, including some herbivores, have adapted themselves to use this defense mechanism for their own use. More than 120 glucosinolates are distributed within a large number of plants. Many factors are known to influence the GSL composition in a plant. Among these, cofactors, myrosinase isozymes, heavy metals and the environmental conditions such as light, CO2 and temperature are important in regulation. These factors ensure that different glucosinolate compositions can be produced by the plants, thus impacting the defense mechanism. OBJECTIVE The objective of the current review is to highlight the importance of the factors responsible for affecting glucosinolate composition and concentration. METHODS The review has been compiled using accessible literature from Pubmed, Scopus, and Google scholar. Efforts have been made to restrict the literature to the last 5 years (2018-2023), with some exceptions. RESULTS The current critical review acts as a resource for all the researchers working on these essential compounds. It provides information on the factors that may influence glucosinolate production. It also gives them an opportunity to modify the glucosinolate composition of a plant using the given information. CONCLUSIONS Glucosinolates have long been an ignored class of biomolecule. The plethora of biological activities of the compounds can be useful. Though there are some harmful components such as goitrin and progoitrin, these can be easily removed by modulating some of the factors highlighted in the review. HIGHLIGHTS The current review has covered most of the factors that have the ability to modify glucosinolate composition and concentration. The mechanistic action of these factors has also been discussed using the current available literature.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Women and Baby, Sunnybrook Research Institute, 2075 Bayview Ave, North York, Ontario, M4N 3M5, Canada
| |
Collapse
|
5
|
Kitainda V, Jez JM. Kinetic and catalytic mechanisms of the methionine-derived glucosinolate biosynthesis enzyme methylthioalkylmalate synthase. J Biol Chem 2024; 300:107814. [PMID: 39322014 DOI: 10.1016/j.jbc.2024.107814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
In Brassica plants, methionine-derived aliphatic glucosinolates are chemically diverse natural products that serve as plant defense compounds, as well as molecules with dietary health-promoting effects. During their biosynthesis, methylthioalkylmalate synthase (MAMS) catalyzes the elongation reaction of the aliphatic chain. The MAMS-catalyzed condensation of 4-methylthio-2-oxobutanoic acid and acetyl-CoA generates a 2-malate derivative that either enters the pathway for the synthesis of C3-glucosinolates or undergoes additional extension reactions, which lead to C4- to C9-glucosinolates. Recent determination of the x-ray crystal structure of MAMS from Brassica juncea (Indian mustard) provided insight on the molecular evolution of MAMS, especially substrate specificity changes, from the leucine biosynthesis enzyme α-isopropylmalate synthase but left details of the reaction mechanism unanswered. Here we use the B. juncea MAMS2A (BjMAMS2A) isoform to analyze the kinetic and catalytic mechanisms of this enzyme. Initial velocity studies indicate that MAMS follows an ordered bi bi kinetic mechanism, which based on the x-ray crystal structure, involves binding of 4-methylthio-2-oxobutanoic acid followed by acetyl-CoA. Examination of the pH-dependence of kcat and kcat/Km are consistent with acid/base catalysis. Site-directed mutagenesis of three residues originally proposed to function in the reaction mechanism-Arg89 (R89A, R89K, R89Q), Glu227 (E227A, E227D, E227Q), and His388 (H388A, H388N, H388Q, H388D, and H388E)-showed that only two mutants (E227Q and H388N) retained activity. Based on available structural and biochemical data, a revised reaction mechanism for MAMS-catalyzed elongation of methionine-derived aliphatic glucosinolates is proposed, which is likely also conserved in α-isopropylmalate synthase from leucine biosynthesis in plants and microbes.
Collapse
Affiliation(s)
- Vivian Kitainda
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
6
|
de Brito Machado D, Felisberto JS, Queiroz GAD, Guimarães EF, Ramos YJ, Moreira DDL. From Leaves to Reproductive Organs: Chemodiversity and Chemophenetics of Essential Oils as Important Tools to Evaluate Piper mollicomum Kunth Chemical Ecology Relevance in the Neotropics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2497. [PMID: 39273981 PMCID: PMC11397322 DOI: 10.3390/plants13172497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
Piper mollicomum Kunth (Piperaceae) plays a vital role in the preservation of the Brazilian Atlantic Forest by contributing to the regeneration of deforested areas. Recent scientific investigations have analyzed the chemical constituents and seasonal dynamics of essential oils (EO) from various Piper L. species, highlighting the need to elucidate their chemical-ecological interactions. This study aims to expand the chemical-ecological knowledge of this important taxon in neotropical forests, using P. mollicomum as a model. The methodologies employed include the collection of plant material, EO extraction by hydrodistillation, analysis of EO by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC-FID), recording the frequency of visits by potential pollinators and microclimatic variables, and by conducting calculations of chemodiversity and chemophenetic indices. Chemical analyses indicated that the diversity of EO and environmental factors are linked to the activities of potential pollinators. In the Tijuca Forest, P. mollicomum revealed significant interactions between its volatile constituents and microclimatic variables, showing that the chemodiversity of the leaves and reproductive organs correlates with pollinator visitation. Additionally, a notable difference in chemical evenness was observed between these vegetative structures. The chemophenetic indices by Ramos and Moreira also revealed correlations with chemical diversity.
Collapse
Affiliation(s)
- Daniel de Brito Machado
- Graduate Program in Plant Biology, Institute of Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Rio de Janeiro Botanical Garden Research Institute, Botanical Garden of Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Jéssica Sales Felisberto
- Graduate Program in Plant Biology, Institute of Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Rio de Janeiro Botanical Garden Research Institute, Botanical Garden of Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - George Azevedo de Queiroz
- West Zone Campus, State University of Rio de Janeiro, Rua Manuel Caldeira de Alvarenga, Rio de Janeiro 23070-200, Brazil
| | - Elsie Franklin Guimarães
- Rio de Janeiro Botanical Garden Research Institute, Botanical Garden of Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Ygor Jessé Ramos
- Graduate Program in Plant Biology, Institute of Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Earth's Pharmacy Laboratory, School of Pharmacy, Federal University of Bahia, Salvador 40170-215, Brazil
| | - Davyson de Lima Moreira
- Graduate Program in Plant Biology, Institute of Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Rio de Janeiro Botanical Garden Research Institute, Botanical Garden of Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
- Oswaldo Cruz Foundation, Farmanguinhos, Manguinhos, Rio de Janeiro 21041-250, Brazil
| |
Collapse
|
7
|
Sobhy M, AbouZid SF, Kirollos FN, El-Shiekh RA, Abdel-Sattar E. Lamiide and Ipolamiide: A Comprehensive Review of Their Bioactive Properties and Therapeutic Potential. Chem Biodivers 2024:e202401069. [PMID: 39146389 DOI: 10.1002/cbdv.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
There is an increasing interest in using iridoids and secoiridoids as major targets for chemical synthesis and biosynthesis. Iridoids can be found in numerous species of Lamiaceae, Verbenaceae, Scrophulariaceae, and other families. Iridoids possess a chemical structure characterized by a cyclopentane ring with oxidative substituents, forming a six-membered ring. Various research groups have used these structures as valuable starting materials for regioselective and stereoselective synthesis. This approach has enormous potential for the production of bioactive alkaloids, prostaglandin analogues, and other bioactive natural compounds. Because there is currently no review on lamiide and ipolamiide, this review intends to pique researchers' interest in this vital topic of natural science for drug discovery from naturally occurring iridoids. Lamiide and ipolamiide have the potential to be useful tools in the pharmaceutical sector, enabling the use of these plant metabolites in a variety of medicinal compositions. Given that these molecules appear to be potential natural substances for treating human ailments, we get light on them as alternative therapeutic approaches using these compounds alone or in combination with other substances which will potentially lead to future (pre)-clinical investigations.
Collapse
Affiliation(s)
- Marina Sobhy
- Pharmacognosy Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Sameh F AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Farid N Kirollos
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Prieto JM, Barker AM, Schaffner U, Quetin-Leclercq J, Braca A, Boevé JL. Furostanol Saponins and Ecdysteroids from Plants of the Genus Helleborus as Phagostimulants and Predator Deterrents for Larvae of Two Monophadnus Sawfly Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:2230. [PMID: 39204666 PMCID: PMC11359282 DOI: 10.3390/plants13162230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Sawfly species of the genus Monophadnus are specialised on Ranunculaceae plants from which the larvae can sequester furostanol saponins into the haemolymph, mainly (25R)-26-[(α-L-rhamnopyranosyl)oxy]-22α-methoxyfurost-5-en-3β-yl-O-β-D-glucopyranosyl-(1→3)-O-[6-acetyl-β-D-glucopyranosyl-(1→3)]-O-β-D-glucopyranoside (compound 1). In this work, TLC, GC-MS, and HPLC-DAD-ESI/MS analyses together with feeding, repeated simulated attacks, and ant deterrence bioassays were conducted to extend the chemoecological knowledge about two sawfly species specialised on H. foetidus L. (Monophadnus species A) and H. viridis L. (Monophadnus species B). Larvae of Monophadnus species B were mostly feeding on the squares treated with the n-butanol fraction from H. foetidus, compound 1 being its primary non-nutritional stimulant. In contrast, all H. viridis fractions stimulated feeding, with n-hexane marginally more active. β-sitosterol within n-hexane was determined as the nutritional stimulant. Quantitative analyses demonstrated that leaves of H. viridis but not H. foetidus contain the ecdysteroids 20-hydroxyecdysone and polypodine B. Moreover, the haemolymph of Monophadnus species B larvae reared on H. viridis contained the glycosides of polypodine B and 20-hydroxyecdysone at a concentration of 2.5 to 6.8 µmol/g fresh weight of haemolymph. This concentration is several thousand times higher than the concentration range of the aglycones in their host plant (3.63 × 10-4 to 2.23 × 10-4 µmol total ecdysteroids/g fresh weight of leaves), suggesting bioaccumulation. The larvae of both species fed on H. foetidus do not show any traces of ecdysteroids in their haemolymph, indicating a facultative role of these compounds in their defence as well as their inability to endogenously synthesise these compounds. The haemolymph containing ecdysteroids was a significant feeding deterrent against Myrmica rubra L. ant workers (one of their natural predators) at 0.8 mg/mL. The larvae kept effective deterrent levels of glycosylated ecdysteroids (≅175 mM) between simulated attacks on days 1 and 2, but the levels clearly decreased on day 3 (≅75 mM). Most larvae (89%) survived a first attack but only 23% a consecutive second one. As a conclusion, we report for the first time that two Monophadnus species feeding on H. viridis sequester phytoecdysteroids into the larval haemolymph in the form of glycosides. In addition, compound 1 possesses defensive and phagostimulant activities, and we present evidence for a combined effect of furostanol saponins and ecdysteroids as repellents against ants.
Collapse
Affiliation(s)
- Jose M. Prieto
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
| | | | - Urs Schaffner
- CABI Switzerland, 2800 Delémont, Switzerland; (A.M.B.); (U.S.)
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Woluwé-Saint-Lambert, Belgium;
| | | | - Jean-Luc Boevé
- DO Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium;
| |
Collapse
|
9
|
Boter M, Diaz I. Contrasting defence mechanisms against spider mite infestation in cyanogenic and non-cyanogenic legumes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112118. [PMID: 38776983 DOI: 10.1016/j.plantsci.2024.112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Understanding the complex interactions between plants and herbivores is essential for improving crop resistance. Aiming to expand the role of cyanogenesis in plant defence, we investigated the response of the cyanogenic Phaseolus lunatus (lima bean) and the non-cyanogenic Phaseolus vulgaris (common bean) to Tetranychus urticae (spider mite) infestation. Despite mite infesting both legumes, leaf damage infringed by this feeder was reduced in lima bean. Comparative transcriptome analyses revealed that both species exhibited substantial metabolic and transcriptional changes upon infestation, although alterations in P. lunatus were significantly more pronounced. Specific differences in amino acid homeostasis and key genes associated with the cyanogenic pathway were observed in these species, as well as the upregulation of the mandelonitrile lyase gene (PlMNL1) following T. urticae feeding. Concomitantly, the PIMNL1 activity increased. Lima bean plants also displayed an induction of β-cyanoalanine synthase (PlCYSC1), a key enzyme for cyanide detoxification, suggesting an internal regulatory mechanism to manage the toxicity of their defence responses. These findings contribute to our understanding of the legume-herbivore interactions and underscore the potential role of cyanogenesis in the elaboration of specific defensive responses, even within the same genus, which may reflect distinctive evolutionary adaptations or varying metabolic capabilities between species.
Collapse
Affiliation(s)
- Marta Boter
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Madrid 20223, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Madrid 20223, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain.
| |
Collapse
|
10
|
Vasquez A, Balakrishnan D, Ayala J, Loftin K, Louis J, Kariyat R. Brown midrib (BMR) and plant age impact fall armyworm (Spodoptera frugiperda) growth and development in sorghum-sudangrass (Sorghum x drummondii). Sci Rep 2024; 14:12649. [PMID: 38825611 PMCID: PMC11144704 DOI: 10.1038/s41598-024-63397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Economic losses from insect herbivory in agroecosystems has driven the development of integrated pest management strategies that reduce pest incidence and damage; however, traditional chemicals-based control is either being complemented or substituted with sustainable and integrated methods. Major sustainable pest management strategies revolve around improving host plant resistance, and one of these traits of interest is Brown midrib (BMR). Originally developed to increase nutritional value and ease of digestion for animal agriculture, BMR is a recessive plant gene usually found in annual grasses, including sorghum and sorghum-sudangrass hybrids. In sorghum-sudangrass, BMR expressed plants have lower amounts of lignin, which produces a less fibrous, more digestible crop, with possible implications for plant defense against herbivores- an area currently unexplored. Fall Armyworm (FAW; Spodoptera frugiperda) is a ruinous pest posing immense threat for sorghum producers by severely defoliating crops and being present in every plant stage. Using FAW, we tested the effect of seed treatment, BMR, and plant age on FAW growth, development, and plant defense responses in sorghum-sudangrass. Our results show that seed treatment did not affect growth or development, or herbivory. However, presence of BMR significantly reduced pupal mass relative to its non-BMR counterpart, alongside a significant reduction in adult mass. We also found that plant age was a major factor as FAW gained significantly less mass, had longer pupation times, and had lower pupal mass on the oldest plant stage explored, 60-days, compared to younger plants. These findings collectively show that pest management strategies should consider plant age, and that the effects of BMR on plant defenses should also be studied.
Collapse
Affiliation(s)
- Alejandro Vasquez
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Devi Balakrishnan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jessica Ayala
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kelly Loftin
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
11
|
Smit SJ, Ayten S, Radzikowska BA, Hamilton JP, Langer S, Unsworth WP, Larson TR, Buell CR, Lichman BR. The genomic and enzymatic basis for iridoid biosynthesis in cat thyme (Teucrium marum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1589-1602. [PMID: 38489316 DOI: 10.1111/tpj.16698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Iridoids are non-canonical monoterpenoids produced by both insects and plants. An example is the cat-attracting and insect-repelling volatile iridoid nepetalactone, produced by Nepeta sp. (catmint) and aphids. Recently, both nepetalactone biosynthetic pathways were elucidated, showing a remarkable convergent evolution. The iridoid, dolichodial, produced by Teucrium marum (cat thyme) and multiple insect species, has highly similar properties to nepetalactone but its biosynthetic origin remains unknown. We set out to determine the genomic, enzymatic, and evolutionary basis of iridoid biosynthesis in T. marum. First, we generated a de novo chromosome-scale genome assembly for T. marum using Oxford Nanopore Technologies long reads and proximity-by-ligation Hi-C reads. The 610.3 Mb assembly spans 15 pseudomolecules with a 32.9 Mb N50 scaffold size. This enabled identification of iridoid biosynthetic genes, whose roles were verified via activity assays. Phylogenomic analysis revealed that the evolutionary history of T. marum iridoid synthase, the iridoid scaffold-forming enzyme, is not orthologous to typical iridoid synthases but is derived from its conserved paralog. We discovered an enzymatic route from nepetalactol to diverse iridoids through the coupled activity of an iridoid oxidase cytochrome P450 and acetyltransferases, via an inferred acylated intermediate. This work provides a genomic resource for specialized metabolite research in mints and demonstration of the role of acetylation in T. marum iridoid diversity. This work will enable future biocatalytic or biosynthetic production of potent insect repellents, as well as comparative studies into iridoid biosynthesis in insects.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Sefa Ayten
- Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, Georgia, 30602, USA
| | - Barbara A Radzikowska
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - John P Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, 30602, USA
- Department of Crop & Soil Sciences, University of Georgia, Athens, Georgia, 30602, USA
| | - Swen Langer
- Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | | | - Tony R Larson
- Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - C Robin Buell
- Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, Georgia, 30602, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, 30602, USA
- Department of Crop & Soil Sciences, University of Georgia, Athens, Georgia, 30602, USA
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
12
|
Lai‐Foenander AS, Kuppusamy G, Manogoran J, Xu T, Chen Y, Tang SY, Ser H, Yow Y, Goh KW, Ming LC, Chuah L, Yap W, Goh B. Black soldier fly ( Hermetia illucens L.): A potential small mighty giant in the field of cosmeceuticals. Health Sci Rep 2024; 7:e2120. [PMID: 38831777 PMCID: PMC11144625 DOI: 10.1002/hsr2.2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 06/05/2024] Open
Abstract
Background and Aims Natural products are widely used in the pharmaceutical and cosmetics industries due to their high-value bioactive compounds, which make for "greener" and more environmentally friendly ingredients. These natural compounds are also considered a safer alternative to antibiotics, which may result in antibiotic resistance as well as unfavorable side effects. The development of cosmeceuticals, which combine the cosmetic and pharmaceutical fields to create skincare products with therapeutic value, has increased the demand for unique natural resources. The objective of this review is to discuss the biological properties of extracts derived from larvae of the black soldier fly (BSF; Hermetia illucens), the appropriate extraction methods, and the potential of this insect as a novel active ingredient in the formulation of new cosmeceutical products. This review also addresses the biological actions of compounds originating from the BSF, and the possible association between the diets of BSF larvae and their subsequent bioactive composition. Methods A literature search was conducted using PubMed and Google Scholar to identify and evaluate the various biological properties of the BSF. Results One such natural resource that may be useful in the cosmeceutical field is the BSF, a versatile insect with numerous potential applications due to its nutrient content and scavenging behavior. Previous research has also shown that the BSF has several biological properties, including antimicrobial, antioxidant, anti-inflammatory, and wound healing effects. Conclusion Given the range of biological activities and metabolites possessed by the BSF, this insect may have the cosmeceutical potential to treat a number of skin pathologies.
Collapse
Affiliation(s)
- Ashley Sean Lai‐Foenander
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
| | - Giva Kuppusamy
- Laboratory of Molecular Biology, Department of Research and DevelopmentGK Aqua Sdn Bhd, Port DicksonNegeri SembilanMalaysia
| | - Janaranjani Manogoran
- Laboratory of Molecular Biology, Department of Research and DevelopmentGK Aqua Sdn Bhd, Port DicksonNegeri SembilanMalaysia
| | - Tengfei Xu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yong Chen
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of EngineeringMonash University Malaysia, Bandar SunwaySelangor Darul EhsanMalaysia
| | - Hooi‐Leng Ser
- Department of Biological SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Yoon‐Yen Yow
- Department of Biological SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information TechnologyINTI International UniversityNilaiMalaysia
| | - Long Chiau Ming
- Department of Medical SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Lay‐Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
| | - Wei‐Hsum Yap
- School of BiosciencesTaylor's University, Subang JayaSelangorMalaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP)Faculty of Health and Medical Sciences (FHMS), Taylor's University, Subang JayaSelangorMalaysia
| | - Bey‐Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Sunway Biofunctional Molecules Discovery Centre (SBMDC)School of Medical and Life Sciences, Sunway UniversitySunwayMalaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNSWAustralia
| |
Collapse
|
13
|
Younes AH, Mustafa YF. Plant-Derived Coumarins: A Narrative Review of Their Structural and Biomedical Diversity. Chem Biodivers 2024; 21:e202400344. [PMID: 38587035 DOI: 10.1002/cbdv.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Plant-derived coumarin (PDC) is a naturally occurring heterocyclic backbone that belongs to the benzopyrone family. PDC and its based products are characterized by low toxicity and high distribution in a variety of herbal treatments that have numerous therapeutic potentials. These include anticoagulants, antibacterials, anti-inflammatory agents, anticancer agents, antioxidants, and others. So, it may be appropriate to investigate the qualities and potential bioactivities of PDCs. This article provides an overview of the biomedical potentials, availability, and clinical use possibilities of PDCs, with a focus on their important modes of action, using information on various pharmacological qualities discovered. The data used in this study came from published research between 2015 and 2023. We reviewed a selection of databases, including PubMed, Scopus, Web of Science, and Google Scholar, during that period. In conclusion, because of their abundance in medicinal plants, the clinical biochemistry attributes of PDCs are currently of interest. In a variety of medical specialties, PDCs serve a useful role as therapeutic agents.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
14
|
de Souza AP, de Oliveira DC, Dalvi VC, Kuster VC. Nutritive tissue rich in reserves in the cell wall and protoplast: the case of Manihot esculenta (Euphorbiaceae) galls induced by Iatrophobia brasiliensis (Diptera, Cecidomyiidae). PROTOPLASMA 2024; 261:513-525. [PMID: 38114665 DOI: 10.1007/s00709-023-01912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
The galls can offer shelter, protection, and an adequate diet for the gall-inducing organisms. Herein, we evaluated the structure of Manihot esculenta leaves and galls induced by Iatrophobia brasiliensis in order to identify metabolic and cell wall composition changes. We expected to find a complex gall with high primary metabolism in a typical nutritive tissue. Non-galled leaves and galls were subjected to anatomical, histochemical, and immunocytochemical analyses to evaluate the structural features, primary and secondary metabolites, and glycoproteins, pectins, and hemicelluloses in the cell wall. The gall is cylindric, with a uniseriate epidermis, a larval chamber, and a parenchymatic cortex divided into outer and inner compartments. The outer compartment has large cells with intercellular spaces and stocks starch and is designated as storage tissue. Reducing sugars, proteins, phenolic compounds, and alkaloids were detected in the protoplast of inner tissue cells of galls, named nutritive tissue, which presents five layers of compact small cells. Cell walls with esterified homogalacturonans (HGs) occurred in some cells of the galls indicating the continuous biosynthesis of HGs. For both non-galled leaves and galls, galactans and xyloglucans were broadly labeled on the cell walls, indicating a cell growth capacity and cell wall stiffness, respectively. The cell wall of the nutritive tissue had wide labeling for glycoproteins, HGs, heteroxylans, and xyloglucans, which can be used as source for the diet of the galling insect. Manihot esculenta galls have compartments specialized in the protection and feeding of the galling insect, structured by nutritive tissue rich in resource compounds, in the cell walls and protoplast.
Collapse
Affiliation(s)
- Ana Paula de Souza
- Instituto Federal de Educação, Ciências e Tecnologia Goiano, Campus Rio Verde, Rio Verde, Goiás, Brazil
| | - Denis Coelho de Oliveira
- Laboratório de Anatomia, Desenvolvimento Vegetal e Interações, Universidade Federal de Uberlândia (UFU), Instituto de Biologia (INBIO), Campus Umuarama, Uberlândia, Minas Gerais, Brazil
| | - Valdnéa Casagrande Dalvi
- Instituto Federal de Educação, Ciências e Tecnologia Goiano, Campus Rio Verde, Rio Verde, Goiás, Brazil
| | - Vinícius Coelho Kuster
- Instituto de Biociências, Universidade Federal de Jataí, Campus Cidade Universitária, BR 364, Km 195, nº 3800, Jataí, Goiás, Brazil.
| |
Collapse
|
15
|
Liu M, Li S. Nitrile biosynthesis in nature: how and why? Nat Prod Rep 2024; 41:649-671. [PMID: 38193577 DOI: 10.1039/d3np00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Covering: up to the end of 2023Natural nitriles comprise a small set of secondary metabolites which however show intriguing chemical and functional diversity. Various patterns of nitrile biosynthesis can be seen in animals, plants, and microorganisms with the characteristics of both evolutionary divergence and convergence. These specialized compounds play important roles in nitrogen metabolism, chemical defense against herbivores, predators and pathogens, and inter- and/or intraspecies communications. Here we review the naturally occurring nitrile-forming pathways from a biochemical perspective and discuss the biological and ecological functions conferred by diversified nitrile biosyntheses in different organisms. Elucidation of the mechanisms and evolutionary trajectories of nitrile biosynthesis underpins better understandings of nitrile-related biology, chemistry, and ecology and will ultimately benefit the development of desirable nitrile-forming biocatalysts for practical applications.
Collapse
Affiliation(s)
- Mingyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
16
|
Juteršek M, Gerasymenko IM, Petek M, Haumann E, Vacas S, Kallam K, Gianoglio S, Navarro-Llopis V, Heethoff M, Fuertes IN, Patron N, Orzáez D, Gruden K, Warzecha H, Baebler Š. Transcriptome-informed identification and characterization of Planococcus citri cis- and trans-isoprenyl diphosphate synthase genes. iScience 2024; 27:109441. [PMID: 38523795 PMCID: PMC10960109 DOI: 10.1016/j.isci.2024.109441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Insect physiology and reproduction depend on several terpenoid compounds, whose biosynthesis is mainly unknown. One enigmatic group of insect monoterpenoids are mealybug sex pheromones, presumably resulting from the irregular coupling activity of unidentified isoprenyl diphosphate synthases (IDSs). Here, we performed a comprehensive search for IDS coding sequences of the pest mealybug Planococcus citri. We queried the available genomic and newly generated short- and long-read P. citri transcriptomic data and identified 18 putative IDS genes, whose phylogenetic analysis indicates several gene family expansion events. In vitro testing confirmed regular short-chain coupling activity with five gene products. With the candidate with highest IDS activity, we also detected low amounts of irregular coupling products, and determined amino acid residues important for chain-length preference and irregular coupling activity. This work therefore provides an important foundation for deciphering terpenoid biosynthesis in mealybugs, including the sex pheromone biosynthesis in P. citri.
Collapse
Affiliation(s)
- Mojca Juteršek
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Iryna M. Gerasymenko
- Plant Biotechnology and Metabolic Engineering, Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - Marko Petek
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Elisabeth Haumann
- Plant Biotechnology and Metabolic Engineering, Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - Sandra Vacas
- Instituto Agroforestal del Mediterráneo-CEQA, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| | - Kalyani Kallam
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk NR4 7UZ, UK
| | - Silvia Gianoglio
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València (UPV), Valencia, Spain
| | - Vicente Navarro-Llopis
- Instituto Agroforestal del Mediterráneo-CEQA, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| | - Michael Heethoff
- Animal Evolutionary Ecology, Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | | | - Nicola Patron
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk NR4 7UZ, UK
| | - Diego Orzáez
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València (UPV), Valencia, Spain
| | - Kristina Gruden
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Schnittspahnstrasse 4, 64287 Darmstadt, Germany
| | - Špela Baebler
- National Institute of Biology, Department of Biotechnology and Systems Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Wang J, Zhang S, Kong J, Chang J. Pecan secondary metabolites influenced the population of Zeuzera coffeae by affecting the structure and function of the larval gut microbiota. Front Microbiol 2024; 15:1379488. [PMID: 38680914 PMCID: PMC11045946 DOI: 10.3389/fmicb.2024.1379488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Background The plant secondary metabolites (PSMs), as important plant resistance indicators, are important targets for screening plant insect resistance breeding. In this study, we aimed to investigate whether the population of Zeuzera coffeae (ZC) is affected by different varieties of Carya illinoinensis PSMs content. At the same time, the structure and function of the gut microbiome of ZC were also analyzed in relation to different pecan varieties. Methods We counted the populations of ZC larvae in four pecan varieties and determined the content of four types of PSMs. The structure and function of the larval gut microbiota were studied in connection to the number of larvae and the content of PSMs. The relationships were investigated between larval number, larval gut microbiota, and PSM content. Results We found that the tannins, total phenolics, and total saponins of 4 various pecans PSMs stifled the development of the ZC larval population. The PSMs can significantly affect the diversity and abundance of the larval gut microbiota. Enrichment of ASV46 (Pararhizobium sp.), ASV994 (Olivibacter sp.), ASV743 (Rhizobium sp.), ASV709 (Rhizobium sp.), ASV671 (Luteolibacter sp.), ASV599 (Agrobacterium sp.), ASV575 (Microbacterium sp.), and ASV27 (Rhizobium sp.) in the gut of larvae fed on high-resistance cultivars was positively associated with their tannin, total saponin, and total phenolic content. The results of the gut microbiome functional prediction for larvae fed highly resistant pecan varieties showed that the enriched pathways in the gut were related to the breakdown of hazardous chemicals. Conclusion Our findings provide further evidence that pecan PSMs influence the structure and function of the gut microbiota, which in turn affects the population stability of ZC. The study's findings can serve as a theoretical foundation for further work on selecting ZC-resistant cultivars and developing green management technology for ZC.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Junqia Kong
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou, China
| | - Jun Chang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
18
|
Gallon ME, Silva-Junior EA, Gobbo-Neto L. GC-MS-based Metabolomics Unravels Metabolites across Larval Development and Diapause of a Specialist Insect. Chem Biodivers 2024; 21:e202301779. [PMID: 38426669 DOI: 10.1002/cbdv.202301779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Plant-insect interactions are a driving force into ecosystem evolution and community dynamics. Many insect herbivores enter diapause, a developmental arrest stage in anticipation of adverse conditions, to survive and thrive through seasonal changes. Herein, we investigated the roles of medium- to non-polar metabolites during larval development and diapause in a specialist insect herbivore, Chlosyne lacinia, reared on Aldama robusta leaves. Varying metabolites were determined using gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Sesquiterpenes and steroids were the main metabolites putatively identified in A. robusta leaves, whereas C. lacinia caterpillars were characterized by triterpenes, steroids, fatty acids, and long-chain alkanes. We found out that C. lacinia caterpillars biosynthesized most of the identified steroids and fatty acids from plant-derived ingested metabolites, as well as all triterpenes and long-chain alkanes. Steroids, fatty acids, and long-chain alkanes were detected across all C. lacinia instars and in diapausing caterpillars. Sesquiterpenes and triterpenes were also detected across larval development, yet they were not detected in diapausing caterpillars, which suggested that these metabolites were converted to other molecules prior to the diapause stage. Our findings shed light on the chemical content variation across C. lacinia development and diapause, providing insights into the roles of metabolites in plant-insect interactions.
Collapse
Affiliation(s)
- Marília Elias Gallon
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Leonardo Gobbo-Neto
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| |
Collapse
|
19
|
Scanlan JL, Robin C. Phylogenomics of the Ecdysteroid Kinase-like (EcKL) Gene Family in Insects Highlights Roles in Both Steroid Hormone Metabolism and Detoxification. Genome Biol Evol 2024; 16:evae019. [PMID: 38291829 PMCID: PMC10859841 DOI: 10.1093/gbe/evae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
The evolutionary dynamics of large gene families can offer important insights into the functions of their individual members. While the ecdysteroid kinase-like (EcKL) gene family has previously been linked to the metabolism of both steroid molting hormones and xenobiotic toxins, the functions of nearly all EcKL genes are unknown, and there is little information on their evolution across all insects. Here, we perform comprehensive phylogenetic analyses on a manually annotated set of EcKL genes from 140 insect genomes, revealing the gene family is comprised of at least 13 subfamilies that differ in retention and stability. Our results show the only two genes known to encode ecdysteroid kinases belong to different subfamilies and therefore ecdysteroid metabolism functions must be spread throughout the EcKL family. We provide comparative phylogenomic evidence that EcKLs are involved in detoxification across insects, with positive associations between family size and dietary chemical complexity, and we also find similar evidence for the cytochrome P450 and glutathione S-transferase gene families. Unexpectedly, we find that the size of the clade containing a known ecdysteroid kinase is positively associated with host plant taxonomic diversity in Lepidoptera, possibly suggesting multiple functional shifts between hormone and xenobiotic metabolism. Our evolutionary analyses provide hypotheses of function and a robust framework for future experimental studies of the EcKL gene family. They also open promising new avenues for exploring the genomic basis of dietary adaptation in insects, including the classically studied coevolution of butterflies with their host plants.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
20
|
Lin K, Yue L, Yuan L, Kang K, Zhang Y, Pang R, Zhang W. Alanine metabolism mediates energy allocation of the brown planthopper to adapt to resistant rice. J Adv Res 2024:S2090-1232(24)00035-3. [PMID: 38246245 DOI: 10.1016/j.jare.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION During the adaptation to host plant resistance, herbivorous insects faced the challenge of overcoming plant defenses while ensuring their own development and reproductive success. To achieve this, a strategic allocation of energy resources for detoxification and ecological fitness maintenance became essential. OBJECTIVE This study aimed to elucidate the intricate energy allocation mechanisms involved in herbivore adaptation that are currently poorly understood. METHODS The rice Oryza sativa and its monophagous pest, the brown planthopper (BPH), Nilaparvata lugens were used as a model system. An integrated analysis of metabolomes and transcriptomes from different BPH populations were conducted to identify the biomarkers. RNA interference of key genes and exogenous injection of key metabolites were performed to validate the function of biomarkers. RESULTS We found that alanine was one of the key biomarkers of BPH adaptation to resistant rice variety IR36. We also found that alanine flow determined the adaptation of BPH to IR36 rice. The alanine aminotransferase (ALT)-mediated alanine transfer to pyruvate was necessary and sufficient for the adaptation. This pathway may be conserved, at least to some extent, in BPH adaptation to multiple rice cultivars with different resistance genes. More importantly, ALT-mediated alanine metabolism is the foundation of downstream energy resource allocation for the adaptation. The adapted BPH population exhibited a significantly higher level of energy reserves in the fat body and ovary when fed with IR36 rice, compared to the unadapted population. This rendered the elevated detoxification in the adapted BPH and their ecological fitness recovery. CONCLUSION Overall, our findings demonstrated the crucial role of ALT-mediated alanine metabolism in energy allocation during the adaptation to resistant rice in BPH. This will provide novel knowledge regarding the co-evolutionary mechanisms between herbivores and their host plants.
Collapse
Affiliation(s)
- Kai Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lei Yue
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; School of Life Sciences, Hebei University, Baoding 071002, China
| | - Longyu Yuan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Kui Kang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yibing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Pang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
21
|
Coolen S, Rogowska-van der Molen MA, Kwakernaak I, van Pelt JA, Postma JL, van Alen T, Jansen RS, Welte CU. Microbiota of pest insect Nezara viridula mediate detoxification and plant defense repression. THE ISME JOURNAL 2024; 18:wrae097. [PMID: 38836495 PMCID: PMC11195473 DOI: 10.1093/ismejo/wrae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/22/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
The Southern green shield bug, Nezara viridula, is an invasive piercing and sucking pest insect that feeds on crop plants and poses a threat to global food production. Given that insects are known to live in a close relationship with microorganisms, our study provides insights into the community composition and function of the N. viridula-associated microbiota and its effect on host-plant interactions. We discovered that N. viridula hosts both vertically and horizontally transmitted microbiota throughout different developmental stages and their salivary glands harbor a thriving microbial community that is transmitted to the plant while feeding. The N. viridula microbiota was shown to aid its host with the detoxification of a plant metabolite, namely 3-nitropropionic acid, and repression of host plant defenses. Our results demonstrate that the N. viridula-associated microbiota plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.
Collapse
Affiliation(s)
- Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Translational Plant Biology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Magda A Rogowska-van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Ineke Kwakernaak
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Johan A van Pelt
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jelle L Postma
- Department of General Instrumentation, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Theo van Alen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
22
|
Luo SH, Hua J, Liu Y, Li SH. The Chemical Ecology of Plant Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 124:57-183. [PMID: 39101984 DOI: 10.1007/978-3-031-59567-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Plants are excellent chemists with an impressive capability of biosynthesizing a large variety of natural products (also known as secondary or specialized metabolites) to resist various biotic and abiotic stresses. In this chapter, 989 plant natural products and their ecological functions in plant-herbivore, plant-microorganism, and plant-plant interactions are reviewed. These compounds include terpenoids, phenols, alkaloids, and other structural types. Terpenoids usually provide direct or indirect defense functions for plants, while phenolic compounds play important roles in regulating the interactions between plants and other organisms. Alkaloids are frequently toxic to herbivores and microorganisms, and can therefore also provide defense functions. The information presented should provide the basis for in-depth research of these plant natural products and their natural functions, and also for their further development and utilization.
Collapse
Affiliation(s)
- Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang, 110866, Liaoning Province, P. R. China
| | - Yan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, LiuTai Avenue 1166, Wenjiang District, Chengdu, 611137, Sichuan Province, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China.
| |
Collapse
|
23
|
Ono E, Murata J. Exploring the Evolvability of Plant Specialized Metabolism: Uniqueness Out Of Uniformity and Uniqueness Behind Uniformity. PLANT & CELL PHYSIOLOGY 2023; 64:1449-1465. [PMID: 37307423 PMCID: PMC10734894 DOI: 10.1093/pcp/pcad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
The huge structural diversity exhibited by plant specialized metabolites has primarily been considered to result from the catalytic specificity of their biosynthetic enzymes. Accordingly, enzyme gene multiplication and functional differentiation through spontaneous mutations have been established as the molecular mechanisms that drive metabolic evolution. Nevertheless, how plants have assembled and maintained such metabolic enzyme genes and the typical clusters that are observed in plant genomes, as well as why identical specialized metabolites often exist in phylogenetically remote lineages, is currently only poorly explained by a concept known as convergent evolution. Here, we compile recent knowledge on the co-presence of metabolic modules that are common in the plant kingdom but have evolved under specific historical and contextual constraints defined by the physicochemical properties of each plant specialized metabolite and the genetic presets of the biosynthetic genes. Furthermore, we discuss a common manner to generate uncommon metabolites (uniqueness out of uniformity) and an uncommon manner to generate common metabolites (uniqueness behind uniformity). This review describes the emerging aspects of the evolvability of plant specialized metabolism that underlie the vast structural diversity of plant specialized metabolites in nature.
Collapse
Affiliation(s)
- Eiichiro Ono
- Suntory Global Innovation Center Ltd. (SIC), 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Jun Murata
- Bioorganic Research Institute (SUNBOR), Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| |
Collapse
|
24
|
Liu G, Fu J, Wang L, Fang M, Zhang W, Yang M, Yang X, Xu Y, Shi L, Ma X, Wang Q, Chen H, Yu C, Yu D, Chen F, Jiang Y. Diverse O-methyltransferases catalyze the biosynthesis of floral benzenoids that repel aphids from the flowers of waterlily Nymphaea prolifera. HORTICULTURE RESEARCH 2023; 10:uhad237. [PMID: 38156285 PMCID: PMC10753166 DOI: 10.1093/hr/uhad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Nymphaea is a key genus of the ANA grade (Amborellales, Nymphaeales, and Austrobaileyales) of basal flowering plants, which serve as a key model to study the early evolution of floral traits. In this study, we comprehensively investigated the emission, biosynthesis, and biological function of the floral scent in a night-blossoming waterlily Nymphaea prolifera. The headspace volatile collection combined with GC-MS analysis showed that the floral scent of N. prolifera is predominately comprised by methylated benzenoids including anisole, veratrole, guaiacol, and methoxyanisole. Moreover, the emission of these floral benzenoids in N. prolifera exhibited temporal and spatial pattern with circadian rhythm and tissue specificity. By creating and mining transcriptomes of N. prolifera flowers, 12 oxygen methyltransferases (NpOMTs) were functionally identified. By in vitro enzymatic assay, NpOMT3, 6, and 7 could produce anisole and NpOMT5, 7, 9, produce guaiacol, whereas NpOMT3, 6, 9, 11 catalyzed the formation of veratrole. Methoxyanisole was identified as the universal product of all NpOMTs. Expression patterns of NpOMTs provided implication for their roles in the production of the respective benzenoids. Phylogenetic analysis of OMTs suggested a Nymphaea-specific expansion of the OMT family, indicating the evolution of lineage-specific functions. In bioassays, anisole, veratrole, and guaiacol in the floral benzenoids were revealed to play the critical role in repelling waterlily aphids. Overall, this study indicates that the basal flowering plant N. prolifera has evolved a diversity and complexity of OMT genes for the biosynthesis of methylated benzenoids that can repel insects from feeding the flowers. These findings provide new insights into the evolutional mechanism and ecological significance of the floral scent from early-diverged flowering plants.
Collapse
Affiliation(s)
- Guanhua Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianyu Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lingyun Wang
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Zhejiang Province 321000, China
| | - Mingya Fang
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Zhejiang Province 321000, China
| | - Wanbo Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xuemin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Lin Shi
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Zhejiang Province 321000, China
| | - Xiaoying Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Hui Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Cuiwei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Dongbei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Yifan Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Nawaz M, Sun J, Shabbir S, Khattak WA, Ren G, Nie X, Bo Y, Javed Q, Du D, Sonne C. A review of plants strategies to resist biotic and abiotic environmental stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165832. [PMID: 37524179 DOI: 10.1016/j.scitotenv.2023.165832] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Plants exposed to a variety of abiotic and biotic stressors including environmental pollution and global warming pose significant threats to biodiversity and ecosystem services. Despite substantial literature documenting how plants adapt to distinct stressors, there still is a lack of knowledge regarding responses to multiple stressors and how these affects growth and development. Exposure of plants to concurrent biotic and abiotic stressors such as cadmium and drought, leads to pronounced inhibition in above ground biomass, imbalance in oxidative homeostasis, nutrient assimilation and stunted root growth, elucidating the synergistic interactions of multiple stressors culminating in adverse physiological outcomes. Impact of elevated heavy metal and water deficit exposure extends beyond growth and development, influencing the biodiversity of the microenvironment including the rhizosphere nutrient profile and microbiome. These findings have significant implications for plant-stress interactions and ecosystem functioning that prompt immediate action in order to eliminate effect of pollution and address global environmental issues to promote sustainable tolerance for multiple stress combinations in plants. Here, we review plant tolerance against stress combinations, highlighting the need for interdisciplinary approaches and advanced technologies, such as omics and molecular tools, to achieve a comprehensive understanding of underlying stress tolerance mechanisms. To accelerate progress towards developing stress-tolerance in plants against multiple environmental stressors, future research in plant stress tolerance should adopt a collaborative approach, involving researchers from multiple disciplines with diverse expertise and resources.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianfan Sun
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Samina Shabbir
- Department of Chemistry, The Women University Multan, Pakistan
| | - Wajid Ali Khattak
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guangqian Ren
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qaiser Javed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
26
|
Cong L, Ma J, Zhang Y, Zhou Y, Cong X, Hao M. Effect of anti-skin disorders of ginsenosides- A Systematic Review. J Ginseng Res 2023; 47:605-614. [PMID: 37720567 PMCID: PMC10499590 DOI: 10.1016/j.jgr.2023.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 09/19/2023] Open
Abstract
Ginsenosides are bioactive components of Panax ginseng with many functions such as anti-aging, anti-oxidation, anti-inflammatory, anti-fatigue, and anti-tumor. Ginsenosides are categorized into dammarane, oleanene, and ocotillol type tricyclic triterpenoids based on the aglycon structure. Based on the sugar moiety linked to C-3, C-20, and C-6, C-20, dammarane type was divided into protopanaxadiol (PPD) and protopanaxatriol (PPT). The effects of ginsenosides on skin disorders are noteworthy. They play anti-aging roles by enhancing immune function, resisting melanin formation, inhibiting oxidation, and elevating the concentration of collagen and hyaluronic acid. Thus, ginsenosides have previously been widely used to resist skin diseases and aging. This review details the role of ginsenosides in the anti-skin aging process from mechanisms and experimental research.
Collapse
Affiliation(s)
- Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jinli Ma
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yundong Zhang
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Xianling Cong
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
27
|
Arnaiz A, Vallejo-García LJ, Vallejos S, Diaz I. Isolation and Quantification of Mandelonitrile from Arabidopsis thaliana Using Gas Chromatography/Mass Spectrometry. Bio Protoc 2023; 13:e4700. [PMID: 37397798 PMCID: PMC10308191 DOI: 10.21769/bioprotoc.4700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 04/15/2023] [Indexed: 07/04/2023] Open
Abstract
Mandelonitrile is a nitrogen-containing compound, considered an essential secondary metabolite. Chemically, it is a cyanohydrin derivative of benzaldehyde, with relevant functions in different physiological processes including defense against phytophagous arthropods. So far, procedures for detecting mandelonitrile have been effectively applied in cyanogenic plant species such as Prunus spp. Nevertheless, its presence in Arabidopsis thaliana , considered a non-cyanogenic species, has never been determined. Here, we report the development of an accurate protocol for mandelonitrile quantification in A. thaliana within the context of A. thaliana -spider mite interaction. First, mandelonitrile was isolated from Arabidopsis rosettes using methanol; then, it was derivatized by silylation to enhance detection and, finally, it was quantified using gas chromatography-mass spectrometry. The selectivity and sensitivity of this method make it possible to detect low levels of mandelonitrile (LOD 3 ppm) in a plant species considered non-cyanogenic that, therefore, will have little to no cyanogenic compounds, using a small quantity of starting material (≥100 mg).
Collapse
Affiliation(s)
- Ana Arnaiz
- Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Burgos, Spain
| | | | - Saúl Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Burgos, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Departamento de BiotecnologíaBiología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
28
|
Spano M, Di Matteo G, Fernandez Retamozo CA, Lasalvia A, Ruggeri M, Sandri G, Cordeiro C, Sousa Silva M, Totaro Fila C, Garzoli S, Crestoni ME, Mannina L. A Multimethodological Approach for the Chemical Characterization of Edible Insects: The Case Study of Acheta domesticus. Foods 2023; 12:2331. [PMID: 37372542 DOI: 10.3390/foods12122331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Acheta domesticus (house cricket) has been recently introduced into the official European list of novel foods, representing an alternative and sustainable food source. Up to now, the chemical characterization of this edible insect has been focused only on specific classes of compounds. Here, three production batches of an A. domesticus powder were investigated by means of a multimethodological approach based on NMR, FT-ICR MS, and GC-MS methodologies. The applied analytical protocol, proposed for the first time in the study of an edible insect, allowed us to identify and quantify compounds not previously reported in crickets. In particular, methyl-branched hydrocarbons, previously identified in other insects, together with other compounds such as citrulline, formate, γ-terpinene, p-cymene, α-thujene, β-thujene, and 4-carene were detected. Amino acids, organic acids, and fatty acids were also identified and quantified. The improved knowledge of the chemical profile of this novel food opens new horizons both for the use of crickets as a food ingredient and for the use of extracts for the production of new formulations. In order to achieve this objective, studies regarding safety, biological activity, bioaccessibility, and bioavailability are needed as future perspectives in this field.
Collapse
Affiliation(s)
- Mattia Spano
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carlos Alberto Fernandez Retamozo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alba Lasalvia
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Carlos Cordeiro
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo-Grande, 1749-016 Lisboa, Portugal
| | - Marta Sousa Silva
- Laboratório de FT-ICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo-Grande, 1749-016 Lisboa, Portugal
| | | | - Stefania Garzoli
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Elisa Crestoni
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
29
|
Gao S, Guo X, Liu S, Li S, Zhang J, Xue S, Tang Q, Zhang K, Li R. Cytochrome P450 gene CYP6BQ8 mediates terpinen-4-ol susceptibility in the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:271-281. [PMID: 36636814 DOI: 10.1017/s0007485322000566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cytochrome P450 proteins (CYPs) in insects can encode various detoxification enzymes and catabolize heterologous substances, conferring tolerance to insecticides. This study describes the identification of a P450 gene (CYP6BQ8) from Tribolium castaneum (Herbst) and investigation of its spatiotemporal expression profile and potential role in the detoxification of terpinen-4-ol, a component of plant essential oils. The developmental expression profile showed that TcCYP6BQ8 expression was relatively higher in early- and late-larval stages of T. castaneum compared with other developmental stages. Tissue expression profiles showed that TcCYP6BQ8 was mainly expressed in the head and integument of both larvae and adults. The expression profiling of TcCYP6BQ8 in developmental stages and tissues is closely related to the detoxification of heterologous substances. TcCYP6BQ8 expression was significantly induced after exposure to terpinen-4-ol, and RNA interference against TcCYP6BQ8 increased terpinen-4-ol-induced larval mortality from 47.78 to 66.67%. This indicates that TcCYP6BQ8 may be involved in T. castaneum's metabolism of terpinen-4-ol. Correlation investigation between the CYP6BQ8 gene and terpinen-4-ol resistance in T. castaneum revealed that the TcCYP6BQ8 gene was one of the factors behind T. castaneum's resistance to terpinen-4-ol. This discovery may provide a new theoretical foundation for future regulation of T. castaneum.
Collapse
Affiliation(s)
- Shanshan Gao
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xinlong Guo
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Shumei Liu
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Siying Li
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Jiahao Zhang
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Shuang Xue
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Qingbo Tang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Kunpeng Zhang
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Ruimin Li
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| |
Collapse
|
30
|
Barta CÉ, Jenkins BC, Lindstrom DS, Zahnd AK, Székely G. The First Evidence of Gibberellic Acid's Ability to Modulate Target Species' Sensitivity to Honeysuckle ( Lonicera maackii) Allelochemicals. PLANTS (BASEL, SWITZERLAND) 2023; 12:1014. [PMID: 36903875 PMCID: PMC10005159 DOI: 10.3390/plants12051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Invasive species employ competitive strategies such as releasing allelopathic chemicals into the environment that negatively impact native species. Decomposing Amur honeysuckle (Lonicera maackii) leaves leach various allelopathic phenolics into the soil, decreasing the vigor of several native species. Notable differences in the net negative impacts of L. maackii metabolites on target species were argued to depend on soil properties, the microbiome, the proximity to the allelochemical source, the allelochemical concentration, or environmental conditions. This study is the first to address the role of target species' metabolic properties in determining their net sensitivity to allelopathic inhibition by L. maackii. Gibberellic acid (GA3) is a critical regulator of seed germination and early development. We hypothesized that GA3 levels might affect the target sensitivity to allelopathic inhibitors and evaluated differences in the response of a standard (control, Rbr), a GA3-overproducing (ein), and a GA3-deficient (ros) Brassica rapa variety to L. maackii allelochemicals. Our results demonstrate that high GA3 concentrations substantially alleviate the inhibitory effects of L. maackii allelochemicals. A better understanding of the importance of target species' metabolic properties in their responses to allelochemicals will contribute to developing novel invasive species control and biodiversity conservation protocols and may contribute to applications in agriculture.
Collapse
Affiliation(s)
- Csengele Éva Barta
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA
| | - Brian Colby Jenkins
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA
| | - Devon Shay Lindstrom
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA
| | - Alyka Kay Zahnd
- Department of Biology, Missouri Western State University, 4525 Downs Drive, Agenstein-Remington Halls, St. Joseph, MO 64507, USA
| | - Gyöngyi Székely
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
| |
Collapse
|
31
|
Li S, Zhang L, Sun M, Lv M, Yang Y, Xu W, Wang L. Biogenesis of flavor-related linalool is diverged and genetically conserved in tree peony ( Paeonia × suffruticosa). HORTICULTURE RESEARCH 2023; 10:uhac253. [PMID: 36751271 PMCID: PMC9896599 DOI: 10.1093/hr/uhac253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/15/2022] [Indexed: 06/18/2023]
Abstract
Floral scent is an important and genetically complex trait in horticultural plants. Tree peony (Paeonia × suffruticosa) originates in the Pan-Himalaya and has nine wild species divided into two subsections, Delavayanae and Vaginatae. Their flowers are beloved worldwide for their sweet floral fragrance, yet the flavor-related volatiles and underlying biosynthetic pathways remain unknown. Here, we characterized the volatile blends of all wild tree peony species and found that the flavor-related volatiles were highly divergent, but linalool was a unique monoterpene in subsect. Delavayanae. Further detection of volatiles in 97 cultivars with various genetic backgrounds showed that linalool was also the characteristic aroma component in Paeonia delavayi hybrid progenies, suggesting that linalool was conserved and dominant within subsect. Delavayanae and its hybrids, instead of species and cultivars from subsect. Vaginatae. Global transcriptome analysis of all wild tree peony species and 60 cultivars revealed five candidate genes that may be involved in key steps of linalool biosynthesis; especially the expressions of three TPS genes, PdTPS1, PdTPS2, and PdTPS4, were significantly positively correlated with linalool emissions across tree peony cultivars. Further biochemical evidence demonstrated that PdTPS1 and PdTPS4 were the pivotal genes determining the species-specific and cultivar-specific emission of linalool. This study revealed a new insight into floral scent divergence in tree peony and would greatly facilitate our understanding of the phylogeny and evolution of Paeonia.
Collapse
Affiliation(s)
| | | | - Miao Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Mengwen Lv
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yong Yang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | | | | |
Collapse
|
32
|
Xu Z, Liu H, Ullah N, Tung SA, Ali B, Li X, Chen S, Xu L. Insights into accumulation of active ingredients and rhizosphere microorganisms between Salvia miltiorrhiza and S. castanea. FEMS Microbiol Lett 2023; 370:fnad102. [PMID: 37863834 DOI: 10.1093/femsle/fnad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Salvia miltiorrhiza is an important traditional herbal medicine, and its extracts could be used for treating cardiovascular disease. Although these medicinal compounds are functionally similar, their wild relative, S. castanea, produces significantly different concentrations of these compounds. The reason for their differences is still unknown. In a series of soil and plant-based analyses, we explored and compared the rhizosphere microbiome of S. miltiorrhiza and S. castanea. To further investigate the geographical distribution of S. castanea, MaxEnt models were used to predict the future suitable habitat areas of S. castanea in China. Results revealed the distributions and structure of the rhizosphere microbial community of S. miltiorrhiza and S. castanea at different times. In addition, differences in altitude and soil moisture resulting from changes in climate and geographical location are also critical environmental factors in the distribution of S. castanea. The findings of this study increase our understanding of plant adaptation to their geographical environment through secondary metabolites. It also highlights the complex interplay between rhizospheric factors and plant metabolism, which provides the theoretical basis for the cultivation of S. miltiorrhiza and the use of S. castanea resources.
Collapse
Affiliation(s)
- Zishu Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hui Liu
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Najeeb Ullah
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| | - Shahbaz Atta Tung
- Department of Agronomy, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Punjab 46300, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan 64200, Pakistan
| | - Xin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shubin Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
33
|
Cui SF, Wang JW, Li HF, Fang R, Yu X, Lu YJ. Microencapsulation of Capsaicin in Chitosan Microcapsules: Characterization, Release Behavior, and Pesticidal Properties against Tribolium castaneum (Herbst). INSECTS 2022; 14:27. [PMID: 36661955 PMCID: PMC9864733 DOI: 10.3390/insects14010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Capsaicin is a capsaicinoid in hot chili peppers, with excellent antibacterial and antimicrobial activities and a good safety profile, but its poor solubility and instability restrict its effectiveness. This limitation may be mitigated by encapsulation. Herein, capsaicin microcapsules (CCMs) were prepared through layer-by-layer self-assembly, using chitosan and carboxymethyl chitosan as shell materials. The chemical and microstructure structural characterization was evaluated by the methods of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The SEM indicated the microcapsules were irregular in shape with an average size of about 100 μm. The encapsulation had a high loading efficiency of 64.31%. FTIR and XRD revealed the absence of the interaction between the core and shell materials and the amorphous nature of the CCMs. The analysis results of the microcapsules' release behavior showed the burst release of capsaicin in 7 days and a slow progression afterward in three solutions, with the highest release properties in a basic solution, followed by acidic and neutral salt solutions. The entomotoxicity of CCMs was conducted against Tribolium castaneum (Herbst), and its efficacy was compared with pure capsaicin. The CCMs were found to be highly effective against this pest. The LC50 value for capsaicin and its microcapsules was 31.37 and 29.75 mg/kg on adults, respectively. According to these values, T. castaneum's development and reproduction were significantly inhibited compared with the control group. The excellent physicochemical characteristics and insecticidal performance show a high application value for integrated pest control.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu-Jie Lu
- Correspondence: ; Tel./Fax: +86-21-85626711
| |
Collapse
|
34
|
Abstract
Plants, animals, and microbes produce a plethora of natural products that are important for defense and communication. Most of these compounds show a phylogenetically restricted occurrence, but, in rare instances, the same natural product is biosynthesized by organisms in two different kingdoms. The monoterpene-derived iridoids, for example, have been found in more than 50 plant families but are also observed in several insect orders. The discovery of the aphid iridoid pathway, one of the longest and most chemically complex insect-derived natural product biosynthetic pathways reported to date, highlights the mechanisms underlying the convergent evolution of metabolic enzymes in insects and plants, including the recruitment of different enzyme classes to catalyze the same chemical processes. Iridoid monoterpenes, widely distributed in plants and insects, have many ecological functions. While the biosynthesis of iridoids has been extensively studied in plants, little is known about how insects synthesize these natural products. Here, we elucidated the biosynthesis of the iridoids cis-trans-nepetalactol and cis-trans-nepetalactone in the pea aphid Acyrthosiphon pisum (Harris), where they act as sex pheromones. The exclusive production of iridoids in hind legs of sexual female aphids allowed us to identify iridoid genes by searching for genes specifically expressed in this tissue. Biochemical characterization of candidate enzymes revealed that the iridoid pathway in aphids proceeds through the same sequence of intermediates as described for plants. The six identified aphid enzymes are unrelated to their counterparts in plants, conclusively demonstrating an independent evolution of the entire iridoid pathway in plants and insects. In contrast to the plant pathway, at least three of the aphid iridoid enzymes are likely membrane bound. We demonstrated that a lipid environment facilitates the cyclization of a reactive enol intermediate to the iridoid cyclopentanoid-pyran scaffold in vitro, suggesting that membranes are an essential component of the aphid iridoid pathway. Altogether, our discovery of this complex insect metabolic pathway establishes the genetic and biochemical basis for the formation of iridoid sex pheromones in aphids, and this discovery also serves as a foundation for understanding the convergent evolution of complex metabolic pathways between kingdoms.
Collapse
|
35
|
He S, Jiang B, Chakraborty A, Yu G. The Evolution of Glycoside Hydrolase Family 1 in Insects Related to Their Adaptation to Plant Utilization. INSECTS 2022; 13:786. [PMID: 36135486 PMCID: PMC9500737 DOI: 10.3390/insects13090786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Insects closely interact with plants with multiple genes involved in their interactions. β-glucosidase, constituted mainly by glycoside hydrolase family 1 (GH1), is a crucial enzyme in insects to digest plant cell walls and defend against natural enemies with sequestered plant metabolites. To gain more insights into the role of this enzyme in plant-insect interactions, we analyzed the evolutionary history of the GH1 gene family with publicly available insect genomes. We found that GH1 is widely present in insects, while the gene numbers are significantly higher in insect herbivores directly feeding on plant cell walls than in other insects. After reconciling the insect GH1 gene tree with a species tree, we found that the patterns of duplication and loss of GH1 genes differ among insect orders, which may be associated with the evolution of their ecology. Furthermore, the majority of insects' GH1 genes were tandem-duplicated and subsequently went through neofunctionalization. This study shows the evolutionary history of an important gene family GH1 in insects and facilitates our understanding of the evolution of insect-plant interactions.
Collapse
Affiliation(s)
- Shulin He
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Bin Jiang
- College of Life Science, Anhui Normal University, Beijing Rd. 1, Wuhu 241000, China
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Guozhi Yu
- College of Life Science, Sichuan Agricultural University, Xinkang Rd. 46, Ya’an 625014, China
| |
Collapse
|
36
|
Bol S, Scaffidi A, Bunnik EM, Flematti GR. Behavioral differences among domestic cats in the response to cat-attracting plants and their volatile compounds reveal a potential distinct mechanism of action for actinidine. BMC Biol 2022; 20:192. [PMID: 36008824 PMCID: PMC9414117 DOI: 10.1186/s12915-022-01369-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background It has been known for centuries that cats respond euphorically to Nepeta cataria (catnip). Recently, we have shown that Lonicera tatarica (Tatarian honeysuckle), Actinidia polygama (silver vine), and Valeriana officinalis (valerian) can also elicit this “catnip response”. The aim of this study was to learn if the behavior seen in response to these plants is similar to the response to catnip. Furthermore, we studied if these responses are fixed or if there are differences between cats. While nepetalactone was identified decades ago as the molecule responsible for the “catnip response”, we know that this volatile is found almost exclusively in catnip. Therefore, we also aimed to identify other compounds in these alternative plants that can elicit the blissful behavior in cats. Bioassays with 6 cats were performed in a low-stress environment, where 5 plants and 13 single compounds were each tested for at least 100 and 17 h, respectively. All responses were video recorded and BORIS software was used to analyze the cats’ behavior. Results Both response duration and behavior differed significantly between the cats. While individual cats had preferences for particular plants, the behavior of individual cats was consistent among all plants. About half a dozen lactones similar in structure to nepetalactone were able to elicit the “catnip response”, as were the structurally more distinct molecules actinidine and dihydroactinidiolide. Most cats did not respond to actinidine, whereas those who did, responded longer to this volatile than any of the other secondary plant metabolites, and different behavior was observed. Interestingly, dihydroactinidiolide was also found in excretions and secretions of the red fox, making this the first report of a compound produced by a mammal that can elicit the “catnip response”. A range of different cat-attracting compounds was detected by chemical analysis of plant materials but differences in cat behavior could not be directly related to differences in chemical composition of the plants. Together with results of, among others, habituation / dishabituation experiments, this indicates that additional cat-attracting compounds may be present in the plant materials that remain to be discovered. Conclusions Collectively, these findings suggest that both the personality of the cat and genetic variation in the genes encoding olfactory receptors may play a role in how cats respond to cat-attracting plants. Furthermore, the data suggest a potential distinct mechanism of action for actinidine. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01369-1.
Collapse
Affiliation(s)
| | - Adrian Scaffidi
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | | | - Gavin R Flematti
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
37
|
Arnaiz A, Santamaria ME, Rosa-Diaz I, Garcia I, Dixit S, Vallejos S, Gotor C, Martinez M, Grbic V, Diaz I. Hydroxynitrile lyase defends Arabidopsis against Tetranychus urticae. PLANT PHYSIOLOGY 2022; 189:2244-2258. [PMID: 35474139 PMCID: PMC9342993 DOI: 10.1093/plphys/kiac170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 05/31/2023]
Abstract
Plant-pest interactions involve multifaceted processes encompassing a complex crosstalk of pathways, molecules, and regulators aimed at overcoming defenses developed by each interacting organism. Among plant defensive compounds against phytophagous arthropods, cyanide-derived products are toxic molecules that directly target pest physiology. Here, we identified the Arabidopsis (Arabidopsis thaliana) gene encoding hydroxynitrile lyase (AtHNL, At5g10300) as one gene induced in response to spider mite (Tetranychus urticae) infestation. AtHNL catalyzes the reversible interconversion between cyanohydrins and derived carbonyl compounds with free cyanide. AtHNL loss- and gain-of-function Arabidopsis plants showed that specific activity of AtHNL using mandelonitrile as substrate was higher in the overexpressing lines than in wild-type (WT) and mutant lines. Concomitantly, mandelonitrile accumulated at higher levels in mutant lines than in WT plants and was significantly reduced in the AtHNL overexpressing lines. After mite infestation, mandelonitrile content increased in WT and overexpressing plants but not in mutant lines, while hydrogen cyanide (HCN) accumulated in the three infested Arabidopsis genotypes. Feeding bioassays demonstrated that the AtHNL gene participated in Arabidopsis defense against T. urticae. The reduced leaf damage detected in the AtHNL overexpressing lines reflected the mite's reduced ability to feed on leaves, which consequently restricted mite fecundity. In turn, mites upregulated TuCAS1 encoding β-cyanoalanine synthase to avoid the respiratory damage produced by HCN. This detoxification effect was functionally demonstrated by reduced mite fecundity observed when dsRNA-TuCAS-treated mites fed on WT plants and hnl1 mutant lines. These findings add more players in the Arabidopsis-T. urticae interplay to overcome mutual defenses.
Collapse
Affiliation(s)
- Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
| | - Irene Rosa-Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
| | - Irene Garcia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Sameer Dixit
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Saul Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Burgos 09001, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Vojislava Grbic
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| |
Collapse
|
38
|
Cama B, Ehlers S, Szczerbowski D, Thomas-Oates J, Jiggins CD, Schulz S, McMillan WO, Dasmahapatra KK. Exploitation of an ancestral pheromone biosynthetic pathway contributes to diversification in Heliconius butterflies. Proc Biol Sci 2022; 289:20220474. [PMID: 35892212 PMCID: PMC9326301 DOI: 10.1098/rspb.2022.0474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During courtship, male butterflies of many species produce androconial secretions containing male sex pheromones (MSPs) that communicate species identity and affect female choice. MSPs are thus likely candidates as reproductive barriers, yet their role in speciation remains poorly studied. Although Heliconius butterflies are a model system in speciation, their MSPs have not been investigated from a macroevolutionary perspective. We use GC/MS to characterize male androconial secretions in 33 of the 69 species in the Heliconiini tribe. We found these blends to be species-specific, consistent with a role in reproductive isolation. We detected a burst in blend diversification rate at the most speciose genus, Heliconius; a consequence of Heliconius and Eueides species using a fatty acid (FA) metabolic pathway to unlock more complex blends than basal Heliconiini species, whose secretions are dominated by plant-like metabolites. A comparison of 10 sister species pairs demonstrates a striking positive correlation between blend dissimilarity and range overlap, consistent with character displacement or reinforcement in sympatry. These results demonstrate for the first time that MSP diversification can promote reproductive isolation across this group of butterflies, showcasing how implementation of an ancestral trait, the co-option of the FA metabolic pathway for pheromone production, can facilitate rapid speciation.
Collapse
Affiliation(s)
- Bruna Cama
- Department of Biology, University of York, Heslington YO10 5DD, UK
| | - Stephanie Ehlers
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - Daiane Szczerbowski
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - Jane Thomas-Oates
- Department of Chemistry, University of York, Heslington YO10 5DD, UK
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | | | | |
Collapse
|
39
|
Coolen S, van der Molen MR, Welte CU. The secret life of insect-associated microbes and how they shape insect-plant interactions. FEMS Microbiol Ecol 2022; 98:6643329. [PMID: 35830517 PMCID: PMC9409087 DOI: 10.1093/femsec/fiac083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Insects are associated with a plethora of different microbes of which we are only starting to understand their role in shaping insect–plant interactions. Besides directly benefitting from symbiotic microbial metabolism, insects obtain and transmit microbes within their environment, making them ideal vectors and potential beneficiaries of plant diseases and microbes that alter plant defenses. To prevent damage, plants elicit stress-specific defenses to ward off insects and their microbiota. However, both insects and microbes harbor a wealth of adaptations that allow them to circumvent effective plant defense activation. In the past decades, it has become apparent that the enormous diversity and metabolic potential of insect-associated microbes may play a far more important role in shaping insect–plant interactions than previously anticipated. The latter may have implications for the development of sustainable pest control strategies. Therefore, this review sheds light on the current knowledge on multitrophic insect–microbe–plant interactions in a rapidly expanding field of research.
Collapse
Affiliation(s)
- Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Magda Rogowska- van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
40
|
Ferreira TN, Brazil RP, McDowell MA, Cunha-Júnior EF, Costa PRR, Netto CD, Santos ECT, Genta FA. Effects of anti-Leishmania compounds in the behavior of the sand fly vector Lutzomyia longipalpis. PEST MANAGEMENT SCIENCE 2022; 78:2792-2805. [PMID: 35411662 DOI: 10.1002/ps.6900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Leishmaniasis is an infectious parasitic disease caused by pathogens of the genus Leishmania transmitted through the bite of adult female sand flies. To reduce case numbers, it is necessary to combine different control approaches, especially those aimed at the sand fly vectors. Innovative forms of control with the use of attractive sugar baits explored the fact that adult sand flies need to feed on sugars of plant origin. Leishmania parasites develop in the gut of sand flies, interacting with the sugars in the diet of adults. Recent studies have shown that sugar baits containing plant-derived compounds can reduce sand fly survival, the number of parasites per gut, and the percentage of infected sand flies. Several synthetic compounds produced from naphthoquinones and pterocarpans have anti-parasitic activity on Leishmania amazonensis and/or Leishmania infantum in cell culture. This work aimed to assess the inclusion of these compounds in sugar baits for blocking transmission, targeting the development of the Leishmania parasite inside the sand fly vector. RESULTS We evaluated the attractant or repellent properties of these compounds, as well as of the reference compound N,N'-diethyl-m-toluamide (DEET), in sugar baits. We also observed changes in feeding preference caused by these compounds, looking for anti-feeding or stimulation of ingestion. Pterocarpanquinone L4 and pentamidine showed attractant and repellent properties, respectively. CONCLUSION Based on the effects in feeding preference and intake volume, pterocarpanquinone L6, and the pyrazole-derived compound P8 were chosen as the most promising compounds for the future development of anti-Leishmania sugar baits. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tainá Neves Ferreira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Reginaldo Peçanha Brazil
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Edézio Ferreira Cunha-Júnior
- Laboratório de Imunoparasitologia, Unidade Integrada de Pesquisa em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, Macaé, Brazil
| | - Paulo Roberto Ribeiro Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chaquip Daher Netto
- Laboratório de Química, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Eduardo Caio Torres Santos
- Laboratório de Bioquímica de Tripanossomatídeos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Itoigawa A, Hayakawa T, Zhou Y, Manning AD, Zhang G, Grutzner F, Imai H. Functional Diversity and Evolution of Bitter Taste Receptors in Egg-Laying Mammals. Mol Biol Evol 2022; 39:6591311. [PMID: 35652727 PMCID: PMC9161717 DOI: 10.1093/molbev/msac107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Egg-laying mammals (monotremes) are a sister clade of therians (placental mammals and marsupials) and a key clade to understand mammalian evolution. They are classified into platypus and echidna, which exhibit distinct ecological features such as habitats and diet. Chemosensory genes, which encode sensory receptors for taste and smell, are believed to adapt to the individual habitats and diet of each mammal. In this study, we focused on the molecular evolution of bitter taste receptors (TAS2Rs) in monotremes. The sense of bitter taste is important to detect potentially harmful substances. We comprehensively surveyed agonists of all TAS2Rs in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus) and compared their functions with orthologous TAS2Rs of marsupial and placental mammals (i.e., therians). As results, the agonist screening revealed that the deorphanized monotreme receptors were functionally diversified. Platypus TAS2Rs had broader receptive ranges of agonists than those of echidna TAS2Rs. While platypus consumes a variety of aquatic invertebrates, echidna mainly consumes subterranean social insects (ants and termites) as well as other invertebrates. This result indicates that receptive ranges of TAS2Rs could be associated with feeding habits in monotremes. Furthermore, some orthologous receptors in monotremes and therians responded to β-glucosides, which are feeding deterrents in plants and insects. These results suggest that the ability to detect β-glucosides and other substances might be shared and ancestral among mammals.
Collapse
Affiliation(s)
- Akihiro Itoigawa
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan.,Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Japan Monkey Centre, Inuyama, Aichi, Japan
| | | | - Adrian D Manning
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Guojie Zhang
- Department of Biology, University of Copenhagen, Kobenhavn, Denmark
| | - Frank Grutzner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Hiroo Imai
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, Japan
| |
Collapse
|
42
|
Nguyen TD, Dang TTT. Old path, new frontier. Nat Chem Biol 2022; 18:582-583. [PMID: 35606557 DOI: 10.1038/s41589-022-01045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Thu-Thuy T Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada.
| |
Collapse
|
43
|
Shi JH, Liu H, Pham TC, Hu XJ, Liu L, Wang C, Foba CN, Wang SB, Wang MQ. Volatiles and hormones mediated root-knot nematode induced wheat defense response to foliar herbivore aphid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152840. [PMID: 34995605 DOI: 10.1016/j.scitotenv.2021.152840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Plant root-leaf communication signals are critical for plant defense. Numerous studies show that belowground organisms can alter systemically resistance traits in aboveground parts against herbivores. However, there are limited studies on root-knot nematode-aphid interaction. Moreover, the impact of nematode's initial density and infection time on plant defense is poorly understood. Here we aim to examine the induced defense responses by root-knot nematode Meloidogyne incognita against aboveground feeding aphid Sitobion avenae in wheat. Further, we investigated the influence of the nematode infection density as well as the length of infection in these interactions. We tested the direct and indirect defense responses triggered by M. incognita against S. avenae as well as how the responses affect the preference of Harmonia axyridis. Plant volatiles and hormones were determined to explore plant defense mechanisms that mediate aboveground-belowground defense. The photosynthetic rate was tested to examine plant tolerance strategy. We found that, both low and high densities M. incognita root infection at 7 days post inoculation (dpi) reduced the feeding of the aphid S. avenae. Behavioral assay showed that H. axyridis preferred plants co-damaged by both M. incognita and S. avenae at 7 dpi. M. incognita infection induced the changes of jasmonic acid, salicylic acid and volatile content, which mediated plant response to S. avenae. Furthermore, photosynthetic rate in wheat increased at 5 dpi under 300 M. incognita or 1000 M. incognita infection. These results suggest that plant roots induced multiple defense strategies against foliar herbivores as damages increased. Our study provides evidence of a complex dynamic response of wheat aboveground defense against aphids in response to belowground nematode damage on a temporal scale.
Collapse
Affiliation(s)
- Jin-Hua Shi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - The Cuong Pham
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin-Jun Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Le Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Caroline Ngichop Foba
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu-Bo Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
44
|
Daneshian L, Renggli I, Hanaway R, Offermann LR, Schlachter CR, Hernandez Arriaza R, Henry S, Prakash R, Wybouw N, Dermauw W, Shimizu LS, Van Leeuwen T, Makris TM, Grbic V, Grbic M, Chruszcz M. Structural and functional characterization of β-cyanoalanine synthase from Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103722. [PMID: 35063675 DOI: 10.1016/j.ibmb.2022.103722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Tetranychus urticae is a polyphagous spider mite that can feed on more than 1100 plant species including cyanogenic plants. The herbivore genome contains a horizontally acquired gene tetur10g01570 (TuCAS) that was previously shown to participate in cyanide detoxification. To understand the structure and determine the function of TuCAS in T. urticae, crystal structures of the protein with lysine conjugated pyridoxal phosphate (PLP) were determined. These structures reveal extensive TuCAS homology with the β-substituted alanine synthase family, and they show that this enzyme utilizes a similar chemical mechanism involving a stable α-aminoacrylate intermediate in β-cyanoalanine and cysteine synthesis. We demonstrate that TuCAS is more efficient in the synthesis of β-cyanoalanine, which is a product of the detoxification reaction between cysteine and cyanide, than in the biosynthesis of cysteine. Also, the enzyme carries additional enzymatic activities that were not previously described. We show that TuCAS can detoxify cyanide using O-acetyl-L-serine as a substrate, leading to the direct formation of β-cyanoalanine. Moreover, it catalyzes the reaction between the TuCAS-bound α-aminoacrylate intermediate and aromatic compounds with a thiol group. In addition, we have tested several compounds as TuCAS inhibitors. Overall, this study identifies additional functions for TuCAS and provides new molecular insight into the xenobiotic metabolism of T. urticae.
Collapse
Affiliation(s)
- Leily Daneshian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Isabella Renggli
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Ryan Hanaway
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Lesa R Offermann
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Caleb R Schlachter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Shannon Henry
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Rahul Prakash
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, 9000, Belgium
| | - Wannes Dermauw
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Merelbeke, 9820, Belgium; Department of Plants and Crops, Ghent University, Ghent, 9000, Belgium
| | - Linda S Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, 27607, USA
| | - Vojislava Grbic
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Miodrag Grbic
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada; University of La Rioja, Logrono, Spain
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
45
|
Abstract
Terpenoids represent the largest group of secondary metabolites with variable structures and functions. Terpenoids are well known for their beneficial application in human life, such as pharmaceutical products, vitamins, hormones, anticancer drugs, cosmetics, flavors and fragrances, foods, agriculture, and biofuels. Recently, engineering microbial cells have been provided with a sustainable approach to produce terpenoids with high yields. Noticeably, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system has emerged as one of the most efficient genome-editing technologies to engineer microorganisms for improving terpenoid production. In this review, we summarize the application of the CRISPR-Cas system for the production of terpenoids in microbial hosts such as Escherichia coli, Saccharomyces cerevisiae, Corynebacterium glutamicum, and Pseudomonas putida. CRISPR-Cas9 deactivated Cas9 (dCas9)-based CRISPR (CRISPRi), and the dCas9-based activator (CRISPRa) have been used in either individual or combinatorial systems to control the metabolic flux for enhancing the production of terpenoids. Finally, the prospects of using the CRISPR-Cas system in terpenoid production are also discussed.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, Viet Nam.,Bioresource Research Center, Phenikaa University, Hanoi, Viet Nam
| |
Collapse
|
46
|
Abstract
Ants have outstanding capacity to mediate inter- and intraspecific interactions by producing structurally diverse metabolites from numerous secretory glands. Since Murray Blum's pioneering studies dating from the 1950s, there has been a growing interest in arthropod toxins as natural products. Over a dozen different alkaloid classes have been reported from approximately 40 ant genera in five subfamilies, with peak diversity within the Myrmicinae tribe Solenopsidini. Most ant alkaloids function as venom, but some derive from other glands with alternative functions. They are used in defense (e.g., alarm, repellants) or offense (e.g., toxins) but also serve as antimicrobials and pheromones. We provide an overview of ant alkaloid diversity and function with an evolutionary perspective. We conclude that more directed integrative research is needed. We suggest that comparative phylogenetics will illuminate compound diversification, while molecular approaches will elucidate genetic origins. Biological context, informed by natural history, remains critical not only for research about focal species, but also to guide applied research.
Collapse
Affiliation(s)
- Eduardo Gonçalves Paterson Fox
- Departamento de Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21044-020, Brazil;
| | - Rachelle M M Adams
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio 43210, USA;
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC 20560, USA
| |
Collapse
|
47
|
Jibrin MO, Liu Q, Guingab-Cagmat J, Jones JB, Garrett TJ, Zhang S. Metabolomics Insights into Chemical Convergence in Xanthomonas perforans and Metabolic Changes Following Treatment with the Small Molecule Carvacrol. Metabolites 2021; 11:879. [PMID: 34940636 PMCID: PMC8706651 DOI: 10.3390/metabo11120879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/20/2023] Open
Abstract
Microbes are natural chemical factories and their metabolome comprise diverse arrays of chemicals. The genus Xanthomonas comprises some of the most important plant pathogens causing devastating yield losses globally and previous studies suggested that species in the genus are untapped chemical minefields. In this study, we applied an untargeted metabolomics approach to study the metabolome of a globally spread important xanthomonad, X. perforans. The pathogen is difficult to manage, but recent studies suggest that the small molecule carvacrol was efficient in disease control. Bacterial strains were treated with carvacrol, and samples were taken at time intervals (1 and 6 h). An untreated control was also included. There were five replicates for each sample and samples were prepared for metabolomics profiling using the standard procedure. Metabolomics profiling was carried out using a thermo Q-Exactive orbitrap mass spectrometer with Dionex ultra high-performance liquid chromatography (UHPLC) and an autosampler. Annotation of significant metabolites using the Metabolomics Standards Initiative level 2 identified an array of novel metabolites that were previously not reported in Xanthomonas perforans. These metabolites include methoxybrassinin and cyclobrassinone, which are known metabolites of brassicas; sarmentosin, a metabolite of the Passiflora-heliconiine butterfly system; and monatin, a naturally occurring sweetener found in Sclerochiton ilicifolius. To our knowledge, this is the first report of these metabolites in a microbial system. Other significant metabolites previously identified in non-Xanthomonas systems but reported in this study include maculosin; piperidine; β-carboline alkaloids, such as harman and derivatives; and several important medically relevant metabolites, such as valsartan, metharbital, pirbuterol, and ozagrel. This finding is consistent with convergent evolution found in reported biological systems. Analyses of the effect of carvacrol in time-series and associated pathways suggest that carvacrol has a global effect on the metabolome of X. perforans, showing marked changes in metabolites that are critical in energy biosynthesis and degradation pathways, amino acid pathways, nucleic acid pathways, as well as the newly identified metabolites whose pathways are unknown. This study provides the first insight into the X. perforans metabolome and additionally lays a metabolomics-guided foundation for characterization of novel metabolites and pathways in xanthomonad systems.
Collapse
Affiliation(s)
- Mustafa Ojonuba Jibrin
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
- Department of Crop Protection, Ahmadu Bello University, Zaria 810103, Nigeria
| | - Qingchun Liu
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
| | - Joy Guingab-Cagmat
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (J.G.-C.); (T.J.G.)
| | - Jeffrey B. Jones
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (J.G.-C.); (T.J.G.)
| | - Shouan Zhang
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
48
|
Lee JH, Cha JY, Kim TK, Choi YS, Jang HW. Effects of a defatting process on the thermal stabilities and volatile compound profiles of proteins isolated from Protaetia brevitarsis larvae. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Volatilome and Essential Oil of Ulomoides dermestoides: A Broad-Spectrum Medical Insect. Molecules 2021; 26:molecules26206311. [PMID: 34684892 PMCID: PMC8537694 DOI: 10.3390/molecules26206311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Ulomoides dermestoides are used as a broad-spectrum medical insect in the alternative treatment of various diseases. Preliminary volatilome studies carried out to date have shown, as the main components, methyl-1,4-benzoquinone, ethyl-1,4-benzoquinone, 1-tridecene, 1-pentadecene, and limonene. This work focused on the production of metabolites and their metabolic variations in U. dermestoides under stress conditions to provide additional valuable information to help better understand the broad-spectrum medical uses. To this end, VOCs were characterized by HS-SPME with PEG and CAR/PDMS fibers, and the first reported insect essential oils were obtained. In HS-SMPE, we found 17 terpenes, six quinones, five alkenes, and four aromatic compounds; in the essential oils, 53 terpenes, 54 carboxylic acids and derivatives, three alkynes, 12 alkenes (1-Pentadecene, EOT1: 77.6% and EOT2: 57.9%), 28 alkanes, nine alkyl disulfides, three aromatic compounds, 19 alcohols, three quinones, and 12 aldehydes were identified. Between both study approaches, a total of 171 secondary metabolites were identified with no previous report for U. dermestoides. A considerable number of the identified metabolites showed previous studies of the activity of pharmacological interest. Therefore, considering the wide variety of activities reported for these metabolites, this work allows a broader vision of the therapeutic potential of U. dermestoides in traditional medicine.
Collapse
|
50
|
Tong SR, Lee TH, Cheong SK, Lim YM. Geographical Factor Influences the Metabolite Distribution of House Edible Bird's Nests in Malaysia. Front Nutr 2021; 8:658634. [PMID: 34262923 PMCID: PMC8273228 DOI: 10.3389/fnut.2021.658634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Edible Bird's Nest (EBN) is famously consumed as a food tonic for its high nutritional values with numerous recuperative and therapeutic properties. EBN is majority exploited from swiftlet houses but the differences in terms of metabolite distribution between the production site of house EBN is not yet fully understood. Therefore, this study was designed to identify the metabolite distribution and to determine the relationship pattern for the metabolite distribution of house EBNs from different locations in Malaysia. Methods: The differences of metabolite distribution in house EBN were studied by collecting the samples from 13 states in Malaysia. An extraction method of eHMG was acquired to extract the metabolites of EBN and was subjected to non-targeted metabolite profiling via liquid chromatography-mass spectrometry (LC-MS). Unsupervised multivariate analysis and Venn diagram were used to explore the relationship pattern among the house EBNs in Malaysia. The geographical distribution surrounded the swiftlet house was investigated to understand its influences on the metabolite distribution. Results: The hierarchical clustering analysis (HCA) combined with correlation coefficient revealed the differences between the house EBNs in Malaysia with four main clusters formation. The metabolites distribution among these clusters was unique with their varied combination of geographical distribution. Cluster 1 grouped EBNs from Selangor, Melaka, Negeri Sembilan, Terengganu which geographically distributed with major oil palm field in township; Cluster 2 included Perak and Sarawak with high distribution of oil palm in higher altitude; Cluster 3 included Perlis, Kelantan, Kedah, Penang from lowland of paddy field in village mostly and Cluster 4 grouped Sabah, Pahang, Johor which are majorly distributed with undeveloped hills. The metabolites which drove each cluster formation have happened in a group instead of individual key metabolite. The major metabolites that characterised Cluster 1 were fatty acids, while the rest of the clusters were peptides and secondary metabolites. Conclusion: The metabolite profiling conducted in this study was able to discriminate the Malaysian house EBNs based on metabolites distribution. The factor that most inferences the differences of house EBNs were the geographical distribution, in which geographical distribution affects the distribution of insect and the diet of swiftlet.
Collapse
Affiliation(s)
- Shi-Ruo Tong
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Ting-Hun Lee
- Bioprocess and Polymer Engineering, Faculty of Engineering, School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Soon-Keng Cheong
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| | - Yang-Mooi Lim
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia.,Department of Pre-clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Cheras, Malaysia
| |
Collapse
|