1
|
Verrico B, Preston JC. Historic rewiring of grass flowering time pathways and implications for crop improvement under climate change. THE NEW PHYTOLOGIST 2024. [PMID: 39722593 DOI: 10.1111/nph.20375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Grasses are fundamental to human survival, providing a large percentage of our calories, fuel, and fodder for livestock, and an enormous global carbon sink. A particularly important part of the grass plant is the grain-producing inflorescence that develops in response to both internal and external signals that converge at the shoot tip to influence meristem behavior. Abiotic signals that trigger reproductive development vary across the grass family, mostly due to the unique ecological and phylogenetic histories of each clade. The time it takes a grass to flower has implications for its ability to escape harsh environments, while also indirectly affecting abiotic stress tolerance, inflorescence architecture, and grain yield. Here, we synthesize recent insights into the evolution of grass flowering time in response to past climate change, particularly focusing on genetic convergence in underlying traits. We then discuss how and why the rewiring of a shared ancestral flowering pathway affects grass yields, and outline ways in which researchers are using this and other information to breed higher yielding, climate-proof cereal crops.
Collapse
Affiliation(s)
- Brittany Verrico
- Department of Plant Biology, University of Vermont, 63 Carrigan Drive, Burlington, VT, 05405, USA
| | - Jill C Preston
- Department of Plant Biology, University of Vermont, 63 Carrigan Drive, Burlington, VT, 05405, USA
| |
Collapse
|
2
|
Stolsmo SP, Lindberg CL, Ween RE, Schat L, Preston JC, Humphreys AM, Fjellheim S. Evolution of drought and frost responses in cool season grasses (Pooideae): was drought tolerance a precursor to frost tolerance? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6405-6422. [PMID: 39066622 PMCID: PMC11522984 DOI: 10.1093/jxb/erae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Frost tolerance has evolved many times independently across flowering plants. However, conservation of several frost tolerance mechanisms among distant relatives suggests that apparently independent entries into freezing climates may have been facilitated by repeated modification of existing traits ('precursor traits'). One possible precursor trait for freezing tolerance is drought tolerance, because palaeoclimatic data suggest plants were exposed to drought before frost and several studies have demonstrated shared physiological and genetic responses to drought and frost stress. Here, we combine ecophysiological experiments and comparative analyses to test the hypothesis that drought tolerance acted as a precursor to frost tolerance in cool-season grasses (Pooideae). Contrary to our predictions, we measured the highest levels of frost tolerance in species with the lowest ancestral drought tolerance, indicating that the two stress responses evolved independently in different lineages. We further show that drought tolerance is more evolutionarily labile than frost tolerance. This could limit our ability to reconstruct the order in which drought and frost responses evolved relative to each other. Further research is needed to determine whether our results are unique to Pooideae or general for flowering plants.
Collapse
Affiliation(s)
- Sylvia Pal Stolsmo
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | | | - Rebekka Eriksen Ween
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Laura Schat
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Aelys Muriel Humphreys
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Siri Fjellheim
- Department of Plant Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| |
Collapse
|
3
|
Khodaverdi M, Mullinger MD, Shafer HR, Preston JC. Melica as an emerging model system for comparative studies in temperate Pooideae grasses. ANNALS OF BOTANY 2023; 132:1175-1190. [PMID: 37696761 PMCID: PMC10902897 DOI: 10.1093/aob/mcad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND AIMS Pooideae grasses contain some of the world's most important crop and forage species. Although much work has been conducted on understanding the genetic basis of trait diversification within a few annual Pooideae, comparative studies at the subfamily level are limited by a lack of perennial models outside 'core' Pooideae. We argue for development of the perennial non-core genus Melica as an additional model for Pooideae, and provide foundational data regarding the group's biogeography and history of character evolution. METHODS Supplementing available ITS and ndhF sequence data, we built a preliminary Bayesian-based Melica phylogeny, and used it to understand how the genus has diversified in relation to geography, climate and trait variation surveyed from various floras. We also determine biomass accumulation under controlled conditions for Melica species collected across different latitudes and compare inflorescence development across two taxa for which whole genome data are forthcoming. KEY RESULTS Our phylogenetic analyses reveal three strongly supported geographically structured Melica clades that are distinct from previously hypothesized subtribes. Despite less geographical affinity between clades, the two sister 'Ciliata' and 'Imperfecta' clades segregate from the more phylogenetically distant 'Nutans' clade in thermal climate variables and precipitation seasonality, with the 'Imperfecta' clade showing the highest levels of trait variation. Growth rates across Melica are positively correlated with latitude of origin. Variation in inflorescence morphology appears to be explained largely through differences in secondary branch distance, phyllotaxy and number of spikelets per secondary branch. CONCLUSIONS The data presented here and in previous studies suggest that Melica possesses many of the necessary features to be developed as an additional model for Pooideae grasses, including a relatively fast generation time, perenniality, and interesting variation in physiology and morphology. The next step will be to generate a genome-based phylogeny and transformation tools for functional analyses.
Collapse
Affiliation(s)
- Masoumeh Khodaverdi
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| | - Mark D Mullinger
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| | - Hannah R Shafer
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| | - Jill C Preston
- Department of Plant Biology, The University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405, USA
| |
Collapse
|
4
|
Wingler A, Sandel B. Relationships of the competitor, stress tolerator, ruderal functional strategies of grass species with lifespan, photosynthetic type, naturalization and climate. AOB PLANTS 2023; 15:plad021. [PMID: 37197712 PMCID: PMC10184452 DOI: 10.1093/aobpla/plad021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
Grass species (family Poaceae) are globally distributed, adapted to a wide range of climates and express a diversity of functional strategies. We explored the functional strategies of grass species using the competitor, stress tolerator, ruderal (CSR) system and asked how a species' strategy relates to its functional traits, climatic distribution and propensity to become naturalized outside its native range. We used a global set of trait data for grass species to classify functional strategies according to the CSR system based on leaf traits. Differences in strategies in relation to lifespan (annual or perennial), photosynthetic type (C3 or C4), or naturalisation (native or introduced) were investigated. In addition, correlations with traits not included in the CSR classification were analyzed, and a model was fitted to predict a species' average mean annual temperature and annual precipitation across its range as a function of CSR scores. Values for competitiveness were higher in C4 species than in C3 species, values for stress tolerance were higher in perennials than in annuals, and introduced species had more pronounced competitive-ruderal strategies than native species. Relationships between the CSR classification, based on leaf traits, and other functional traits were analyzed. Competitiveness was positively correlated with height, while ruderality was correlated with specific root length, indicating that both above- and belowground traits underlying leaf and root economics contribute to realized CSR strategies. Further, relationships between climate and CSR classification showed that species with competitive strategies were more common in warm climates and at high precipitation, whereas species with stress tolerance strategies were more common in cold climates and at low precipitation. The findings presented here demonstrate that CSR classification of functional strategies based on leaf traits matches expectations for the adaptations of grass species that underlie lifespan, photosynthetic type, naturalization and climate.
Collapse
Affiliation(s)
| | - Brody Sandel
- Department of Biology, Santa Clara University, Santa Clara, CA, USA
| |
Collapse
|
5
|
Das A, Dedon N, Enders DJ, Fjellheim S, Preston JC. Testing the chilling- before drought-tolerance hypothesis in Pooideae grasses. Mol Ecol 2023; 32:772-785. [PMID: 36420966 PMCID: PMC10107940 DOI: 10.1111/mec.16794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Temperate Pooideae are a large clade of economically important grasses distributed in some of the Earth's coldest and driest terrestrial environments. Previous studies have inferred that Pooideae diversified from their tropical ancestors in a cold montane habitat, suggesting that above-freezing cold (chilling) tolerance evolved early in the subfamily. By contrast, drought tolerance is hypothesized to have evolved multiple times independently in response to global aridification that occurred after the split of Pooideae tribes. To independently test predictions of the chilling-before-drought hypothesis in Pooideae, we assessed conservation of whole plant and gene expression traits in response to chilling vs. drought. We demonstrated that both trait responses are more similar across tribes in cold as compared to drought, suggesting that chilling responses evolved before, and drought responses after, tribe diversification. Moreover, we found significantly more overlap between drought and chilling responsive genes within a species than between drought responsive genes across species, providing evidence that chilling tolerance genes acted as precursors for the novel acquisition of increased drought tolerance multiple times independently, partially through the cooption of chilling responsive genes.
Collapse
Affiliation(s)
- Aayudh Das
- Department of Plant Biology, The University of Vermont, Burlington, Vermont, USA
| | - Natalie Dedon
- Department of Plant Biology, The University of Vermont, Burlington, Vermont, USA
| | - Daniel J Enders
- Department of Plant Biology, The University of Vermont, Burlington, Vermont, USA
| | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jill C Preston
- Department of Plant Biology, The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
6
|
Hjertaas AC, Preston JC, Kainulainen K, Humphreys AM, Fjellheim S. Convergent evolution of the annual life history syndrome from perennial ancestors. FRONTIERS IN PLANT SCIENCE 2023; 13:1048656. [PMID: 36684797 PMCID: PMC9846227 DOI: 10.3389/fpls.2022.1048656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Despite most angiosperms being perennial, once-flowering annuals have evolved multiple times independently, making life history traits among the most labile trait syndromes in flowering plants. Much research has focused on discerning the adaptive forces driving the evolution of annual species, and in pinpointing traits that distinguish them from perennials. By contrast, little is known about how 'annual traits' evolve, and whether the same traits and genes have evolved in parallel to affect independent origins of the annual syndrome. Here, we review what is known about the distribution of annuals in both phylogenetic and environmental space and assess the evidence for parallel evolution of annuality through similar physiological, developmental, and/or genetic mechanisms. We then use temperate grasses as a case study for modeling the evolution of annuality and suggest future directions for understanding annual-perennial transitions in other groups of plants. Understanding how convergent life history traits evolve can help predict species responses to climate change and allows transfer of knowledge between model and agriculturally important species.
Collapse
Affiliation(s)
- Ane C. Hjertaas
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jill C. Preston
- Department of Plant Biology, The University of Vermont, Burlington, VT, United States
| | - Kent Kainulainen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Aelys M. Humphreys
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
7
|
Climate Effects on Prairie Productivity Partially Ameliorated by Soil Nutrients and Plant Community Responses. Ecosystems 2022. [DOI: 10.1007/s10021-022-00811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Crain J, Larson S, Dorn K, DeHaan L, Poland J. Genetic architecture and QTL selection response for Kernza perennial grain domestication traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2769-2784. [PMID: 35763029 PMCID: PMC9243872 DOI: 10.1007/s00122-022-04148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Analysis of multi-year breeding program data revealed that the genetic architecture of an intermediate wheatgrass population was highly polygenic for both domestication and agronomic traits, supporting the use of genomic selection for new crop domestication. Perennial grains have the potential to provide food for humans and decrease the negative impacts of annual agriculture. Intermediate wheatgrass (IWG, Thinopyrum intermedium, Kernza®) is a promising perennial grain candidate that The Land Institute has been breeding since 2003. We evaluated four consecutive breeding cycles of IWG from 2016 to 2020 with each cycle containing approximately 1100 unique genets. Using genotyping-by-sequencing markers, quantitative trait loci (QTL) were mapped for 34 different traits using genome-wide association analysis. Combining data across cycles and years, we found 93 marker-trait associations for 16 different traits, with each association explaining 0.8-5.2% of the observed phenotypic variance. Across the four cycles, only three QTL showed an FST differentiation > 0.15 with two corresponding to a decrease in floret shattering. Additionally, one marker associated with brittle rachis was 216 bp from an ortholog of the btr2 gene. Power analysis and quantitative genetic theory were used to estimate the effective number of QTL, which ranged from a minimum of 33 up to 558 QTL for individual traits. This study suggests that key agronomic and domestication traits are under polygenic control and that molecular methods like genomic selection are needed to accelerate domestication and improvement of this new crop.
Collapse
Affiliation(s)
- Jared Crain
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS, 66506, USA
| | - Steve Larson
- USDA-ARS, Forage and Range Research, Utah State University, Logan, UT, 84322, USA
| | - Kevin Dorn
- USDA-ARS, Soil Management and Sugarbeet Research, Fort Collins, CO, 80526, USA
| | - Lee DeHaan
- The Land Institute, 2440 E. Water Well Rd, Salina, KS, 67401, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS, 66506, USA.
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
9
|
Chapman EA, Thomsen HC, Tulloch S, Correia PMP, Luo G, Najafi J, DeHaan LR, Crews TE, Olsson L, Lundquist PO, Westerbergh A, Pedas PR, Knudsen S, Palmgren M. Perennials as Future Grain Crops: Opportunities and Challenges. FRONTIERS IN PLANT SCIENCE 2022; 13:898769. [PMID: 35968139 PMCID: PMC9372509 DOI: 10.3389/fpls.2022.898769] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Perennial grain crops could make a valuable addition to sustainable agriculture, potentially even as an alternative to their annual counterparts. The ability of perennials to grow year after year significantly reduces the number of agricultural inputs required, in terms of both planting and weed control, while reduced tillage improves soil health and on-farm biodiversity. Presently, perennial grain crops are not grown at large scale, mainly due to their early stages of domestication and current low yields. Narrowing the yield gap between perennial and annual grain crops will depend on characterizing differences in their life cycles, resource allocation, and reproductive strategies and understanding the trade-offs between annualism, perennialism, and yield. The genetic and biochemical pathways controlling plant growth, physiology, and senescence should be analyzed in perennial crop plants. This information could then be used to facilitate tailored genetic improvement of selected perennial grain crops to improve agronomic traits and enhance yield, while maintaining the benefits associated with perennialism.
Collapse
Affiliation(s)
| | | | - Sophia Tulloch
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Pedro M. P. Correia
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Guangbin Luo
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Javad Najafi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Lennart Olsson
- Lund University Centre for Sustainability Studies, Lund, Sweden
| | - Per-Olof Lundquist
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Westerbergh
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pai Rosager Pedas
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Søren Knudsen
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
10
|
Li Z, Lathe RS, Li J, He H, Bhalerao RP. Towards understanding the biological foundations of perenniality. TRENDS IN PLANT SCIENCE 2022; 27:56-68. [PMID: 34561180 DOI: 10.1016/j.tplants.2021.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Perennial life cycles enable plants to have remarkably long lifespans, as exemplified by trees that can live for thousands of years. For this, they require sophisticated regulatory networks that sense environmental changes and initiate adaptive responses in their growth patterns. Recent research has gradually elucidated fundamental mechanisms underlying the perennial life cycle. Intriguingly, several conserved components of the floral transition pathway in annuals such as Arabidopsis thaliana also participate in these regulatory mechanisms underpinning perenniality. Here, we provide an overview of perennials' physiological features and summarise their recently discovered molecular foundations. We also highlight the importance of deepening our understanding of perenniality in the development of perennial grain crops, which are promising elements of future sustainable agriculture.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China.
| | - Rahul S Lathe
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Jinping Li
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China
| | - Hong He
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden.
| |
Collapse
|
11
|
Herron SA, Rubin MJ, Albrecht MA, Long QG, Sandoval MC, Miller AJ. The role of genus and life span in predicting seed and vegetative trait variation and correlation in Lathyrus, Phaseolus, and Vicia. AMERICAN JOURNAL OF BOTANY 2021; 108:2388-2404. [PMID: 34634144 PMCID: PMC9306869 DOI: 10.1002/ajb2.1773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Annual and perennial life history transitions are abundant among angiosperms, and understanding the phenotypic variation underlying life span shifts is a key endeavor of plant evolutionary biology. Comparative analyses of trait variation and correlation networks among annual and perennial plants is increasingly important as new herbaceous perennial crops are being developed for edible seed. However, it remains unclear how seed to vegetative growth trait relationships correlate with life span. METHODS To assess the relative roles of genus and life span in predicting phenotypic variation and trait correlations, we measured seed size and shape, germination proportion, and early-life-stage plant height and leaf growth over 3 mo in 29 annual and perennial, herbaceous congeneric species from three legume genera (Lathyrus, Phaseolus, and Vicia). RESULTS Genus was the strongest predictor of seed size and shape variation, and life span consistently predicted plant height and leaf number at single time points. Correlation networks revealed that annual species had significant associations between seed traits and vegetative traits, whereas perennials had no significant seed-vegetative associations. Each genus also differed in the extent of integration between seed and vegetative traits, as well as within-vegetative-trait correlation patterns. CONCLUSIONS Genus and life span were important for predicting aspects of early-life-stage phenotypic variation and trait relationships. Differences in phenotypic correlation may indicate that selection on seed size traits will impact vegetative growth differently depending on life span, which has important implications for nascent perennial breeding programs.
Collapse
Affiliation(s)
- Sterling A. Herron
- Saint Louis University, Department of Biology3507 Laclede AvenueSt. LouisMissouri63103USA
| | - Matthew J. Rubin
- Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| | - Matthew A. Albrecht
- Missouri Botanical Garden, Center for Conservation and Sustainable Development4344 Shaw BoulevardSt. LouisMissouri63110USA
| | - Quinn G. Long
- Shaw Nature Reserve307 Pinetum Loop RoadGray SummitMissouri63039USA
| | - Marissa C. Sandoval
- University of California, Berkeley, Rausser College of Natural Resources319 Wellman Hall, BerkeleyCalifornia94704USA
| | - Allison J. Miller
- Saint Louis University, Department of Biology3507 Laclede AvenueSt. LouisMissouri63103USA
| |
Collapse
|
12
|
Vest K, Sobel JM. Variation in seasonal timing traits and life history along a latitudinal transect in Mimulus ringens. J Evol Biol 2021; 34:1803-1816. [PMID: 34582606 DOI: 10.1111/jeb.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022]
Abstract
Seasonal timing traits are commonly under recurrent, spatially variable selection, and are therefore predicted to exhibit clinal variation. Temperate perennial plants often require vernalization to prompt growth and reproduction; however, little is known about whether vernalization requirements change across the range of a broadly distributed species. We performed a critical vernalization duration study in Mimulus ringens, coupled with population genomic analysis. Plants from eight populations spanning the latitudinal range were exposed to varying durations of 4°C vernalization between 0 and 56 days, and flowering response was assessed. RADSeq was also performed to generate 1179 polymorphic SNPs, which were used to examine population structure. We found unexpected life history variation, with some populations lacking vernalization requirement. Population genomic analyses show that these life history variants are highly divergent from perennials, potentially revealing a cryptic species. For perennial populations, minimum vernalization time was surprisingly consistent. However, once vernalized, northern populations flowered almost 3 weeks faster than southern. Furthermore, southern populations exhibited sensitivity to vernalization times beyond flowering competency, suggesting an ability to respond adaptively to different lengths of winter. Mimulus ringens, therefore, reveals evidence of clinal variation, and provides opportunities for future studies addressing mechanistic and ecological hypotheses both within and between incipient species.
Collapse
Affiliation(s)
- Kelly Vest
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, New York, USA
| | - James M Sobel
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, New York, USA
| |
Collapse
|
13
|
Swentowsky KW, Bell HS, Wills DM, Dawe RK. QTL Map of Early- and Late-Stage Perennial Regrowth in Zea diploperennis. FRONTIERS IN PLANT SCIENCE 2021; 12:707839. [PMID: 34504508 PMCID: PMC8421791 DOI: 10.3389/fpls.2021.707839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Numerous climate change threats will necessitate a shift toward more sustainable agricultural practices during the 21st century. Conversion of annual crops to perennials that are capable of regrowing over multiple yearly growth cycles could help to facilitate this transition. Perennials can capture greater amounts of carbon and access more water and soil nutrients compared to annuals. In principle it should be possible to identify genes that confer perenniality from wild relatives and transfer them into existing breeding lines to create novel perennial crops. Two major loci controlling perennial regrowth in the maize relative Zea diploperennis were previously mapped to chromosome 2 (reg1) and chromosome 7 (reg2). Here we extend this work by mapping perennial regrowth in segregating populations involving Z. diploperennis and the maize inbreds P39 and Hp301 using QTL-seq and traditional QTL mapping approaches. The results confirmed the existence of a major perennial regrowth QTL on chromosome 2 (reg1). Although we did not observe the reg2 QTL in these populations, we discovered a third QTL on chromosome 8 which we named regrowth3 (reg3). The reg3 locus exerts its strongest effect late in the regrowth cycle. Neither reg1 nor reg3 overlapped with tiller number QTL scored in the same population, suggesting specific roles in the perennial phenotype. Our data, along with prior work, indicate that perennial regrowth in maize is conferred by relatively few major QTL.
Collapse
Affiliation(s)
- Kyle W. Swentowsky
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Harrison S. Bell
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - David M. Wills
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - R. Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, GA, United States
- Department of Genetics, University of Georgia, Athens, GA, United States
| |
Collapse
|
14
|
Preston JC. Insights into the evo-devo of plant reproduction using next-generation sequencing approaches. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1536-1545. [PMID: 33367867 DOI: 10.1093/jxb/eraa543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
The development of plant model organisms has traditionally been analyzed using resource-heavy, tailored applications that are not easily transferable to distantly related non-model taxa. Thus, our understanding of plant development has been limited to a subset of traits, and evolutionary studies conducted most effectively either across very wide [e.g. Arabidopsis thaliana and Oryza sativa (rice)] or narrow (i.e. population level) phylogenetic distances. As plant biologists seek to capitalize on natural diversity for crop improvement, enhance ecosystem functioning, and better understand plant responses to climate change, high-throughput and broadly applicable forms of existing molecular biology assays are becoming an invaluable resource. Next-generation sequencing (NGS) is increasingly becoming a powerful tool in evolutionary developmental biology (evo-devo) studies, particularly through its application to understanding trait evolution at different levels of gene regulation. Here, I review some of the most common and emerging NGS-based methods, using exemplar studies in reproductive plant evo-devo to illustrate their potential.
Collapse
Affiliation(s)
- Jill C Preston
- The University of Vermont, Department of Plant Biology, 63 Carrigan Drive, Burlington, VT, USA
| |
Collapse
|
15
|
Wade RN, Seed P, McLaren E, Wood E, Christin PA, Thompson K, Rees M, Osborne CP. The morphogenesis of fast growth in plants. THE NEW PHYTOLOGIST 2020; 228:1306-1315. [PMID: 32841398 DOI: 10.1111/nph.16892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Growth rate represents a fundamental axis of life history variation. Faster growth associated with C4 photosynthesis and annual life history has evolved multiple times, and the resulting diversity in growth is typically explained via resource acquisition and allocation. However, the underlying changes in morphogenesis remain unknown. We conducted a phylogenetic comparative experiment with 74 grass species, conceptualising morphogenesis as the branching and growth of repeating modules. We aimed to establish whether faster growth in C4 and annual grasses, compared with C3 and perennial grasses, came from the faster growth of individual modules or higher rates of module initiation. Morphogenesis produces fast growth in different ways in grasses using C4 and C3 photosynthesis, and in annual compared with perennial species. C4 grasses grow faster than C3 species through a greater enlargement of shoot modules and quicker secondary branching of roots. However, leaf initiation is slower and there is no change in shoot branching. Conversely, faster growth in annuals than perennials is achieved through greater branching and enlargement of shoots, and possibly faster root branching. The morphogenesis of fast growth depends on ecological context, with C4 grasses tending to promote resource capture under competition, and annuals enhancing branching to increase reproductive potential.
Collapse
Affiliation(s)
- Ruth N Wade
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Patrick Seed
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Eleanor McLaren
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ellie Wood
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ken Thompson
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mark Rees
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Colin P Osborne
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|