1
|
Sheng H, Bouwmeester HJ, Munnik T. Phosphate promotes Arabidopsis root skewing and circumnutation through reorganisation of the microtubule cytoskeleton. THE NEW PHYTOLOGIST 2024; 244:2311-2325. [PMID: 39360424 PMCID: PMC11579438 DOI: 10.1111/nph.20152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Phosphate (Pi) plays a key role in plant growth and development. Hence, plants display a range of adaptations to acquire it, including changes in root system architecture (RSA). Whether Pi triggers directional root growth is unknown. We investigated whether Arabidopsis roots sense Pi and grow towards it, that is whether they exhibit phosphotropism. While roots did exhibit a clear Pi-specific directional growth response, it was, however, always to the left, independent of the direction of the Pi gradient. We discovered that increasing concentrations of KH2PO4, trigger a dose-dependent skewing response, in both primary and lateral roots. This phenomenon is Pi-specific - other nutrients do not trigger this - and involves the reorganisation of the microtubule cytoskeleton in epidermal cells of the root elongation zone. Higher Pi levels promote left-handed cell file rotation that results in right-handed, clockwise, root growth and leftward skewing as a result of the helical movement of roots (circumnutation). Our results shed new light on the role of Pi in root growth, and may provide novel insights for crop breeding to optimise RSA and P-use efficiency.
Collapse
Affiliation(s)
- Hui Sheng
- Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
| | - Harro J. Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
| | - Teun Munnik
- Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
| |
Collapse
|
2
|
Hanzawa A, Rahman AA, Rahman A. Actin Isovariant ACT2-Mediated Cellular Auxin Homeostasis Regulates Lateral Root Organogenesis in Arabidopsis thaliana. Cytoskeleton (Hoboken) 2024. [PMID: 39548860 DOI: 10.1002/cm.21956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024]
Abstract
Lateral root (LR) organogenesis is regulated by cellular flux of auxin within pericycle cells, which depends on the membrane distribution and polar localization of auxin carrier proteins. The correct distribution of auxin carrier proteins relies on the intracellular trafficking of these proteins aided by filamentous actin as a track. However, the precise role of actin in lateral root development is still elusive. Here, using vegetative class actin isovariant mutants, we revealed that loss of actin isovariant ACT8 led to increased lateral root formation. The distribution of auxin within pericycle cells was altered in act8 mutant, primarily due to the altered distribution of AUX1 and PIN7. Interestingly, incorporation of act2 mutant in act8 background (act2act8) effectively nullified the LR phenotype observed in act8 mutant, indicating that ACT2 plays an important role in LR development. To explore further, we investigated the possibility that the act8 mutant's LR phenotype and cellular auxin distribution resulted from ACT2 overexpression. Consistent with the idea, enhanced lateral root formation, altered AUX1, PIN7 expression, and auxin distribution in pericycle cells were observed in ACT2 overexpression lines. Collectively, these results suggest that actin isovariant ACT2 but not ACT8 plays a pivotal role in regulating source-to-sink auxin distribution during lateral root organogenesis.
Collapse
Affiliation(s)
- Aya Hanzawa
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Arifa Ahamed Rahman
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Abidur Rahman
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
- Department of Plant Biosciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
3
|
Liu YK, Li JJ, Xue QQ, Zhang SJ, Xie M, Cheng T, Wang HL, Liu CM, Chu JF, Pei YS, Jia BQ, Li J, Tian LJ, Fu AG, Hao YQ, Su H. Actin-bundling protein fimbrin serves as a new auxin biosynthesis orchestrator in Arabidopsis root tips. THE NEW PHYTOLOGIST 2024; 244:496-510. [PMID: 39044442 DOI: 10.1111/nph.19959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Plants delicately regulate endogenous auxin levels through the coordination of transport, biosynthesis, and inactivation, which is crucial for growth and development. While it is well-established that the actin cytoskeleton can regulate auxin levels by affecting polar transport, its potential role in auxin biosynthesis has remained largely unexplored. Using LC-MS/MS-based methods combined with fluorescent auxin marker detection, we observed a significant increase in root auxin levels upon deletion of the actin bundling proteins AtFIM4 and AtFIM5. Fluorescent observation, immunoblotting analysis, and biochemical approaches revealed that AtFIM4 and AtFIM5 affect the protein abundance of the key auxin synthesis enzyme YUC8 in roots. AtFIM4 and AtFIM5 regulate the auxin synthesis enzyme YUC8 at the protein level, with its degradation mediated by the 26S proteasome. This regulation modulates auxin synthesis and endogenous auxin levels in roots, consequently impacting root development. Based on these findings, we propose a molecular pathway centered on the 'actin cytoskeleton-26S proteasome-YUC8-auxin' axis that controls auxin levels. Our findings shed light on a new pathway through which plants regulate auxin synthesis. Moreover, this study illuminates a newfound role of the actin cytoskeleton in regulating plant growth and development, particularly through its involvement in maintaining protein homeostasis via the 26S proteasome.
Collapse
Affiliation(s)
- Yan-Kun Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jing-Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Qiao-Qiao Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shu-Juan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Min Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ting Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hong-Li Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Cui-Mei Liu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Fang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yu-Sha Pei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Bing-Qian Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jia Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Li-Jun Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ai-Gen Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ya-Qi Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hui Su
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| |
Collapse
|
4
|
Ren B, Guo X, Liu J, Feng G, Hao X, Zhang X, Chen Z. Auxin-Mediated Lateral Root Development in Root Galls of Cucumber under Meloidogyne incognita Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2679. [PMID: 39409549 PMCID: PMC11478513 DOI: 10.3390/plants13192679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Root-knot nematodes induce the formation of feeding sites within the host roots and the relocation of auxin into galls results in abnormal lateral root growth. Here, we analyzed the changes in cucumber root architecture under Meloidogyne incognita stress and the distribution of auxin in these morphological and molecular root changes. The number of root tips significantly decreased, and regression analysis showed a positive relationship between the size of root galls and the numbers of nematodes in galls compared with the lateral roots on galls, emphasizing the effect of nematode parasitism on root development. Data generated via a promoter-reporter system using the transgenic hairy root system first characterized the auxin distribution during nematode parasitism in cucumber. Using DR5:GUS staining of root galls, we further detected the expression of CsPIN1 and CsAUX1, which regulate polar auxin transport. The results showed that both CsPIN1 and CsAUX1 were induced in galls, and the relative expression of the two genes significantly increased at 21 DAI. The TIBA treatment, which can disrupt polar auxin transport inhibited the numbers of cucumber root tips and total length following increasing concentration gradients. Moreover, the numbers of galls were significantly affected by TIBA treatment, which showed the vital role of auxin during nematode parasitism. Our findings suggest that the transportation of auxin plays an important role during gall formation and induces cucumber lateral root development within nematode feeding sites.
Collapse
Affiliation(s)
- Baoling Ren
- College of Life Sciences, Linyi University, Linyi 276000, China; (B.R.); (X.G.)
| | - Xin Guo
- College of Life Sciences, Linyi University, Linyi 276000, China; (B.R.); (X.G.)
| | - Jingjing Liu
- College of Life Sciences, Linyi University, Linyi 276000, China; (B.R.); (X.G.)
| | - Guifang Feng
- College of Life Sciences, Linyi University, Linyi 276000, China; (B.R.); (X.G.)
| | - Xiaodong Hao
- School of Resources and Environment, Linyi University, Linyi 276000, China
| | - Xu Zhang
- College of Life Sciences, Linyi University, Linyi 276000, China; (B.R.); (X.G.)
| | - Zhiqun Chen
- College of Life Sciences, Linyi University, Linyi 276000, China; (B.R.); (X.G.)
| |
Collapse
|
5
|
Vilarrasa-Blasi J, Vellosillo T, Jinkerson RE, Fauser F, Xiang T, Minkoff BB, Wang L, Kniazev K, Guzman M, Osaki J, Barrett-Wilt GA, Sussman MR, Jonikas MC, Dinneny JR. Multi-omics analysis of green lineage osmotic stress pathways unveils crucial roles of different cellular compartments. Nat Commun 2024; 15:5988. [PMID: 39013881 PMCID: PMC11252407 DOI: 10.1038/s41467-024-49844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
Maintenance of water homeostasis is a fundamental cellular process required by all living organisms. Here, we use the single-celled green alga Chlamydomonas reinhardtii to establish a foundational understanding of osmotic-stress signaling pathways through transcriptomics, phosphoproteomics, and functional genomics approaches. Comparison of pathways identified through these analyses with yeast and Arabidopsis allows us to infer their evolutionary conservation and divergence across these lineages. 76 genes, acting across diverse cellular compartments, were found to be important for osmotic-stress tolerance in Chlamydomonas through their functions in cytoskeletal organization, potassium transport, vesicle trafficking, mitogen-activated protein kinase and chloroplast signaling. We show that homologs for five of these genes have conserved functions in stress tolerance in Arabidopsis and reveal a novel PROFILIN-dependent stage of acclimation affecting the actin cytoskeleton that ensures tissue integrity upon osmotic stress. This study highlights the conservation of the stress response in algae and land plants, and establishes Chlamydomonas as a unicellular plant model system to dissect the osmotic stress signaling pathway.
Collapse
Affiliation(s)
- Josep Vilarrasa-Blasi
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA.
| | - Tamara Vellosillo
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | - Robert E Jinkerson
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, 92521, USA
| | - Friedrich Fauser
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Tingting Xiang
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Benjamin B Minkoff
- Department of Biochemistry and Center for Genomics Science Innovation, University of Wisconsin, Madison, WI, 53706, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Kiril Kniazev
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Michael Guzman
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | - Jacqueline Osaki
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
| | | | - Michael R Sussman
- Department of Biochemistry and Center for Genomics Science Innovation, University of Wisconsin, Madison, WI, 53706, USA
| | - Martin C Jonikas
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
Cowling CL, Homayouni AL, Callwood JB, McReynolds MR, Khor J, Ke H, Draves MA, Dehesh K, Walley JW, Strader LC, Kelley DR. ZmPILS6 is an auxin efflux carrier required for maize root morphogenesis. Proc Natl Acad Sci U S A 2024; 121:e2313216121. [PMID: 38781209 PMCID: PMC11145266 DOI: 10.1073/pnas.2313216121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Plant root systems play a pivotal role in plant physiology and exhibit diverse phenotypic traits. Understanding the genetic mechanisms governing root growth and development in model plants like maize is crucial for enhancing crop resilience to drought and nutrient limitations. This study focused on identifying and characterizing ZmPILS6, an annotated auxin efflux carrier, as a key regulator of various crown root traits in maize. ZmPILS6-modified roots displayed reduced network area and suppressed lateral root formation, which are desirable traits for the "steep, cheap, and deep" ideotype. The research revealed that ZmPILS6 localizes to the endoplasmic reticulum and plays a vital role in controlling the spatial distribution of indole-3-acetic acid (IAA or "auxin") in primary roots. The study also demonstrated that ZmPILS6 can actively efflux IAA when expressed in yeast. Furthermore, the loss of ZmPILS6 resulted in significant proteome remodeling in maize roots, particularly affecting hormone signaling pathways. To identify potential interacting partners of ZmPILS6, a weighted gene coexpression analysis was performed. Altogether, this research contributes to the growing knowledge of essential genetic determinants governing maize root morphogenesis, which is crucial for guiding agricultural improvement strategies.
Collapse
Affiliation(s)
- Craig L. Cowling
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | | | - Jodi B. Callwood
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Maxwell R. McReynolds
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Jasper Khor
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Haiyan Ke
- Botany and Plant Sciences Department, University of California, Riverside, CA92521
| | - Melissa A. Draves
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Katayoon Dehesh
- Botany and Plant Sciences Department, University of California, Riverside, CA92521
| | - Justin W. Walley
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | | | - Dior R. Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| |
Collapse
|
7
|
Xu L, Cao L, Li J, Staiger CJ. Cooperative actin filament nucleation by the Arp2/3 complex and formins maintains the homeostatic cortical array in Arabidopsis epidermal cells. THE PLANT CELL 2024; 36:764-789. [PMID: 38057163 PMCID: PMC10896301 DOI: 10.1093/plcell/koad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Precise control over how and where actin filaments are created leads to the construction of unique cytoskeletal arrays within a common cytoplasm. Actin filament nucleators are key players in this activity and include the conserved actin-related protein 2/3 (Arp2/3) complex as well as a large family of formins. In some eukaryotic cells, these nucleators compete for a common pool of actin monomers and loss of one favors the activity of the other. To test whether this mechanism is conserved, we combined the ability to image single filament dynamics in the homeostatic cortical actin array of living Arabidopsis (Arabidopsis thaliana) epidermal cells with genetic and/or small molecule inhibitor approaches to stably or acutely disrupt nucleator activity. We found that Arp2/3 mutants or acute CK-666 treatment markedly reduced the frequency of side-branched nucleation events as well as overall actin filament abundance. We also confirmed that plant formins contribute to side-branched filament nucleation in vivo. Surprisingly, simultaneous inhibition of both classes of nucleator increased overall actin filament abundance and enhanced the frequency of de novo nucleation events by an unknown mechanism. Collectively, our findings suggest that multiple actin nucleation mechanisms cooperate to generate and maintain the homeostatic cortical array of plant epidermal cells.
Collapse
Affiliation(s)
- Liyuan Xu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Lingyan Cao
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jiejie Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- EMBRIO Institute, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Wiśniewska J, Kęsy J, Mucha N, Tyburski J. Auxin resistant 1 gene (AUX1) mediates auxin effect on Arabidopsis thaliana callus growth by regulating its content and distribution pattern. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154168. [PMID: 38176282 DOI: 10.1016/j.jplph.2023.154168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Callus sustained growth relies heavily on auxin, which is supplied to the culture medium. Surprisingly, there is a noticeable absence of information regarding the involvement of carrier-mediated auxin polar transport gene in callus growth regulation. Here, we delve into the role of the AUXIN RESISTANT 1 (AUX1) influx transporter in the regulation of callus growth, comparing the effects under conditions of light versus darkness. It was observed that callus growth was significantly enhanced under light illumination. This growth-stimulatory effect was accompanied by a decrease in the levels of free auxin within the callus cells when compared to conditions of darkness. In the aux1-22 mutant callus, which lacks functional AUX1, there was a substantial reduction in IAA levels. Nonetheless, the mutant callus exhibited markedly higher growth rates compared to the wild type. This suggests that the reduction in exogenous auxin uptake through the AUX1-dependent pathway may prevent the overaccumulation of growth-restricting hormone concentrations. The growth-stimulatory effect of AUX1 deficiency was counteracted by nonspecific auxin influx transport inhibitors. This finding shows that other auxin influx carriers likely play a role in facilitating the diffusion of auxin from the culture medium to sustain high growth rates. AUX1 was primarily localized in the plasma membranes of the two outermost cell layers of the callus clump and the parenchyma cells adjacent to tracheary elements. Significantly, these locations coincided with the regions of maximal auxin concentration. Consequently, it can be inferred that AUX1 mediates the auxin distribution within the callus.
Collapse
Affiliation(s)
- Justyna Wiśniewska
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Jacek Kęsy
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Natalia Mucha
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Jarosław Tyburski
- Plant Physiology and Biotechnology Department, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| |
Collapse
|
9
|
Yoshida D, Akita K, Higaki T. Machine learning and feature analysis of the cortical microtubule organization of Arabidopsis cotyledon pavement cells. PROTOPLASMA 2023; 260:987-998. [PMID: 36219259 DOI: 10.1007/s00709-022-01813-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The measurement of cytoskeletal features can provide valuable insights into cell biology. In recent years, digital image analysis of cytoskeletal features has become an important research tool for quantitative evaluation of cytoskeleton organization. In this study, we examined the utility of a supervised machine learning approach with digital image analysis to distinguish different cellular organizational patterns. We focused on the jigsaw puzzle-shaped pavement cells of Arabidopsis thaliana. Measurements of three features of cortical microtubules in these cells (parallelness, density, and the coefficient of variation of the intensity distribution of fluorescently labeled cytoskeletons [as an indicator of microtubule bundling]) were obtained from microscopic images. A random forest machine learning model was then used with these images to differentiate mutant and wild type, and Taxol-treated and control cells. Using these three metrics, we were able to distinguish wild type from bpp125 triple mutant cells, with approximately 80% accuracy; classification accuracy was 88% for control and Taxol-treated cells. Different features contributed most to the classification, namely, coefficient of variation for the wild-type/mutant cells and parallelness for the Taxol-treated/control cells. The random forest method used enabled quantitative evaluation of the contribution of features to the classification, and partial dependence plots showed the relationships between metric values and classification accuracy. While further improvements to the method are needed, our small-scale analysis shows the potential for this approach in large-scale screening analyses.
Collapse
Affiliation(s)
- Daichi Yoshida
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Kae Akita
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Meijirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Takumi Higaki
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
- International Research Organization in Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| |
Collapse
|
10
|
Zhang Q, Wang B, Kong X, Li K, Huang Y, Peng L, Chen L, Liu J, Yu Q, He J, Yang Y, Li X, Wang J. Knockout of cyclase-associated protein CAP1 confers tolerance towards salt and osmotic stress in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:153978. [PMID: 37087999 DOI: 10.1016/j.jplph.2023.153978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
As a regulator of actin filament turnover, Arabidopsis thaliana CAP1 plays an important role in plant growth and development. Here, we analyzed the phenotypes of two Arabidopsis cap1 mutants: cap1-1 (a T-DNA insertion mutant) and Cas9-CAP1 (generated by CRISPR-Cas9 gene editing). Phenotypic analysis demonstrated that loss of CAP1 results in defects in seed germination and seedling morphology, with some seedlings exhibiting one or three cotyledons. The cap1-1 mutant took longer than the wild type to complete its life cycle, but its flowering time was normal, indicating that loss of CAP1 prolongs reproductive but not vegetative growth. Moreover, loss of CAP1 severely reduces seed production in self-pollinated plants, due to disruption of pollen tube elongation. RNA-seq and qRT-PCR analyses demonstrated that CAP1 may be involved in osmotic stress responses. Indeed, the cap1-1 mutant showed increased tolerance of salt and mannitol treatment, indicating that CAP1 plays a negative role in osmotic stress tolerance in Arabidopsis. Taken together, our results demonstrate that CAP1 functions not only in plant growth and development, but also in Arabidopsis responses to osmotic stress.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Boya Wang
- Southwest University of Science and Technology, School of Life Science and Engineering, Mianyang, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Kexuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yaling Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Li Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jiajia Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Qin Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Carrillo‐Carrasco VP, Hernandez‐Garcia J, Mutte SK, Weijers D. The birth of a giant: evolutionary insights into the origin of auxin responses in plants. EMBO J 2023; 42:e113018. [PMID: 36786017 PMCID: PMC10015382 DOI: 10.15252/embj.2022113018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
The plant signaling molecule auxin is present in multiple kingdoms of life. Since its discovery, a century of research has been focused on its action as a phytohormone. In land plants, auxin regulates growth and development through transcriptional and non-transcriptional programs. Some of the molecular mechanisms underlying these responses are well understood, mainly in Arabidopsis. Recently, the availability of genomic and transcriptomic data of green lineages, together with phylogenetic inference, has provided the basis to reconstruct the evolutionary history of some components involved in auxin biology. In this review, we follow the evolutionary trajectory that allowed auxin to become the "giant" of plant biology by focusing on bryophytes and streptophyte algae. We consider auxin biosynthesis, transport, physiological, and molecular responses, as well as evidence supporting the role of auxin as a chemical messenger for communication within ecosystems. Finally, we emphasize that functional validation of predicted orthologs will shed light on the conserved properties of auxin biology among streptophytes.
Collapse
Affiliation(s)
| | | | - Sumanth K Mutte
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| | - Dolf Weijers
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| |
Collapse
|
12
|
Takatsuka H, Higaki T, Ito M. At the Nexus between Cytoskeleton and Vacuole: How Plant Cytoskeletons Govern the Dynamics of Large Vacuoles. Int J Mol Sci 2023; 24:4143. [PMID: 36835552 PMCID: PMC9967756 DOI: 10.3390/ijms24044143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Large vacuoles are a predominant cell organelle throughout the plant body. They maximally account for over 90% of cell volume and generate turgor pressure that acts as a driving force of cell growth, which is essential for plant development. The plant vacuole also acts as a reservoir for sequestering waste products and apoptotic enzymes, thereby enabling plants to rapidly respond to fluctuating environments. Vacuoles undergo dynamic transformation through repeated enlargement, fusion, fragmentation, invagination, and constriction, eventually resulting in the typical 3-dimensional complex structure in each cell type. Previous studies have indicated that such dynamic transformations of plant vacuoles are governed by the plant cytoskeletons, which consist of F-actin and microtubules. However, the molecular mechanism of cytoskeleton-mediated vacuolar modifications remains largely unclear. Here we first review the behavior of cytoskeletons and vacuoles during plant development and in response to environmental stresses, and then introduce candidates that potentially play pivotal roles in the vacuole-cytoskeleton nexus. Finally, we discuss factors hampering the advances in this research field and their possible solutions using the currently available cutting-edge technologies.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
13
|
Peng L, He J, Yao H, Yu Q, Zhang Q, Li K, Huang Y, Chen L, Li X, Yang Y, Li X. CARK3-mediated ADF4 regulates hypocotyl elongation and soil drought stress in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1065677. [PMID: 36618656 PMCID: PMC9811263 DOI: 10.3389/fpls.2022.1065677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Actin depolymerization factors (ADFs), as actin-binding proteins, act a crucial role in plant development and growth, as well as in response to abiotic and biotic stresses. Here, we found that CARK3 plays a role in regulating hypocotyl development and links a cross-talk between actin filament and drought stress through interaction with ADF4. By using bimolecular fluorescence complementation (BiFC) and GST pull-down, we confirmed that CARK3 interacts with ADF4 in vivo and in vitro. Next, we generated and characterized double mutant adf4cark3-4 and OE-ADF4:cark3-4. The hypocotyl elongation assay indicated that the cark3-4 mutant seedlings were slightly longer hypocotyls when compared with the wild type plants (WT), while CARK3 overexpressing seedlings had no difference with WT. In addition, overexpression of ADF4 significantly inhibited long hypocotyls of cark3-4 mutants. Surprisingly, we found that overexpression of ADF4 markedly enhance drought resistance in soil when compared with WT. On the other hand, drought tolerance analysis showed that overexpression of CARK3 could rescue adf4 drought susceptibility. Taken together, our results suggest that CARK3 acts as a regulator in hypocotyl elongation and drought tolerance likely via regulating ADF4 phosphorylation.
Collapse
|
14
|
Abstract
Auxin has always been at the forefront of research in plant physiology and development. Since the earliest contemplations by Julius von Sachs and Charles Darwin, more than a century-long struggle has been waged to understand its function. This largely reflects the failures, successes, and inevitable progress in the entire field of plant signaling and development. Here I present 14 stations on our long and sometimes mystical journey to understand auxin. These highlights were selected to give a flavor of the field and to show the scope and limits of our current knowledge. A special focus is put on features that make auxin unique among phytohormones, such as its dynamic, directional transport network, which integrates external and internal signals, including self-organizing feedback. Accented are persistent mysteries and controversies. The unexpected discoveries related to rapid auxin responses and growth regulation recently disturbed our contentment regarding understanding of the auxin signaling mechanism. These new revelations, along with advances in technology, usher us into a new, exciting era in auxin research.
Collapse
Affiliation(s)
- Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
15
|
Zhang Q, Deng A, Xiang M, Lan Q, Li X, Yuan S, Gou X, Hao S, Du J, Xiao C. The Root Hair Development of Pectin Polygalacturonase PGX2 Activation Tagging Line in Response to Phosphate Deficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:862171. [PMID: 35586221 PMCID: PMC9108675 DOI: 10.3389/fpls.2022.862171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Pectin, cellulose, and hemicellulose constitute the primary cell wall in eudicots and function in multiple developmental processes in plants. Root hairs are outgrowths of specialized epidermal cells that absorb water and nutrients from the soil. Cell wall architecture influences root hair development, but how cell wall remodeling might enable enhanced root hair formation in response to phosphate (P) deficiency remains relatively unclear. Here, we found that POLYGALACTURONASE INVOLVED IN EXPANSION 2 (PGX2) functions in conditional root hair development. Under low P conditions, a PGX2 activation tagged line (PGX2AT ) displays bubble-like root hairs and abnormal callose deposition and superoxide accumulation in roots. We found that the polar localization and trafficking of PIN2 are altered in PGX2AT roots in response to P deficiency. We also found that actin filaments were less compact but more stable in PGX2AT root hair cells and that actin filament skewness in PGX2AT root hairs was recovered by treatment with 1-N-naphthylphthalamic acid (NPA), an auxin transport inhibitor. These results demonstrate that activation tagging of PGX2 affects cell wall remodeling, auxin signaling, and actin microfilament orientation, which may cooperatively regulate root hair development in response to P starvation.
Collapse
|
16
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
17
|
Hampejsová R, Berka M, Berková V, Jersáková J, Domkářová J, von Rundstedt F, Frary A, Saiz-Fernández I, Brzobohatý B, Černý M. Interaction With Fungi Promotes the Accumulation of Specific Defense Molecules in Orchid Tubers and May Increase the Value of Tubers for Biotechnological and Medicinal Applications: The Case Study of Interaction Between Dactylorhiza sp. and Tulasnella calospora. FRONTIERS IN PLANT SCIENCE 2022; 13:757852. [PMID: 35845638 PMCID: PMC9282861 DOI: 10.3389/fpls.2022.757852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/13/2022] [Indexed: 05/04/2023]
Abstract
Terrestrial orchids can form tubers, organs modified to store energy reserves. Tubers are an attractive source of nutrients, and salep, a flour made from dried orchid tubers, is the source of traditional beverages. Tubers also contain valuable secondary metabolites and are used in traditional medicine. The extensive harvest of wild orchids is endangering their populations in nature; however, orchids can be cultivated and tubers mass-produced. This work illustrates the importance of plant-fungus interaction in shaping the content of orchid tubers in vitro. Orchid plants of Dactylorhiza sp. grown in asymbiotic culture were inoculated with a fungal isolate from Tulasnella calospora group and, after 3 months of co-cultivation, tubers were analyzed. The fungus adopted the saprotrophic mode of life, but no visible differences in the morphology and biomass of the tubers were detected compared to the mock-treated plants. To elucidate the mechanisms protecting the tubers against fungal infestation, proteome, metabolome, and lipidome of tubers were analyzed. In total, 1,526, 174, and 108 proteins, metabolites, and lipids were quantified, respectively, providing a detailed snapshot of the molecular process underlying plant-microbe interaction. The observed changes at the molecular level showed that the tubers of inoculated plants accumulated significantly higher amounts of antifungal compounds, including phenolics, alkaloid Calystegine B2, and dihydrophenanthrenes. The promoted antimicrobial effects were validated by observing transient inhibition of Phytophthora cactorum growth. The integration of omics data highlighted the promotion of flavonoid biosynthesis, the increase in the formation of lipid droplets and associated production of oxylipins, and the accumulation of auxin in response to T. calospora. Taken together, these results provide the first insights into the molecular mechanisms of defense priming in orchid tubers and highlight the possible use of fungal interactors in biotechnology for the production of orchid secondary metabolites.
Collapse
Affiliation(s)
- Romana Hampejsová
- Potato Research Institute, Ltd., Havlíčkův Brod, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jana Jersáková
- Department of Biology of Ecosystems, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | | | | | - Anne Frary
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Turkey
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- *Correspondence: Martin Černý,
| |
Collapse
|
18
|
Abstract
The auxin-binding protein 1 (ABP1) has endured a history of undulating prominence as a candidate receptor for this important phytohormone. Its capacity for binding auxin has not been in doubt, a feature adequately explained by its crystal structure, but any relevance of this to auxin signaling and plant development has been far more demanding to define. Over its research lifetime, it has been associated with many auxin-induced activities, including ion fluxes across the plasma membrane, rearrangement of the cytoskeleton and cell shape, and the abundance of PIN proteins at the plasma membrane via control of endocytosis, all of which required its presence in the apoplast. Yet, ABP1 has a KDEL sequence that targets it to the endoplasmic reticulum, where most of it remains. This mismatch has been more than adequately compensated for by the need for an auxin receptor to account for responses far too rapid to be executed through transcription and translation and the TIR1/AuxIAA coreceptor system. However, discoveries showing that abp1-null mutants are not compromised for auxin signaling or development, that TIR1 or AFB1 are necessarily involved with very rapid responses at the plasma membrane, and that these rapid responses are mediated with intracellular auxin all suggest that ABP1's auxin-binding capacity is not physiologically relevant. Nevertheless, ABP1 is ubiquitous in higher plants and throughout plant tissues. We need to complete its history by defining its function inside plant cells.
Collapse
Affiliation(s)
- Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AS, United Kingdom
| |
Collapse
|
19
|
Abstract
Auxin regulates the transcription of auxin-responsive genes by the TIR1/AFBs-Aux/IAA-ARF signaling pathway, and in this way facilitates plant growth and development. However, rapid, nontranscriptional responses to auxin that cannot be explained by this pathway have been reported. In this review, we focus on several examples of rapid auxin responses: (1) the triggering of changes in plasma membrane potential in various plant species and tissues, (2) inhibition of root growth, which also correlates with membrane potential changes, cytosolic Ca2+ spikes, and a rise of apoplastic pH, (3) the influence on endomembrane trafficking of PIN proteins and other membrane cargoes, and (4) activation of ROPs (Rho of plants) and their downstream effectors such as the cytoskeleton or vesicle trafficking. In most cases, the signaling pathway triggering the response is poorly understood. A role for the TIR1/AFBs in rapid root growth regulation is emerging, as well as the involvement of transmembrane kinases (TMKs) in the activation of ROPs. We discuss similarities and differences among these rapid responses and focus on their physiological significance, which remains an enigma in most cases.
Collapse
|
20
|
Zhang P, Qian D, Luo C, Niu Y, Li T, Li C, Xiang Y, Wang X, Niu Y. Arabidopsis ADF5 Acts as a Downstream Target Gene of CBFs in Response to Low-Temperature Stress. Front Cell Dev Biol 2021; 9:635533. [PMID: 33585491 PMCID: PMC7876393 DOI: 10.3389/fcell.2021.635533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Low temperature is a major adverse environment that affects normal plant growth. Previous reports showed that the actin cytoskeleton plays an important role in the plant response to low-temperature stress, but the regulatory mechanism of the actin cytoskeleton in this process is not clear. C-repeat binding factors (CBFs) are the key molecular switches for plants to adapt to cold stress. However, whether CBFs are involved in the regulation of the actin cytoskeleton has not been reported. We found that Arabidopsis actin depolymerizing factor 5 (ADF5), an ADF that evolved F-actin bundling function, was up-regulated at low temperatures. We also demonstrated that CBFs bound to the ADF5 promoter directly in vivo and in vitro. The cold-induced expression of ADF5 was significantly inhibited in the cbfs triple mutant. The freezing resistance of the adf5 knockout mutant was weaker than that of wild type (WT) with or without cold acclimation. After low-temperature treatment, the actin cytoskeleton of WT was relatively stable, but the actin cytoskeletons of adf5, cbfs, and adf5 cbfs were disturbed to varying degrees. Compared to WT, the endocytosis rate of the amphiphilic styryl dye FM4-64 in adf5, cbfs, and adf5 cbfs at low temperature was significantly reduced. In conclusion, CBFs directly combine with the CRT/DRE DNA regulatory element of the ADF5 promoter after low-temperature stress to transcriptionally activate the expression of ADF5; ADF5 further regulates the actin cytoskeleton dynamics to participate in the regulation of plant adaptation to a low-temperature environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yue Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
García-González J, van Gelderen K. Bundling up the Role of the Actin Cytoskeleton in Primary Root Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:777119. [PMID: 34975959 PMCID: PMC8716943 DOI: 10.3389/fpls.2021.777119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 05/19/2023]
Abstract
Primary root growth is required by the plant to anchor in the soil and reach out for nutrients and water, while dealing with obstacles. Efficient root elongation and bending depends upon the coordinated action of environmental sensing, signal transduction, and growth responses. The actin cytoskeleton is a highly plastic network that constitutes a point of integration for environmental stimuli and hormonal pathways. In this review, we present a detailed compilation highlighting the importance of the actin cytoskeleton during primary root growth and we describe how actin-binding proteins, plant hormones, and actin-disrupting drugs affect root growth and root actin. We also discuss the feedback loop between actin and root responses to light and gravity. Actin affects cell division and elongation through the control of its own organization. We remark upon the importance of longitudinally oriented actin bundles as a hallmark of cell elongation as well as the role of the actin cytoskeleton in protein trafficking and vacuolar reshaping during this process. The actin network is shaped by a plethora of actin-binding proteins; however, there is still a large gap in connecting the molecular function of these proteins with their developmental effects. Here, we summarize their function and known effects on primary root growth with a focus on their high level of specialization. Light and gravity are key factors that help us understand root growth directionality. The response of the root to gravity relies on hormonal, particularly auxin, homeostasis, and the actin cytoskeleton. Actin is necessary for the perception of the gravity stimulus via the repositioning of sedimenting statoliths, but it is also involved in mediating the growth response via the trafficking of auxin transporters and cell elongation. Furthermore, auxin and auxin analogs can affect the composition of the actin network, indicating a potential feedback loop. Light, in its turn, affects actin organization and hence, root growth, although its precise role remains largely unknown. Recently, fundamental studies with the latest techniques have given us more in-depth knowledge of the role and organization of actin in the coordination of root growth; however, there remains a lot to discover, especially in how actin organization helps cell shaping, and therefore root growth.
Collapse
Affiliation(s)
- Judith García-González
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Judith García-González,
| | - Kasper van Gelderen
- Plant Ecophysiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Kasper van Gelderen,
| |
Collapse
|
22
|
Higaki T, Akita K, Katoh K. Coefficient of variation as an image-intensity metric for cytoskeleton bundling. Sci Rep 2020; 10:22187. [PMID: 33349642 PMCID: PMC7752905 DOI: 10.1038/s41598-020-79136-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
The evaluation of cytoskeletal bundling is a fundamental experimental method in the field of cell biology. Although the skewness of the pixel intensity distribution derived from fluorescently-labeled cytoskeletons has been widely used as a metric to evaluate the degree of bundling in digital microscopy images, its versatility has not been fully validated. Here, we applied the coefficient of variation (CV) of intensity values as an alternative metric, and compared its performance with skewness. In synthetic images representing extremely bundled conditions, the CV successfully detected degrees of bundling that could not be distinguished by skewness. On actual microscopy images, CV was better than skewness, especially on variable-angle epifluorescence microscopic images or stimulated emission depletion and confocal microscopy images of very small areas of around 1 μm2. When blur or noise was added to synthetic images, CV was found to be robust to blur but deleteriously affected by noise, whereas skewness was robust to noise but deleteriously affected by blur. For confocal images, CV and skewness showed similar sensitivity to noise, possibly because optical blurring is often present in microscopy images. Therefore, in practical use with actual microscopy images, CV may be more appropriate than skewness, unless the image is extremely noisy.
Collapse
Affiliation(s)
- Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan.
| | - Kae Akita
- Department of Chemical Biological Science, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
23
|
Sengupta S, Nag Chaudhuri R. ABI3 plays a role in de-novo root regeneration from Arabidopsis thaliana callus cells. PLANT SIGNALING & BEHAVIOR 2020; 15:1794147. [PMID: 32662721 PMCID: PMC8550280 DOI: 10.1080/15592324.2020.1794147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 05/27/2023]
Abstract
Developmental plasticity and the ability to regenerate organs during the life cycle are a signature feature of plant system. De novo organogenesis is a common mode of plant regeneration and may occur directly from the explant or indirectly via callus formation. It is now evident that callus formation occurs through the root development pathway. In fact, callus cells behave like a group of root primordium cells that are under the control of exogenous auxin. Presence or absence of auxin decides the subsequent fate of these cells. While in presence of external supplementation of auxin they are maintained as root primordia cells, absence of exogenous auxin induces the callus cells into patterning, differentiation and finally root emergence. Here we show that in absence of functional ABI3, a prominent member of the B3 superfamily of transcription factors, root regeneration is compromised in Arabidopsis callus cells. In culture medium free of any exogenous hormone supplementation, while adventitious root emergence and growth was prominently observed in wild type cells, no such features were observed in abi3-6 cells. Expression of auxin-responsive AUX1 and GH3 genes was significantly reduced in abi3-6 cells, indicating that auxin levels or distribution may be altered in absence of ABI3.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Biotechnology, St. Xavier’s College, Kolkata, India
| | | |
Collapse
|