1
|
Kohout P, Sudová R, Odriozola I, Kvasničková J, Petružálková M, Hadincová V, Krahulec F, Pecháčková S, Skálová H, Herben T. Accumulation of pathogens in soil microbiome can explain long-term fluctuations of legumes in a grassland community. THE NEW PHYTOLOGIST 2024; 244:235-248. [PMID: 39101271 DOI: 10.1111/nph.20031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
All plant populations fluctuate in time. Apart from the dynamics imposed by external forces such as climate, these fluctuations can be driven by endogenous processes taking place within the community. In this study, we aimed to identify potential role of soil-borne microbial communities in driving endogenous fluctuations of plant populations. We combined a unique, 35-yr long abundance data of 11 common plant species from a species-rich mountain meadow with development of their soil microbiome (pathogenic fungi, arbuscular mycorrhizal fungi and oomycetes) observed during 4 yr of experimental cultivation in monocultures. Plant species which abundance fluctuated highly in the field (particularly legumes) accumulated plant pathogens in their soil mycobiome. We also identified increasing proportion of mycoparasitic fungi under highly fluctuating legume species, which may indicate an adaptation of these species to mitigate the detrimental effects of pathogens. Our study documented that long-term fluctuations in the abundance of plant species in grassland communities can be explained by the accumulation of plant pathogens in plant-soil microbiome. By contrast, we found little evidence of the role of mutualists in plant population fluctuations. These findings offer new insights for understanding mechanisms driving both long-term vegetation dynamics and patterns of species coexistence and richness.
Collapse
Affiliation(s)
- Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
- Faculty of Science, Charles University in Prague, Albertov 6, 128 00, Prague, Czechia
| | - Radka Sudová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Iñaki Odriozola
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Jana Kvasničková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Markéta Petružálková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Věroslava Hadincová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - František Krahulec
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Sylvie Pecháčková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Hana Skálová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Tomáš Herben
- Faculty of Science, Charles University in Prague, Albertov 6, 128 00, Prague, Czechia
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| |
Collapse
|
2
|
Bate-Weldon MP, Edmondson JL, Field KJ. Impact of zinc on arbuscular mycorrhizal-mediated nutrient acquisition in urban horticulture. iScience 2024; 27:110580. [PMID: 39220411 PMCID: PMC11363573 DOI: 10.1016/j.isci.2024.110580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
A major barrier to sustainably improving food security for a growing global population is the availability of suitable space for growing crops. Urban areas offer a potential solution to increase availability of land, however, horticultural soils often accumulate zinc. These increased levels may affect the interactions between crops and soil microbes with potential implications for crop health and nutrition. Using radio-isotope tracing, we investigated the effect of urban environmentally relevant concentrations of zinc in soils on the nutrient exchange between arbuscular mycorrhizal fungi and pea plants. At higher concentrations of zinc, transfer of phosphorus from fungi to plants and the movement of carbon from plants to fungi was dramatically decreased. Our results suggest that while urban horticulture holds promise for sustainably enhancing local food production and addressing global food security, the unchecked presence of contaminants in these soils may pose a critical hurdle to realizing the potential of urban soils.
Collapse
Affiliation(s)
- Miles P.A. Bate-Weldon
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Jill L. Edmondson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Katie J. Field
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
3
|
Yang H, Zhao H, Mao H, Pu Y, Peng Q, Xu Z, Zhang X, Huang F, Li Z. Lower concentration polyethylene microplastics can influence free-floating macrophyte interactions by combined effects of many weak interactions: A nonnegligible ecological impact. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107028. [PMID: 39047441 DOI: 10.1016/j.aquatox.2024.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) are ubiquitous in freshwater ecosystems and their accumulation has been considered an emerging threat. Early research on the effects of MPs on macrophytes primarily focused on the toxicological impacts on individual macrophytes, with several studies suggesting that lower concentrations of MPs have little impact on macrophytes. However, the ecological implications of lower MP concentrations on macrophyte communities remain largely unexplored. Here, we experimented to assess the effects of lower concentrations including 25 mg/L, 50 mg/L, 75 mg/L, and 100 mg/L of polyethylene (PE) microplastics on Spirodela polyrhiza and Lemna minor, and their community. Our results also indicated that PE concentrations below 100 mg/L had no significant effect on relative growth rate, specific leaf area, Chlorophyll a, Chlorophyll b, Chlorophyll a + b, carotenoid, malondialdehyde (MDA), catalase, and soluble sugar of monocultural S. polyrhiza. However, a lower concentration of PE significantly decreased the MDA of monocultural L. minor and significantly affected the comprehensive index of S. polyrhiza. These findings suggested that lower concentrations of PE can influence interactions between macrophytes maybe due to the cumulative effects of many weak interactions. Additionally, our study showed that 75 mg/L and 100 mg/L PE additions decreased the competitive balance index value of two macrophytes under mixed-culture condition. This result implied that the ecological influence of lower concentration MPs on macrophytes may manifest at the community level rather than at the population level, due to species-specific responses and varying degrees of sensitivity of macrophytes to PE concentrations. Thus, our study emphasizes the need to closely monitor the ecological consequences of emerging contaminants such as MPs accumulation on macrophyte communities, rather than focusing solely on the morphology and physiology of individual macrophytes.
Collapse
Affiliation(s)
- Hui Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Hongbo Zhao
- The Forestry Prospect & Design Institute of Hubei Province, Wuhan, 430223, PR China
| | - Hongzhi Mao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Yunhai Pu
- Wildlife Conservation Chief Station of Hubei Province, Wuhan, PR China
| | - Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Zhiyan Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Xu Zhang
- Hubei Provincial Academy of Eco-environmental Science (Hubei Eco-environmental Engineering Assessment Center), Wuhan, 430079, PR China
| | - Feng Huang
- Hubei Provincial Academy of Eco-environmental Science (Hubei Eco-environmental Engineering Assessment Center), Wuhan, 430079, PR China
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
4
|
Liu H, Li J, Singh BK. Harnessing co-evolutionary interactions between plants and Streptomyces to combat drought stress. NATURE PLANTS 2024; 10:1159-1171. [PMID: 39048724 DOI: 10.1038/s41477-024-01749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Streptomyces is a drought-tolerant bacterial genus in soils, which forms close associations with plants to provide host resilience to drought stress. Here we synthesize the emerging research that illuminates the multifaceted interactions of Streptomyces spp. in both plant and soil environments. It also explores the potential co-evolutionary relationship between plants and Streptomyces spp. to forge mutualistic relationships, providing drought tolerance to plants. We propose that further advancement in fundamental knowledge of eco-evolutionary interactions between plants and Streptomyces spp. is crucial and holds substantial promise for developing effective strategies to combat drought stress, ensuring sustainable agriculture and environmental sustainability in the face of climate change.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| | - Jiayu Li
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| |
Collapse
|
5
|
Przybylska MS, Violle C, Vile D, Scheepens JF, Munoz F, Tenllado Á, Vinyeta M, Le Roux X, Vasseur F. Can plants build their niche through modulation of soil microbial activities linked with nitrogen cycling? A test with Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 243:620-635. [PMID: 38812269 DOI: 10.1111/nph.19870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024]
Abstract
In natural systems, different plant species have been shown to modulate specific nitrogen (N) cycling processes so as to meet their N demand, thereby potentially influencing their own niche. This phenomenon might go beyond plant interactions with symbiotic microorganisms and affect the much less explored plant interactions with free-living microorganisms involved in soil N cycling, such as nitrifiers and denitrifiers. Here, we investigated variability in the modulation of soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively), and their ratio (NEA : DEA), across 193 Arabidopsis thaliana accessions. We studied the genetic and environmental determinants of such plant-soil interactions, and effects on plant biomass production in the next generation. We found that NEA, DEA, and NEA : DEA varied c. 30-, 15- and 60-fold, respectively, among A. thaliana genotypes and were related to genes linked with stress response, flowering, and nitrate nutrition, as well as to soil parameters at the geographic origin of the analysed genotypes. Moreover, plant-mediated N cycling activities correlated with the aboveground biomass of next-generation plants in home vs away nonautoclaved soil, suggesting a transgenerational impact of soil biotic conditioning on plant performance. Altogether, these findings suggest that nutrient-based plant niche construction may be much more widespread than previously thought.
Collapse
Affiliation(s)
- Maria Stefania Przybylska
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293, Montpellier, France
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, F-34060, Montpellier, France
- Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293, Montpellier, France
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, F-34060, Montpellier, France
| | - J F Scheepens
- Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - François Munoz
- LiPhy, Université Grenoble-Alpes, 38041, Grenoble, France
| | - Álvaro Tenllado
- LEM - Microbial Ecology Centre, INRAE (UMR 1418), CNRS (UMR 5557), University Lyon 1, University of Lyon, VetAgroSup, 69622, Villeurbanne, France
| | - Mariona Vinyeta
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293, Montpellier, France
| | - Xavier Le Roux
- LEM - Microbial Ecology Centre, INRAE (UMR 1418), CNRS (UMR 5557), University Lyon 1, University of Lyon, VetAgroSup, 69622, Villeurbanne, France
| | - François Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293, Montpellier, France
| |
Collapse
|
6
|
Pan L, Hogan JA, Song X, Zhang W, Zhou H, Chen Z, Yang J, Cao M. Intraspecific variation in Janzen-Connell effect is mediated by stress and plant-soil feedbacks. Ecol Evol 2024; 14:e11614. [PMID: 38952650 PMCID: PMC11214871 DOI: 10.1002/ece3.11614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
Janzen-Connell (JC) effects, hypothesized to be partially driven by negative plant-soil feedbacks (PSFs), are considered to be a key mechanism that regulates tropical forest plant diversity and coexistence. However, intraspecific variation in JC effects may weaken this mechanism, with the strength of PSFs being a potentially key variable process. We conducted a manipulated experiment with seedlings from two populations of Pometia pinnata (Sapindaceae), a tropical tree species in southwest China. We aimed to measure the intraspecific difference in PSF magnitude caused by inoculating the soil from different P. pinnata source populations and growing seedlings under differing light intensity and water availability treatments, and at varying plant densities. We found negative PSFs for both populations with the inoculum soil originating from the same sites, but PSFs differed significantly with the inoculum soil from different sites. PSF strength responded differently to biotic and abiotic drivers; PSF strength was weaker in low moisture and high light treatments than in high moisture and low light treatments. Our study documents intraspecific variation in JC effects: specifically, P. pinnata have less defenses to their natively-sourced soil, but are more defensive to the soil feedbacks from soil sourced from other populations. Our results imply that drought and light intensity tended to weaken JC effects, which may result in loss of species diversity with climate change.
Collapse
Affiliation(s)
- Libing Pan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
- University of Chinese Academy of SciencesBeijingChina
| | - J. Aaron Hogan
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Wenfu Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Huaze Zhou
- Mengla Institute of ConservationXishuangbanna Administration of Nature ReservesMenglaChina
| | - Zhonglin Chen
- Mengla Institute of ConservationXishuangbanna Administration of Nature ReservesMenglaChina
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| |
Collapse
|
7
|
Voller F, Ardanuy A, Taylor AFS, Johnson D. Maintenance of host specialisation gradients in ectomycorrhizal symbionts. THE NEW PHYTOLOGIST 2024; 242:1426-1435. [PMID: 37984824 DOI: 10.1111/nph.19395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
Many fungi that form ectomycorrhizas exhibit a degree of host specialisation, and individual trees are frequently colonised by communities of mycorrhizal fungi comprising species that fall on a gradient of specialisation along genetic, functional and taxonomic axes of variation. By contrast, arbuscular mycorrhizal fungi exhibit little specialisation. Here, we propose that host tree root morphology is a key factor that gives host plants fine-scale control over colonisation and therefore opportunities for driving specialisation and speciation of ectomycorrhizal fungi. A gradient in host specialisation is likely driven by four proximate mechanistic 'filters' comprising partner availability, signalling recognition, competition for colonisation, and symbiotic function (trade, rewards and sanctions), and the spatially restricted colonisation seen in heterorhizic roots enables these mechanisms, especially symbiotic function, to be more effective in driving the evolution of specialisation. We encourage manipulation experiments that integrate molecular genetics and isotope tracers to test these mechanisms, alongside mathematical simulations of eco-evolutionary dynamics in mycorrhizal symbioses.
Collapse
Affiliation(s)
- Fay Voller
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| | - Agnès Ardanuy
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
- Université de Toulouse, INRAE, UMR DYNAFOR, Castanet-Tolosan, 31320, France
| | - Andy F S Taylor
- Ecological Sciences Group, James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - David Johnson
- Department of Earth and Environmental Sciences, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| |
Collapse
|
8
|
Zou HX, Yan X, Rudolf VHW. Time-dependent interaction modification generated from plant-soil feedback. Ecol Lett 2024; 27:e14432. [PMID: 38698727 DOI: 10.1111/ele.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Pairwise interactions between species can be modified by other community members, leading to emergent dynamics contingent on community composition. Despite the prevalence of such higher-order interactions, little is known about how they are linked to the timing and order of species' arrival. We generate population dynamics from a mechanistic plant-soil feedback model, then apply a general theoretical framework to show that the modification of a pairwise interaction by a third plant depends on its germination phenology. These time-dependent interaction modifications emerge from concurrent changes in plant and microbe populations and are strengthened by higher overlap between plants' associated microbiomes. The interaction between this overlap and the specificity of microbiomes further determines plant coexistence. Our framework is widely applicable to mechanisms in other systems from which similar time-dependent interaction modifications can emerge, highlighting the need to integrate temporal shifts of species interactions to predict the emergent dynamics of natural communities.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, USA
| | - Xinyi Yan
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Volker H W Rudolf
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
9
|
Berrabah F, Benaceur F, Yin C, Xin D, Magne K, Garmier M, Gruber V, Ratet P. Defense and senescence interplay in legume nodules. PLANT COMMUNICATIONS 2024; 5:100888. [PMID: 38532645 PMCID: PMC11009364 DOI: 10.1016/j.xplc.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Immunity and senescence play a crucial role in the functioning of the legume symbiotic nodules. The miss-regulation of one of these processes compromises the symbiosis leading to death of the endosymbiont and the arrest of the nodule functioning. The relationship between immunity and senescence has been extensively studied in plant organs where a synergistic response can be observed. However, the interplay between immunity and senescence in the symbiotic organ is poorly discussed in the literature and these phenomena are often mixed up. Recent studies revealed that the cooperation between immunity and senescence is not always observed in the nodule, suggesting complex interactions between these two processes within the symbiotic organ. Here, we discuss recent results on the interplay between immunity and senescence in the nodule and the specificities of this relationship during legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Fathi Berrabah
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria.
| | - Farouk Benaceur
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria
| | - Chaoyan Yin
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Dawei Xin
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Marie Garmier
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France.
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Chamard J, Faticov M, Blanchet FG, Chagnon PL, Laforest-Lapointe I. Interplay of biotic and abiotic factors shapes tree seedling growth and root-associated microbial communities. Commun Biol 2024; 7:360. [PMID: 38519711 PMCID: PMC10960049 DOI: 10.1038/s42003-024-06042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Root-associated microbes can alleviate plant abiotic stresses, thus potentially supporting adaptation to a changing climate or to novel environments during range expansion. While climate change is extending plant species fundamental niches northward, the distribution and colonization of mutualists (e.g., arbuscular mycorrhizal fungi) and pathogens may constrain plant growth and regeneration. Yet, the degree to which biotic and abiotic factors impact plant performance and associated microbial communities at the edge of their distribution remains unclear. Here, we use root microscopy, coupled with amplicon sequencing, to study bacterial, fungal, and mycorrhizal root-associated microbial communities from sugar maple seedlings distributed across two temperate-to-boreal elevational gradients in southern Québec, Canada. Our findings demonstrate that soil pH, soil Ca, and distance to sugar maple trees are key drivers of root-associated microbial communities, overshadowing the influence of elevation. Interestingly, changes in root fungal community composition mediate an indirect effect of soil pH on seedling growth, a pattern consistent at both sites. Overall, our findings highlight a complex role of biotic and abiotic factors in shaping tree-microbe interactions, which are in turn correlated with seedling growth. These findings have important ramifications for tree range expansion in response to shifting climatic niches.
Collapse
Affiliation(s)
- Joey Chamard
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada
| | - Maria Faticov
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada.
| | - F Guillaume Blanchet
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département de mathématiques, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département des sciences de la santé communautaire, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Luc Chagnon
- Agriculture and Agri-food Canada, Saint-Jean-sur-Richelieu, QC, Canada
- Département des Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Laforest-Lapointe
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre Sève, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Centre d'Étude de la Forêt, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
11
|
Delory BM, Callaway RM, Semchenko M. A trait-based framework linking the soil metabolome to plant-soil feedbacks. THE NEW PHYTOLOGIST 2024; 241:1910-1921. [PMID: 38124274 DOI: 10.1111/nph.19490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
By modifying the biotic and abiotic properties of the soil, plants create soil legacies that can affect vegetation dynamics through plant-soil feedbacks (PSF). PSF are generally attributed to reciprocal effects of plants and soil biota, but these interactions can also drive changes in the identity, diversity and abundance of soil metabolites, leading to more or less persistent soil chemical legacies whose role in mediating PSF has rarely been considered. These chemical legacies may interact with microbial or nutrient legacies to affect species coexistence. Given the ecological importance of chemical interactions between plants and other organisms, a better understanding of soil chemical legacies is needed in community ecology. In this Viewpoint, we aim to: highlight the importance of belowground chemical interactions for PSF; define and integrate soil chemical legacies into PSF research by clarifying how the soil metabolome can contribute to PSF; discuss how functional traits can help predict these plant-soil interactions; propose an experimental approach to quantify plant responses to the soil solution metabolome; and describe a testable framework relying on root economics and seed dispersal traits to predict how plant species affect the soil metabolome and how they could respond to soil chemical legacies.
Collapse
Affiliation(s)
- Benjamin M Delory
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, 21335, Germany
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, 3584 CB, the Netherlands
| | - Ragan M Callaway
- Division of Biological Sciences and Institute on Ecosystems, University of Montana, Missoula, MT, 59812, USA
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409, Tartu, Estonia
| |
Collapse
|
12
|
Hou M, Zhu Y, Chen H, Wen Y. Chiral herbicide imazethapy influences plant-soil feedback on nitrogen metabolism by shaping rhizosphere microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18625-18635. [PMID: 38351351 DOI: 10.1007/s11356-024-32393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024]
Abstract
Herbicides are known to affect the soil nitrogen cycle by shaping soil microorganisms. However, it is not clear how herbicides regulate diverse transformation processes of soil nitrogen cycling by altering rhizosphere microorganisms, subsequently influencing the feedback to plant nitrogen metabolism. Here, we investigated how imazethapyr (IM) enantiomers drive plant-soil feedback on nitrogen metabolism by altering the rhizosphere microorganisms. The results indicated that (R)- and (S)-IM significantly changed the composition and structure rhizosphere microbiome with enantioselectivity and functional changes in microbial communities were associated with soil nitrogen circulation. The determination of nitrogen-cycling functional genes further supported the above findings. The results revealed that (R)- and (S)-IM could change the abundance of nitrogen-cycling functional genes by changing specific bacteria abundances, such as Bacteroidetes, Proteobacteria, and Acidobacteria, thus resulting in diverse nitrogen transformation processes. The alternation of nitrogen transformation processes indicated (R)-IM exhibited a more notable tendency to form a nitrogen cycling pattern with lower energy cost and higher nitrogen retention than (S)-IM. Sterilization experiments demonstrated changes in soil nitrogen cycling drive plant nitrogen metabolism and rhizosphere microorganisms are responsible for the above process of plant-soil feedback for nitrogen metabolism. Under IM enantiomer treatments, rhizosphere microorganisms might stimulate glutamate synthesis by promoting NH4+ uptake and glutamine-glutamate synthesis cycling in roots, thus contributing to positive feedback, with (R)-IM treatments showing more pronounced positive feedback on nitrogen metabolism than (S)-IM treatments. Our results provide theoretical support for determining the mechanism by which IM enantiomers drive plant-soil nitrogen metabolism by changing the rhizosphere microbial communities.
Collapse
Affiliation(s)
- Mengchun Hou
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Youfeng Zhu
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Chen
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Bass E. Getting to the root of divergent outcomes in the modulation of plant-soil feedbacks by benzoxazinoids. THE NEW PHYTOLOGIST 2024; 241:2316-2319. [PMID: 38263679 DOI: 10.1111/nph.19545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
This article is a Commentary on Gfeller et al. (2024), 241: 2575–2588.
Collapse
Affiliation(s)
- Ethan Bass
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
14
|
Clark KM, Gallagher MJ, Canam T, Meiners SJ. Genetic relatedness can alter the strength of plant-soil interactions. AMERICAN JOURNAL OF BOTANY 2024; 111:e16289. [PMID: 38374713 DOI: 10.1002/ajb2.16289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024]
Abstract
PREMISE Intraspecific variation may play a key role in shaping the relationships between plants and their interactions with soil microbial communities. The soil microbes of individual plants can generate intraspecific variation in the responsiveness of the plant offspring, yet have been much less studied. To address this need, we explored how the relatedness of seedlings from established clones of Solidago altissima altered the plant-soil interactions of the seedlings. METHODS Seedlings of known parentage were generated from a series of 24 clones grown in a common garden. Seedlings from these crosses were inoculated with soils from maternal, paternal, or unrelated clones and their performance compared to sterilized control inocula. RESULTS We found that soil inocula influenced by S. altissima clones had an overall negative effect on seedling biomass. Furthermore, seedlings inoculated with maternal or paternal soils tended to experience larger negative effects than seedlings inoculated with unrelated soils. However, there was much variation among individual crosses, with not all responding to relatedness. CONCLUSIONS Our data argue that genetic relatedness to the plant from which the soil microbial inoculum was obtained may cause differential impacts on establishing seedlings, encouraging the regeneration of non-kin adjacent to established clones. Such intraspecific variation represents a potentially important source of heterogeneity in plant-soil microbe interactions with implications for maintaining population genetic diversity.
Collapse
Affiliation(s)
- Kelly M Clark
- Department of Life Sciences, Ivy Tech Community College, Evansville, IN, 47710, USA
| | - Marci J Gallagher
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| | - Thomas Canam
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| | - Scott J Meiners
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
| |
Collapse
|
15
|
Gfeller V, Thoenen L, Erb M. Root-exuded benzoxazinoids can alleviate negative plant-soil feedbacks. THE NEW PHYTOLOGIST 2024; 241:2575-2588. [PMID: 38087806 DOI: 10.1111/nph.19401] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/23/2023] [Indexed: 02/03/2024]
Abstract
Plants can suppress the growth of other plants by modifying soil properties. These negative plant-soil feedbacks are often species-specific, suggesting that some plants possess resistance strategies. However, the underlying mechanisms remain largely unknown. Here, we investigated whether benzoxazinoids, a class of dominant secondary metabolites that are exuded into the soil by maize and other cereals, allow maize plants to cope with plant-soil feedbacks. We find that three out of five tested crop species reduce maize (Zea mays L.) performance via negative plant-soil feedbacks relative to the mean across species. This effect is partially alleviated by the capacity of maize plants to produce benzoxazinoids. Soil complementation with purified benzoxazinoids restores the protective effect for benzoxazinoid-deficient mutants. Sterilization and reinoculation experiments suggest that benzoxazinoid-mediated protection acts via changes in soil biota. Substantial variation of the protective effect between experiments and soil types illustrates context dependency. In conclusion, exuded plant secondary metabolites allow plants to cope with plant-soil feedbacks. These findings expand the functional repertoire of plant secondary metabolites and reveal a mechanism by which plants can resist negative effects of soil feedbacks. The uncovered phenomenon may represent a promising avenue to stabilize plant performance in crop rotations.
Collapse
Affiliation(s)
- Valentin Gfeller
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), 5070, Frick, Switzerland
| | - Lisa Thoenen
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| |
Collapse
|
16
|
Zhao J, Yu X, Zhang C, Hou L, Wu N, Zhang W, Wang Y, Yao B, Delaplace P, Tian J. Harnessing microbial interactions with rice: Strategies for abiotic stress alleviation in the face of environmental challenges and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168847. [PMID: 38036127 DOI: 10.1016/j.scitotenv.2023.168847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Rice, which feeds more than half of the world's population, confronts significant challenges due to environmental and climatic changes. Abiotic stressors such as extreme temperatures, drought, heavy metals, organic pollutants, and salinity disrupt its cellular balance, impair photosynthetic efficiency, and degrade grain quality. Beneficial microorganisms from rice and soil microbiomes have emerged as crucial in enhancing rice's tolerance to these stresses. This review delves into the multifaceted impacts of these abiotic stressors on rice growth, exploring the origins of the interacting microorganisms and the intricate dynamics between rice-associated and soil microbiomes. We highlight their synergistic roles in mitigating rice's abiotic stresses and outline rice's strategies for recruiting these microorganisms under various environmental conditions, including the development of techniques to maximize their benefits. Through an in-depth analysis, we shed light on the multifarious mechanisms through which microorganisms fortify rice resilience, such as modulation of antioxidant enzymes, enhanced nutrient uptake, plant hormone adjustments, exopolysaccharide secretion, and strategic gene expression regulation, emphasizing the objective of leveraging microorganisms to boost rice's stress tolerance. The review also recognizes the growing prominence of microbial inoculants in modern rice cultivation for their eco-friendliness and sustainability. We discuss ongoing efforts to optimize these inoculants, providing insights into the rigorous processes involved in their formulation and strategic deployment. In conclusion, this review emphasizes the importance of microbial interventions in bolstering rice agriculture and ensuring its resilience in the face of rising environmental challenges.
Collapse
Affiliation(s)
- Jintong Zhao
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, 5030 Gembloux, Belgium; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoxia Yu
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, Jiangxi 330000, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Sanya Institute, Hainan, Academy of Agricultural Sciences, Sanya 572000, China
| | - Ligang Hou
- Rice Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pierre Delaplace
- Gembloux Agro-Bio Tech, University of Liege, TERRA - Teaching & Research Center, Plant Sciences, 5030 Gembloux, Belgium
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
17
|
He X, Hanusch M, Böll L, Lach A, Seifert T, Junker RR. Adding experimental precision to the realism of field observations: Plant communities structure bacterial communities in a glacier forefield. Environ Microbiol 2024; 26:e16590. [PMID: 38356117 DOI: 10.1111/1462-2920.16590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
Ecological studies are aligned along a realism-precision continuum ranging from field observations to controlled lab experiments that each have their own strengths and limitations. Ecological insight may be most robust when combining approaches. In field observations along a successional gradient, we found correlations between plant species composition and soil bacterial communities, while bacterial Shannon diversity was unrelated to vegetation characteristics. To add a causal understanding of the processes of bacterial community assembly, we designed lab experiments to specifically test the influence of plant composition on bacterial communities. Using soil and seeds from our field site, we added different combinations of surface-sterilised seeds to homogenised soil samples in microcosms and analysed bacterial communities 4 months later. Our results confirmed the field observations suggesting that experimental plant community composition shaped bacterial community composition, while Shannon diversity was unaffected. These results reflect intimate plant-bacteria interactions that are important drivers of plant health and community assembly. While this study provided insights into the role of plants underlying the assembly of bacterial communities, we did not experimentally manipulate other drivers of community assembly such as abiotic factors. Therefore, we recommend multi-factorial laboratory experiments to quantify the relative importance of different factors contributing to microbial composition.
Collapse
Affiliation(s)
- Xie He
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Maximilian Hanusch
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Laura Böll
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Alexander Lach
- Evolutionary Ecology of Plants, Department of Biology, University of Marburg, Marburg, Germany
| | - Tobias Seifert
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Robert R Junker
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
- Evolutionary Ecology of Plants, Department of Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
18
|
Bruijning M, Metcalf CJE, Visser MD. Closing the gap in the Janzen-Connell hypothesis: What determines pathogen diversity? Ecol Lett 2024; 27:e14316. [PMID: 37787147 DOI: 10.1111/ele.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
The high tree diversity in tropical forests has long been a puzzle to ecologists. In the 1970s, Janzen and Connell proposed that tree species (hosts) coexist due to the stabilizing actions of specialized enemies. This Janzen-Connell hypothesis was subsequently supported by theoretical studies. Yet, such studies have taken the presence of specialized pathogens for granted, overlooking that pathogen coexistence also requires an explanation. Moreover, stable ecological coexistence does not necessarily imply evolutionary stability. What are the conditions that allow Janzen-Connell effects to evolve? We link theory from community ecology, evolutionary biology and epidemiology to tackle this question, structuring our approach around five theoretical frameworks. Phenomenological Lotka-Volterra competition models provide the most basic framework, which can be restructured to include (single- or multi-)pathogen dynamics. This ecological foundation can be extended to include pathogen evolution. Hosts, of course, may also evolve, and we introduce a coevolutionary model, showing that host-pathogen coevolution can lead to highly diverse systems. Our work unpacks the assumptions underpinning Janzen-Connell and places theoretical bounds on pathogen and host ecology and evolution. The five theoretical frameworks taken together provide a stronger theoretical basis for Janzen-Connell, delivering a wider lens that can yield important insights into the maintenance of diversity in these increasingly threatened systems.
Collapse
Affiliation(s)
- Marjolein Bruijning
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Marco D Visser
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|
19
|
Hennecke J, Bassi L, Mommer L, Albracht C, Bergmann J, Eisenhauer N, Guerra CA, Heintz-Buschart A, Kuyper TW, Lange M, Solbach MD, Weigelt A. Responses of rhizosphere fungi to the root economics space in grassland monocultures of different age. THE NEW PHYTOLOGIST 2023; 240:2035-2049. [PMID: 37691273 DOI: 10.1111/nph.19261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Recent studies on root traits have shown that there are two axes explaining trait variation belowground: the collaboration axis with mycorrhizal partners and the conservation ('fast - slow') axis. However, it is yet unknown whether these trait axes affect the assembly of soilborne fungi. We expect saprotrophic fungi to link to the conservation axis of root traits, whereas pathogenic and arbuscular mycorrhizal fungi link to the collaboration axis, but in opposite directions, as arbuscular mycorrhizal fungi might provide pathogen protection. To test these hypotheses, we sequenced rhizosphere fungal communities and measured root traits in monocultures of 25 grassland plant species, differing in age. Within the fungal guilds, we evaluated fungal species richness, relative abundance and community composition. Contrary to our hypotheses, fungal diversity and relative abundance were not strongly related to the root trait axes. However, saprotrophic fungal community composition was affected by the conservation gradient and pathogenic community composition by the collaboration gradient. The rhizosphere AMF community composition did not change along the collaboration gradient, even though the root trait axis was in line with the root mycorrhizal colonization rate. Overall, our results indicate that in the long term, the root trait axes are linked with fungal community composition.
Collapse
Affiliation(s)
- Justus Hennecke
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Leonardo Bassi
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Liesje Mommer
- Forest Ecology and Forest Management Group, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Cynthia Albracht
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, 06120, Halle, Germany
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Joana Bergmann
- Sustainable Grassland Systems, Leibniz Centre for Agricultural Landscape Research (ZALF), 14641, Paulinenaue, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, 04103, Leipzig, Germany
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - Anna Heintz-Buschart
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Markus Lange
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Marcel Dominik Solbach
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
20
|
Aaronson JK, Kulmatiski A, Forero LE, Grenzer J, Norton JM. Are Plant-Soil Feedbacks Caused by Many Weak Microbial Interactions? BIOLOGY 2023; 12:1374. [PMID: 37997973 PMCID: PMC10669423 DOI: 10.3390/biology12111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
We used high-throughput sequencing and multivariate analyses to describe soil microbial community composition in two four-year field plant-soil feedback (PSF) experiments in Minnesota, USA and Jena, Germany. In descending order of variation explained, microbial community composition differed between the two study sites, among years, between bulk and rhizosphere soils, and among rhizosphere soils cultivated by different plant species. To try to identify soil organisms or communities that may cause PSF, we correlated plant growth responses with the microbial community composition associated with different plants. We found that plant biomass was correlated with values on two multivariate axes. These multivariate axes weighted dozens of soil organisms, suggesting that PSF was not caused by individual pathogens or symbionts but instead was caused by 'many weak' plant-microbe interactions. Taken together, the results suggest that PSFs result from complex interactions that occur within the context of a much larger soil microbial community whose composition is determined by factors associated with 'site' or year, such as soil pH, soil type, and weather. The results suggest that PSFs may be highly variable and difficult to reproduce because they result from complex interactions that occur in the context of a larger soil microbial community.
Collapse
Affiliation(s)
- Julia K. Aaronson
- Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA; (J.K.A.); (L.E.F.); (J.G.)
| | - Andrew Kulmatiski
- Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA; (J.K.A.); (L.E.F.); (J.G.)
| | - Leslie E. Forero
- Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA; (J.K.A.); (L.E.F.); (J.G.)
| | - Josephine Grenzer
- Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA; (J.K.A.); (L.E.F.); (J.G.)
| | - Jeanette M. Norton
- Plants, Soils and Climate Department and the Ecology Center, Utah State University, Logan, UT 84322, USA;
| |
Collapse
|
21
|
Li Y, Lu X, Su J, Bai Y. Phosphorus availability and planting patterns regulate soil microbial effects on plant performance in a semiarid steppe. ANNALS OF BOTANY 2023; 131:1081-1095. [PMID: 36661120 PMCID: PMC10457034 DOI: 10.1093/aob/mcad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Growing evidence has suggested that plant responses to model soil microorganisms are context dependent; however, few studies have investigated the effects of whole soil microbial communities on plant performance in different abiotic and biotic conditions. To address this, we examined how soil phosphorus (P) availability and different planting patterns regulate soil microbial effects on the growth of two native plant species in a semiarid steppe. METHODS We carried out a glasshouse experiment to explore the effects of the whole indigenous soil microbiota on the growth and performance of Leymus chinensis and Cleistogenes squarrosa using soil sterilization with different soil P availabilities and planting patterns (monoculture and mixture). Transcriptome sequencing (RNA-seq) was used to explain the potential molecular mechanisms of the soil microbial effects on C. squarrosa. KEY RESULTS The soil sterilization treatment significantly increased the biomass of L. chinensis and C. squarrosa in both monoculture and mixture conditions, which indicated that the soil microbiota had negative growth effects on both plants. The addition of P neutralized the negative microbial effects for both L. chinensis and C. squarrosa, whereas the mixture treatment amplified the negative microbial effects on L. chinensis but alleviated them on C. squarrosa. Transcriptomic analysis from C. squarrosa roots underscored that the negative soil microbial effects were induced by the upregulation of defence genes. The P addition treatment resulted in significant decreases in the number of differentially expressed genes attributable to the soil microbiota, and some defence genes were downregulated. CONCLUSIONS Our results underline that indigenous soil microbiota have negative effects on the growth of two dominant plant species from a semiarid steppe, but their effects are highly dependent on the soil P availability and planting patterns. They also indicate that defence genes might play a key role in controlling plant growth responses to the soil microbiota.
Collapse
Affiliation(s)
- Yawen Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaoming Lu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jishuai Su
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
22
|
Parker GD, Hanley L, Yu XY. Mass Spectral Imaging to Map Plant-Microbe Interactions. Microorganisms 2023; 11:2045. [PMID: 37630605 PMCID: PMC10459445 DOI: 10.3390/microorganisms11082045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Plant-microbe interactions are of rising interest in plant sustainability, biomass production, plant biology, and systems biology. These interactions have been a challenge to detect until recent advancements in mass spectrometry imaging. Plants and microbes interact in four main regions within the plant, the rhizosphere, endosphere, phyllosphere, and spermosphere. This mini review covers the challenges within investigations of plant and microbe interactions. We highlight the importance of sample preparation and comparisons among time-of-flight secondary ion mass spectroscopy (ToF-SIMS), matrix-assisted laser desorption/ionization (MALDI), laser desorption ionization (LDI/LDPI), and desorption electrospray ionization (DESI) techniques used for the analysis of these interactions. Using mass spectral imaging (MSI) to study plants and microbes offers advantages in understanding microbe and host interactions at the molecular level with single-cell and community communication information. More research utilizing MSI has emerged in the past several years. We first introduce the principles of major MSI techniques that have been employed in the research of microorganisms. An overview of proper sample preparation methods is offered as a prerequisite for successful MSI analysis. Traditionally, dried or cryogenically prepared, frozen samples have been used; however, they do not provide a true representation of the bacterial biofilms compared to living cell analysis and chemical imaging. New developments such as microfluidic devices that can be used under a vacuum are highly desirable for the application of MSI techniques, such as ToF-SIMS, because they have a subcellular spatial resolution to map and image plant and microbe interactions, including the potential to elucidate metabolic pathways and cell-to-cell interactions. Promising results due to recent MSI advancements in the past five years are selected and highlighted. The latest developments utilizing machine learning are captured as an important outlook for maximal output using MSI to study microorganisms.
Collapse
Affiliation(s)
- Gabriel D. Parker
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
23
|
Enebe MC, Erasmus M. Susceptibility and plant immune control-a case of mycorrhizal strategy for plant colonization, symbiosis, and plant immune suppression. Front Microbiol 2023; 14:1178258. [PMID: 37476663 PMCID: PMC10355322 DOI: 10.3389/fmicb.2023.1178258] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Plants and microbes (mycorrhizal fungi to be precise) have evolved together over the past millions of years into an association that is mutualist. The plants supply the fungi with photosynthates and shelter, while the fungi reciprocate by enhancing nutrient and water uptake by the plants as well as, in some cases, control of soil-borne pathogens, but this fungi-plant association is not always beneficial. We argue that mycorrhizal fungi, despite contributing to plant nutrition, equally increase plant susceptibility to pathogens and herbivorous pests' infestation. Understanding of mycorrhizal fungi strategies for suppressing plant immunity, the phytohormones involved and the signaling pathways that aid them will enable the harnessing of tripartite (consisting of three biological systems)-plant-mycorrhizal fungi-microbe interactions for promoting sustainable production of crops.
Collapse
Affiliation(s)
- Matthew Chekwube Enebe
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
24
|
Samad A, Degenhardt D, Séguin A, Morency MJ, Gagné P, Martineau C. Microbial community structural and functional differentiation in capped thickened oil sands tailings planted with native boreal species. Front Microbiol 2023; 14:1168653. [PMID: 37465026 PMCID: PMC10350512 DOI: 10.3389/fmicb.2023.1168653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
The oil sands mining operations in Alberta have produced billions of m3 of tailings which must be reclaimed and integrated into various mine closure landforms, including terrestrial landforms. Microorganisms play a central role in nutrient cycling during the reclamation of disturbed landscapes, contributing to successful vegetation restoration and long-term sustainability. However, microbial community succession and response in reconstructed and revegetated tailings remain largely unexplored. This study aimed to monitor the structural and functional responses of microbial communities in tailings subjected to different capping and vegetation strategies over two growing seasons (GS). To achieve this, a column-based greenhouse experiment was conducted to investigate microbial communities in tailings that were capped with a layer (10 or 30 cm) of peat-mineral mix (PMM) and planted with either upland or wetland communities. DNA metabarcoding analysis of the bacterial 16S rRNA gene and fungal ITS2 region as well as shotgun metagenomics were used to asses the impact of treatments on microbial taxonomy and functions, respectively. Results showed that tailings microbial diversity and community composition changed considerably after two GS compared to baseline samples, while communities in the PMM capping layer were much more stable. Likewise, several microbial functions were significantly enriched in tailings after two GS. Interestingly, the impact of capping on bacterial communities in tailings varied depending on the plant community, leading to a higher number of differentially abundant taxa and to a decrease in Shannon diversity and evenness in the upland treatment but not in the wetland treatment. Moreover, while capping in the presence of wetland vegetation increased the energy-related metabolic functions (carbon, nitrogen, and sulfur), these functions were depleted by capping in the upland treatment. Fungi represented a small proportion of the microbial community in tailings, but the relative abundance of several taxa changed over time, while the capping treatments favored the growth of some beneficial taxa, notably the root endophyte Serendipita, in both upland and wetland columns. The results suggest that selecting the right combination of capping material and vegetation type may contribute to improve below-ground microbial processes and sustain plant growth in harsh environments such as oil sands tailings.
Collapse
Affiliation(s)
- Abdul Samad
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Dani Degenhardt
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, Canada
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Marie-Josée Morency
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Patrick Gagné
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Christine Martineau
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| |
Collapse
|
25
|
Wilschut RA, Hume BCC, Mamonova E, van Kleunen M. Plant-soil feedback effects on conspecific and heterospecific successors of annual and perennial Central European grassland plants are correlated. NATURE PLANTS 2023:10.1038/s41477-023-01433-w. [PMID: 37291397 DOI: 10.1038/s41477-023-01433-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
Plant-soil feedbacks (PSFs), soil-mediated plant effects on conspecific or heterospecific successors, are a major driver of vegetation development. It has been proposed that specialist plant antagonists drive differences in PSF responses between conspecific and heterospecific plants, whereas contributions of generalist plant antagonists to PSFs remain understudied. Here we examined PSFs among nine annual and nine perennial grassland species to test whether poorly defended annuals accumulate generalist-dominated plant antagonist communities, causing equally negative PSFs on conspecific and heterospecific annuals, whereas well-defended perennial species accumulate specialist-dominated antagonist communities, predominantly causing negative conspecific PSFs. Annuals exhibited more negative PSFs than perennials, corresponding to differences in root-tissue investments, but this was independent of conditioning plant group. Overall, conspecific and heterospecific PSFs did not differ. Instead, conspecific and heterospecific PSF responses in individual species' soils were correlated. Soil fungal communities were generalist dominated but could not robustly explain PSF variation. Our study nevertheless suggests an important role for host generalists as drivers of PSFs.
Collapse
Affiliation(s)
- Rutger A Wilschut
- Ecology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
- Department of Nematology, Wageningen University and Research, Wageningen, the Netherlands.
| | | | - Ekaterina Mamonova
- Ecology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mark van Kleunen
- Ecology Group, Department of Biology, University of Konstanz, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
26
|
Li W, Lu Q, Alharbi SA, Soromotin AV, Kuzyakov Y, Lei Y. Plant-soil-microbial interactions mediate vegetation succession in retreating glacial forefields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162393. [PMID: 36841408 DOI: 10.1016/j.scitotenv.2023.162393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Global warming is accelerating glacial retreat and leaving open areas for vegetation succession on young developing soils. Soil microbial communities interact with plants affecting vegetation succession, but the specific microbial groups controlling these interactions are unclear. We tested whether plant-soil-microbial interactions explain plant primary succession in the Gongga Mountain glacial retreat chronosequence. The direction and intensity of plant-soil-microbial interactions were quantified by comparing the biomass of one early-, two mid- and two late-succession plant species under sterilized vs. live, and inter- vs. intra-specific competition. The performance of most plant species was negatively affected by soil biota from early habitats (5-10 yr), but positively by soil biota from mid- (30-40) and late-succession (80-100) habitats. Two species of Salicaceae from middle habitats, which are strong competitors, developed well on the soils of all successional stages and limited the establishment of later serial plant species. The strongest microbial drivers of plant-microbial interactions changed from i) saprophytic fungal specialists during the early stage, to ii) generalists bacteria and arbuscular mycorrhizal fungi in the middle stage, and finally to iii) ectomycorrhizal fungal specialists in the late stage. Microbial turnover intensified plant-soil-microbial interactions and accelerated primary succession in the young soils of the glacial retreat area.
Collapse
Affiliation(s)
- Weitao Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Qi Lu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sulaiman Almwarai Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Andrey V Soromotin
- Research Institute of Ecology and Natural Resources Management, Tyumen State University, 6 Volodarskogo Street, 625003 Tyumen, Russia
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen 37077, Germany; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia; Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Yanbao Lei
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
27
|
Lei J, Cao Y, Wang J, Chen Y, Peng Y, Shao Q, Dan Q, Xu Y, Chen X, Dang P, Yan W. Soil Nutrients, Enzyme Activities, and Microbial Communities along a Chronosequence of Chinese Fir Plantations in Subtropical China. PLANTS (BASEL, SWITZERLAND) 2023; 12:1931. [PMID: 37653848 PMCID: PMC10221965 DOI: 10.3390/plants12101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 09/02/2023]
Abstract
Forests undergo a long-term development process from young to mature stages, yet the variations in soil nutrients, enzyme activities, microbial diversity, and community composition related to forest ages are still unclear. In this study, the characteristics of soil bacterial and fungal communities with their corresponding soil environmental factors in the young, middle, and mature stages (7, 15, and 25-year-old) of Chinese fir plantations (CFP) in the subtropical region of China were investigated in 2021. Results showed that the alpha diversity indices (Chao1 and Shannon) of soil bacteria and fungi were higher in 15 and 25-year-old stands than in 7-year-old stand of CFP, while the soil pH, soil water content, soil organic carbon, total nitrogen, total phosphorus, sucrase, urease, acid phosphatase, catalase, and microbial biomass carbon, nitrogen, and phosphorus showed higher in 7-year-old stand than other two stands of CFP. The nonmetric multidimensional scaling analysis revealed that the soil microbial species composition was significantly different in three stand ages of CFP. The redundancy and canonical correspondence analysis indicated that the soil urease and microbial biomass nitrogen were the main factors affecting soil bacterial and fungal species composition. Our findings suggested that soil microbial diversity and community structure were inconsistent with changes in soil nutrients and enzyme activities during CFP development, and enhancing stand nurturing and soil nutrient accumulation in the mid-development stage were beneficial to the sustainable management of CFP.
Collapse
Affiliation(s)
- Junjie Lei
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Yixuan Cao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Jun Wang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Yazhen Chen
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Yuanying Peng
- College of Arts and Sciences, Saint Xavier University, Chicago, IL 60655, USA
| | - Qiwen Shao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Qing Dan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Yichen Xu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL 60484, USA
| | - Peng Dang
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wende Yan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| |
Collapse
|
28
|
Maciá-Vicente JG, Francioli D, Weigelt A, Albracht C, Barry KE, Buscot F, Ebeling A, Eisenhauer N, Hennecke J, Heintz-Buschart A, van Ruijven J, Mommer L. The structure of root-associated fungal communities is related to the long-term effects of plant diversity on productivity. Mol Ecol 2023. [PMID: 37081579 DOI: 10.1111/mec.16956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Root-associated fungi could play a role in determining both the positive relationship between plant diversity and productivity in experimental grasslands, and its strengthening over time. This hypothesis assumes that specialized pathogenic and mutualistic fungal communities gradually assemble over time, enhancing plant growth more in species-rich than in species-poor plots. To test this hypothesis, we used high-throughput amplicon sequencing to characterize root-associated fungal communities in experimental grasslands of 1 and 15 years of age with varying levels of plant species richness. Specifically, we tested whether the relationship between fungal communities and plant richness and productivity becomes stronger with the age of the experimental plots. Our results showed that fungal diversity increased with plant diversity, but this relationship weakened rather than strengthened over the two time points. Contrastingly, fungal community composition showed increasing associations with plant diversity over time, suggesting a gradual build-up of specific fungal assemblages. Analyses of different fungal guilds showed that these changes were particularly marked in pathogenic fungi, whose shifts in relative abundance are consistent with the pathogen dilution hypothesis in diverse plant communities. Our results suggest that root-associated fungal pathogens play more specific roles in determining the diversity-productivity relationship than other root-associated plant symbionts.
Collapse
Affiliation(s)
- Jose G Maciá-Vicente
- Plant Ecology and Nature Conservation, Wageningen University & Research, Wageningen, The Netherlands
| | - Davide Francioli
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Alexandra Weigelt
- Institute of Biology, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Cynthia Albracht
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Kathryn E Barry
- Ecology and Biodiversity, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Soil Ecology Department, Helmholtz Center for Environmental Research (UFZ), Halle (Saale), Germany
| | - Anne Ebeling
- Institute of Ecology and Evolution, Friedrich-Schiller-University Jena, Jena, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich-Schiller-University Jena, Jena, Germany
| | - Justus Hennecke
- Institute of Biology, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Anna Heintz-Buschart
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation, Wageningen University & Research, Wageningen, The Netherlands
| | - Liesje Mommer
- Plant Ecology and Nature Conservation, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
29
|
Burrill HM, Wang G, Bever JD. Rapid differentiation of soil and root microbiomes in response to plant composition and biodiversity in the field. ISME COMMUNICATIONS 2023; 3:31. [PMID: 37076650 PMCID: PMC10115818 DOI: 10.1038/s43705-023-00237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/21/2023]
Abstract
Research suggests that microbiomes play a major role in structuring plant communities and influencing ecosystem processes, however, the relative roles and strength of change of microbial components have not been identified. We measured the response of fungal, arbuscular mycorrhizal fungal (AMF), bacteria, and oomycete composition 4 months after planting of field plots that varied in plant composition and diversity. Plots were planted using 18 prairie plant species from three plant families (Poaceae, Fabaceae, and Asteraceae) in monoculture, 2, 3, or 6 species richness mixtures and either species within multiple families or one family. Soil cores were collected and homogenized per plot and DNA were extracted from soil and roots of each plot. We found that all microbial groups responded to the planting design, indicating rapid microbiome response to plant composition. Fungal pathogen communities were strongly affected by plant diversity. We identified OTUs from genera of putatively pathogenic fungi that increased with plant family, indicating likely pathogen specificity. Bacteria were strongly differentiated by plant family in roots but not soil. Fungal pathogen diversity increased with planted species richness, while oomycete diversity, as well as bacterial diversity in roots, decreased. AMF differentiation in roots was detected with individual plant species, but not plant family or richness. Fungal saprotroph composition differentiated between plant family composition in plots, providing evidence for decomposer home-field advantage. The observed patterns are consistent with rapid microbiome differentiation with plant composition, which could generate rapid feedbacks on plant growth in the field, thereby potentially influencing plant community structure, and influence ecosystem processes. These findings highlight the importance of native microbial inoculation in restoration.
Collapse
|
30
|
de Vries F, Lau J, Hawkes C, Semchenko M. Plant-soil feedback under drought: does history shape the future? Trends Ecol Evol 2023:S0169-5347(23)00054-X. [PMID: 36973124 DOI: 10.1016/j.tree.2023.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
Plant-soil feedback (PSF) is widely recognised as a driver of plant community composition, but understanding of its response to drought remains in its infancy. Here, we provide a conceptual framework for the role of drought in PSF, considering plant traits, drought severity, and historical precipitation over ecological and evolutionary timescales. Comparing experimental studies where plants and microbes do or do not share a drought history (through co-sourcing or conditioning), we hypothesise that plants and microbes with a shared drought history experience more positive PSF under subsequent drought. To reflect real-world responses to drought, future studies need to explicitly include plant-microbial co-occurrence and potential co-adaptation and consider the precipitation history experienced by both plants and microbes.
Collapse
Affiliation(s)
- Franciska de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jennifer Lau
- Department of Biology and Environmental Resilience Institute, Indiana University, IN, USA
| | - Christine Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
31
|
Rutten G, Allan E. Using root economics traits to predict biotic plant soil-feedbacks. PLANT AND SOIL 2023; 485:71-89. [PMID: 37181279 PMCID: PMC10167139 DOI: 10.1007/s11104-023-05948-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/13/2023] [Indexed: 05/16/2023]
Abstract
Plant-soil feedbacks have been recognised as playing a key role in a range of ecological processes, including succession, invasion, species coexistence and population dynamics. However, there is substantial variation between species in the strength of plant-soil feedbacks and predicting this variation remains challenging. Here, we propose an original concept to predict the outcome of plant-soil feedbacks. We hypothesize that plants with different combinations of root traits culture different proportions of pathogens and mutualists in their soils and that this contributes to differences in performance between home soils (cultured by conspecifics) versus away soils (cultured by heterospecifics). We use the recently described root economics space, which identifies two gradients in root traits. A conservation gradient distinguishes fast vs. slow species, and from growth defence theory we predict that these species culture different amounts of pathogens in their soils. A collaboration gradient distinguishes species that associate with mycorrhizae to outsource soil nutrient acquisition vs. those which use a "do it yourself" strategy and capture nutrients without relying strongly on mycorrhizae. We provide a framework, which predicts that the strength and direction of the biotic feedback between a pair of species is determined by the dissimilarity between them along each axis of the root economics space. We then use data from two case studies to show how to apply the framework, by analysing the response of plant-soil feedbacks to measures of distance and position along each axis and find some support for our predictions. Finally, we highlight further areas where our framework could be developed and propose study designs that would help to fill current research gaps. Supplementary Information The online version contains supplementary material available at 10.1007/s11104-023-05948-1.
Collapse
Affiliation(s)
- Gemma Rutten
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Eric Allan
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
32
|
Gao L, Wei C, He Y, Tang X, Chen W, Xu H, Wu Y, Wilschut RA, Lu X. Aboveground herbivory can promote exotic plant invasion through intra- and interspecific aboveground-belowground interactions. THE NEW PHYTOLOGIST 2023; 237:2347-2359. [PMID: 36200166 DOI: 10.1111/nph.18520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2-yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co-occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next-generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil-mediated self-reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground-belowground perspective during the assessment of potential biocontrol agents.
Collapse
Affiliation(s)
- Lunlun Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Chunqiang Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Guangxi Institute of Botany, Chinese Academy of Science, 540016, Guilin, China
| | - Yifan He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Xuefei Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
| | - Wei Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Hao Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, 450002, Henan, China
| | - Rutger A Wilschut
- Ecology Group, Department of Biology, University of Konstanz, 78464, Konstanz, Germany
- Department of Nematology, Wageningen University and Research, 6708PB, Wageningen, the Netherlands
| | - Xinmin Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Hubei, China
- Hubei Hongshan Laboratory, 430070, Hubei, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, 430070, Hubei, China
| |
Collapse
|
33
|
Zhao W, Wang X, Howard MM, Kou Y, Liu Q. Functional shifts in soil fungal communities regulate differential tree species establishment during subalpine forest succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160616. [PMID: 36462659 DOI: 10.1016/j.scitotenv.2022.160616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Soil fungi can differentially affect plant performance and community dynamics. While fungi play key roles in driving the plant-soil feedbacks (PSFs) that promote grassland succession, it remains unclear how the fungi-mediated PSFs affect tree species establishment during forest succession. We inoculated pioneer broadleaf (Betula platyphylla and Betula albosinensis) and nonpioneer coniferous tree seedlings (Picea asperata and Abies faxoniana) with fungal-dominated rooting zone soils collected from dominant plant species of early-, mid- and late-successional stages in a subalpine forest, and compared their biomass and fungal communities. All tree species accumulated abundant pathogenic fungi in early-successional inoculated soil, which generated negative biotic feedbacks and lowered seedling biomass. High levels of soil ectomycorrhizal fungi from mid- and late-successional stages resulted in positive biotic PSFs and strongly facilitated slow-growing coniferous seedling performance to favour successional development. B. albosinensis also grew better in mid- and late-successional soils with fewer pathogenic fungi than in early-successional soil, indicating its large susceptibility to pathogen attack. In contrast, the growth of another pioneer tree, B. platyphylla, was significantly suppressed in late-successional soil and was mostly driven by saprotrophic fungi, despite the unchanged pathogenic fungal community traits between the two fast-growing species. This unexpected result suggested a host specificity-dependent mechanism involved in the different impacts of fungal pathogens on host trees. Our findings reveal a critical role of functional shifts in soil fungal communities in mediating differential PSFs of tree species across successional stages, which should be considered to improve the prediction and management of community development following forest disturbances.
Collapse
Affiliation(s)
- Wenqiang Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaohu Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mia M Howard
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Yongping Kou
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qing Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
34
|
Untangling the Effects of Plant Genotype and Soil Conditions on the Assembly of Bacterial and Fungal Communities in the Rhizosphere of the Wild Andean Blueberry ( Vaccinium floribundum Kunth). Microorganisms 2023; 11:microorganisms11020399. [PMID: 36838364 PMCID: PMC9961955 DOI: 10.3390/microorganisms11020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Microbial communities in the rhizosphere influence nutrient acquisition and stress tolerance. How abiotic and biotic factors impact the plant microbiome in the wild has not been thoroughly addressed. We studied how plant genotype and soil affect the rhizosphere microbiome of Vaccinium floribundum, an endemic species of the Andean region that has not been domesticated or cultivated. Using high-throughput sequencing of the 16S rRNA and ITS region, we characterized 39 rhizosphere samples of V. floribundum from four plant genetic clusters in two soil regions from the Ecuadorian Highlands. Our results showed that Proteobacteria and Acidobacteria were the most abundant bacterial phyla and that fungal communities were not dominated by any specific taxa. Soil region was the main predictor for bacterial alpha diversity, phosphorous and lead being the most interesting edaphic factors explaining this diversity. The interaction of plant genotype and altitude was the most significant factor associated with fungal diversity. This study highlights how different factors govern the assembly of the rhizosphere microbiome of a wild plant. Bacterial communities depend more on the soil and its mineral content, while plant genetics influence the fungal community makeup. Our work illustrates plant-microbe associations and the drivers of their variation in a unique unexplored ecosystem from the Ecuadorian Andes.
Collapse
|
35
|
Florianová A, Hanzelková V, Drtinová L, Pánková H, Cajthaml T, Münzbergová Z. Plant-soil interactions in the native range of two congeneric species with contrasting invasive success. Oecologia 2023; 201:461-477. [PMID: 36745217 PMCID: PMC9945059 DOI: 10.1007/s00442-023-05329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/07/2023]
Abstract
The aim of this study was to compare plant-soil interactions in the native range of two congeneric European species differing in their invasive success in the world: a globally invasive Cirsium vulgare and non-invasive C. oleraceum. We assessed changes in soil nutrients and soil biota following soil conditioning by each species and compared performance of plants grown in self-conditioned and unconditioned soil, from which all, some or no biota was excluded. The invasive species depleted more nutrients than the non-invasive species and coped better with altered nutrient levels. The invasive species had higher seedling establishment which benefited from the presence of unconditioned biota transferred by soil filtrate. Biomass of both species increased in soil with self-conditioned soil filtrate and decreased in soil with self-conditioned whole-soil inoculum compared to unconditioned filtrate and inoculum. However, the increase was smaller and the decrease greater for the invasive species. The invasive species allocated less biomass to roots when associated with harmful biota, reducing negative effects of the biota on its performance. The results show that in the native range the invasive species is more limited by self-conditioned pathogens and benefits more from unconditioned mutualists and thus may benefit more from loss of effectively specialized soil biota in a secondary range. Our study highlights the utility of detailed plant-soil feedback research in species native range for understanding factors regulating species performance in their native range and pinpointing the types of biota involved in their regulation.
Collapse
Affiliation(s)
- Anna Florianová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic.
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.
| | - Věra Hanzelková
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Lucie Drtinová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
| | - Hana Pánková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, 1083, 142 20, Prague, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
| | - Zuzana Münzbergová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| |
Collapse
|
36
|
Li G, Liu P, Zhao J, Su L, Zhao M, Jiang Z, Zhao Y, Yang X. Correlation of microbiomes in "plant-insect-soil" ecosystem. Front Microbiol 2023; 14:1088532. [PMID: 36793880 PMCID: PMC9922863 DOI: 10.3389/fmicb.2023.1088532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Introduction Traditional chemical control methods pose a damaging effect on farmland ecology, and their long-term use has led to the development of pest resistance. Methods Here, we analyzed the correlations and differences in the microbiome present in the plant and soil of sugarcane cultivars exhibiting different insect resistance to investigate the role played by microbiome in crop insect resistance. We evaluated the microbiome of stems, topsoil, rhizosphere soil, and striped borers obtained from infested stems, as well as soil chemical parameters. Results and Discussion Results showed that microbiome diversity was higher in stems of insect-resistant plants, and contrast, lower in the soil of resistant plants, with fungi being more pronounced than bacteria. The microbiome in plant stems was almost entirely derived from the soil. The microbiome of insect-susceptible plants and surrounding soil tended to change towards that of insect-resistant plants after insect damage. Insects' microbiome was mainly derived from plant stems and partly from the soil. Available potassium showed an extremely significant correlation with soil microbiome. This study validated the role played by the microbiome ecology of plant-soil-insect system in insect resistance and provided a pre-theoretical basis for crop resistance control.
Collapse
Affiliation(s)
- Guomeng Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Peng Liu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Jihan Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Liangyinan Su
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Mengyu Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Zhengjie Jiang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China
| | - Yang Zhao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China,*Correspondence: Yang Zhao,
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China,Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, China,Xiping Yang,
| |
Collapse
|
37
|
Liang R, Ji X, Sheng Z, Liu J, Qiang S, Song X. Fitness and Rhizobacteria of F2, F3 Hybrids of Herbicide-Tolerant Transgenic Soybean and Wild Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:3184. [PMID: 36432913 PMCID: PMC9693618 DOI: 10.3390/plants11223184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The introduction of herbicide-tolerant (HT) transgenic soybeans (Glycine max (L.) Merr.) into farming systems raises great concern that transgenes may flow to endemic wild soybeans (Glycine soja Sieb. et Zucc.) via pollen, which may increase the ecological risks by increasing the fitness of hybrids under certain conditions and threaten the genetic diversity of wild soybean populations. In order to demonstrate the potential risk of gene flow from the HT soybean to the wild soybean, the fitness of F2 and F3 hybrids obtained from two wild soybean populations (HLJHRB-1, JSCZ) collected from China and the HT soybean was measured under farmland and wasteland soil conditions, as well as with or without weed competition. Compared with their wild progenitors, the F2 and F3 hybrids of HLJHRB-1 displayed a higher emergence rate, higher aboveground dry biomass, more pods and filled-seed plants, as well as better composite fitness under four planting conditions. The F2 and F3 hybrids of JSCZ also displayed a higher emergence rate, higher aboveground dry biomass, more pods, and more filled seeds per plant under mixed planting, whereas these characteristics were lower under pure planting conditions in wasteland and farmland soil. Therefore, the composite fitness of JSCZ hybrids was higher or lower depending on the planting conditions. Furthermore, the soil microbial communities of the F3 of HLJHRB-1, JSCZ, and the wild soybean were investigated with 16S rDNA sequencing, which showed that low alpha diversity of rhizobacteria was relative to high fitness, and Rhizobium played an important role in promoting F3 plant growth.
Collapse
|
38
|
John Davison. THE NEW PHYTOLOGIST 2022; 236:330-332. [PMID: 36161302 DOI: 10.1111/nph.18388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
39
|
Hacquard S, Wang E, Slater H, Martin F. Impact of global change on the plant microbiome. THE NEW PHYTOLOGIST 2022; 234:1907-1909. [PMID: 35599439 DOI: 10.1111/nph.18187] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Stéphane Hacquard
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Holly Slater
- New Phytologist Central Office, Lancaster University, Bailrigg House, Lancaster, LA1 4YE, UK
| | - Francis Martin
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Université de Lorraine, 54280, Champenoux, France
| |
Collapse
|
40
|
Marasco R, Alturkey H, Fusi M, Brandi M, Ghiglieno I, Valenti L, Daffonchio D. Rootstock-scion combination contributes to shape diversity and composition of microbial communities associated with grapevine root system. Environ Microbiol 2022; 24:3791-3808. [PMID: 35581159 PMCID: PMC9544687 DOI: 10.1111/1462-2920.16042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022]
Abstract
To alleviate biotic and abiotic stresses and enhance fruit yield, many crops are cultivated in the form of grafted plants, in which the shoot (scion) and root (rootstock) systems of different species are joined together. Because (i) the plant species determines the microbial recruitment from the soil to the root and (ii) both scion and rootstock impact the physiology, morphology and biochemistry of the grafted plant, it can be expected that their different combinations should affect the recruitment and assembly of plant microbiome. To test our hypothesis, we investigated at a field scale the bacterial and fungal communities associated with the root system of seven grapevine rootstock–scion combinations cultivated across 10 different vineyards. Following the soil type, which resulted in the main determinant of the grapevine root microbial community diversity, the rootstock–scion combination resulted more important than the two components taken alone. Notably, the microbiome differences among the rootstock–scion combinations were mainly dictated by the changes in the relative abundance of microbiome members rather than by their presence/absence. These results reveal that the microbiome of grafted grapevine root systems is largely influenced by the combination of rootstock and scion, which affects the microbial diversity uptaken from soil.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Hend Alturkey
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Michele Brandi
- Marchesi Frescobaldi Società Agricola s.p.a. Fattoria Poggio a Remole, Sieci, Italy
| | - Isabella Ghiglieno
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy.,Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Agrofood Research Hub, Brescia, Italy
| | - Leonardo Valenti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|