1
|
Berardi N, Amirsadeghi S, Swanton CJ. Plant competition cues activate a singlet oxygen signaling pathway in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:964476. [PMID: 39228834 PMCID: PMC11368760 DOI: 10.3389/fpls.2024.964476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Oxidative stress responses of Arabidopsis to reflected low red to far-red signals (R:FR ≈ 0.3) generated by neighboring weeds or an artificial source of FR light were compared with a weed-free control (R:FR ≈1.6). In the low R:FR treatments, induction of the shade avoidance responses (SAR) coincided with increased leaf production of singlet oxygen (1O2). This 1O2 increase was not due to protochlorophyllide accumulation and did not cause cell death. Chemical treatments, however, with 5-aminolevulinic acid (the precursor of tetrapyrrole biosynthesis) and glutathione (a quinone A reductant) enhanced cell death and growth inhibition. RNA sequencing revealed that transcriptome responses to the reflected low R:FR light treatments minimally resembled previously known Arabidopsis 1O2 generating systems that rapidly generate 1O2 following a dark to light transfer. The upregulation of only a few early 1O2 responsive genes (6 out of 1931) in the reflected low R:FR treatments suggested specificity of the 1O2 signaling. Moreover, increased expression of two enzyme genes, the SULFOTRANSFERASE ST2A (ST2a) and the early 1O2-responsive IAA-LEUCINE RESISTANCE (ILR)-LIKE6 (ILL6), which negatively regulate jasmonate level, suggested that repression of bioactive JAs may promote the shade avoidance (versus defense) and 1O2 acclimation (versus cell death) responses to neighboring weeds.
Collapse
Affiliation(s)
- Nicole Berardi
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, ON, Canada
| | - Sasan Amirsadeghi
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
2
|
Zhao T, Huang C, Li N, Ge Y, Wang L, Tang Y, Wang Y, Li Y, Zhang C. Ubiquitin ligase VvPUB26 in grapevine promotes proanthocyanidin synthesis and resistance to powdery mildew. PLANT PHYSIOLOGY 2024; 195:2891-2910. [PMID: 38688011 DOI: 10.1093/plphys/kiae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Proanthocyanidins (PAs) are an important group of flavonoids that contribute to astringency, color, and flavor in grapes (Vitis vinifera) and wines. They also play a crucial role in enhancing plant resistance to various stresses. However, the underlying regulatory mechanism governing PAs biosynthesis, particularly in relation to conferring resistance to powdery mildew, has not been extensively explored. This study focused on identifying a key player in PAs biosynthesis, namely the plant U-box (PUB) E3 ubiquitin ligase VvPUB26. We discovered that overexpression of VvPUB26 in grapes leads to a significant increase in PAs content, whereas interfering with VvPUB26 has the opposite effect. Additionally, our findings demonstrated that overexpression of VvPUB26 in transgenic grapevines enhances defense against powdery mildew while interfering with VvPUB26 results in increased susceptibility to the pathogen. Interestingly, we observed that VvPUB26 interacts with the WRKY transcription factor VvWRKY24, thereby facilitating ubiquitination and degradation processes. Through RNA-Seq analysis, we found that VvWRKY24 primarily participates in secondary metabolites biosynthesis, metabolic pathways, and plant-pathogen interaction. Notably, VvWRKY24 directly interacts with the promoters of dihydroflavonol-4-reductase (DFR) and leucoanthocyanidin reductase (LAR) to inhibit PAs biosynthesis. Meanwhile, VvWRKY24 also influences the expression of MYB transcription factor genes related to PAs synthesis. In conclusion, our results unveil a regulatory module involving VvPUB26-VvWRKY24-VvDFR/VvLAR that plays a fundamental role in governing PAs biosynthesis in grapevines. These findings enhance our understanding of the relationship between PAs biosynthesis and defense mechanisms against powdery mildew.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yaqi Ge
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Lan J, Lian C, Shao Y, Chen S, Lu Y, Zhu L, Mu D, Tang Q. Genome-Wide Identification of Seven in Absentia E3 Ubiquitin Ligase Gene Family and Expression Profiles in Response to Different Hormones in Uncaria rhynchophylla. Int J Mol Sci 2024; 25:7636. [PMID: 39062882 PMCID: PMC11277444 DOI: 10.3390/ijms25147636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
SINA (Seven in absentia) E3 ubiquitin ligases are a family of RING (really interesting new gene) E3 ubiquitin ligases, and they play a crucial role in regulating plant growth and development, hormone response, and abiotic and biotic stress. However, there is little research on the SINA gene family in U. rhynchophylla. In this study, a total of 10 UrSINA genes were identified from the U. rhynchophylla genome. The results of multiple sequence alignments and chromosomal locations show that 10 UrSINA genes were unevenly located on 22 chromosomes, and each UrSINA protein contained a SINA domain at the N-terminal and RING domains at the C-terminal. Synteny analysis showed that there are no tandem duplication gene pairs and there are four segmental gene pairs in U. rhynchophylla, contributing to the expansion of the gene family. Furthermore, almost all UrSINA genes contained the same gene structure, with three exons and two introns, and there were many cis-acting elements relating to plant hormones, light responses, and biotic and abiotic stress. The results of qRT-PCR show that most UrSINA genes were expressed in stems, with the least expression in roots; meanwhile, most UrSINA genes and key enzyme genes were responsive to ABA and MeJA hormones with overlapping but different expression patterns. Co-expression analysis showed that UrSINA1 might participate in the TIA pathway under ABA treatment, and UrSINA5 and UrSINA6 might participate in the TIA pathway under MeJA treatment. The mining of UrSINA genes in the U. rhynchophylla provided novel information for understanding the SINA gene and its function in plant secondary metabolites, growth, and development.
Collapse
Affiliation(s)
- Jinxu Lan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.L.); (C.L.); (S.C.)
| | - Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.L.); (C.L.); (S.C.)
| | - Yingying Shao
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (J.L.); (C.L.); (S.C.)
| | - Ying Lu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| | - Lina Zhu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| | - Detian Mu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| | - Qi Tang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (Y.L.); (L.Z.)
| |
Collapse
|
4
|
Hu J, Luo M, Zhou X, Wang Z, Yan L, Hong D, Yang G, Zhang X. RING-type E3 ligase BnaJUL1 ubiquitinates and degrades BnaTBCC1 to regulate drought tolerance in Brassica napus L. PLANT, CELL & ENVIRONMENT 2024; 47:1023-1040. [PMID: 37984059 DOI: 10.1111/pce.14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/26/2023] [Accepted: 09/27/2023] [Indexed: 11/22/2023]
Abstract
Drought stress poses a persistent threat to field crops and significantly limits global agricultural productivity. Plants employ ubiquitin-dependent degradation as a crucial post-translational regulatory mechanism to swiftly adapt to changing environmental conditions. JUL1 is a RING-type E3 ligase related to drought stress in Arabidopsis. In this study, we explored the function of BnaJUL1 (a homologous gene of JUL1 in Brassica napus) and discovered a novel gene BnaTBCC1 participating in drought tolerance. First, we utilised BnaJUL1-cri materials through the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 system. Second, we confirmed that BnaJUL1 regulated drought tolerance through the drought tolerance assay and transcriptome analysis. Then, we identified a series of proteins interacting with BnaJUL1 through yeast library screening, including BnaTBCC1 (a tubulin binding cofactor C domain-containing protein); whose homologous gene TBCC1 knockdown mutants (tbcc1-1) exhibited ABA-sensitive germination in Arabidopsis, we then confirmed the involvement of BnaTBCC1 in drought tolerance in both Arabidopsis and Brassica. Finally, we established that BnaJUL1 could ubiquitinate and degrade BnaTBCC1 to regulate drought tolerance. Consequently, our study unveils BnaJUL1 as a novel regulator that ubiquitinates and degrades BnaTBCC1 to modulate drought tolerance and provided desirable germplasm for further breeding of drought tolerance in rapeseed.
Collapse
Affiliation(s)
- Jin Hu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Mudan Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xianming Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhaoyang Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Li Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guangsheng Yang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaohui Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
5
|
Wu S, Hu C, Zhu C, Fan Y, Zhou J, Xia X, Shi K, Zhou Y, Foyer CH, Yu J. The MYC2-PUB22-JAZ4 module plays a crucial role in jasmonate signaling in tomato. MOLECULAR PLANT 2024; 17:598-613. [PMID: 38341757 DOI: 10.1016/j.molp.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Jasmonates (JAs), a class of lipid-derived stress hormones, play a crucial role across an array of plant physiological processes and stress responses. Although JA signaling is thought to rely predominantly on the degradation of specific JAZ proteins by SCFCOI1, it remains unclear whether other pathways are involved in the regulation of JAZ protein stability. Here, we report that PUB22, a plant U-box type E3 ubiquitin ligase, plays a critical role in the regulation of plant resistance against Helicoverpa armigera and other JA responses in tomato. Whereas COI1 physically interacts with JAZ1/2/5/7, PUB22 physically interacts with JAZ1/3/4/6. PUB22 ubiquitinates JAZ4 to promote its degradation via the 26S proteasome pathway. Importantly, we observed that pub22 mutants showreduced resistance to H. armigera, whereas jaz4 single mutants and jaz1 jaz3 jaz4 jaz6 quadruple mutants have enhanced resistance. The hypersensitivity of pub22 mutants to herbivores could be partially rescued by JAZ4 mutation. Moreover, we found that expression of PUB22 can be transcriptionally activated by MYC2, thus forming a positive feedback circuit in JA signaling. We noticed that the PUB22-JAZ4 module also regulates other JA responses, including defense against B. cinerea, inhibition of root elongation, and anthocyanin accumulation. Taken together, these results indicate that PUB22 plays a crucial role in plant growth and defense responses, together with COI1-regulated JA signaling, by targeting specific JAZs.
Collapse
Affiliation(s)
- Shaofang Wu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Chaoyi Hu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Changan Zhu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yanfen Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Horticulture, Northwest Agriculture & Forestry University, Xianyang 712100, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaojia Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Liu Z, Wang L, Li Y, Zhu J, Li Z, Chen L, Li H, Shi T, Yao P, Bi Z, Sun C, Bai J, Zhang J, Liu Y. Genome-wide analysis of the U-box E3 ligases gene family in potato (Solanum tuberosum L.) and overexpress StPUB25 enhance drought tolerance in transgenic Arabidopsis. BMC Genomics 2024; 25:10. [PMID: 38166714 PMCID: PMC10759479 DOI: 10.1186/s12864-023-09890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lei Wang
- Hebei North University, Zhangjiakou, 075000, China
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinyong Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhitao Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Limin Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hongyang Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tianbin Shi
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhenzhen Bi
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiangping Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junlian Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Tang X, Hou Y, Jiang F, Lang H, Li J, Cheng J, Wang L, Liu X, Zhang H. Genome-wide characterization of SINA E3 ubiquitin ligase family members and their expression profiles in response to various abiotic stresses and hormones in kiwifruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107891. [PMID: 37459805 DOI: 10.1016/j.plaphy.2023.107891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/27/2023] [Accepted: 07/08/2023] [Indexed: 08/13/2023]
Abstract
SINA (Seven in absentia) proteins in the subtype of E3 ubiquitin ligase family have important functions in regulating the growth and development as well as in response to abiotic and biotic stresses in plants. However, the characteristics and possible functions of SINA family proteins in kiwifruit are not studied. In this research, a total number of 11 AcSINA genes in the kiwifruit genome were identified. Chromosome location and multiple sequence alignment analyses indicated that they were unevenly distributed on 10 chromosomes and all contained the typical N-terminal RING domain and C-terminal SINA domain. Phylogenetic, gene structure and collinear relationship analyses revealed that they were highly conserved with the same gene structure, and have gone through segmental duplication events. Expression pattern analyses demonstrated that all AcSINAs were ubiquitously expressed in roots, stems and leaves, and were responsive to different abiotic and plant hormone treatments with overlapped but distinct expression patterns. Further yeast two-hybrid and Arabidopsis transformation analyses demonstrated most AcSINAs interacted with itself or other AcSINA members to form homo- or heterodimers, and ectopic expression of AcSINA2 in Arabidopsis led to hypersensitive growth phenotype of transgenic seedlings to ABA treatment. Our results reveal that AcSINAs take part in the response to various abiotic stresses and hormones, and provide important information for the functional elucidation of AcSINAs in vine fruit plants.
Collapse
Affiliation(s)
- Xiaoli Tang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Yaqiong Hou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Fudong Jiang
- Yantai Academy of Agricultural Sciences, 26 West Gangcheng Avenue, Yantai, Shandong, 265559, China
| | - Hongshan Lang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Jianzhao Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Jieshan Cheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China
| | - Xiaohua Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 5 Qingdao Avenue, Yantai, 265503, China; Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong Province, 265400, China.
| |
Collapse
|
8
|
Li S, Yao X, Zhang B, Tang H, Lu L. Genome-wide characterization of the U-box gene in Camellia sinensis and functional analysis in transgenic tobacco under abiotic stresses. Gene 2023; 865:147301. [PMID: 36813060 DOI: 10.1016/j.gene.2023.147301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Plants U-box genes are crucial for plant survival, and they extensively regulate plant growth, reproduction and development as well as coping with stress and other processes. In this study, we identified 92 CsU-box genes through genome-wide analysis in the tea plant (Camellia sinensis), all of them contained the conserved U-box domain and were divided into 5 groups, which supported by the further genes structure analysis. The expression profiles in eight tea plant tissues and under abiotic and hormone stresses were analyzed using the TPIA database. 7 CsU-box genes (CsU-box27/28/39/46/63/70/91) were selected to verify and analyze expression patterns under PEG-induced drought and heat stress in tea plant respectively, the qRT-PCR results showed consistent with transcriptome datasets; and the CsU-box39 were further heterologous expressed in tobacco to perform gene function analysis. Phenotypic analyses of overexpression transgenic tobacco seedlings and physiological experiments revealed that CsU-box39 positively regulated the plant response to drought stress. These results lay a solid foundation for studying the biological function of CsU-box, and will provide breeding strategy basis for tea plant breeders.
Collapse
Affiliation(s)
- Shiyu Li
- College of Tea Sciences, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Sciences, Guizhou University, Guiyang 550025, China
| | - Baohui Zhang
- Institute of Agricultural Bioengineering/College of Life Sciences, Key Laboratory of Mountain Plant Resources Conservation and Germplasm Innovation, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agricultural Bioengineering, Guiyang 550025, China
| | - Hu Tang
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; Institute of Agricultural Bioengineering/College of Life Sciences, Key Laboratory of Mountain Plant Resources Conservation and Germplasm Innovation, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agricultural Bioengineering, Guiyang 550025, China.
| | - Litang Lu
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; Institute of Agricultural Bioengineering/College of Life Sciences, Key Laboratory of Mountain Plant Resources Conservation and Germplasm Innovation, Ministry of Education, Collaborative Innovation Center for Mountain Ecology and Agricultural Bioengineering, Guiyang 550025, China.
| |
Collapse
|
9
|
Jiang L, Lin Y, Wang L, Peng Y, Yang M, Jiang Y, Hou G, Liu X, Li M, Zhang Y, Zhang Y, Chen Q, Wang Y, He W, Wang X, Tang H, Luo Y. Genome-wide identification and expression profiling reveal the regulatory role of U-box E3 ubiquitin ligase genes in strawberry fruit ripening and abiotic stresses resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1171056. [PMID: 37035055 PMCID: PMC10078948 DOI: 10.3389/fpls.2023.1171056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The plant U-box (PUB) proteins are a type of E3 ubiquitin ligases well known for their functions in response to various stresses. They are also related to fruit development and ripening. However, PUB members possess such roles that remain unclear in strawberry. In this study, 155 PUB genes were identified in octoploid strawberry and classified into four groups. Their promoters possessed a variety of cis-acting elements, most of which are associated with abiotic stresses, followed by phytohormones response and development. Protein-protein interaction analysis suggested that FaU-box members could interact with each other as well as other proteins involved in hormone signaling and stress resistance. Transcriptome-based and RT-qPCR expression analysis revealed the potential involvement of FaU-box genes in resistance to stresses and fruit ripening. Of these, FaU-box98 and FaU-box136 were positively while FaU-box52 was negatively related to strawberry ripening. FaU-box98 comprehensively participated in resistance of ABA, cold, and salt, while FaU-box83 and FaU-box136 were broadly associated with drought and salt stresses. FaU-box18 and FaU-box52 were ABA-specific; FaU-box3 was specific to salt stress. In addition, the functional analysis of a randomly selected FaU-box (FaU-box127) showed that the transient overexpression of FaU-box127 promoted the ripening of strawberry fruit, along with significant changes in the expression levels of some ripening-related genes and the content of organic acid and soluble sugar. Overall, these findings provided comprehensive information about the FaU-box gene family and identified the potential FaU-box members participating in stress resistance and strawberry fruit ripening regulation.
Collapse
Affiliation(s)
- Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Liangxin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuting Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuyan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Guoyan Hou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Xu M, Kong K, Miao L, He J, Liu T, Zhang K, Yue X, Jin T, Gai J, Li Y. Identification of major quantitative trait loci and candidate genes for seed weight in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:22. [PMID: 36688967 PMCID: PMC9870841 DOI: 10.1007/s00122-023-04299-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Four major quantitative trait loci for 100-seed weight were identified in a soybean RIL population under five environments, and the most likely candidate genes underlying these loci were identified. Seed weight is an important target of soybean breeding. However, the genes underlying the major quantitative trait loci (QTL) controlling seed weight remain largely unknown. In this study, a soybean population of 300 recombinant inbred lines (RILs) derived from a cross between PI595843 (PI) and WH was used to map the QTL and identify candidate genes for seed weight. The RIL population was genotyped through whole genome resequencing, and phenotyped for 100-seed weight under five environments. A total of 38 QTL were detected, and four major QTL, each explained at least 10% of the variation in 100-seed weight, were identified. Six candidate genes within these four major QTL regions were identified by analyses of their tissue expression patterns, gene annotations, and differential gene expression levels in soybean seeds during four developmental stages between two parental lines. Further sequence variation analyses revealed a C to T substitution in the first exon of the Glyma.19G143300, resulting in an amino acid change between PI and WH, and thus leading to a different predicted kinase domain, which might affect its protein function. Glyma.19G143300 is highly expressed in soybean seeds and encodes a leucine-rich repeat receptor-like protein kinase (LRR-RLK). Its predicted protein has typical domains of LRR-RLK family, and phylogenetic analyses reveled its similarity with the known LRR-RLK protein XIAO (LOC_Os04g48760), which is involved in controlling seed size. The major QTL and candidate genes identified in this study provide useful information for molecular breeding of new soybean cultivars with desirable seed weight.
Collapse
Affiliation(s)
- Mengge Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Keke Kong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Long Miao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Tengfei Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Kai Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiuli Yue
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Ting Jin
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
11
|
Liu X, Hou J, Chen L, Li Q, Fang X, Wang J, Hao Y, Yang P, Wang W, Zhang D, Liu D, Guo K, Teng Z, Liu D, Zhang Z. Natural variation of GhSI7 increases seed index in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3661-3672. [PMID: 36085525 DOI: 10.1007/s00122-022-04209-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
qSI07.1, a major QTL for seed index in cotton, was fine-mapped to a 17.45-kb region, and the candidate gene GhSI7 was verified in transgenic plants. Improving production to meet human needs is a vital objective in cotton breeding. The yield-related trait seed index is a complex quantitative trait, but few candidate genes for seed index have been characterized. Here, a major QTL for seed index qSI07.1 was fine-mapped to a 17.45-kb region by linkage analysis and substitutional mapping. Only GhSI7, encoding the transcriptional regulator STERILE APETALA, was contained in the candidate region. Association test and genetic analysis indicated that an 845-bp-deletion in its intron was responsible for the seed index variation. Origin analysis revealed that this variation was unique in Gossypium hirsutum and originated from race accessions. Overexpression of GhSI7 (haplotype 2) significantly increased the seed index and organ size in cotton plants. Our findings provided a diagnostic marker for breeding and selecting cotton varieties with high seed index, and laid a foundation for further studies to understand the molecular mechanism of cotton seed morphogenesis.
Collapse
Affiliation(s)
- Xueying Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Juan Hou
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Li Chen
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Qingqing Li
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Xiaomei Fang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Jinxia Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Yongshui Hao
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Peng Yang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Wenwen Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Dishen Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Dexin Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Kai Guo
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Zhonghua Teng
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Dajun Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Zhengsheng Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
12
|
Takeda S, Hamamura Y, Sakamoto T, Kimura S, Aida M, Higashiyama T. Non-cell-autonomous regulation of petal initiation in Arabidopsis thaliana. Development 2022; 149:276288. [DOI: 10.1242/dev.200684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In many flowering plants, petals initiate in alternate positions from first whorl sepals, suggesting possible signaling between sepal boundaries and petal initiation sites. PETAL LOSS (PTL) and RABBIT EARS (RBE) regulate petal initiation in Arabidopsis thaliana and their transcripts are expressed in sepal boundary and petal initiation sites, respectively, suggesting that PTL acts in a non-cell-autonomous manner. Here, we determined that cells expressing PTL and RBE fusion proteins did not overlap but were adjacent, confirming the non-cell-autonomous function of PTL. Genetic ablation of intersepal cells by expressing the diphtheria toxin-A chain gene driven by the PTL promoter resulted in flowers lacking petals, suggesting these cells are required for petal initiation. Transcriptome analysis combined with a PTL induction system revealed 42 genes that were upregulated under PTL activation, including UNUSUAL FLORAL ORGANS (UFO), which likely plays an important role in petal initiation. These findings suggest a molecular mechanism in which PTL indirectly regulates petal initiation and UFO mediates positional signaling between the sepal boundary and petal initiation sites.
Collapse
Affiliation(s)
- Seiji Takeda
- Department of Agricultural and Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University 1 , Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522 , Japan
- Kyoto Prefectural Agriculture Forestry and Fisheries Technology Centre 2 Biotechnology Research Department , , Kitaina Yazuma Oji 74, Seika, Kyoto 619-0244 , Japan
| | - Yuki Hamamura
- Graduate School of Science, Nagoya University 3 Division of Biological Science , , Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 , Japan
- University of Hamburg 4 Department of Developmental Biology , , Ohnhorststr. 18, Hamburg 22609 , Germany
| | - Tomoaki Sakamoto
- Center for Plant Sciences, Kyoto Sangyo University 5 , Kyoto 603-8555 , Japan
| | - Seisuke Kimura
- Center for Plant Sciences, Kyoto Sangyo University 5 , Kyoto 603-8555 , Japan
- Faculty of Life Sciences, Kyoto Sangyo University 6 Department of Industrial Life Sciences , , Kyoto 603-8555 , Japan
| | - Mitsuhiro Aida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University 7 , 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 , Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University 8 , 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555 , Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, Nagoya University 3 Division of Biological Science , , Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 , Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University 9 , Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 , Japan
- Graduate School of Science, The University of Tokyo 10 Department of Biological Sciences , , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
13
|
Trenner J, Monaghan J, Saeed B, Quint M, Shabek N, Trujillo M. Evolution and Functions of Plant U-Box Proteins: From Protein Quality Control to Signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:93-121. [PMID: 35226816 DOI: 10.1146/annurev-arplant-102720-012310] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Posttranslational modifications add complexity and diversity to cellular proteomes. One of the most prevalent modifications across eukaryotes is ubiquitination, which is orchestrated by E3 ubiquitin ligases. U-box-containing E3 ligases have massively expanded in the plant kingdom and have diversified into plant U-box proteins (PUBs). PUBs likely originated from two or three ancestral forms, fusing with diverse functional subdomains that resulted in neofunctionalization. Their emergence and diversification may reflect adaptations to stress during plant evolution, reflecting changes in the needs of plant proteomes to maintain cellular homeostasis. Through their close association with protein kinases, they are physically linked to cell signaling hubs and activate feedback loops by dynamically pairing with E2-ubiquitin-conjugating enzymes to generate distinct ubiquitin polymers that themselves act as signals. Here, we complement current knowledgewith comparative genomics to gain a deeper understanding of PUB function, focusing on their evolution and structural adaptations of key U-box residues, as well as their various roles in plant cells.
Collapse
Affiliation(s)
- Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany; ,
| | | | - Bushra Saeed
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; ,
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany; ,
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California, USA;
| | - Marco Trujillo
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany; ,
| |
Collapse
|
14
|
Al-Saharin R, Hellmann H, Mooney S. Plant E3 Ligases and Their Role in Abiotic Stress Response. Cells 2022; 11:cells11050890. [PMID: 35269512 PMCID: PMC8909703 DOI: 10.3390/cells11050890] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
Plants, as sessile organisms, have limited means to cope with environmental changes. Consequently, they have developed complex regulatory systems to ameliorate abiotic stresses im-posed by environmental changes. One such system is the ubiquitin proteasome pathway, which utilizes E3 ligases to target proteins for proteolytic degradation via the 26S proteasome. Plants ex-press a plethora of E3 ligases that are categorized into four major groups depending on their structure. They are involved in many biological and developmental processes in plants, such as DNA repair, photomorphogenesis, phytohormones signaling, and biotic stress. Moreover, many E3 ligase targets are proteins involved in abiotic stress responses, such as salt, drought, heat, and cold. In this review, we will provide a comprehensive overview of E3 ligases and their substrates that have been connected with abiotic stress in order to illustrate the diversity and complexity of how this pathway enables plant survival under stress conditions.
Collapse
Affiliation(s)
- Raed Al-Saharin
- Department of Applied Biology, Tafila Technical University, At-Tafilah 66110, Jordan
- Correspondence:
| | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA; (H.H.); (S.M.)
| | - Sutton Mooney
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA; (H.H.); (S.M.)
| |
Collapse
|
15
|
Ma A, Zhang D, Wang G, Wang K, Li Z, Gao Y, Li H, Bian C, Cheng J, Han Y, Yang S, Gong Z, Qi J. Verticillium dahliae effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance. THE PLANT CELL 2021; 33:3675-3699. [PMID: 34469582 PMCID: PMC8643689 DOI: 10.1093/plcell/koab221] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 05/30/2023]
Abstract
Verticillium wilt is a severe plant disease that causes massive losses in multiple crops. Increasing the plant resistance to Verticillium wilt is a critical challenge worldwide. Here, we report that the hemibiotrophic Verticillium dahliae-secreted Asp f2-like protein VDAL causes leaf wilting when applied to cotton leaves in vitro but enhances the resistance to V. dahliae when overexpressed in Arabidopsis or cotton without affecting the plant growth and development. VDAL protein interacts with Arabidopsis E3 ligases plant U-box 25 (PUB25) and PUB26 and is ubiquitinated by PUBs in vitro. However, VDAL is not degraded by PUB25 or PUB26 in planta. Besides, the pub25 pub26 double mutant shows higher resistance to V. dahliae than the wild-type. PUBs interact with the transcription factor MYB6 in a yeast two-hybrid screen. MYB6 promotes plant resistance to Verticillium wilt while PUBs ubiquitinate MYB6 and mediate its degradation. VDAL competes with MYB6 for binding to PUBs, and the role of VDAL in increasing Verticillium wilt resistance depends on MYB6. Taken together, these results suggest that plants evolute a strategy to utilize the invaded effector protein VDAL to resist the V. dahliae infection without causing a hypersensitive response (HR); alternatively, hemibiotrophic pathogens may use some effectors to keep plant cells alive during its infection in order to take nutrients from host cells. This study provides the molecular mechanism for plants increasing disease resistance when overexpressing some effector proteins without inducing HR, and may promote searching for more genes from pathogenic fungi or bacteria to engineer plant disease resistance.
Collapse
Affiliation(s)
- Aifang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dingpeng Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Neurosurgery, University of Florida, Gainesville, Florida 32608, USA
| | - Guangxing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanhui Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hengchang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Bian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yinan Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Life Science, Hebei University, Baoding 071002, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Genome Wide Analysis of U-Box E3 Ubiquitin Ligases in Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:ijms22052699. [PMID: 33800063 PMCID: PMC7962133 DOI: 10.3390/ijms22052699] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
U-box E3 ligase genes play specific roles in protein degradation by post-translational modification in plant signaling pathways, developmental stages, and stress responses; however, little is known about U-box E3 genes in wheat. We identified 213 U-box E3 genes in wheat based on U-box and other functional domains in their genome sequences. The U-box E3 genes were distributed among 21 chromosomes and most showed high sequence homology with homoeologous U-box E3 genes. Synteny analysis of wheat U-box E3 genes was conducted with other plant species such as Brachypodium distachyon, barley, rice, Triricum uratu, and Aegilops tauschii. A total of 209 RNA-seq samples representing 22 tissue types, from grain, root, leaf, and spike samples across multiple time points, were analyzed for clustering of U-box E3 gene expression during developmental stages, and the genes responded differently in various tissues and developmental stages. In addition, expression analysis of U-box E3 genes under abiotic stress, including drought, heat, and both heat and drought, and cold conditions, was conducted to provide information on U-box E3 gene expression under specific stress conditions. This analysis of U-box E3 genes could provide valuable information to elucidate biological functions for a better understanding of U-box E3 genes in wheat.
Collapse
|
17
|
Hu J, Hu Y, Yang M, Hu X, Wang X. Light-Induced Dynamic Change of Phytochrome B and Cryptochrome 1 Stabilizes SINATs in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:722733. [PMID: 34490020 PMCID: PMC8417825 DOI: 10.3389/fpls.2021.722733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/29/2021] [Indexed: 05/03/2023]
Abstract
Ubiquitin-dependent protein degradation plays an important role in many plant developmental processes. We previously identified a class of SINA RING-type E3 ligases of Arabidopsis thaliana (SINATs), whose protein levels decrease in the dark and increase in red and blue light, but the underlying mechanism is unclear. In this study, we created transgenic lines carrying point mutations in SINAT genes and photoreceptors-NLS or -NES transgenic plants to investigate the regulatory mechanism of SINAT protein stability. We demonstrated that the degradation of SINATs is self-regulated, and SINATs interact with photoreceptors phytochrome B (phyB) and cryptochrome 1 (CRY1) in the cytoplasm, which leads to the degradation of SINATs in the dark. Furthermore, we observed that the red light-induced subcellular localization change of phyB and blue light-induced the dissociation of CRY1 from SINATs and was the major determinant for the light-promoted SINATs accumulation. Our findings provide a novel mechanism of how the stability and degradation of the E3 ligase SINATs are regulated by an association and dissociation mechanism through the red light-induced subcellular movement of phyB and the blue light-induced dissociation of CRY1 from SINATs.
Collapse
Affiliation(s)
- Jin Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Yinmeng Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengran Yang
- State Key Laboratory of Genetic Engineering and Department of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaotong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
- *Correspondence: Xuelu Wang,
| |
Collapse
|