1
|
Galappaththi MCA, Dunstan WA, Hardy GESJ, McComb J, McHenry MP, Zambonelli A, Burgess TI. Advances in molecular genetics have increased knowledge of Tuber species' life cycle and population genetic structure, indicating ways to improve yield. MYCORRHIZA 2024; 35:2. [PMID: 39671091 DOI: 10.1007/s00572-024-01177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/17/2024] [Indexed: 12/14/2024]
Abstract
Truffles are possibly the only high-value cultivated organisms for which some aspects of the habit and life cycle have only recently been elucidated or remain unknown. Molecular techniques have helped explain the biological basis for some traditional empirical management techniques, such as inoculating soil with ascospores to improve yield, and have enhanced the detection of competitive or pathogenic soil microorganisms. Improved precision of assessment of the quality of inoculated seedlings is now possible. New knowledge of the genetic structure of populations has indicated that as trees age, the genotypes of mycorrhizae on inoculated trees change, and that there are large differences in the number of female and male genotypes participating in ascocarp formation. The plasticity of Tuber species has also been revealed, with maternal genotypes growing as an ectomycorrhiza in host tree roots and as surface mycelium or an endophyte in roots of adjacent non-mycorrhizal species. Refinement of management techniques has resulted from applying the new information, and the tools are now available to resolve the many outstanding gaps in our knowledge of Tuber biology.
Collapse
Affiliation(s)
- Mahesh C A Galappaththi
- School of Environmental and Conservation Sciences, Murdoch University, Perth, WA, 6150, Australia.
- Harry Butler Institute, Murdoch University, Perth, WA, 6150, Australia.
| | - William A Dunstan
- Harry Butler Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Giles E St J Hardy
- Harry Butler Institute, Murdoch University, Perth, WA, 6150, Australia
- ArborCarbon Pty Ltd ROTA Trans 1, Murdoch University, Murdoch, WA, 6150, Australia
| | - Jen McComb
- Harry Butler Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Mark P McHenry
- Harry Butler Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Alessandra Zambonelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40126, Bologna, Italy
| | - Treena I Burgess
- Harry Butler Institute, Murdoch University, Perth, WA, 6150, Australia
| |
Collapse
|
2
|
Rondolini M, Zotti M, Bragato G, Baciarelli Falini L, Reale L, Donnini D. The Expanding Truffle Environment: A Study of the Microbial Dynamics in the Old Productive Site and the New Tuber magnatum Picco Habitat. J Fungi (Basel) 2024; 10:800. [PMID: 39590719 PMCID: PMC11595706 DOI: 10.3390/jof10110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Truffles are valuable underground mushrooms with significant economic importance. In recent years, their cultivation has achieved satisfactory results, but not for all species. The harvesting of white truffles (Tuber magnatum Picco) is still dependent on natural production, which is at risk due to various issues, such as improper forest management. A useful practice to protect natural resources is to promote the expansion of productive forests. In this study, we investigate the dynamics of the microbiome in an old and new truffle forest using an amplicon sequencing approach of the fungal ITS region and the prokaryotic 16S rRNA gene. We monitor the soil biological community's development to compare differences and similarities between the primary productive forest and the expanding area over a two-year sampling period. In particular, we observed the colonization of vacant ecological niches by certain fungi, such as those belonging to the genus Mortierella. Additionally, we examined the competitive interactions between saprotrophs and ectomycorrhizal fungi (ECM). In both study areas, the bacterial community was dominated by Pseudomonadota, Planctomycetota, and Actinomycetota. The behavior of the Tuber genus differed significantly from other ECMs and displayed positive correlations with bacterial taxa such as Ktedonobacter, Zavarzinella, and Sphingomonas. The present work provides an initial overview of expanding white truffle habitats. Further, more specific research is needed to explore potential connections between individual taxa.
Collapse
Affiliation(s)
- Mara Rondolini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Maurizio Zotti
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, Italy
| | - Gilberto Bragato
- Research Centre on Viticulture and Enology, Council for Agricultural Research and Economics, 34170 Gorizia, Italy
| | - Leonardo Baciarelli Falini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Lara Reale
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Domizia Donnini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| |
Collapse
|
3
|
Noguchi M, Toju H. Mycorrhizal and endophytic fungi structure forest below-ground symbiosis through contrasting but interdependent assembly processes. ENVIRONMENTAL MICROBIOME 2024; 19:84. [PMID: 39488693 PMCID: PMC11531145 DOI: 10.1186/s40793-024-00628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Interactions between plants and diverse root-associated fungi are essential drivers of forest ecosystem dynamics. The symbiosis is potentially dependent on multiple ecological factors/processes such as host/symbiont specificity, background soil microbiome, inter-root dispersal of symbionts, and fungus-fungus interactions within roots. Nonetheless, it has remained a major challenge to reveal the mechanisms by which those multiple factors/processes determine the assembly of root-associated fungal communities. Based on the framework of joint species distribution modeling, we examined 1,615 root-tips samples collected in a cool-temperate forest to reveal how root-associated fungal community structure was collectively formed through filtering by host plants, associations with background soil fungi, spatial autocorrelation, and symbiont-symbiont interactions. In addition, to detect fungi that drive the assembly of the entire root-associated fungal community, we inferred networks of direct fungus-fungus associations by a statistical modeling that could account for implicit environmental effects. RESULTS The fine-scale community structure of root-associated fungi were best explained by the statistical model including the four ecological factors/processes. Meanwhile, among partial models, those including background soil fungal community structure and within-root fungus-fungus interactions showed the highest performance. When fine-root distributions were examined, ectomycorrhizal fungi tended to show stronger associations with background soil community structure and spatially autocorrelated patterns than other fungal guilds. In contrast, the distributions of root-endophytic fungi were inferred to depend greatly on fungus-fungus interactions. An additional statistical analysis further suggested that some endophytic fungi, such as Phialocephala and Leptodontidium, were placed at the core positions within the web of direct associations with other root-associated fungi. CONCLUSION By applying emerging statistical frameworks to intensive datasets of root-associated fungal communities, we demonstrated background soil fungal community structure and fungus-fungus associations within roots, as well as filtering by host plants and spatial autocorrelation in ecological processes, could collectively drive the assembly of root-associated fungi. We also found that basic assembly rules could differ between mycorrhizal and endophytic fungi, both of which were major components of forest ecosystems. Consequently, knowledge of how multiple ecological factors/processes differentially drive the assembly of multiple fungal guilds is indispensable for comprehensively understanding the mechanisms by which terrestrial ecosystem dynamics are organized by plant-fungal symbiosis.
Collapse
Affiliation(s)
- Mikihito Noguchi
- Center for Ecological Research, Kyoto University, Otsu, 520-2133, Shiga, Japan.
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Hirokazu Toju
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
4
|
Laurent‐Webb L, Maurice K, Perez‐Lamarque B, Bourceret A, Ducousso M, Selosse M. Seed or soil: Tracing back the plant mycobiota primary sources. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13301. [PMID: 38924368 PMCID: PMC11194045 DOI: 10.1111/1758-2229.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Plants host diverse communities of fungi (the mycobiota), playing crucial roles in their development. The assembly processes of the mycobiota, however, remain poorly understood, in particular, whether it is transmitted by parents through the seeds (vertical transmission) or recruited in the environment (horizontal transmission). Here we attempt to quantify the relative contributions of horizontal and vertical transmission in the mycobiota assembly of a desert shrub, Haloxylon salicornicum, by comparing the mycobiota of in situ bulk soil and seeds to that of (i) in situ adult individuals and (ii) in vitro-germinated seedlings in soil collected in situ. We show that the mycobiota are partially vertically transmitted through the seeds to seedlings, whereas bulk soil has a limited contribution to the seedling's mycobiota. In adults, root and bulk soil mycobiota tend to resemble each other, suggesting a compositional turnover in plant mycobiota during plant development due to horizontal transmission. Thus, the mycobiota are transmitted both horizontally and vertically depending on the plant tissue and developmental stage. Understanding the respective contribution of these transmission pathways to the plant mycobiota is fundamental to deciphering potential coevolutionary processes between plants and fungi. Our findings particularly emphasize the importance of vertical transmission in desert ecosystems.
Collapse
Affiliation(s)
- Liam Laurent‐Webb
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
| | | | - Benoît Perez‐Lamarque
- Institut de Biologie de l'École Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Amélia Bourceret
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
| | | | - Marc‐André Selosse
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
- Faculty of BiologyUniversity of GdanskGdanskPoland
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
5
|
Gille CE, Finnegan PM, Hayes PE, Ranathunge K, Burgess TI, de Tombeur F, Migliorini D, Dallongeville P, Glauser G, Lambers H. Facilitative and competitive interactions between mycorrhizal and nonmycorrhizal plants in an extremely phosphorus-impoverished environment: role of ectomycorrhizal fungi and native oomycete pathogens in shaping species coexistence. THE NEW PHYTOLOGIST 2024; 242:1630-1644. [PMID: 38105548 DOI: 10.1111/nph.19489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.
Collapse
Affiliation(s)
- Clément E Gille
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick E Hayes
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Treena I Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Félix de Tombeur
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- CEFE, CNRS, EPHE, IRD, University of Montpellier, 34000, Montpellier, France
| | - Duccio Migliorini
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- National Research Council, Institute for Sustainable Plant Protection, Sesto Fiorentino, Florence, 50019, Italy
| | - Paul Dallongeville
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
6
|
Zhang Y, Feng H, Druzhinina IS, Xie X, Wang E, Martin F, Yuan Z. Phosphorus/nitrogen sensing and signaling in diverse root-fungus symbioses. Trends Microbiol 2024; 32:200-215. [PMID: 37689488 DOI: 10.1016/j.tim.2023.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Establishing mutualistic relationships between plants and fungi is crucial for overcoming nutrient deficiencies in plants. This review highlights the intricate nutrient sensing and uptake mechanisms used by plants in response to phosphate and nitrogen starvation, as well as their interactions with plant immunity. The coordination of transport systems in both host plants and fungal partners ensures efficient nutrient uptake and assimilation, contributing to the long-term maintenance of these mutualistic associations. It is also essential to understand the distinct responses of fungal partners to external nutrient levels and forms, as they significantly impact the outcomes of symbiotic interactions. Our review also highlights the importance of evolutionarily younger and newly discovered root-fungus associations, such as endophytic associations, which offer potential benefits for improving plant nutrition. Mechanistic insights into the complex dynamics of phosphorus and nitrogen sensing within diverse root-fungus associations can facilitate the identification of molecular targets for engineering symbiotic systems and developing plant phenotypes with enhanced nutrient use efficiency. Ultimately, this knowledge can inform tailored fertilizer management practices to optimize plant nutrition.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 10091, China; Nanjing Forestry University, Nanjing 210037, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Huan Feng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est - Nancy, 54 280 Champenoux, France.
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
7
|
Harder CB, Hesling E, Botnen SS, Lorberau KE, Dima B, von Bonsdorff-Salminen T, Niskanen T, Jarvis SG, Ouimette A, Hester A, Hobbie EA, Taylor AFS, Kauserud H. Mycena species can be opportunist-generalist plant root invaders. Environ Microbiol 2023; 25:1875-1893. [PMID: 37188366 DOI: 10.1111/1462-2920.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Traditional strict separation of fungi into ecological niches as mutualist, parasite or saprotroph is increasingly called into question. Sequences of assumed saprotrophs have been amplified from plant root interiors, and several saprotrophic genera can invade and interact with host plants in laboratory growth experiments. However, it is uncertain if root invasion by saprotrophic fungi is a widespread phenomenon and if laboratory interactions mirror field conditions. Here, we focused on the widespread and speciose saprotrophic genus Mycena and performed (1) a systematic survey of their occurrences (in ITS1/ITS2 datasets) in mycorrhizal roots of 10 plant species, and (2) an analysis of natural abundances of 13 C/15 N stable isotope signatures of Mycena basidiocarps from five field locations to examine their trophic status. We found that Mycena was the only saprotrophic genus consistently found in 9 out of 10 plant host roots, with no indication that the host roots were senescent or otherwise vulnerable. Furthermore, Mycena basidiocarps displayed isotopic signatures consistent with published 13 C/15 N profiles of both saprotrophic and mutualistic lifestyles, supporting earlier laboratory-based studies. We argue that Mycena are widespread latent invaders of healthy plant roots and that Mycena species may form a spectrum of interactions besides saprotrophy also in the field.
Collapse
Affiliation(s)
- Christoffer Bugge Harder
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Microbial Ecology, Lund University, Lund, Sweden
- Department of Biology, Section of Terrestrial Ecology, University of Copenhagen, Copenhagen, Denmark
| | - Emily Hesling
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Synnøve S Botnen
- Department of Biosciences, University of Oslo, Oslo, Norway
- Oslo Metropolitan University, Oslo, Norway
| | - Kelsey E Lorberau
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Bálint Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Botany Unit, Finnish Museum of Natural History LUOMUS, University of Helsinki, Helsinki, Finland
| | | | - Tuula Niskanen
- Botany Unit, Finnish Museum of Natural History LUOMUS, University of Helsinki, Helsinki, Finland
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey, UK
| | | | - Andrew Ouimette
- Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire, USA
| | | | - Erik A Hobbie
- Earth Systems Research Center, University of New Hampshire, Durham, New Hampshire, USA
| | - Andy F S Taylor
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- The James Hutton Institute, Aberdeen, UK
| | | |
Collapse
|
8
|
Niego AGT, Rapior S, Thongklang N, Raspé O, Hyde KD, Mortimer P. Reviewing the contributions of macrofungi to forest ecosystem processes and services. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Perez‐Lamarque B, Laurent‐Webb L, Bourceret A, Maillet L, Bik F, Cartier D, Labolle F, Holveck P, Epp D, Selosse M. Fungal microbiomes associated with Lycopodiaceae during ecological succession. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:109-118. [PMID: 36216403 PMCID: PMC10103886 DOI: 10.1111/1758-2229.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/27/2022] [Indexed: 05/20/2023]
Abstract
Lycopodiaceae species form an early-diverging plant family, characterized by achlorophyllous and subterranean gametophytes that rely on mycorrhizal fungi for their nutrition. Lycopodiaceae often emerge after a disturbance, like in the Hochfeld reserve (Alsace, France) where seven lycopod species appeared on new ski trails following a forest cut. Here, to better understand their ecological dynamic, we conducted a germination experiment of lycopod spores following an anthropogenic disturbance and examined their associated fungi. Only 12% of the samples germinated, and all gametophytes were abundantly colonized by a specific clade of Densosporaceae (Endogonales, Mucoromycotina), which were also present in the roots of lycopod sporophytes, but absent from the ungerminated spores and the roots of surrounding herbaceous plants, suggesting high mycorrhizal specificity in Lycopodiaceae. In addition, ungerminated spores were profusely parasitized by chytrid fungi, also present in the surrounding lycopod gametophytes and sporophytes, which might explain the low spore germination rate. Altogether, the requirement of specific mycorrhizal Mucoromycotina fungi and the high prevalence of parasites may explain why Lycopodiaceae are often rare pioneer species in temperate regions, limited to the first stages of ecological succession. This illustrates the primordial roles that belowground microbes play in aboveground plant dynamics.
Collapse
Affiliation(s)
- Benoît Perez‐Lamarque
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39ParisFrance
- Institut de biologie de l'École normale supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSLParisFrance
| | - Liam Laurent‐Webb
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39ParisFrance
| | - Amélia Bourceret
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39ParisFrance
| | - Louis Maillet
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39ParisFrance
| | | | - Denis Cartier
- Pôle Lorrain du Futur Conservatoire Botanique National Nord‐Est, Jardin botanique Jean‐Marie PeltVillers‐lès‐NancyFrance
| | - François Labolle
- Université de Strasbourg, Faculté des Sciences de la Vie, Institut de BotaniqueStrasbourgFrance
| | - Pascal Holveck
- Réseau National Habitats‐Flore, Office National des Forêts (ONF)ParisFrance
| | - Didier Epp
- Office National des Forêts (ONF), Service environnement et planification forestièreSchirmeckFrance
| | - Marc‐André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'histoire naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39ParisFrance
- Department of Plant Taxonomy and Nature ConservationUniversity of GdanskGdanskPoland
- Institut universitaire de France (IUF)ParisFrance
| |
Collapse
|
10
|
Mleczko P, Hilszczańska D, Karpowicz F, Kozak M, Leonardi M, Rosa-Gruszecka A, Tereba A, Pacioni G. Tuber wenchuanense, a holarctic truffle with a wide range of host plants and description of its ectomycorrhiza with spruce. MYCORRHIZA 2023; 33:45-58. [PMID: 36637489 PMCID: PMC9938020 DOI: 10.1007/s00572-022-01097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Tuber wenchuanense ascomata (Ascomycota, Pezizales), a species originally described from Sichuan (China), were found in the Tatra Mountains in southern Poland. The purpose of this work was to (i) report and assess the first case of the holarctic natural distribution of a Tuber species, (ii) amend the original description of the species, (iii) summarize data on its host plants and (iv) describe its ectomycorrhiza. Specimens of Tuber wenchuanense from the Tatra Mountains were studied morphologically and molecularly. The ectomycorrhiza of this truffle with Picea abies was described for the first time. The distribution of T. wenchuanense, which is reconstructed based on sequences deposited in the publicly available nucleotide sequence databases, makes it the first holarctic Tuber species and the one with the northernmost habitat. In fact, its habitat is confined mainly to mountain coniferous forests and alpine and arctic tundra; although, according to known observations, the fruiting bodies of T. wenchuanense can be produced only under conifers. Based on the sequences of the internal transcribed spacer, this species appears to have low genetic variability over the entire distribution range. The phylogenetic tree showed that some of the unidentified phylotypes from the Rufum clade found by other researchers belong to T. wenchuanense. The ecological implications of these findings are discussed.
Collapse
Affiliation(s)
- Piotr Mleczko
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | - Dorota Hilszczańska
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, 05-090, Raszyn, Poland
| | - Filip Karpowicz
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| | | | - Marco Leonardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Aleksandra Rosa-Gruszecka
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, 05-090, Raszyn, Poland.
| | - Anna Tereba
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, 05-090, Raszyn, Poland
| | - Giovanni Pacioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
11
|
Staubli F, Imola L, Dauphin B, Molinier V, Pfister S, Piñuela Y, Schürz L, Sproll L, Steidinger BS, Stobbe U, Tegel W, Büntgen U, Egli S, Peter M. Hidden fairy rings and males-Genetic patterns of natural Burgundy truffle (Tuber aestivum Vittad.) populations reveal new insights into its life cycle. Environ Microbiol 2022; 24:6376-6391. [PMID: 35837848 PMCID: PMC10084442 DOI: 10.1111/1462-2920.16131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 01/12/2023]
Abstract
Burgundy truffles are heterothallic ascomycetes that grow in symbiosis with trees. Despite their esteemed belowground fruitbodies, the species' complex lifecycle is still not fully understood. Here, we present the genetic patterns in three natural Burgundy truffle populations based on genotyped fruitbodies, ascospore extracts and ectomycorrhizal root tips using microsatellites and the mating-type locus. Distinct genetic structures with high relatedness in close vicinity were found for females (forming the fruitbodies) and males (fertilizing partner as inferred from ascospore extracts), with high genotypic diversity and annual turnover of males, suggesting that ephemeral male mating partners are germinating ascospores from decaying fruitbodies. The presence of hermaphrodites and the interannual persistence of a few males suggest that persistent mycelia may sporadically also act as males. Only female or hermaphroditic individuals were detected on root tips. At one site, fruitbodies grew in a fairy ring formed by a large female individual that showed an outward growth rate of 30 cm per year, with the mycelium decaying within the ring and being fertilized by over 50 male individuals. While fairy ring structures have never been shown for truffles, the genetics of Burgundy truffle populations support a similar reproductive biology as those of other highly prized truffles.
Collapse
Affiliation(s)
- Florian Staubli
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Lea Imola
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Benjamin Dauphin
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Virginie Molinier
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stephanie Pfister
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Yasmine Piñuela
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain.,Forest Science and Technology Centre of Catalonia, Solsona, Spain
| | - Laura Schürz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Brian S Steidinger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Department of Ecology, University of Konstanz, Konstanz, Germany
| | | | - Willy Tegel
- Chair of Forest Growth, Albert-Ludwigs University, Freiburg, Germany
| | - Ulf Büntgen
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Department of Geography, University of Cambridge, Cambridge, UK.,Global Change Research Centre (CzechGlobe), Brno, Czech Republic.,Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Simon Egli
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martina Peter
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
12
|
Taschen E, Callot G, Savary P, Sauve M, Penuelas-Samaniego Y, Rousset F, Parlade X, Selosse MA, Richard F. Efficiency of the traditional practice of traps to stimulate black truffle production, and its ecological mechanisms. Sci Rep 2022; 12:16201. [PMID: 36171390 PMCID: PMC9519532 DOI: 10.1038/s41598-022-19962-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
The black truffle Tuber melanosporum was disseminated all over the world, propelled by the development of a wide variety of empirical practices. A widespread practice, called ‘truffle trap’, consists of placing pieces of truffles into excavations dug under host trees, and of collecting truffle in these traps in the next years. This research aims at (1) evaluating the effect of this practice on fruitbody production based on the analysis of 9924 truffle traps installed in 11 orchards across T. melanosporum native area in France and (2) exploring the mechanisms involved in fruitbody emergence using traps where the genotypes of introduced truffles were compared with those of fruitbodies collected in the same traps. We confirmed that truffle traps provide a major and highly variable part of truffle ground production, representing up to 89% of the collected fruitbodies. We evidenced a genetic link between introduced spores and collected fruitbodies, and then demonstrated that truffle growers provide paternal partners for mating with local maternal mycelia. We also highlighted that soil disturbance stimulate the vegetative development of established maternal mycelia. This research supports that a widely used traditional practice enhances fruitbody production by shaping favorable conditions and providing sexual partners required for fruiting.
Collapse
Affiliation(s)
- E Taschen
- Eco & Sols, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - G Callot
- Eco & Sols, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.,, 26 chemin des olivettes, 34980, Montferrier sur Lez, France
| | - P Savary
- , Rue des Champs, La Remisière, 17480, Le Château d'Oléron, France.,CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 1919 Route de Mende, 34293, Montpellier, France
| | - M Sauve
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 1919 Route de Mende, 34293, Montpellier, France
| | - Y Penuelas-Samaniego
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 1919 Route de Mende, 34293, Montpellier, France
| | - F Rousset
- ISEM CNRS UMR 5554, Université de Montpellier, CNRS, IRD, EPHE, CC 065, Place Eugène Bataillon, 34095, Montpellier, France
| | - X Parlade
- Mycorrhizas-Sustainable Plant Protection, IRTA, Ctra. de Cabrils, 08348, Cabrils (Barcelona), Spain
| | - M-A Selosse
- UMR 7205 ISYEB, Institut Systématique Evolution Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, CP 50, 45 rue Buffon, 75005, Paris, France.,Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - F Richard
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
13
|
Perez-Lamarque B, Petrolli R, Strullu-Derrien C, Strasberg D, Morlon H, Selosse MA, Martos F. Structure and specialization of mycorrhizal networks in phylogenetically diverse tropical communities. ENVIRONMENTAL MICROBIOME 2022; 17:38. [PMID: 35859141 PMCID: PMC9297633 DOI: 10.1186/s40793-022-00434-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND The root mycobiome plays a fundamental role in plant nutrition and protection against biotic and abiotic stresses. In temperate forests or meadows dominated by angiosperms, the numerous fungi involved in root symbioses are often shared between neighboring plants, thus forming complex plant-fungus interaction networks of weak specialization. Whether this weak specialization also holds in rich tropical communities with more phylogenetically diverse sets of plant lineages remains unknown. We collected roots of 30 plant species in semi-natural tropical communities including angiosperms, ferns, and lycophytes, in three different habitat types on La Réunion island: a recent lava flow, a wet thicket, and an ericoid shrubland. We identified root-inhabiting fungi by sequencing both the 18S rRNA and the ITS2 variable regions. We assessed the diversity of mycorrhizal fungal taxa according to plant species and lineages, as well as the structure and specialization of the resulting plant-fungus networks. RESULTS The 18S and ITS2 datasets are highly complementary at revealing the root mycobiota. According to 18S, Glomeromycotina colonize all plant groups in all habitats forming the least specialized interactions, resulting in nested network structures, while Mucoromycotina (Endogonales) are more abundant in the wetland and show higher specialization and modularity compared to the former. According to ITS2, mycorrhizal fungi of Ericaceae and Orchidaceae, namely Helotiales, Sebacinales, and Cantharellales, also colonize the roots of most plant lineages, confirming that they are frequent endophytes. While Helotiales and Sebacinales present intermediate levels of specialization, Cantharellales are more specialized and more sporadic in their interactions with plants, resulting in highly modular networks. CONCLUSIONS This study of the root mycobiome in tropical environments reinforces the idea that mycorrhizal fungal taxa are locally shared between co-occurring plants, including phylogenetically distant plants (e.g. lycophytes and angiosperms), where they may form functional mycorrhizae or establish endophytic colonization. Yet, we demonstrate that, irrespectively of the environmental variations, the level of specialization significantly varies according to the fungal lineages, probably reflecting the different evolutionary origins of these plant-fungus symbioses. Frequent fungal sharing between plants questions the roles of the different fungi in community functioning and highlights the importance of considering networks of interactions rather than isolated hosts.
Collapse
Affiliation(s)
- Benoît Perez-Lamarque
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, 75 005, Paris, France.
| | - Rémi Petrolli
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
| | - Christine Strullu-Derrien
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
- Science Group, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Dominique Strasberg
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical, UMR PVBMT, Université de La Réunion, 97 400, Saint-Denis, La Réunion, France
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d'Ulm, 75 005, Paris, France
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
- Institut Universitaire de France (IUF), Paris, France
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP39, 57 rue Cuvier, 75 005, Paris, France
| |
Collapse
|
14
|
Authier L, Violle C, Richard F. Ectomycorrhizal Networks in the Anthropocene: From Natural Ecosystems to Urban Planning. FRONTIERS IN PLANT SCIENCE 2022; 13:900231. [PMID: 35845640 PMCID: PMC9280895 DOI: 10.3389/fpls.2022.900231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Trees acquire hydric and mineral soil resources through root mutualistic associations. In most boreal, temperate and Mediterranean forests, these functions are realized by a chimeric structure called ectomycorrhizae. Ectomycorrhizal (ECM) fungi are highly diversified and vary widely in their specificity toward plant hosts. Reciprocally, association patterns of ECM plants range from highly specialist to generalist. As a consequence, ECM symbiosis creates interaction networks, which also mediate plant-plant nutrient interactions among different individuals and drive plant community dynamics. Our knowledge of ECM networks essentially relies on a corpus acquired in temperate ecosystems, whereas the below-ground facets of both anthropogenic ECM forests and inter-tropical forests remain poorly investigated. Here, we successively (1) review the current knowledge of ECM networks, (2) examine the content of early literature produced in ECM cultivated forests, (3) analyze the recent progress that has been made in understanding the place of ECM networks in urban soils, and (4) provide directions for future research based on the identification of knowledge gaps. From the examined corpus of knowledge, we reach three main conclusions. First, the emergence of metabarcoding tools has propelled a resurgence of interest in applying network theory to ECM symbiosis. These methods revealed an unexpected interconnection between mutualistic plants with arbuscular mycorrhizal (AM) herbaceous plants, embedding ECM mycelia through root-endophytic interactions. This affinity of ECM fungi to bind VA and ECM plants, raises questions on the nature of the associated functions. Second, despite the central place of ECM trees in cultivated forests, little attention has been paid to these man-made landscapes and in-depth research on this topic is lacking. Third, we report a lag in applying the ECM network theory to urban soils, despite management initiatives striving to interconnect motile organisms through ecological corridors, and the highly challenging task of interconnecting fixed organisms in urban greenspaces is discussed. In particular, we observe a pauperized nature of resident ECM inoculum and a spatial conflict between belowground human pipelines and ECM networks. Finally, we identify the main directions of future research to make the needed link between the current picture of plant functioning and the understanding of belowground ECM networks.
Collapse
Affiliation(s)
- Louise Authier
- CEFE, Univ Montpellier - CNRS - EPHE - IRD, Montpellier, France
- Ilex Paysage + Urbanisme, Lyon, France
| | - Cyrille Violle
- CEFE, Univ Montpellier - CNRS - EPHE - IRD, Montpellier, France
| | - Franck Richard
- CEFE, Univ Montpellier - CNRS - EPHE - IRD, Montpellier, France
| |
Collapse
|
15
|
Wang Y, He X, Yu F. Non-host plants: Are they mycorrhizal networks players? PLANT DIVERSITY 2022; 44:127-134. [PMID: 35505991 PMCID: PMC9043302 DOI: 10.1016/j.pld.2021.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 05/04/2023]
Abstract
Common mycorrhizal networks (CMNs) that connect individual plants of the same or different species together play important roles in nutrient and signal transportation, and plant community organization. However, about 10% of land plants are non-mycorrhizal species with roots that do not form any well-recognized types of mycorrhizas; and each mycorrhizal fungus can only colonize a limited number of plant species, resulting in numerous non-host plants that could not establish typical mycorrhizal symbiosis with a specific mycorrhizal fungus. If and how non-mycorrhizal or non-host plants are able to involve in CMNs remains unclear. Here we summarize studies focusing on mycorrhizal-mediated host and non-host plant interaction. Evidence has showed that some host-supported both arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) hyphae can access to non-host plant roots without forming typical mycorrhizal structures, while such non-typical mycorrhizal colonization often inhibits the growth but enhances the induced system resistance of non-host plants. Meanwhile, the host growth is also differentially affected, depending on plant and fungi species. Molecular analyses suggested that the AMF colonization to non-hosts is different from pathogenic and endophytic fungi colonization, and the hyphae in non-host roots may be alive and have some unknown functions. Thus we propose that non-host plants are also important CMNs players. Using non-mycorrhizal model species Arabidopsis, tripartite culture system and new technologies such as nanoscale secondary ion mass spectrometry and multi-omics, to study nutrient and signal transportation between host and non-host plants via CMNs may provide new insights into the mechanisms underlying benefits of intercropping and agro-forestry systems, as well as plant community establishment and stability.
Collapse
Affiliation(s)
- Yanliang Wang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xinhua He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, 95616, USA
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Corresponding author.
| |
Collapse
|
16
|
Healy RA, Arnold AE, Bonito G, Huang YL, Lemmond B, Pfister DH, Smith ME. Endophytism and endolichenism in Pezizomycetes: the exception or the rule? THE NEW PHYTOLOGIST 2022; 233:1974-1983. [PMID: 34839525 DOI: 10.1111/nph.17886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Rosanne A Healy
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Yu-Ling Huang
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biology, National Museum of Natural Science, Taichung, 404, Taiwan
| | - Benjamin Lemmond
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Donald H Pfister
- Department of Organismic and Evolutionary Biology, Farlow Herbarium, Harvard University, 22 Divinity Ave, Cambridge, MA, 02138-2020, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
17
|
Selosse MA, Petrolli R, Mujica MI, Laurent L, Perez-Lamarque B, Figura T, Bourceret A, Jacquemyn H, Li T, Gao J, Minasiewicz J, Martos F. The Waiting Room Hypothesis revisited by orchids: were orchid mycorrhizal fungi recruited among root endophytes? ANNALS OF BOTANY 2022; 129:259-270. [PMID: 34718377 PMCID: PMC8835631 DOI: 10.1093/aob/mcab134] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND As in most land plants, the roots of orchids (Orchidaceae) associate with soil fungi. Recent studies have highlighted the diversity of the fungal partners involved, mostly within Basidiomycotas. The association with a polyphyletic group of fungi collectively called rhizoctonias (Ceratobasidiaceae, Tulasnellaceae and Serendipitaceae) is the most frequent. Yet, several orchid species target other fungal taxa that differ from rhizoctonias by their phylogenetic position and/or ecological traits related to their nutrition out of the orchid roots (e.g. soil saprobic or ectomycorrhizal fungi). We offer an evolutionary framework for these symbiotic associations. SCOPE Our view is based on the 'Waiting Room Hypothesis', an evolutionary scenario stating that mycorrhizal fungi of land flora were recruited from ancestors that initially colonized roots as endophytes. Endophytes biotrophically colonize tissues in a diffuse way, contrasting with mycorrhizae by the absence of morphological differentiation and of contribution to the plant's nutrition. The association with rhizoctonias is probably the ancestral symbiosis that persists in most extant orchids, while during orchid evolution numerous secondary transitions occurred to other fungal taxa. We suggest that both the rhizoctonia partners and the secondarily acquired ones are from fungal taxa that have broad endophytic ability, as exemplified in non-orchid roots. We review evidence that endophytism in non-orchid plants is the current ecology of many rhizoctonias, which suggests that their ancestors may have been endophytic in orchid ancestors. This also applies to the non-rhizoctonia fungi that were secondarily recruited by several orchid lineages as mycorrhizal partners. Indeed, from our review of the published literature, they are often detected, probably as endophytes, in extant rhizoctonia-associated orchids. CONCLUSION The orchid family offers one of the best documented examples of the 'Waiting Room Hypothesis': their mycorrhizal symbioses support the idea that extant mycorrhizal fungi have been recruited among endophytic fungi that colonized orchid ancestors.
Collapse
Affiliation(s)
- Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Rémi Petrolli
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| | - María Isabel Mujica
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile, & Instituto de Ecología and Biodiversidad (IEB), Alameda 340, Santiago, Chile
| | - Liam Laurent
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| | - Benoît Perez-Lamarque
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 46 rue d’Ulm, 75005 Paris, France
| | - Tomáš Figura
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Amelia Bourceret
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Taiqiang Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Jiangyun Gao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Julita Minasiewicz
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Florent Martos
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 – CNRS, MNHN, UPMC, EPHE), Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
18
|
Zhong F, Fan X, Ji W, Hai Z, Hu N, Li X, Liu G, Yu C, Chen Y, Lian B, Wei H, Zhang J. Soil Fungal Community Composition and Diversity of Culturable Endophytic Fungi from Plant Roots in the Reclaimed Area of the Eastern Coast of China. J Fungi (Basel) 2022; 8:jof8020124. [PMID: 35205878 PMCID: PMC8878519 DOI: 10.3390/jof8020124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
As an important resource for screening microbial strains capable of conferring stress tolerance in plants, the fungal community associated with the plants grown in stressful environments has received great attention. In this study, high-throughput sequencing was employed to study the rhizosphere fungal community in the reclaimed area (i.e., sites F, H, and T) of the eastern coast of China. Moreover, endophytic fungi from the root of six plant species colonizing the investigated sites were isolated and identified. The differences in soil physicochemical parameters, fungal diversity, and community structure were detected among the sampling sites and between the seasons. Ectomycorrhizal (ECM) fungi (e.g., genera Tuber and Geopora) were dominant at site F, which was characterized by high soil total carbon (SC) and total nitrogen (SN) contents and low soil electrical conductivity (EC) value. Arbuscular mycorrhizal (AM) fungi, including genera Glomus, Rhizophagus, and Entrophospora were dominant at sites H (winter), H (summer), and T (summer), respectively. The positive relationship between the EC value and the abundance of genus Glomus indicated the ability of this AM fungus to protect plants against the salt stress. Endophytic fungi at sites F (Aspergillus and Tetracladium), H (Nigrospora), and T (Nigrospora, Coniochaeta and Zopfiella) were recognized as the biomarkers or keystone taxa, among which only genus Aspergillus was isolated from the plant roots. The aforementioned AM fungi and endophytic fungi could contribute to the promotion of plant growth in the newly reclaimed land.
Collapse
Affiliation(s)
- Fei Zhong
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
- Correspondence: (F.Z.); (J.Z.)
| | - Xinlei Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China;
| | - Wenhui Ji
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
| | - Zhixing Hai
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
| | - Naican Hu
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
| | - Xintong Li
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
| | - Guoyuan Liu
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Chunmei Yu
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Yanhong Chen
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Bolin Lian
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Hui Wei
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
| | - Jian Zhang
- School of Life Science, Nantong University, Nantong 226019, China; (W.J.); (Z.H.); (N.H.); (X.L.); (G.L.); (C.Y.); (Y.C.); (B.L.); (H.W.)
- Key Lab of Landscape Plant Genetics and Breeding, Nantong 226019, China
- Correspondence: (F.Z.); (J.Z.)
| |
Collapse
|
19
|
Life Cycle and Phylogeography of True Truffles. Genes (Basel) 2022; 13:genes13010145. [PMID: 35052485 PMCID: PMC8775154 DOI: 10.3390/genes13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
True truffle (Tuber spp.) is one group of ascomycetes with great economic importance. During the last 30 years, numerous fine-scale population genetics studies were conducted on different truffle species, aiming to answer several key questions regarding their life cycles; these questions are important for their cultivation. It is now evident that truffles are heterothallic, but with a prevalent haploid lifestyle. Strains forming ectomycorrhizas and germinating ascospores act as maternal and paternal partners respectively. At the same time, a number of large-scale studies were carried out, highlighting the influences of the last glaciation and river isolations on the genetic structure of truffles. A retreat to southern refugia during glaciation, and a northward expansion post glaciation, were revealed in all studied European truffles. The Mediterranean Sea, acting as a barrier, has led to the existence of several refugia in different peninsulas for a single species. Similarly, large rivers in southwestern China act as physical barriers to gene flow for truffles in this region. Further studies can pay special attention to population genetics of species with a wide distribution range, such as T. himalayense, and the correlation between truffle genetic structure and the community composition of truffle-associated bacteria.
Collapse
|
20
|
Büntgen U, Peter M, Tegel W, Stobbe U, Elburg R, Sproll L, Molinier V, Čejka T, Isaac EL, Egli S. Eco-archaeological excavation techniques reveal snapshots of subterranean truffle growth. Fungal Biol 2021; 125:951-961. [PMID: 34776232 DOI: 10.1016/j.funbio.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 02/01/2023]
Abstract
Despite its status as a highly-prized and coveted fungi in gastronomy, many aspects of the subterranean life cycle of the Burgundy truffle (Tuber aestivum) are still unknown, because in situ observations of the formation and maturation of truffle fruitbodies remain difficult. Here, we adopted a suite of archaeological fine-scale excavating techniques to provide unique spatiotemporal snapshots of Burgundy truffle growth at three sites in southern Germany. We also recorded the relative position, fresh weight, maturity level and genotype composition of all excavated fruitbodies. Varying by a factor of thousand, the fresh weight of 73 truffle ranged from 0.1 to 103.2 g, with individual maturity levels likely representing different life cycle stages from completely unripe to fully ripe and even decaying. While only a slightly positive relationship between fruitbody weight and maturity level was found, our results suggest that genetically distinct specimens can exhibit different life cycle stages at the same period of time and under the same environmental conditions. We therefore argue that truffles are likely able to grow, mature and ripe simultaneously between early summer and late winter of the following year. Our case study should encourage further eco-archaeological truffle excavations under different biogeographic settings and at different seasons of the year to gain deeper insights into the fungi's subterranean ecology. The expected cross-disciplinary findings will help truffle hunters and farmers to improve their harvest practices and management strategies.
Collapse
Affiliation(s)
- Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge, CB2 3EN, UK; Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), 603 00, Brno, Czech Republic; Department of Geography, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic; Swiss Federal Research Institute (WSL), 8903, Birmensdorf, Switzerland.
| | - Martina Peter
- Swiss Federal Research Institute (WSL), 8903, Birmensdorf, Switzerland
| | - Willy Tegel
- Chair of Forest Growth and Dendroecology, University of Freiburg, 79106, Freiburg i.Br., Germany
| | | | - Rengert Elburg
- Archaeological Heritage Office Saxony, 01109, Dresden, Germany
| | | | - Virginie Molinier
- Swiss Federal Research Institute (WSL), 8903, Birmensdorf, Switzerland
| | - Tomáš Čejka
- Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe), 603 00, Brno, Czech Republic; Department of Geography, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Elizabeth L Isaac
- Department of Geography, University of Cambridge, Cambridge, CB2 3EN, UK
| | - Simon Egli
- Swiss Federal Research Institute (WSL), 8903, Birmensdorf, Switzerland
| |
Collapse
|
21
|
Transcriptomics Reveals the Putative Mycoparasitic Strategy of the Mushroom Entoloma abortivum on Species of the Mushroom Genus Armillaria. mSystems 2021; 6:e0054421. [PMID: 34636668 PMCID: PMC8510539 DOI: 10.1128/msystems.00544-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During mycoparasitism, a fungus—the host—is parasitized by another fungus—the mycoparasite. The genetic underpinnings of these relationships have been best characterized in ascomycete fungi. However, within basidiomycete fungi, there are rare instances of mushroom-forming species parasitizing the reproductive structures, or sporocarps, of other mushroom-forming species, which have been rarely investigated on a genetic level. One of the most enigmatic of these occurs between Entoloma abortivum and species of Armillaria, where hyphae of E. abortivum are hypothesized to disrupt the development of Armillaria sporocarps, resulting in the formation of carpophoroids. However, it remains unknown whether carpophoroids are the direct result of a mycoparasitic relationship. To address the nature of this unique interaction, we analyzed gene expression of field-collected Armillaria and E. abortivum sporocarps and carpophoroids. Transcripts in the carpophoroids are primarily from E. abortivum, supporting the hypothesis that this species is parasitizing Armillaria. Most notably, we identified differentially upregulated E. abortivum β-trefoil-type lectins in the carpophoroid, which we hypothesize bind to Armillaria cell wall galactomannoproteins, thereby mediating recognition between the mycoparasite and the host. The most differentially upregulated E. abortivum transcripts in the carpophoroid code for oxalate decarboxylases—enzymes that degrade oxalic acid. Oxalic acid is a virulence factor in many plant pathogens, including Armillaria species; however, E. abortivum has evolved a sophisticated strategy to overcome this defense mechanism. The number of gene models and genes that code for carbohydrate-active enzymes in the E. abortivum transcriptome was reduced compared to other closely related species, perhaps as a result of the specialized nature of this interaction. IMPORTANCE By studying fungi that parasitize other fungi, we can understand the basic biology of these unique interactions. Studies focused on the genetic mechanisms regulating mycoparasitism between host and parasite have thus far concentrated on a single fungal lineage within the Ascomycota. The work presented here expands our understanding of mycoparasitic relationships to the Basidiomycota and represents the first transcriptomic study to our knowledge that examines fungal-fungal relationships in their natural setting. The results presented here suggest that even distantly related mycoparasites utilize similar mechanisms to parasitize their host. Given that species of the mushroom-forming pathogen Armillaria cause plant root-rot diseases in many agroecosystems, an enhanced understanding of this interaction may contribute to better control of these diseases through biocontrol applications.
Collapse
|
22
|
Park KH, Yoo S, Park MS, Kim CS, Lim YW. Different patterns of belowground fungal diversity along altitudinal gradients with respect to microhabitat and guild types. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:649-658. [PMID: 34162018 DOI: 10.1111/1758-2229.12976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Fungi are key components of belowground ecosystems with various ecological roles in forests. Although the changes in the richness and composition of belowground fungi across altitudinal gradients have been widely reported, only a few studies have focused on the microhabitat types along altitudinal gradients. Here, we analysed the effect of altitude on the ectomycorrhizal and non-ectomycorrhizal fungal communities in belowground microhabitats. We collected root and soil samples from 16 Pinus densiflora forests at various altitudes across Korea, and measured the soil properties as potential factors. Fungal communities were analysed by high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region. We found that altitude negatively affected the species richness of root-inhabiting fungi but did not influence that of soil-inhabiting fungi. In addition, the composition of ectomycorrhizal (ECM) fungi was less influenced by altitude than non-ECM fungi. Most of the soil properties did not show a significant relationship with altitude, but the effect of soil properties was different across microhabitat types and ecological roles of fungi. Our results reveal that microhabitat types and altitudinal gradients differently affect the richness and composition of fungal communities associated with P. densiflora, providing a better understanding of plant-associated fungal communities.
Collapse
Affiliation(s)
- Ki Hyeong Park
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Shinnam Yoo
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Myung Soo Park
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Chang Sun Kim
- Forest Biodiversity Division, Korea National Arboretum, Pocheon, South Korea
| | - Young Woon Lim
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| |
Collapse
|
23
|
Ori F, Menotta M, Leonardi M, Amicucci A, Zambonelli A, Covès H, Selosse MA, Schneider-Maunoury L, Pacioni G, Iotti M. Effect of slug mycophagy on Tuber aestivum spores. Fungal Biol 2021; 125:796-805. [PMID: 34537175 DOI: 10.1016/j.funbio.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022]
Abstract
Truffles in the genus Tuber produce subterranean fruiting bodies that are not able to actively discharge their spores in the environment. For this reason, truffles depend on mycophagous animals for reproduction. Fungus consumption (mycophagy) is a behaviour typical of both vertebrates and invertebrates. Mammals, especially rodents, are the most studied group of mycophagists and have been found to consume a great variety of fungi. Among invertebrates, mycophagy is documented in arthropods, but rarely in molluscs. In our study we assessed the effect on the morphology and mycorrhizal colonization of Tuber aestivum spores after passage through the gut of slugs (Deroceras invadens) and, for comparison, of a house mouse (Mus musculus). Light, scanning electron and atomic force microscopy revealed that the digestion, especially by slugs, freed spores from the asci and modified their morphology. These are believed to be the reasons why we observed an improvement in oak mycorrhization with the slug and rodent ingested spores in comparison to a fresh spore inoculation. We also demonstrated by molecular barcoding that slugs' guts sampled on a Tuber melanosporum truffle ground contain spores from this species and Tuber brumale, further suggesting that some invertebrates are efficient Tuber spore dispersers.
Collapse
Affiliation(s)
- Francesca Ori
- Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy.
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino, Italy.
| | - Marco Leonardi
- Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy.
| | - Antonella Amicucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino, Italy.
| | - Alessandra Zambonelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy.
| | - Hervé Covès
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005, Paris, France; Arbre et Paysage 32, 93 Route de Pessan, 32000, Auch, France.
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005, Paris, France; Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Laure Schneider-Maunoury
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005, Paris, France.
| | - Giovanni Pacioni
- Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy.
| | - Mirco Iotti
- Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy.
| |
Collapse
|
24
|
Willing CE, Pierroz G, Guzman A, Anderegg LDL, Gao C, Coleman-Derr D, Taylor JW, Bruns TD, Dawson TE. Keep your friends close: Host compartmentalisation of microbial communities facilitates decoupling from effects of habitat fragmentation. Ecol Lett 2021; 24:2674-2686. [PMID: 34523223 DOI: 10.1111/ele.13886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
Root-associated fungal communities modify the climatic niches and even the competitive ability of their hosts, yet how the different components of the root microbiome are modified by habitat loss remains a key knowledge gap. Using principles of landscape ecology, we tested how free-living versus host-associated microbes differ in their response to landscape heterogeneity. Further, we explore how compartmentalisation of microbes into specialised root structures filters for key fungal symbionts. Our study demonstrates that free-living fungal community structure correlates with landscape heterogeneity, but that host-associated fungal communities depart from these patterns. Specifically, biotic filtering in roots, especially via compartmentalisation within specialised root structures, decouples the biogeographic patterns of host-associated fungal communities from the soil community. In this way, even as habitat loss and fragmentation threaten fungal diversity in the soils, plant hosts exert biotic controls to ensure associations with critical mutualists, helping to preserve the root mycobiome.
Collapse
Affiliation(s)
- Claire E Willing
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, California, USA
| | - Grady Pierroz
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, USA.,Plant Gene Expression Center, USDA-ARS, Albany, California, USA
| | - Aidee Guzman
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, California, USA
| | - Leander D L Anderegg
- Department of Integrative Biology, UC Berkeley, Berkeley, California, USA.,Department of Ecology, Evolution & Marine Biology, UC Santa Barbara, Santa Barbara, California, USA
| | - Cheng Gao
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, USA.,State Key Laboratory of Mycology, Chinese Academy of Sciences, Beijing, China
| | - Devin Coleman-Derr
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, USA.,Plant Gene Expression Center, USDA-ARS, Albany, California, USA
| | - John W Taylor
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, USA
| | - Tom D Bruns
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, California, USA.,Department of Plant and Microbial Biology, UC Berkeley, Berkeley, California, USA
| | - Todd E Dawson
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, California, USA.,Department of Integrative Biology, UC Berkeley, Berkeley, California, USA
| |
Collapse
|
25
|
Yung L, Bertheau C, Tafforeau F, Zappelini C, Valot B, Maillard F, Selosse MA, Viotti C, Binet P, Chiapusio G, Chalot M. Partial overlap of fungal communities associated with nettle and poplar roots when co-occurring at a trace metal contaminated site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146692. [PMID: 33838361 DOI: 10.1016/j.scitotenv.2021.146692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Stinging nettle (Urtica dioica L.) raises growing interest in phytomanagement because it commonly grows under poplar Short Rotation Coppices (SRC) set up at trace-metal (TM) contaminated sites and provides high-quality herbaceous fibres. The mycobiome of this non-mycorhizal plant and its capacity to adapt to TM-contaminated environments remains unknown. This study aimed at characterizing the mycobiome associated with nettle and poplar roots co-occurring at a TM-contaminated site. Plant root barcoding using the fungi-specific ITS1F-ITS2 primers and Illumina MiSeq technology revealed that nettle and poplar had distinct root fungal communities. The nettle mycobiome was dominated by Pezizomycetes from known endophytic taxa and from the supposedly saprotrophic genus Kotlabaea (which was the most abundant). Several ectomycorrhizal fungi such as Inocybe (Agaricomycetes) and Tuber (Pezizomycetes) species were associated with the poplar roots. Most of the Pezizomycetes taxa were present in the highly TM-contaminated area whereas Agaricomycetes tended to be reduced. Despite being a known non-mycorrhizal plant, nettle was associated with a significant proportion of ectomycorrhizal OTU (9.7%), suggesting some connexions between the poplar and the nettle root mycobiomes. Finally, our study raised the interest in reconsidering the fungal networking beyond known mycorrhizal interactions.
Collapse
Affiliation(s)
- Loïc Yung
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France.
| | - Coralie Bertheau
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Flavien Tafforeau
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Cyril Zappelini
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Benoit Valot
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - François Maillard
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversite (ISYEB - UMR 7205 - CNRS, MNHN, SU, EPHE), Muséeum national d'Histoire naturelle, 75000 Paris, France; Faculty of Biology, University of Gdan sk, ul. Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Chloé Viotti
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Philippe Binet
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Geneviève Chiapusio
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Michel Chalot
- Chrono-environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Université de Lorraine, Faculté des Sciences et Technologies, 54000 Nancy, France
| |
Collapse
|
26
|
Chen J, De la Varga H, Todesco F, Beacco P, Martino E, Le Tacon F, Murat C. Frequency of the two mating types in the soil under productive and non-productive trees in five French orchards of the Périgord black truffle (Tuber melanosporum Vittad.). MYCORRHIZA 2021; 31:361-369. [PMID: 33512580 DOI: 10.1007/s00572-020-01011-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
The Périgord black truffle (Tuber melanosporum Vittad.) is an ectomycorrhizal fungus forming edible fructifications. The production of T. melanosporum relies mainly on man-made plantations. T. melanosporum is a heterothallic species requiring the meeting of two partners of opposite mating types to fruit. It is common to have productive and non-productive trees in the same orchard. The aim of our study was to assess the distribution of T. melanosporum mating types in soil under productive and non-productive trees to test whether the presence or absence of one or two mating types could be an indicator of productivity. To achieve this aim, five orchards were selected in various French regions. Soils were harvested under productive and non-productive Quercus pubescens; soil characteristics and the distribution of the mating types in the soil were investigated. No significant differences between productive and non-productive soils according to soil parameters were detected. The total content of T. melanosporum DNA in the soil was significantly higher under productive trees compared with non-productive trees, and it was positively correlated only with soil available phosphorous. Under productive trees, it was more frequent to find both mating types than under non-productive trees. Soils with only one mating type were more frequent under non-productive trees than under productive ones. Moreover, no mating type was detected in the soil of 22% of the non-productive trees. These results suggest that the detection of T. melanosporum mating types in soil could be a tool to optimise the management of truffle orchards (e.g. by spore inoculation).
Collapse
Affiliation(s)
- Juan Chen
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Herminia De la Varga
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
- R+D+I Department, FERTINAGRO BIOTECH, S.L, 74, Calle Los Enebros, 44002, Teruel, Spain
| | - Flora Todesco
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
- WETRUF SAS, 2, avenue de la Forêt de Haye, 54500, Vandoeuvre-lès-Nancy, France
| | - Pauline Beacco
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Elena Martino
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - François Le Tacon
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France
| | - Claude Murat
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est Nancy, Champenoux, France.
| |
Collapse
|
27
|
Soil Metabarcoding Offers a New Tool for the Investigation and Hunting of Truffles in Northern Thailand. J Fungi (Basel) 2021; 7:jof7040293. [PMID: 33924673 PMCID: PMC8069821 DOI: 10.3390/jof7040293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/06/2023] Open
Abstract
Truffles (Tuber spp.) are well-known as edible ectomycorrhizal mushrooms, and some species are one of the most expensive foods in the world. During the fruiting process, truffles produce hypogeous ascocarps; a trained pig or dog is needed to locate the ascocarps under the ground. Truffles in northern Thailand have been recorded in association with Betulaalnoides and Carpinus poilanei. In this study, we investigated the soil mycobiota diversity of soil samples from both of these truffle host plants in native forests using environmental DNA metabarcoding to target the internal transcribed spacer 1 (ITS1) region of the rDNA gene for the purposes of investigation of truffle diversity and locating truffles during the non-fruiting phase. In this study, a total of 38 soil samples were collected from different locations. Of these, truffles had been found at three of these locations. Subsequently, a total of 1341 putative taxonomic units (OTUs) were obtained. The overall fungal community was dominated by phylum-level sequences assigned to Ascomycota (57.63%), Basidiomycota (37.26%), Blastocladiomycota (0.007%), Chytridiomycota (0.21%), Glomeromycota (0.01%), Kickxellomycota (0.01%), Mortierellomycota (2.08%), Mucoromycota (0.24%), Rozellomycota (0.01%), Zoopagomycota (0.003%), and unidentified (2.54%). The results revealed that six OTUs were determined to be representative and belonged to the genus Tuber. OTU162, OTU187, OTU447, and OTU530 belonged to T. thailandicum, T. lannaense, T. bomiense, and T. magnatum, whereas OTU105 and OTU720 were acknowledged as unrecognized Tuber species. From 38 locations, OTUs of truffles were found in 33 locations (including three previously known truffle locations). Thus, 30 collection sites were considered new locations for T. thailandicum, T. bomiense, and other unrecognized Tuber species. Interestingly, at 16 new locations, mature ascocarps of truffles that were undergoing the fruiting phase were located underground. All 16 truffle samples were identified as T. thailandicum based on morphological characteristics and molecular phylogenetic analysis. However, ascocarps of other truffle species were not found at the new OTUs representative locations. The knowledge gained from this study can be used to lead researchers to a better understanding of the occurrence of truffles using soil mycobiota diversity investigation. The outcomes of this study will be particularly beneficial with respect to the search and hunt for truffles without the need for trained animals. In addition, the findings of this study will be useful for the management and conservation of truffle habitats in northern Thailand.
Collapse
|
28
|
Nahberger TU, Benucci GMN, Kraigher H, Grebenc T. Effect of earthworms on mycorrhization, root morphology and biomass of silver fir seedlings inoculated with black summer truffle (Tuber aestivum Vittad.). Sci Rep 2021; 11:6167. [PMID: 33731841 PMCID: PMC7971050 DOI: 10.1038/s41598-021-85497-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Abstract
Species of the genus Tuber have gained a lot of attention in recent decades due to their aromatic hypogenous fruitbodies, which can bring high prices on the market. The tendency in truffle production is to infect oak, hazel, beech, etc. in greenhouse conditions. We aimed to show whether silver fir (Abies alba Mill.) can be an appropriate host partner for commercial mycorrhization with truffles, and how earthworms in the inoculation substrate would affect the mycorrhization dynamics. Silver fir seedlings inoculated with Tuber. aestivum were analyzed for root system parameters and mycorrhization, how earthworms affect the bare root system, and if mycorrhization parameters change when earthworms are added to the inoculation substrate. Seedlings were analyzed 6 and 12 months after spore inoculation. Mycorrhization with or without earthworms revealed contrasting effects on fine root biomass and morphology of silver fir seedlings. Only a few of the assessed fine root parameters showed statistically significant response, namely higher fine root biomass and fine root tip density in inoculated seedlings without earthworms 6 months after inoculation, lower fine root tip density when earthworms were added, the specific root tip density increased in inoculated seedlings without earthworms 12 months after inoculation, and general negative effect of earthworm on branching density. Silver fir was confirmed as a suitable host partner for commercial mycorrhization with truffles, with 6% and 35% mycorrhization 6 months after inoculation and between 36% and 55% mycorrhization 12 months after inoculation. The effect of earthworms on mycorrhization of silver fir with Tuber aestivum was positive only after 6 months of mycorrhization, while this effect disappeared and turned insignificantly negative after 12 months due to the secondary effect of grazing on ectomycorrhizal root tips.
Collapse
Affiliation(s)
| | - Gian Maria Niccolò Benucci
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, 426 Auditorium Road, East Lansing, MI, 48824, USA
| | - Hojka Kraigher
- Slovenian Forestry Institute, Večna pot 2, 1000, Ljubljana, Slovenia
| | - Tine Grebenc
- Slovenian Forestry Institute, Večna pot 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
29
|
Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021; 20:451-473. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany
| |
Collapse
|
30
|
Lu B, Perez-Moreno J, Zhang F, Rinaldi AC, Yu F. Aroma profile of two commercial truffle species from Yunnan and Sichuan, China: inter- and intraspecific variability and shared key compounds. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Otsing E, Anslan S, Ambrosio E, Koricheva J, Tedersoo L. Tree Species Richness and Neighborhood Effects on Ectomycorrhizal Fungal Richness and Community Structure in Boreal Forest. Front Microbiol 2021; 12:567961. [PMID: 33692762 PMCID: PMC7939122 DOI: 10.3389/fmicb.2021.567961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/27/2021] [Indexed: 11/29/2022] Open
Abstract
Tree species identity is one of the key factors driving ectomycorrhizal (EcM) fungal richness and community composition in boreal and temperate forest ecosystems, but little is known about the influence of tree species combinations and their neighborhood effects on EcM communities. To advance our understanding of host plant effects on EcM fungi, the roots of silver birch, Scots pine, and Norway spruce were analyzed using high-throughput sequencing across mature boreal forest exploratory plots of monocultures and two- and three-species mixtures in Finland. Our analyses revealed that tree species identity was an important determinant of EcM fungal community composition, but tree species richness had no significant influence on EcM fungal richness and community composition. We found that EcM fungal community composition associated with spruce depends on neighboring tree species. Our study suggests that at a regional-scale tree species identity is the primary factor determining community composition of root-associated EcM fungi alongside with tree species composition effects on EcM fungal community of spruce in mixed stands.
Collapse
Affiliation(s)
- Eveli Otsing
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Elia Ambrosio
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Natural History Museum, University of Tartu, Tartu, Estonia
| |
Collapse
|
32
|
Jacquemyn H, Brys R, Waud M, Evans A, Figura T, Selosse MA. Mycorrhizal Communities and Isotope Signatures in Two Partially Mycoheterotrophic Orchids. FRONTIERS IN PLANT SCIENCE 2021; 12:618140. [PMID: 33633765 PMCID: PMC7901878 DOI: 10.3389/fpls.2021.618140] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/18/2021] [Indexed: 05/20/2023]
Abstract
Partial mycoheterotrophy, the ability of plants to obtain carbon from fungi throughout their life cycle in combination with photosynthesis, appears to be more common within the Plant Kingdom than previously anticipated. Recent studies using stable isotope analyses have indicated that isotope signatures in partially mycoheterotrophic plants vary widely among species, but the relative contributions of family- or species-specific characteristics and the identity of the fungal symbionts to the observed differences remain unclear. Here, we investigated in detail mycorrhizal communities and isotopic signatures in four co-occurring terrestrial orchids (Platanthera chlorantha, Epipactis helleborine, E. neglecta and the mycoheterotrophic Neottia nidus-avis). All investigated species were mycorrhizal generalists (i.e., associated with a large number of fungi simultaneously), but mycorrhizal communities differed significantly between species. Mycorrhizal communities associating with the two Epipactis species consisted of a wide range of fungi belonging to different families, whereas P. chlorantha and N. nidus-avis associated mainly with Ceratobasidiaceae and Sebacinaceae species, respectively. Isotopic signatures differed significantly between both Epipactis species, with E. helleborine showing near autotrophic behavior and E. neglecta showing significant enrichment in both carbon and nitrogen. No significant differences in photosynthesis and stomatal conductance were observed between the two partially mycoheterotrophic orchids, despite significant differences in isotopic signatures. Our results demonstrate that partially mycoheterotrophic orchids of the genus Epipactis formed mycorrhizas with a wide diversity of fungi from different fungal families, but variation in mycorrhizal community composition was not related to isotope signatures and thus transfer of C and N to the plant. We conclude that the observed differences in isotope signatures between E. helleborine and E. neglecta cannot solely be explained by differences in mycorrhizal communities, but most likely reflect a combination of inherent physiological differences and differences in mycorrhizal communities.
Collapse
Affiliation(s)
- Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rein Brys
- Research Institute for Forest and Nature, Geraardsbergen, Belgium
| | - Michael Waud
- Department of Biology, Plant Conservation and Population Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Alexandra Evans
- Department of Biology, Plant Conservation and Population Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tomáš Figura
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
- Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
- Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
33
|
Truffles: Biodiversity, Ecological Significances, and Biotechnological Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Genotypic diversity of the Asiatic black truffle, Tuber himalayense, collected in spontaneous and highly productive truffle grounds. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01642-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Ori F, Leonardi M, Faccio A, Sillo F, Iotti M, Pacioni G, Balestrini R. Synthesis and ultrastructural observation of arbutoid mycorrhizae of black truffles (Tuber melanosporum and T. aestivum). MYCORRHIZA 2020; 30:715-723. [PMID: 33079241 PMCID: PMC7591440 DOI: 10.1007/s00572-020-00985-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Arbutus unedo (the strawberry tree) is a Mediterranean shrub which forms arbutoid mycorrhizae with a variety of Asco- and Basidiomycetes. After the discovery of the mycorrhizal symbiosis between A. unedo and Tuber borchii, in this study, arbutoid mycorrhizae were synthetized in greenhouse with Tuber aestivum and Tuber melanosporum. Six months after inoculation, both species colonized the roots of all inoculated A. unedo seedlings, but mature mycorrhizae were only observed after 12 months. Ultrastructure analysis of Tuber arbutoid mycorrhizae was described for the first time, showing, as observed in typical endosymbiosis, a rearrangement of host cells and the creation of an interface compartment with both truffle species. Immunolabelling experiments suggested that pectins are not present in the interface matrix surrounding the intracellular hyphae. Thus, the ability to establish symbiosis with A. unedo seems to be a common feature in the genus Tuber, opening up the possibility to use this plant for mycorrhization with valuable truffles. This could represent an important economic opportunity in Mediterranean areas by combining the production of truffles, edible fruits and valued honey.
Collapse
Affiliation(s)
- Francesca Ori
- Department of Life, Health and Environmental Sciences, University of L'Aquila, via Vetoio, Coppito 1, 67100, L'Aquila, Italy
| | - Marco Leonardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, via Vetoio, Coppito 1, 67100, L'Aquila, Italy
| | - Antonella Faccio
- National Research Council, Institute for Sustainable Plant Protection, Viale Mattioli 25, 10125, Torino, Italy
| | - Fabiano Sillo
- National Research Council, Institute for Sustainable Plant Protection, Viale Mattioli 25, 10125, Torino, Italy
| | - Mirco Iotti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, via Vetoio, Coppito 1, 67100, L'Aquila, Italy.
| | - Giovanni Pacioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, via Vetoio, Coppito 1, 67100, L'Aquila, Italy
| | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Viale Mattioli 25, 10125, Torino, Italy
| |
Collapse
|
36
|
Botnen SS, Thoen E, Eidesen PB, Krabberød AK, Kauserud H. Community composition of arctic root-associated fungi mirrors host plant phylogeny. FEMS Microbiol Ecol 2020; 96:fiaa185. [PMID: 32918451 PMCID: PMC7840110 DOI: 10.1093/femsec/fiaa185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
The number of plant species regarded as non-mycorrhizal increases at higher latitudes, and several plant species in the High-Arctic Archipelago Svalbard have been reported as non-mycorrhizal. We used the rRNA ITS2 and 18S gene markers to survey which fungi, as well as other micro-eukaryotes, were associated with roots of 31 arctic plant species not usually regarded as mycorrhizal in Svalbard. We assessed to what degree the root-associated fungi showed any host preference and whether the phylogeny of the plant hosts may mirror the composition of root-associated fungi. Fungal communities were largely structured according to host plant identity and to a less extent by environmental factors. We observed a positive relationship between the phylogenetic distance of host plants and the distance of fungal community composition between samples, indicating that the evolutionary history of the host plants plays a major role for which fungi colonize the plant roots. In contrast to the ITS2 marker, the 18S rRNA gene marker showed that chytrid fungi were prevalently associated with plant roots, together with a wide spectrum of amoeba-like protists and nematodes. Our study confirms that arbuscular mycorrhizal (AM) fungi are present also in arctic environments in low abundance.
Collapse
Affiliation(s)
- S S Botnen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
- The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
- Oslo Metropolitan University, PO Box 4 St. Olavs plass, NO-0130 Oslo, Norway
| | - E Thoen
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - P B Eidesen
- The University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
| | - A K Krabberød
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| | - H Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
37
|
Soudzilovskaia NA, Vaessen S, Barcelo M, He J, Rahimlou S, Abarenkov K, Brundrett MC, Gomes SIF, Merckx V, Tedersoo L. FungalRoot: global online database of plant mycorrhizal associations. THE NEW PHYTOLOGIST 2020; 227:955-966. [PMID: 32239516 DOI: 10.1111/nph.16569] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Testing of ecological, biogeographical and phylogenetic hypotheses of mycorrhizal traits requires a comprehensive reference dataset about plant mycorrhizal associations. Here we present a database, FungalRoot, which summarizes publicly available data about vascular plant mycorrhizal type and intensity of root colonization by mycorrhizal fungi, accompanied with rich metadata. We compiled and digitized data about plant mycorrhizal colonization in nine widespread languages. The present version of the FungalRoot database contains 36 303 species-by-site observations for 14 870 plant species, tripling the previously available compiled information about plant mycorrhizal associations. Based on these data, we provide a recommended list of genus-level plant mycorrhizal associations, based on the majority of data for species and careful analysis of conflicting data. The majority of ectomycorrhizal and ericoid mycorrhizal plants are trees (92%) and shrubs (85%), respectively. The majority of arbuscular and nonmycorrhizal plant species are herbaceous (50% and 70%, respectively). Our publicly available database is a powerful resource for mycorrhizal scientists and ecologists. It features possibilities for dynamic updating and addition of data about plant mycorrhizal associations. The new database will promote research on plant and fungal biogeography and evolution, and on links between above- and belowground biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Nadejda A Soudzilovskaia
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Einsteinweg 2, 2333 CC, Leiden, the Netherlands
| | - Stijn Vaessen
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Einsteinweg 2, 2333 CC, Leiden, the Netherlands
| | - Milagros Barcelo
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Einsteinweg 2, 2333 CC, Leiden, the Netherlands
| | - Jinhong He
- South China Botanical Garden, Chinese Academy of Sciences, No.723 Xingke Road, Tianhe District, 510650, Guangzhou, China
| | - Saleh Rahimlou
- Institute of Ecology and Earth Sciences, University of Tartu, Ülikooli 18, 50090, Tartu, Estonia
| | - Kessy Abarenkov
- Institute of Ecology and Earth Sciences, University of Tartu, Ülikooli 18, 50090, Tartu, Estonia
| | - Mark C Brundrett
- School of Biological Sciences, Faculty of Science, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Sofia I F Gomes
- Environmental Biology Department, Institute of Environmental Sciences, CML, Leiden University, Einsteinweg 2, 2333 CC, Leiden, the Netherlands
| | - Vincent Merckx
- Understanding Evolution Group, Naturalis Biodiversity Center, 2332 AA, Leiden, the Netherlands
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Ülikooli 18, 50090, Tartu, Estonia
| |
Collapse
|
38
|
|