1
|
Doireau R, Jaślan J, Cubero-Font P, Demes-Causse E, Bertaux K, Cassan C, Pétriacq P, De Angeli A. AtALMT5 mediates vacuolar fumarate import and regulates the malate/fumarate balance in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:811-824. [PMID: 39238122 DOI: 10.1111/nph.20077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Malate and fumarate constitute a significant fraction of the carbon fixed by photosynthesis, and they are at the crossroad of central metabolic pathways. In Arabidopsis thaliana, they are transiently stored in the vacuole to keep cytosolic homeostasis. The malate and fumarate transport systems of the vacuolar membrane are key players in the control of cell metabolism. Notably, the molecular identity of these transport systems remains mostly unresolved. We used a combination of imaging, electrophysiology and molecular physiology to identify an important molecular actor of dicarboxylic acid transport across the tonoplast. Here, we report the function of the A. thaliana Aluminium-Activated Malate Transporter 5 (AtALMT5). We characterised its ionic transport properties, expression pattern, localisation and function in vivo. We show that AtALMT5 is expressed in photosynthetically active tissues and localised in the tonoplast. Patch-clamp and in planta analyses demonstrated that AtALMT5 is an ion channel-mediating fumarate loading of the vacuole. We found in almt5 plants a reduced accumulation of fumarate in the leaves, in parallel with increased malate concentrations. These results identified AtALMT5 as an ion channel-mediating fumarate transport in the vacuoles of mesophyll cells and regulating the malate/fumarate balance in Arabidopsis.
Collapse
Affiliation(s)
- Roxane Doireau
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Justyna Jaślan
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Paloma Cubero-Font
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Elsa Demes-Causse
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Karen Bertaux
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| | - Cédric Cassan
- UMR BFP, University Bordeaux, INRAE, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Pierre Pétriacq
- UMR BFP, University Bordeaux, INRAE, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Alexis De Angeli
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060, Montpellier, France
| |
Collapse
|
2
|
Groot Crego C, Hess J, Yardeni G, de La Harpe M, Priemer C, Beclin F, Saadain S, Cauz-Santos LA, Temsch EM, Weiss-Schneeweiss H, Barfuss MHJ, Till W, Weckwerth W, Heyduk K, Lexer C, Paun O, Leroy T. CAM evolution is associated with gene family expansion in an explosive bromeliad radiation. THE PLANT CELL 2024; 36:4109-4131. [PMID: 38686825 PMCID: PMC11449062 DOI: 10.1093/plcell/koae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
The subgenus Tillandsia (Bromeliaceae) belongs to one of the fastest radiating clades in the plant kingdom and is characterized by the repeated evolution of Crassulacean acid metabolism (CAM). Despite its complex genetic basis, this water-conserving trait has evolved independently across many plant families and is regarded as a key innovation trait and driver of ecological diversification in Bromeliaceae. By producing high-quality genome assemblies of a Tillandsia species pair displaying divergent photosynthetic phenotypes, and combining genome-wide investigations of synteny, transposable element (TE) dynamics, sequence evolution, gene family evolution, and temporal differential expression, we were able to pinpoint the genomic drivers of CAM evolution in Tillandsia. Several large-scale rearrangements associated with karyotype changes between the 2 genomes and a highly dynamic TE landscape shaped the genomes of Tillandsia. However, our analyses show that rewiring of photosynthetic metabolism is mainly obtained through regulatory evolution rather than coding sequence evolution, as CAM-related genes are differentially expressed across a 24-h cycle between the 2 species but are not candidates of positive selection. Gene orthology analyses reveal that CAM-related gene families manifesting differential expression underwent accelerated gene family expansion in the constitutive CAM species, further supporting the view of gene family evolution as a driver of CAM evolution.
Collapse
Affiliation(s)
- Clara Groot Crego
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Cambrium GmbH, Max-Urich-Str. 3, 13055 Berlin, Germany
| | - Gil Yardeni
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Department of Biotechnology, Institute of Computational Biology, University of Life Sciences and Natural Resources (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Marylaure de La Harpe
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Office for Nature and Environment, Department of Education, Culture and Environmental protection, Canton of Grisons, 7001 Chur, Switzerland
| | - Clara Priemer
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University of Vienna, 1030 Vienna, Austria
| | - Francesca Beclin
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Sarah Saadain
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Luiz A Cauz-Santos
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | | | - Michael H J Barfuss
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Walter Till
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MOSYS), University of Vienna, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, 1030 Vienna, Austria
| | - Karolina Heyduk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| | - Thibault Leroy
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France
| |
Collapse
|
3
|
Baird LM, Berndsen CE, Monroe JD. Malate dehydrogenase in plants: evolution, structure, and a myriad of functions. Essays Biochem 2024; 68:221-233. [PMID: 38868915 DOI: 10.1042/ebc20230089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Malate dehydrogenase (MDH) catalyzes the interconversion of oxaloacetate and malate coupled to the oxidation/reduction of coenzymes NAD(P)H/NAD(P)+. While most animals have two isoforms of MDH located in the cytosol and mitochondria, all major groups of land plants have at least six MDHs localized to the cytosol, mitochondria, plastids, and peroxisomes. This family of enzymes participates in important reactions in plant cells including photosynthesis, photorespiration, lipid metabolism, and NH4+ metabolism. MDH also helps to regulate the energy balance in the cell and may help the plant cope with various environmental stresses. Despite their functional diversity, all of the plant MDH enzymes share a similar structural fold and act as dimers. In this review, we will introduce readers to our current understanding of the plant MDHs, including their evolution, structure, and function. The focus will be on the MDH enzymes of the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Lisa M Baird
- Department of Biology, University of San Diego, -5998 Alcalá Park, San Diego, CA 92110, U.S.A
| | - Christopher E Berndsen
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr. MSC 4501, Harrisonburg, VA 22807, U.S.A
| | - Jonathan D Monroe
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr. MSC 4501, Harrisonburg, VA 22807, U.S.A
| |
Collapse
|
4
|
Schuler P, Rehmann O, Vitali V, Saurer M, Oettli M, Cernusak LA, Gessler A, Buchmann N, Lehmann MM. Hydrogen isotope fractionation in plants with C 3, C 4, and CAM CO 2 fixation. THE NEW PHYTOLOGIST 2024; 244:477-495. [PMID: 39169823 DOI: 10.1111/nph.20057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Measurements of stable isotope ratios in organic compounds are widely used tools for plant ecophysiological studies. However, the complexity of the processes involved in shaping hydrogen isotope values (δ2H) in plant carbohydrates has limited its broader application. To investigate the underlying biochemical processes responsible for 2H fractionation among water, sugars, and cellulose in leaves, we studied the three main CO2 fixation pathways (C3, C4, and CAM) and their response to changes in temperature and vapor pressure deficit (VPD). We show significant differences in autotrophic 2H fractionation (εA) from water to sugar among the pathways and their response to changes in air temperature and VPD. The strong 2H depleting εA in C3 plants is likely driven by the photosynthetic H+ production within the thylakoids, a reaction that is spatially separated in C4 and strongly reduced in CAM plants, leading to the absence of 2H depletion in the latter two types. By contrast, we found that the heterotrophic 2H-fractionation (εH) from sugar to cellulose was very similar among the three pathways and is likely driven by the plant's metabolism, rather than by isotopic exchange with leaf water. Our study offers new insights into the biochemical drivers of 2H fractionation in plant carbohydrates.
Collapse
Affiliation(s)
- Philipp Schuler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, 8006, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Oliver Rehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Valentina Vitali
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Manuela Oettli
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Smithield, New South Wales, 4878, Australia
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, 8006, Switzerland
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zurich, Zurich, 8006, Switzerland
| | - Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| |
Collapse
|
5
|
Daems S, Shameer S, Ceusters N, Sweetlove L, Ceusters J. Metabolic modelling identifies mitochondrial Pi uptake and pyruvate efflux as key aspects of daytime metabolism and proton homeostasis in crassulacean acid metabolism leaves. THE NEW PHYTOLOGIST 2024; 244:159-175. [PMID: 39113419 DOI: 10.1111/nph.20032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/15/2024] [Indexed: 09/17/2024]
Abstract
Crassulacean acid metabolism (CAM) leaves are characterized by nocturnal acidification and diurnal deacidification processes related with the timed actions of phosphoenolpyruvate carboxylase and Rubisco, respectively. How CAM leaves manage cytosolic proton homeostasis, particularly when facing massive diurnal proton effluxes from the vacuole, remains unclear. A 12-phase flux balance analysis (FBA) model was constructed for a mature malic enzyme-type CAM mesophyll cell in order to predict diel kinetics of intracellular proton fluxes. The charge- and proton-balanced FBA model identified the mitochondrial phosphate carrier (PiC, Pi/H+ symport), which provides Pi to the matrix to sustain ATP biosynthesis, as a major consumer of cytosolic protons during daytime (> 50%). The delivery of Pi to the mitochondrion, co-transported with protons, is required for oxidative phosphorylation and allows sufficient ATP to be synthesized to meet the high energy demand during CAM Phase III. Additionally, the model predicts that mitochondrial pyruvate originating from decarboxylation of malate is exclusively exported to the cytosol, probably via a pyruvate channel mechanism, to fuel gluconeogenesis. In this biochemical cycle, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) acts as another important cytosolic proton consumer. Overall, our findings emphasize the importance of mitochondria in CAM and uncover a hitherto unappreciated role in metabolic proton homeostasis.
Collapse
Affiliation(s)
- Stijn Daems
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, 3000, Belgium
| | - Sanu Shameer
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
- Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - Nathalie Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
| | - Lee Sweetlove
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Johan Ceusters
- Research Group for Sustainable Crop Production & Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Geel, 2440, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, 3000, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Diepenbeek, 3590, Belgium
| |
Collapse
|
6
|
Stirbet A, Guo Y, Lazár D, Govindjee G. From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement. PHOTOSYNTHESIS RESEARCH 2024; 161:21-49. [PMID: 38619700 DOI: 10.1007/s11120-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
To keep up with the growth of human population and to circumvent deleterious effects of global climate change, it is essential to enhance crop yield to achieve higher production. Here we review mathematical models of oxygenic photosynthesis that are extensively used, and discuss in depth a subset that accounts for diverse approaches providing solutions to our objective. These include models (1) to study different ways to enhance photosynthesis, such as fine-tuning antenna size, photoprotection and electron transport; (2) to bioengineer carbon metabolism; and (3) to evaluate the interactions between the process of photosynthesis and the seasonal crop dynamics, or those that have included statistical whole-genome prediction methods to quantify the impact of photosynthesis traits on the improvement of crop yield. We conclude by emphasizing that the results obtained in these studies clearly demonstrate that mathematical modelling is a key tool to examine different approaches to improve photosynthesis for better productivity, while effective multiscale crop models, especially those that also include remote sensing data, are indispensable to verify different strategies to obtain maximized crop yields.
Collapse
Affiliation(s)
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education Jiangnan University, Wuxi, 214122, China
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký Univesity, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Siadjeu C, Kadereit G. C 4-like Sesuvium sesuvioides (Aizoaceae) exhibits CAM in cotyledons and putative C 4-like + CAM metabolism in adult leaves as revealed by transcriptome analysis. BMC Genomics 2024; 25:688. [PMID: 39003461 PMCID: PMC11245778 DOI: 10.1186/s12864-024-10553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/21/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND The co-occurrence of C4 and CAM photosynthesis in a single species seems to be unusual and rare. This is likely due to the difficulty in effectively co-regulating both pathways. Here, we conducted a comparative transcriptomic analysis of leaves and cotyledons of the C4-like species Sesuvium sesuvioides (Aizoaceae) using RNA-seq. RESULTS When compared to cotyledons, phosphoenolpyruvate carboxylase 4 (PEPC4) and some key C4 genes were found to be up-regulated in leaves. During the day, the expression of NADP-dependent malic enzyme (NADP-ME) was significantly higher in cotyledons than in leaves. The titratable acidity confirmed higher acidity in the morning than in the previous evening indicating the induction of weak CAM in cotyledons by environmental conditions. Comparison of the leaves of S. sesuvioides (C4-like) and S. portulacastrum (C3) revealed that PEPC1 was significantly higher in S. sesuvioides, while PEPC3 and PEPC4 were up-regulated in S. portulacastrum. Finally, potential key regulatory elements involved in the C4-like and CAM pathways were identified. CONCLUSIONS These findings provide a new species in which C4-like and CAM co-occur and raise the question if this phenomenon is indeed so rare or just hard to detect and probably more common in succulent C4 lineages.
Collapse
Affiliation(s)
- Christian Siadjeu
- Prinzessin Therese von Bayern Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilans-Universität München, Menzinger Str. 67, Munich, 80638, Germany.
| | - Gudrun Kadereit
- Prinzessin Therese von Bayern Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilans-Universität München, Menzinger Str. 67, Munich, 80638, Germany
- Botanischer Garten München-Nymphenburg Und Botanische Staatssammlung München, Staatliche Naturwissenschaftliche Sammlungen Bayerns, Menzinger Str. 65, Munich, 80638, Germany
| |
Collapse
|
8
|
Guan Q, Kong W, Tan B, Zhu W, Akter T, Li J, Tian J, Chen S. Multiomics unravels potential molecular switches in the C 3 to CAM transition of Mesembryanthemum crystallinum. J Proteomics 2024; 299:105145. [PMID: 38431086 DOI: 10.1016/j.jprot.2024.105145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Mesembryanthemum crystallinum (common ice plant), a facultative CAM plant, shifts from C3 to CAM photosynthesis under salt stress, enhancing water use efficiency. Here we used transcriptomics, proteomics, and targeted metabolomics to profile molecular changes during the diel cycle of C3 to CAM transition. The results confirmed expected changes associated with CAM photosynthesis, starch biosynthesis and degradation, and glycolysis/gluconeogenesis. Importantly, they yielded new discoveries: 1) Transcripts displayed greater circadian regulation than proteins. 2) Oxidative phosphorylation and inositol methylation may play important roles in initiating the transition. 3) V-type H+-ATPases showed consistent transcriptional regulation, aiding in vacuolar malate uptake. 4) A protein phosphatase 2C, a major component in the ABA signaling pathway, may trigger the C3 to CAM transition. Our work highlights the potential molecular switches in the C3 to CAM transition, including the potential role of ABA signaling. SIGNIFICANCE: The common ice plant is a model facultative CAM plant, and under stress conditions it can shift from C3 to CAM photosynthesis within a three-day period. However, knowledge about the molecular changes during the transition and the molecular switches enabling the transition is lacking. Multi-omic analyses not only revealed the molecular changes during the transition, but also highlighted the importance of ABA signaling, inositol methylation, V-type H+-ATPase in initiating the shift. The findings may explain physiological changes and nocturnal stomatal opening, and inform future synthetic biology effort in improving crop water use efficiency and stress resilience.
Collapse
Affiliation(s)
- Qijie Guan
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Wenwen Kong
- College of Life Sciences, Northeast Agricultural University, Harbin 150040, China
| | - Bowen Tan
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Wei Zhu
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310002, China
| | - Tahmina Akter
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150040, China
| | - Jingkui Tian
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310002, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA.
| |
Collapse
|
9
|
Su X, Zhang L, Meng H, Wang H, Zhao J, Sun X, Song X, Zhang X, Mao L. Long-term conservation tillage increase cotton rhizosphere sequestration of soil organic carbon by changing specific microbial CO 2 fixation pathways in coastal saline soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120743. [PMID: 38626484 DOI: 10.1016/j.jenvman.2024.120743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/18/2024]
Abstract
Coastal saline soil is an important reserve resource for arable land globally. Data from 10 years of continuous stubble return and subsoiling experiments have revealed that these two conservation tillage measures significantly improve cotton rhizosphere soil organic carbon sequestration in coastal saline soil. However, the contribution of microbial fixation of atmospheric carbon dioxide (CO2) has remained unclear. Here, metagenomics and metabolomics analyses were used to deeply explore the microbial CO2 fixation process in rhizosphere soil of coastal saline cotton fields under long-term stubble return and subsoiling. Metagenomics analysis showed that stubble return and subsoiling mainly optimized CO2 fixing microorganism (CFM) communities by increasing the abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi, and improving composition diversity. Conjoint metagenomics and metabolomics analyses investigated the effects of stubble return and subsoiling on the reverse tricarboxylic acid (rTCA) cycle. The conversion of citrate to oxaloacetate was inhibited in the citrate cleavage reaction of the rTCA cycle. More citrate was converted to acetyl-CoA, which enhanced the subsequent CO2 fixation process of acetyl-CoA conversion to pyruvate. In the rTCA cycle reductive carboxylation reaction from 2-oxoglutarate to isocitrate, synthesis of the oxalosuccinate intermediate product was inhibited, with strengthened CO2 fixation involving the direct conversion of 2-oxoglutarate to isocitrate. The collective results demonstrate that stubble return and subsoiling optimizes rhizosphere CFM communities by increasing microbial diversity, in turn increasing CO2 fixation by enhancing the utilization of rTCA and 3-hydroxypropionate/4-hydroxybutyrate cycles by CFMs. These events increase the microbial CO2 fixation in the cotton rhizosphere, thereby promoting the accumulation of microbial biomass, and ultimately improving rhizosphere soil organic carbon. This study clarifies the impact of conservation tillage measures on microbial CO2 fixation in cotton rhizosphere of coastal saline soil, and provides fundamental data for the improvement of carbon sequestration in saline soil in agricultural ecosystems.
Collapse
Affiliation(s)
- Xunya Su
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Le Zhang
- China Agricultural University, Agronomy College, Beijing, 100193, China.
| | - Hao Meng
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Han Wang
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Jiaxue Zhao
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xuezhen Sun
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xianliang Song
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xiaopei Zhang
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Lili Mao
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| |
Collapse
|
10
|
Perron N, Kirst M, Chen S. Bringing CAM photosynthesis to the table: Paving the way for resilient and productive agricultural systems in a changing climate. PLANT COMMUNICATIONS 2024; 5:100772. [PMID: 37990498 PMCID: PMC10943566 DOI: 10.1016/j.xplc.2023.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Modern agricultural systems are directly threatened by global climate change and the resulting freshwater crisis. A considerable challenge in the coming years will be to develop crops that can cope with the consequences of declining freshwater resources and changing temperatures. One approach to meeting this challenge may lie in our understanding of plant photosynthetic adaptations and water use efficiency. Plants from various taxa have evolved crassulacean acid metabolism (CAM), a water-conserving adaptation of photosynthetic carbon dioxide fixation that enables plants to thrive under semi-arid or seasonally drought-prone conditions. Although past research on CAM has led to a better understanding of the inner workings of plant resilience and adaptation to stress, successful introduction of this pathway into C3 or C4 plants has not been reported. The recent revolution in molecular, systems, and synthetic biology, as well as innovations in high-throughput data generation and mining, creates new opportunities to uncover the minimum genetic tool kit required to introduce CAM traits into drought-sensitive crops. Here, we propose four complementary research avenues to uncover this tool kit. First, genomes and computational methods should be used to improve understanding of the nature of variations that drive CAM evolution. Second, single-cell 'omics technologies offer the possibility for in-depth characterization of the mechanisms that trigger environmentally controlled CAM induction. Third, the rapid increase in new 'omics data enables a comprehensive, multimodal exploration of CAM. Finally, the expansion of functional genomics methods is paving the way for integration of CAM into farming systems.
Collapse
Affiliation(s)
- Noé Perron
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32608, USA
| | - Matias Kirst
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32608, USA; School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, FL 32603, USA.
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677-1848, USA.
| |
Collapse
|
11
|
Mancilla-Álvarez E, Spinoso-Castillo JL, Schettino-Salomón SS, Bello-Bello JJ. Temporary immersion systems induce photomixotrophism during in vitro propagation of agave Tobalá. 3 Biotech 2024; 14:74. [PMID: 38371904 PMCID: PMC10866815 DOI: 10.1007/s13205-024-03928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
This study aimed to determine the photomixotrophic and physiological responses using different temporary immersion systems (TIS) during in vitro multiplication of agave Tobalá. The culture systems were SETIS™ bioreactor, Temporary Immersion Bioreactor (TIB), Monobloc Advance Temporary Immersion System, and semisolid culture medium as the control. At six weeks of culture, different physiological variables were evaluated: chlorophyll content, stomatal index, percentage of closed stomata, Phosphoenolpyruvate (PEP) and Rubisco during the multiplication stage, and survival percentage in the acclimatization stage. TIS increased multiplication rate (41%), stomatal index (44%), percentage of closed stomata (11%) and chlorophyll content (45%) with respect to the semisolid culture medium system. The highest PEP content (> 35%) was observed in temporary immersion (TI), whereas, Rubisco content, showed no differences among the culture systems evaluated. Regarding survival percentage during acclimatization, the highest shoot survival was obtained in TI, and all regenerate shoots were rooted ex vitro. This study shows that in vitro photomixotrophism was induced in TIS during the multiplication stage. In conclusion, SETIS™ bioreactor and TIB systems are an alternative for mass multiplication of A. potatorum; however, all TIS evaluated guarantee a high survival rate during acclimatization.
Collapse
Affiliation(s)
- Eucario Mancilla-Álvarez
- Colegio de Postgraduados Campus Córdoba, Km. 348 Carretera Federal Córdoba-Veracruz, 94953 Veracruz, México
| | - José Luis Spinoso-Castillo
- Colegio de Postgraduados Campus Córdoba, Km. 348 Carretera Federal Córdoba-Veracruz, 94953 Veracruz, México
| | | | - Jericó Jabín Bello-Bello
- CONAHCYT-Colegio de Postgraduados Campus Córdoba, Km. 348 Carretera Federal Córdoba-Veracruz, 94953 Veracruz, México
| |
Collapse
|
12
|
Winter K, Holtum JAM. Shifting photosynthesis between the fast and slow lane: Facultative CAM and water-deficit stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154185. [PMID: 38373389 DOI: 10.1016/j.jplph.2024.154185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024]
Abstract
Five decades ago, the first report of a shift from C3 to CAM (crassulacean acid metabolism) photosynthesis following the imposition of stress was published in this journal. The annual, Mesembryanthemum crystallinum (Aizoaceae), was shown to be a C3 plant when grown under non-saline conditions, and a CAM plant when exposed to high soil salinity. This observation of environmentally triggered CAM eventually led to the introduction of the term facultative CAM, which categorises CAM that is induced or upregulated in response to water-deficit stress and is lost or downregulated when the stress is removed. Reversibility of C3-to-CAM shifts distinguishes stress-driven facultative-CAM responses from purely ontogenetic increases of CAM activity. We briefly review how the understanding of facultative CAM has developed, evaluate the current state of knowledge, and highlight questions of continuing interest. We demonstrate that the long-lived leaves of a perennial facultative-CAM arborescent species, Clusia pratensis, can repeatedly switch between C3 and CAM in response to multiple wet-dry-wet cycles. Undoubtedly, this is a dedicated response to environment, independent of ontogeny. We highlight the potential for engineering facultative CAM into C3 crops to provide a flexible capacity for drought tolerance.
Collapse
Affiliation(s)
- Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Panama City, Panama.
| | - Joseph A M Holtum
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
13
|
Lee J, Yang JH, Weber APM, Bhattacharya D, Kim WY, Yoon HS. Diurnal Rhythms in the Red Seaweed Gracilariopsis chorda are Characterized by Unique Regulatory Networks of Carbon Metabolism. Mol Biol Evol 2024; 41:msae012. [PMID: 38267085 PMCID: PMC10853006 DOI: 10.1093/molbev/msae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 four), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
14
|
Zotz G, Andrade JL, Einzmann HJR. CAM plants: their importance in epiphyte communities and prospects with global change. ANNALS OF BOTANY 2023; 132:685-698. [PMID: 36617243 PMCID: PMC10799991 DOI: 10.1093/aob/mcac158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND SCOPE The epiphytic life form characterizes almost 10 % of all vascular plants. Defined by structural dependence throughout their life and their non-parasitic relationship with the host, the term epiphyte describes a heterogeneous and taxonomically diverse group of plants. This article reviews the importance of crassulacean acid metabolism (CAM) among epiphytes in current climatic conditions and explores the prospects under global change. RESULTS AND CONCLUSIONS We question the view of a disproportionate importance of CAM among epiphytes and its role as a 'key innovation' for epiphytism but do identify ecological conditions in which epiphytic existence seems to be contingent on the presence of this photosynthetic pathway. Possibly divergent responses of CAM and C3 epiphytes to future changes in climate and land use are discussed with the help of experimental evidence, current distributional patterns and the results of several long-term descriptive community studies. The results and their interpretation aim to stimulate a fruitful discussion on the role of CAM in epiphytes in current climatic conditions and in altered climatic conditions in the future.
Collapse
Affiliation(s)
- Gerhard Zotz
- Functional Ecology Group, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Box 5634, D-26046 Oldenburg, Germany
- Smithsonian Tropical Research Institute, Box 0843-03092, Panama, Republic of Panama
| | - José Luis Andrade
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Chuburná de Hidalgo, Mérida, Yucatán, Mexico
| | - Helena J R Einzmann
- Functional Ecology Group, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Box 5634, D-26046 Oldenburg, Germany
| |
Collapse
|
15
|
Gilman IS, Smith JAC, Holtum JAM, Sage RF, Silvera K, Winter K, Edwards EJ. The CAM lineages of planet Earth. ANNALS OF BOTANY 2023; 132:627-654. [PMID: 37698538 PMCID: PMC10799995 DOI: 10.1093/aob/mcad135] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/09/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND SCOPE The growth of experimental studies of crassulacean acid metabolism (CAM) in diverse plant clades, coupled with recent advances in molecular systematics, presents an opportunity to re-assess the phylogenetic distribution and diversity of species capable of CAM. It has been more than two decades since the last comprehensive lists of CAM taxa were published, and an updated survey of the occurrence and distribution of CAM taxa is needed to facilitate and guide future CAM research. We aimed to survey the phylogenetic distribution of these taxa, their diverse morphology, physiology and ecology, and the likely number of evolutionary origins of CAM based on currently known lineages. RESULTS AND CONCLUSIONS We found direct evidence (in the form of experimental or field observations of gas exchange, day-night fluctuations in organic acids, carbon isotope ratios and enzymatic activity) for CAM in 370 genera of vascular plants, representing 38 families. Further assumptions about the frequency of CAM species in CAM clades and the distribution of CAM in the Cactaceae and Crassulaceae bring the currently estimated number of CAM-capable species to nearly 7 % of all vascular plants. The phylogenetic distribution of these taxa suggests a minimum of 66 independent origins of CAM in vascular plants, possibly with dozens more. To achieve further insight into CAM origins, there is a need for more extensive and systematic surveys of previously unstudied lineages, particularly in living material to identify low-level CAM activity, and for denser sampling to increase phylogenetic resolution in CAM-evolving clades. This should allow further progress in understanding the functional significance of this pathway by integration with studies on the evolution and genomics of CAM in its many forms.
Collapse
Affiliation(s)
- Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | | | - Joseph A M Holtum
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Katia Silvera
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- Department of Botany & Plant Sciences, University of California, Riverside, CA, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Holtum JAM. Klaus Winter - the indefatigable CAM experimentalist. ANNALS OF BOTANY 2023; 132:563-575. [PMID: 37010384 PMCID: PMC10799999 DOI: 10.1093/aob/mcad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/25/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND In January 1972, Klaus Winter submitted his first paper on crassulacean acid metabolism (CAM) whilst still an undergraduate student in Darmstadt. During the subsequent half-century, he passed his Staatsexamensarbeit, obtained his Dr. rer. nat. summa cum laude and Dr. rer. nat. habil., won a Heinz Maier-Leibnitz Prize and a Heisenberg Fellowship, and has occupied positions in Germany, Australia, the USA and Panama. Now a doyen in CAM circles, and a Senior Staff Scientist at the Smithsonian Tropical Research Institute (STRI), he has published over 300 articles, of which about 44 % are about CAM. SCOPE I document Winter's career, attempting to place his CAM-related scientific output and evolution in the context of factors that have influenced him as he and his science progressed from the 1970s to the 2020s.
Collapse
Affiliation(s)
- Joseph A M Holtum
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
17
|
Yamaga-Hatakeyama Y, Okutani M, Hatakeyama Y, Yabiku T, Yukawa T, Ueno O. Photosynthesis and leaf structure of F1 hybrids between Cymbidium ensifolium (C3) and C. bicolor subsp. pubescens (CAM). ANNALS OF BOTANY 2023; 132:895-907. [PMID: 36579478 PMCID: PMC10799985 DOI: 10.1093/aob/mcac157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS The introduction of crassulacean acid metabolism (CAM) into C3 crops has been considered as a means of improving water-use efficiency. In this study, we investigated photosynthetic and leaf structural traits in F1 hybrids between Cymbidium ensifolium (female C3 parent) and C. bicolor subsp. pubescens (male CAM parent) of the Orchidaceae. METHODS Seven F1 hybrids produced through artificial pollination and in vitro culture were grown in a greenhouse with the parent plants. Structural, biochemical and physiological traits involved in CAM in their leaves were investigated. KEY RESULTS Cymbidium ensifolium accumulated very low levels of malate without diel fluctuation, whereas C. bicolor subsp. pubescens showed nocturnal accumulation and diurnal consumption of malate. The F1s also accumulated malate at night, but much less than C. bicolor subsp. pubescens. This feature was consistent with low nocturnal fixation of atmospheric CO2 in the F1s. The δ13C values of the F1s were intermediate between those of the parents. Leaf thickness was thicker in C. bicolor subsp. pubescens than in C. ensifolium, and those of the F1s were more similar to that of C. ensifolium. This was due to the difference in mesophyll cell size. The chloroplast coverage of mesophyll cell perimeter adjacent to intercellular air spaces of C. bicolor subsp. pubescens was lower than that of C. ensifolium, and that of the F1s was intermediate between them. Interestingly, one F1 had structural and physiological traits more similar to those of C. bicolor subsp. pubescens than the other F1s. Nevertheless, all F1s contained intermediate levels of phosphoenolpyruvate carboxylase but as much pyruvate, Pi dikinase as C. bicolor subsp. pubescens. CONCLUSIONS CAM traits were intricately inherited in the F1 hybrids, the level of CAM expression varied widely among F1 plants, and the CAM traits examined were not necessarily co-ordinately transmitted to the F1s.
Collapse
Affiliation(s)
| | - Masamitsu Okutani
- School of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuto Hatakeyama
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takayuki Yabiku
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, Tsukuba, Ibaraki 305-0005, Japan
| | - Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Holtum JAM. The diverse diaspora of CAM: a pole-to-pole sketch. ANNALS OF BOTANY 2023; 132:597-625. [PMID: 37303205 PMCID: PMC10800000 DOI: 10.1093/aob/mcad067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Crassulacean acid metabolism (CAM) photosynthesis is a successful adaptation that has evolved often in angiosperms, gymnosperms, ferns and lycophytes. Present in ~5 % of vascular plants, the CAM diaspora includes all continents apart from Antarctica. Species with CAM inhabit most landscapes colonized by vascular plants, from the Arctic Circle to Tierra del Fuego, from below sea level to 4800 m a.s.l., from rainforests to deserts. They have colonized terrestrial, epiphytic, lithophytic, palustrine and aquatic systems, developing perennial, annual or geophyte strategies that can be structurally arborescent, shrub, forb, cladode, epiphyte, vine or leafless with photosynthetic roots. CAM can enhance survival by conserving water, trapping carbon, reducing carbon loss and/or via photoprotection. SCOPE This review assesses the phylogenetic diversity and historical biogeography of selected lineages with CAM, i.e. ferns, gymnosperms and eumagnoliids, Orchidaceae, Bromeliaceae, Crassulaceae, Euphorbiaceae, Aizoaceae, Portulacineae (Montiaceae, Basellaceae, Halophytaceae, Didiereaceae, Talinaceae, Portulacaceae, Anacampserotaceae and Cactaceae) and aquatics. CONCLUSIONS Most extant CAM lineages diversified after the Oligocene/Miocene, as the planet dried and CO2 concentrations dropped. Radiations exploited changing ecological landscapes, including Andean emergence, Panamanian Isthmus closure, Sundaland emergence and submergence, changing climates and desertification. Evidence remains sparse for or against theories that CAM biochemistry tends to evolve before pronounced changes in anatomy and that CAM tends to be a culminating xerophytic trait. In perennial taxa, any form of CAM can occur depending upon the lineage and the habitat, although facultative CAM appears uncommon in epiphytes. CAM annuals lack strong CAM. In CAM annuals, C3 + CAM predominates, and inducible or facultative CAM is common.
Collapse
Affiliation(s)
- Joseph A M Holtum
- College of Science and Engineering, James Cook University, Townsville, QLD4811, Australia
| |
Collapse
|
19
|
Leverett A, Borland AM. Elevated nocturnal respiratory rates in the mitochondria of CAM plants: current knowledge and unanswered questions. ANNALS OF BOTANY 2023; 132:855-867. [PMID: 37638861 PMCID: PMC10799998 DOI: 10.1093/aob/mcad119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Crassulacean acid metabolism (CAM) is a metabolic adaptation that has evolved convergently in 38 plant families to aid survival in water-limited niches. Whilst primarily considered a photosynthetic adaptation, CAM also has substantial consequences for nocturnal respiratory metabolism. Here, we outline the history, current state and future of nocturnal respiration research in CAM plants, with a particular focus on the energetics of nocturnal respiratory oxygen consumption. Throughout the 20th century, research interest in nocturnal respiration occurred alongside initial discoveries of CAM, although the energetic and mechanistic implications of nocturnal oxygen consumption and links to the operation of the CAM cycle were not fully understood. Recent flux balance analysis (FBA) models have provided new insights into the role that mitochondria play in the CAM cycle. Several FBA models have predicted that CAM requires elevated nocturnal respiratory rates, compared to C3 species, to power vacuolar malic acid accumulation. We provide physiological data, from the genus Clusia, to corroborate these modelling predictions, thereby reinforcing the importance of elevated nocturnal respiratory rates for CAM. Finally, we outline five unanswered questions pertaining to nocturnal respiration which must be addressed if we are to fully understand and utilize CAM plants in a hotter, drier world.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge CB2 3EA, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
20
|
Luján M, Leverett A, Winter K. Forty years of research into crassulacean acid metabolism in the genus Clusia: anatomy, ecophysiology and evolution. ANNALS OF BOTANY 2023; 132:739-752. [PMID: 36891814 PMCID: PMC10799992 DOI: 10.1093/aob/mcad039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Clusia is the only genus containing dicotyledonous trees with a capacity to perform crassulacean acid metabolism (CAM). Since the discovery of CAM in Clusia 40 years ago, several studies have highlighted the extraordinary plasticity and diversity of life forms, morphology and photosynthetic physiology of this genus. In this review, we revisit aspects of CAM photosynthesis in Clusia and hypothesize about the timing, the environmental conditions and potential anatomical characteristics that led to the evolution of CAM in the group. We discuss the role of physiological plasticity in influencing species distribution and ecological amplitude in the group. We also explore patterns of allometry of leaf anatomical traits and their correlations with CAM activity. Finally, we identify opportunities for further research on CAM in Clusia, such as the role of elevated nocturnal accumulation of citric acid, and gene expression in C3-CAM intermediate phenotypes.
Collapse
Affiliation(s)
- Manuel Luján
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Alistair Leverett
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| |
Collapse
|
21
|
Winter K. Brief reflections on 50 years as a plant ecophysiologist. ANNALS OF BOTANY 2023; 132:577-582. [PMID: 36751882 PMCID: PMC10799979 DOI: 10.1093/aob/mcad020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
SCOPE This paper is a short biographical sketch of my life as a plant ecophysiologist in which serendipity and outstanding collaborators have been key allies.
Collapse
Affiliation(s)
- Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama
| |
Collapse
|
22
|
Chomthong M, Griffiths H. Prospects and perspectives: inferring physiological and regulatory targets for CAM from molecular and modelling approaches. ANNALS OF BOTANY 2023; 132:583-596. [PMID: 37742290 PMCID: PMC10799989 DOI: 10.1093/aob/mcad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND AND SCOPE This review summarizes recent advances in our understanding of Crassulacean Acid Metabolism (CAM) by integrating evolutionary, ecological, physiological, metabolic and molecular perspectives. A number of key control loops which moderate the expression of CAM phases, and their metabolic and molecular control, are explored. These include nocturnal stomatal opening, activation of phosphoenolpyruvate carboxylase by a specific protein kinase, interactions with circadian clock control, as well as daytime decarboxylation and activation of Rubisco. The vacuolar storage and release of malic acid and the interplay between the supply and demand for carbohydrate reserves are also key metabolic control points. FUTURE OPPORTUNITIES We identify open questions and opportunities, with experimentation informed by top-down molecular modelling approaches allied with bottom-up mechanistic modelling systems. For example, mining transcriptomic datasets using high-speed systems approaches will help to identify targets for future genetic manipulation experiments to define the regulation of CAM (whether circadian or metabolic control). We emphasize that inferences arising from computational approaches or advanced nuclear sequencing techniques can identify potential genes and transcription factors as regulatory targets. However, these outputs then require systematic evaluation, using genetic manipulation in key model organisms over a developmental progression, combining gene silencing and metabolic flux analysis and modelling to define functionality across the CAM day-night cycle. From an evolutionary perspective, the origins and function of CAM succulents and responses to water deficits are set against the mesophyll and hydraulic limitations imposed by cell and tissue succulence in contrasting morphological lineages. We highlight the interplay between traits across shoots (3D vein density, mesophyll conductance and cell shrinkage) and roots (xylem embolism and segmentation). Thus, molecular, biophysical and biochemical processes help to curtail water losses and exploit rapid rehydration during restorative rain events. In the face of a changing climate, we hope such approaches will stimulate opportunities for future research.
Collapse
Affiliation(s)
- Methawi Chomthong
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
23
|
Mok D, Leung A, Searles P, Sage TL, Sage RF. CAM photosynthesis in Bulnesia retama (Zygophyllaceae), a non-succulent desert shrub from South America. ANNALS OF BOTANY 2023; 132:655-670. [PMID: 37625031 PMCID: PMC10799978 DOI: 10.1093/aob/mcad114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND AND AIMS Bulnesia retama is a drought-deciduous, xerophytic shrub from arid landscapes of South America. In a survey of carbon isotope ratios (δ13C) in specimens from the field, B. retama exhibited less negative values, indicative of CAM or C4 photosynthesis. Here, we investigate whether B. retama is a C4 or CAM plant. METHODS Gas-exchange responses to intercellular CO2, diurnal gas-exchange profiles, δ13C and dawn vs. afternoon titratable acidity were measured on leaves and stems of watered and droughted B. retama plants. Leaf and stem cross-sections were imaged to determine whether the tissues exhibited succulent CAM or C4 Kranz anatomy. KEY RESULTS Field-collected stems and fruits of B. retama exhibited δ13C between -16 and -19 ‰. Plants grown in a glasshouse from field-collected seeds had leaf δ13C values near -31 ‰ and stem δ13C values near -28 ‰. The CO2 response of photosynthesis showed that leaves and stems used C3 photosynthesis during the day, while curvature in the nocturnal response of net CO2 assimilation rate (A) in all stems, coupled with slightly positive rates of A at night, indicated modest CAM function. C4 photosynthesis was absent. Succulence was absent in all tissues, although stems exhibited tight packing of the cortical chlorenchyma in a CAM-like manner. Tissue titratable acidity increased at night in droughted stems. CONCLUSIONS Bulnesia retama is a weak to modest C3 + CAM plant. This is the first report of CAM in the Zygophyllaceae and the first showing that non-succulent, xerophytic shrubs use CAM. CAM alone in B. retama was too limited to explain less negative δ13C in field-collected plants, but combined with effects of low stomatal and mesophyll conductance it could raise δ13C to observed values between -16 and -19 ‰. Modest CAM activity, particularly during severe drought, could enable B. retama to persist in arid habitats of South America.
Collapse
Affiliation(s)
- Daniel Mok
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario M5R3C6, Canada
| | - Arthur Leung
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario M5R3C6, Canada
| | - Peter Searles
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-CONICET), Entre Ríos y Mendoza s/n, Anillaco (5301), La Rioja, Argentina
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario M5R3C6, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario M5R3C6, Canada
| |
Collapse
|
24
|
Sage RF, Gilman IS, Smith JAC, Silvera K, Edwards EJ. Atmospheric CO2 decline and the timing of CAM plant evolution. ANNALS OF BOTANY 2023; 132:753-770. [PMID: 37642245 PMCID: PMC10799994 DOI: 10.1093/aob/mcad122] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND AIMS CAM photosynthesis is hypothesized to have evolved in atmospheres of low CO2 concentration in recent geological time because of its ability to concentrate CO2 around Rubisco and boost water use efficiency relative to C3 photosynthesis. We assess this hypothesis by compiling estimates of when CAM clades arose using phylogenetic chronograms for 73 CAM clades. We further consider evidence of how atmospheric CO2 affects CAM relative to C3 photosynthesis. RESULTS Where CAM origins can be inferred, strong CAM is estimated to have appeared in the past 30 million years in 46 of 48 examined clades, after atmospheric CO2 had declined from high (near 800 ppm) to lower (<450 ppm) values. In turn, 21 of 25 clades containing CAM species (but where CAM origins are less certain) also arose in the past 30 million years. In these clades, CAM is probably younger than the clade origin. We found evidence for repeated weak CAM evolution during the higher CO2 conditions before 30 million years ago, and possible strong CAM origins in the Crassulaceae during the Cretaceous period prior to atmospheric CO2 decline. Most CAM-specific clades arose in the past 15 million years, in a similar pattern observed for origins of C4 clades. CONCLUSIONS The evidence indicates strong CAM repeatedly evolved in reduced CO2 conditions of the past 30 million years. Weaker CAM can pre-date low CO2 and, in the Crassulaceae, strong CAM may also have arisen in water-limited microsites under relatively high CO2. Experimental evidence from extant CAM species demonstrates that elevated CO2 reduces the importance of nocturnal CO2 fixation by increasing the contribution of C3 photosynthesis to daily carbon gain. Thus, the advantage of strong CAM would be reduced in high CO2, such that its evolution appears less likely and restricted to more extreme environments than possible in low CO2.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - J Andrew C Smith
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Katia Silvera
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
25
|
Niechayev NA, Mayer JA, Cushman JC. Developmental dynamics of crassulacean acid metabolism (CAM) in Opuntia ficus-indica. ANNALS OF BOTANY 2023; 132:869-879. [PMID: 37256773 PMCID: PMC10799983 DOI: 10.1093/aob/mcad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND AIMS The relative contributions of C3 photosynthesis and crassulacean acid metabolism (CAM) during the earliest stages of development were investigated to assess how much each might contribute to cactus pear (Opuntia ficus-indica) productivity. METHODS The developmental progression of C3 photosynthesis and CAM was assessed in seedlings and daughter cladodes of mature plants by titratable acidity, δ13C isotopic values and diel gas exchange measurements. KEY RESULTS Nocturnal acidification was observed in seedling cladodes and cotyledons at the earliest stages of development and became highly significant by 75 days of development. Seedling cotyledons showed mean δ13C values of -21.4 and -17.1 ‰ at 30 and 100 days of age, respectively. Seedling cladodes showed mean δ13C values of -19.4 and -14.5 ‰ at 30 and 100 days of age, respectively. These values are typical of CAM plants. Net CO2 assimilation was negative, then occurred in both the day and the night, with nighttime fixation becoming predominant once the primary cladode reached 5 cm in size. Emergent daughter cladodes growing on mature plants showed nocturnal titratable acidity at the earliest stages of development, which became significant when daughter cladodes were >2.5-5 cm in height. Emergent daughter cladodes showed mean δ13C values of -14.5 to -15.6 ‰, typical of CAM plants. CO2 assimilation studies revealed that net CO2 uptake was negative in daughter cladodes <12 cm in length, but then exhibited net positive CO2 assimilation in both the day and the night, with net nocturnal CO2 assimilation predominating once the daughter cladode grew larger. CONCLUSIONS Developing O. ficus-indica primary and daughter cladodes begin as respiring sink tissues that transition directly to performing CAM once net positive CO2 fixation is observed. Overall, these results demonstrate that CAM is the primary form of photosynthetic carbon assimilation for O. ficus-indica even at the earliest stages of seedling or daughter cladode development.
Collapse
Affiliation(s)
- Nicholas A Niechayev
- Department of Seed Research, D’Arrigo California, 21777 Harris Road, Salinas, CA 93908, USA
| | - Jesse A Mayer
- Biosero Inc., 9560 Waples Street, San Diego, CA 92121, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557-0330, USA
| |
Collapse
|
26
|
Edwards EJ. Reconciling continuous and discrete models of C4 and CAM evolution. ANNALS OF BOTANY 2023; 132:717-725. [PMID: 37675944 PMCID: PMC10799980 DOI: 10.1093/aob/mcad125] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND A current argument in the CAM biology literature has focused on the nature of the CAM evolutionary trajectory: whether there is a smooth continuum of phenotypes between plants with C3 and CAM photosynthesis or whether there are discrete steps of phenotypic evolutionary change such as has been modelled for the evolution of C4 photosynthesis. A further implication is that a smooth continuum would increase the evolvability of CAM, whereas discrete changes would make the evolutionary transition from C3 to CAM more difficult. SCOPE In this essay, I attempt to reconcile these two viewpoints, because I think in many ways this is a false dichotomy that is constraining progress in understanding how both CAM and C4 evolved. In reality, the phenotypic space connecting C3 species and strong CAM/C4 species is both a continuum of variably expressed quantitative traits and yet also contains certain combinations of traits that we are able to identify as discrete, recognizable phenotypes. In this sense, the evolutionary mechanics of CAM origination are no different from those of C4 photosynthesis, nor from the evolution of any other complex trait assemblage. CONCLUSIONS To make progress, we must embrace the concept of discrete phenotypic phases of CAM evolution, because their delineation will force us to articulate what aspects of phenotypic variation we think are significant. There are some current phenotypic gaps that are limiting our ability to build a complete CAM evolutionary model: the first is how a rudimentary CAM biochemical cycle becomes established, and the second is how the 'accessory' CAM cycle in C3+CAM plants is recruited into a primary metabolism. The connections to the C3 phenotype we are looking for are potentially found in the behaviour of C3 plants when undergoing physiological stress - behaviour that, strangely enough, remains essentially unexplored in this context.
Collapse
Affiliation(s)
- Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA
| |
Collapse
|
27
|
Pérez-López AV, Lim SD, Cushman JC. Tissue succulence in plants: Carrying water for climate change. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154081. [PMID: 37703768 DOI: 10.1016/j.jplph.2023.154081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Tissue succulence in plants involves the storage of water in one or more organs or tissues to assist in maintaining water potentials on daily or seasonal time scales. This drought-avoidance or drought-resistance strategy allows plants to occupy diverse environments including arid regions, regions with rocky soils, epiphytic habitats, and saline soils. Climate-resilient strategies are of increasing interest in the context of the global climate crisis, which is leading to hotter and drier conditions in many regions throughout the globe. Here, we describe a short history of succulent plants, the basic concepts of tissue succulence, the anatomical diversity of succulent morphologies and associated adaptive traits, the evolutionary, phylogenetic, and biogeographical diversity of succulent plants, extinction risks to succulents due to poaching from their natural environments, and the myriad uses and applications of economically important succulent species and the products derived from them. Lastly, we discuss current prospects for engineering tissue succulence to improve salinity and drought tolerance in crops.
Collapse
Affiliation(s)
- Arely V Pérez-López
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| | - Sung Don Lim
- Department of Plant Life and Resource Science, Sangji University, Gangwon-do, 26339, South Korea.
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| |
Collapse
|
28
|
Fan W, He ZS, Zhe M, Feng JQ, Zhang L, Huang Y, Liu F, Huang JL, Ya JD, Zhang SB, Yang JB, Zhu A, Li DZ. High-quality Cymbidium mannii genome and multifaceted regulation of crassulacean acid metabolism in epiphytes. PLANT COMMUNICATIONS 2023; 4:100564. [PMID: 36809882 PMCID: PMC10504564 DOI: 10.1016/j.xplc.2023.100564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Epiphytes with crassulacean acid metabolism (CAM) photosynthesis are widespread among vascular plants, and repeated evolution of CAM photosynthesis is a key innovation for micro-ecosystem adaptation. However, we lack a complete understanding of the molecular regulation of CAM photosynthesis in epiphytes. Here, we report a high-quality chromosome-level genome assembly of a CAM epiphyte, Cymbidium mannii (Orchidaceae). The 2.88-Gb orchid genome with a contig N50 of 22.7 Mb and 27 192 annotated genes was organized into 20 pseudochromosomes, 82.8% of which consisted of repetitive elements. Recent expansions of long terminal repeat retrotransposon families have made a major contribution to the evolution of genome size in Cymbidium orchids. We reveal a holistic scenario of molecular regulation of metabolic physiology using high-resolution transcriptomics, proteomics, and metabolomics data collected across a CAM diel cycle. Patterns of rhythmically oscillating metabolites, especially CAM-related products, reveal circadian rhythmicity in metabolite accumulation in epiphytes. Genome-wide analysis of transcript and protein level regulation revealed phase shifts during the multifaceted regulation of circadian metabolism. Notably, we observed diurnal expression of several core CAM genes (especially βCA and PPC) that may be involved in temporal fixation of carbon sources. Our study provides a valuable resource for investigating post-transcription and translation scenarios in C. mannii, an Orchidaceae model for understanding the evolution of innovative traits in epiphytes.
Collapse
Affiliation(s)
- Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zheng-Shan He
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Mengqing Zhe
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jing-Qiu Feng
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Le Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yiwei Huang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | - Ji-Dong Ya
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shi-Bao Zhang
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
29
|
Wang Y, Smith JAC, Zhu XG, Long SP. Rethinking the potential productivity of crassulacean acid metabolism by integrating metabolic dynamics with shoot architecture, using the example of Agave tequilana. THE NEW PHYTOLOGIST 2023; 239:2180-2196. [PMID: 37537720 DOI: 10.1111/nph.19128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/04/2023] [Indexed: 08/05/2023]
Abstract
Terrestrial CAM plants typically occur in hot semiarid regions, yet can show high crop productivity under favorable conditions. To achieve a more mechanistic understanding of CAM plant productivity, a biochemical model of diel metabolism was developed and integrated with 3-D shoot morphology to predict the energetics of light interception and photosynthetic carbon assimilation. Using Agave tequilana as an example, this biochemical model faithfully simulated the four diel phases of CO2 and metabolite dynamics during the CAM rhythm. After capturing the 3-D form over an 8-yr production cycle, a ray-tracing method allowed the prediction of the light microclimate across all photosynthetic surfaces. Integration with the biochemical model thereby enabled the simulation of plant and stand carbon uptake over daily and annual courses. The theoretical maximum energy conversion efficiency of Agave spp. is calculated at 0.045-0.049, up to 7% higher than for C3 photosynthesis. Actual light interception, and biochemical and anatomical limitations, reduced this to 0.0069, or 15.6 Mg ha-1 yr-1 dry mass annualized over an 8-yr cropping cycle, consistent with observation. This is comparable to the productivity of many C3 crops, demonstrating the potential of CAM plants in climates where little else may be grown while indicating strategies that could raise their productivity.
Collapse
Affiliation(s)
- Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
| | - J Andrew C Smith
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Xin-Guang Zhu
- Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular, Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
30
|
Tan B, Chen S. Defining Mechanisms of C 3 to CAM Photosynthesis Transition toward Enhancing Crop Stress Resilience. Int J Mol Sci 2023; 24:13072. [PMID: 37685878 PMCID: PMC10487458 DOI: 10.3390/ijms241713072] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Global climate change and population growth are persistently posing threats to natural resources (e.g., freshwater) and agricultural production. Crassulacean acid metabolism (CAM) evolved from C3 photosynthesis as an adaptive form of photosynthesis in hot and arid regions. It features the nocturnal opening of stomata for CO2 assimilation, diurnal closure of stomata for water conservation, and high water-use efficiency. To cope with global climate challenges, the CAM mechanism has attracted renewed attention. Facultative CAM is a specialized form of CAM that normally employs C3 or C4 photosynthesis but can shift to CAM under stress conditions. It not only serves as a model for studying the molecular mechanisms underlying the CAM evolution, but also provides a plausible solution for creating stress-resilient crops with facultative CAM traits. This review mainly discusses the recent research effort in defining the C3 to CAM transition of facultative CAM plants, and highlights challenges and future directions in this important research area with great application potential.
Collapse
Affiliation(s)
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA;
| |
Collapse
|
31
|
Jardim AMDRF, de Morais JEF, de Souza LSB, de Souza CAA, Araújo Júnior GDN, Alves CP, da Silva GÍN, Leite RMC, de Moura MSB, de Lima JLMP, da Silva TGF. Monitoring Energy Balance, Turbulent Flux Partitioning, Evapotranspiration and Biophysical Parameters of Nopalea cochenillifera (Cactaceae) in the Brazilian Semi-Arid Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2562. [PMID: 37447125 PMCID: PMC10346497 DOI: 10.3390/plants12132562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
The in-situ quantification of turbulent flux and evapotranspiration (ET) is necessary to monitor crop performance in stressful environments. Although cacti can withstand stressful conditions, plant responses and plant-environment interactions remain unclear. Hence, the objective of our study was to investigate the interannual and seasonal behaviour of components of the surface energy balance, environmental conditions, morphophysiological parameters, biomass yield and water relations in a crop of Nopalea cochenillifera in the semi-arid region of Brazil. The data were collected from a micrometeorological tower between 2015 and 2017. The results demonstrate that net radiation was significantly higher during the wet season. Latent heat flux was not significant between the wet season and dry season. During the dry-wet transition season in particular, sensible heat flux was higher than during the other seasons. We observed a large decline in soil heat flux during the wet season. There was no difference in ET during the wet or dry seasons; however, there was a 40% reduction during the dry-wet transition. The wet seasons and wet-dry transition showed the lowest Evaporative Stress Index. The plants showed high cladode water content and biomass during the evaluation period. In conclusion, these findings indicate high rates of growth, high biomass and a high cladode water content and explain the response of the cactus regarding energy partitioning and ET.
Collapse
Affiliation(s)
- Alexandre Maniçoba da Rosa Ferraz Jardim
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
- Department of Biodiversity, Institute of Bioscience, São Paulo State University—UNESP, Av. 24A, 1515, Rio Claro 13506-900, São Paulo, Brazil
| | - José Edson Florentino de Morais
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| | - Luciana Sandra Bastos de Souza
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| | - Carlos André Alves de Souza
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| | - George do Nascimento Araújo Júnior
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
| | - Cléber Pereira Alves
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
| | - Gabriel Ítalo Novaes da Silva
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
| | - Renan Matheus Cordeiro Leite
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| | | | - João L. M. P. de Lima
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Department of Civil Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-788 Coimbra, Portugal;
| | - Thieres George Freire da Silva
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| |
Collapse
|
32
|
Islamova R, Yanshin N, Zamyatkina E, Gulk E, Zuy E, Billig S, Birkemeyer C, Tarakhovskaya E. Metabolic Adjustment of High Intertidal Alga Pelvetia canaliculata to the Tidal Cycle Includes Oscillations of Soluble Carbohydrates, Phlorotannins, and Citric Acid Content. Int J Mol Sci 2023; 24:10626. [PMID: 37445801 PMCID: PMC10341635 DOI: 10.3390/ijms241310626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The brown alga Pelvetia canaliculata is one of the species successfully adapted to intertidal conditions. Inhabiting the high intertidal zone, Pelvetia spends most of its life exposed to air, where it is subjected to desiccation, light, and temperature stresses. However, the physiological and biochemical mechanisms allowing this alga to tolerate such extreme conditions are still largely unknown. The objective of our study is to compare the biochemical composition of Pelvetia during the different phases of the tidal cycle. To our knowledge, this study is the first attempt to draft a detailed biochemical network underneath the complex physiological processes, conferring the successful survival of this organism in the harsh conditions of the high intertidal zone of the polar seas. We considered the tide-induced changes in relative water content, stress markers, titratable acidity, pigment, and phlorotannin content, as well as the low molecular weight metabolite profiles (GC-MS-based approach) in Pelvetia thalli. Thallus desiccation was not accompanied by considerable increase in reactive oxygen species content. Metabolic adjustment of P. canaliculata to emersion included accumulation of soluble carbohydrates, various phenolic compounds, including intracellular phlorotannins, and fatty acids. Changes in titratable acidity accompanied by the oscillations of citric acid content imply that some processes related to the crassulacean acid metabolism (CAM) may be involved in Pelvetia adaptation to the tidal cycle.
Collapse
Affiliation(s)
- Renata Islamova
- Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia; (R.I.)
| | - Nikolay Yanshin
- Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia; (R.I.)
| | - Elizaveta Zamyatkina
- Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia; (R.I.)
| | - Ekaterina Gulk
- Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia; (R.I.)
| | - Ekaterina Zuy
- Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia; (R.I.)
| | - Susan Billig
- Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany (C.B.)
| | - Claudia Birkemeyer
- Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany (C.B.)
- German Center for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, 04103 Leipzig, Germany
| | - Elena Tarakhovskaya
- Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia; (R.I.)
- Vavilov Institute of General Genetics, Saint Petersburg Branch, Russian Academy of Science, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia
| |
Collapse
|
33
|
Xu W, Jian S, Li J, Wang Y, Zhang M, Xia K. Genomic Identification of CCCH-Type Zinc Finger Protein Genes Reveals the Role of HuTZF3 in Tolerance of Heat and Salt Stress of Pitaya (Hylocereus polyrhizus). Int J Mol Sci 2023; 24:ijms24076359. [PMID: 37047333 PMCID: PMC10094633 DOI: 10.3390/ijms24076359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Pitaya (Hylocereus polyrhizus) is cultivated in a broad ecological range, due to its tolerance to drought, heat, and poor soil. The zinc finger proteins regulate gene expression at the transcriptional and post-transcriptional levels, by interacting with DNA, RNA, and proteins, to play roles in plant growth and development, and stress response. Here, a total of 81 CCCH-type zinc finger protein genes were identified from the pitaya genome. Transcriptomic analysis showed that nine of them, including HuTZF3, responded to both salt and heat stress. RT-qPCR results showed that HuTZF3 is expressed in all tested organs of pitaya, with a high level in the roots and stems, and confirmed that expression of HuTZF3 is induced by salt and heat stress. Subcellular localization showed that HuTZF3 is targeted in the processing bodies (PBs) and stress granules (SGs). Heterologous expression of HuTZF3 could improve both salt and heat tolerance in Arabidopsis, reduce oxidative stress, and improve the activity of catalase and peroxidase. Therefore, HuTZF3 may be involved in post-transcriptional regulation via localizing to PBs and SGs, contributing to both salt and heat tolerance in pitaya.
Collapse
Affiliation(s)
- Weijuan Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Jian
- South China National Botanical Garden, Guangzhou 510650, China
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jianyi Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusang Wang
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- Correspondence: (M.Z.); (K.X.); Tel./Fax: +86-20-37252891 (M.Z.)
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- Correspondence: (M.Z.); (K.X.); Tel./Fax: +86-20-37252891 (M.Z.)
| |
Collapse
|
34
|
How Epiphytic Are Filmy Ferns? A Semi-Quantitative Approach. DIVERSITY 2023. [DOI: 10.3390/d15020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Similar to plants in many other families, members of the Hymenophyllaceae use numerous substrates for growth, e.g., soil, rocks or tree bark. However, substrate preference does not only differ among species but can also vary among members of the same species. There have been several attempts in the past to appropriately capture this variation, but none proved feasible or was replicated in any subsequent work. In our approach, we use textual information from numerous sources like checklists, floras and species descriptions to come up with a quantitative index of the preference of 450 species of filmy ferns (=c. 75% of all species of the family) for epiphytic, lithophytic or terrestrial growth. We show that the majority of species have clear habitat preferences, while strict habitat specificity is rather uncommon. Our compilation will be an important input for future ecological and phylogenetic studies in this family, but the presented approach is of much more general interest: it is immediately applicable to other taxonomic groups and should eventually allow us to replace the current approach of assigning species to distinct categories (epiphyte, lithophyte or terrestrial) by one that finally reflects biological variability more appropriately.
Collapse
|
35
|
Saniewski M, Szablińska-Piernik J, Marasek-Ciołakowska A, Mitrus J, Góraj-Koniarska J, Lahuta LB, Wiczkowski W, Miyamoto K, Ueda J, Horbowicz M. Accumulation of Anthocyanins in Detached Leaves of Kalanchoë blossfeldiana: Relevance to the Effect of Methyl Jasmonate on This Process. Int J Mol Sci 2022; 24:ijms24010626. [PMID: 36614068 PMCID: PMC9820172 DOI: 10.3390/ijms24010626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Accumulation of anthocyanins in detached leaves and in excised stems of Kalanchoë blossfeldiana kept under natural light conditions in the presence or absence of methyl jasmonate (JA-Me) was investigated. When the abaxial surface of detached leaves was held lower than the adaxial surface (the normal or natural position) under natural light conditions, anthocyanins were not accumulated on the abaxial side of the leaves. In contrast, when the adaxial surface of detached leaves was held lower than the abaxial surface (inverted position), anthocyanins were highly accumulated on the abaxial side of the leaves. These phenomena were independent of the growth stage of K. blossfeldiana as well as photoperiod. Application of JA-Me in lanolin paste significantly inhibited anthocyanin accumulation induced on the abaxial side of detached leaves held in an inverted position in a dose-dependent manner. Anthocyanin accumulation in the excised stem in response to natural light was also significantly inhibited by JA-Me in lanolin paste. Possible mechanisms of anthocyanin accumulation on the abaxial side of detached K. blossfeldiana leaves held in an inverted position under natural light conditions and the inhibitory effect of JA-Me on this process are described. The accompanying changes in the content of primary metabolites and histological analyses were also described.
Collapse
Affiliation(s)
- Marian Saniewski
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
- Correspondence: (M.S.); (M.H.)
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | | | - Joanna Mitrus
- Institute of Biological Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland
| | - Justyna Góraj-Koniarska
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Lesław B. Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Kensuke Miyamoto
- Faculty of Liberal Arts, Sciences and Global Education, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Junichi Ueda
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Marcin Horbowicz
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
- Correspondence: (M.S.); (M.H.)
| |
Collapse
|
36
|
Davies KM, Landi M, van Klink JW, Schwinn KE, Brummell DA, Albert NW, Chagné D, Jibran R, Kulshrestha S, Zhou Y, Bowman JL. Evolution and function of red pigmentation in land plants. ANNALS OF BOTANY 2022; 130:613-636. [PMID: 36070407 PMCID: PMC9670752 DOI: 10.1093/aob/mcac109] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Land plants commonly produce red pigmentation as a response to environmental stressors, both abiotic and biotic. The type of pigment produced varies among different land plant lineages. In the majority of species they are flavonoids, a large branch of the phenylpropanoid pathway. Flavonoids that can confer red colours include 3-hydroxyanthocyanins, 3-deoxyanthocyanins, sphagnorubins and auronidins, which are the predominant red pigments in flowering plants, ferns, mosses and liverworts, respectively. However, some flowering plants have lost the capacity for anthocyanin biosynthesis and produce nitrogen-containing betalain pigments instead. Some terrestrial algal species also produce red pigmentation as an abiotic stress response, and these include both carotenoid and phenolic pigments. SCOPE In this review, we examine: which environmental triggers induce red pigmentation in non-reproductive tissues; theories on the functions of stress-induced pigmentation; the evolution of the biosynthetic pathways; and structure-function aspects of different pigment types. We also compare data on stress-induced pigmentation in land plants with those for terrestrial algae, and discuss possible explanations for the lack of red pigmentation in the hornwort lineage of land plants. CONCLUSIONS The evidence suggests that pigment biosynthetic pathways have evolved numerous times in land plants to provide compounds that have red colour to screen damaging photosynthetically active radiation but that also have secondary functions that provide specific benefits to the particular land plant lineage.
Collapse
Affiliation(s)
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Italy
| | - John W van Klink
- The New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, Otago University, Dunedin, New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Rubina Jibran
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Samarth Kulshrestha
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Reyes-García C, Orellana R, Dzib Ek S, Peniche Aké S, Tamayo-Chim M, Echevarría-Machado I, Carrillo L, Espadas-Manrique C. Weak crassulacean acid metabolism and other xerophytic adaptive traits in the genus Beaucarnea Lem. (Asparagaceae). PHYSIOLOGIA PLANTARUM 2022; 174:e13816. [PMID: 36321977 DOI: 10.1111/ppl.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The genus Beaucarnea (Asparagaceae) has economic value as an ornamental plant but also has ecological importance. Nonetheless, habitat, physiological traits and growth parameters of this genus remain largely unknown. We characterized the environmental ranges of Beaucarnea inermis, B. gracilis and B. pliabilis; and screened for the presence of physiological adaptations to drought (biomass allocation, presence of crassulacean acid metabolism [CAM] and its effect on plant water use). We performed experiments in 3- and 5-year-old nursery-grown plants of the three species, measured dry mass accumulation in leaves/stems/roots and screened for CAM using gas exchange, titratable acidity and δ13 C. We performed a second experiment on the water and light use responses of B. pliabilis under drought treatment. We found that B. gracilis was limited to xerophytic scrubs (precipitation >400 mm yr-1 ), while B. pliabilis and B. inermis (precipitation >500 and 700 mm year-1 , respectively) inhabited dry forests. Beaucarnea gracilis had the lowest dry mass and allocation to leaves, while B. inermis showed the opposite pattern. Only B. pliabilis exhibited small but significant acid fluctuations, characterized as weak CAM, along with high proline content. Acid concentration contributed in 2.7% of the daily carbon during the wet season but represented most of the carbon in the dry season, under closed stomata and had an important contribution to osmolality. Thus, CAM is described for the first time in the genus Beaucarnea, but was only present in one of three species, warranting exploration of this metabolism in the remaining species of this genus.
Collapse
Affiliation(s)
- Casandra Reyes-García
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Roger Orellana
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Susana Dzib Ek
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Stephany Peniche Aké
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Manuela Tamayo-Chim
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | | | - Lilia Carrillo
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | | |
Collapse
|
38
|
Burgos A, Miranda E, Vilaprinyo E, Meza-Canales ID, Alves R. CAM Models: Lessons and Implications for CAM Evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:893095. [PMID: 35812979 PMCID: PMC9260309 DOI: 10.3389/fpls.2022.893095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The evolution of Crassulacean acid metabolism (CAM) by plants has been one of the most successful strategies in response to aridity. On the onset of climate change, expanding the use of water efficient crops and engineering higher water use efficiency into C3 and C4 crops constitute a plausible solution for the problems of agriculture in hotter and drier environments. A firm understanding of CAM is thus crucial for the development of agricultural responses to climate change. Computational models on CAM can contribute significantly to this understanding. Two types of models have been used so far. Early CAM models based on ordinary differential equations (ODE) reproduced the typical diel CAM features with a minimal set of components and investigated endogenous day/night rhythmicity. This line of research brought to light the preponderant role of vacuolar malate accumulation in diel rhythms. A second wave of CAM models used flux balance analysis (FBA) to better understand the role of CO2 uptake in flux distribution. They showed that flux distributions resembling CAM metabolism emerge upon constraining CO2 uptake by the system. We discuss the evolutionary implications of this and also how CAM components from unrelated pathways could have integrated along evolution.
Collapse
Affiliation(s)
- Asdrubal Burgos
- Laboratorio de Biotecnología, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Enoc Miranda
- Laboratorio de Biotecnología, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ester Vilaprinyo
- Institute of Biomedical Research of Lleida, IRBLleida, Lleida, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Iván David Meza-Canales
- Departamento de Ecología Aplicada, CUCBA, Universidad de Guadalajara, Guadalajara, Mexico
- Unidad de Biología Molecular, Genómica y Proteómica, ITRANS-CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | - Rui Alves
- Institute of Biomedical Research of Lleida, IRBLleida, Lleida, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| |
Collapse
|