1
|
Liu Y, Ma N, Gao Z, Hua Y, Cao Y, Yin D, Jia Q, Wang D. Systematic analysis of the ARF gene family in Fagopyrum dibotrys and its potential roles in stress tolerance. Genetica 2024; 152:159-178. [PMID: 39365431 DOI: 10.1007/s10709-024-00214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
The auxin response factor (ARF) is a plant-specific transcription factor that regulates the expression of auxin response genes by binding directly to their promoters. They play an important role in the regulation of plant growth and development, as well as in the response to biotic and abiotic stresses. However, the identification and functional analysis of ARFs in Fagopyrum dibotrys are still unclear. In this study, a total of 26 FdARF genes were identified using bioinformatic methods. Their chromosomal location, gene structure, physical and chemical properties of their encoded protein, subcellular location, phylogenetic tree, conserved motifs and cis-acting elements in FdARF promoters were analyzed. The results showed that 26 FdARF genes were unevenly distributed on 8 chromosomes, with the largest distribution on chromosome 4 and the least distribution on chromosome 3. Most FdARF proteins are located in the nucleus, except for the proteins FdARF7 and FdARF21 located to the cytoplasm and nucleus, while FdARF14, FdARF16, and FdARF25 proteins are located outside the chloroplast and nucleus. According to phylogenetic analysis, 26 FdARF genes were divided into 6 subgroups. Duplication analysis indicates that the expansion of the FdARF gene family was derived from segmental duplication rather than tandem duplication. The prediction based on cis-elements of the promoter showed that 26 FdARF genes were rich in multiple stress response elements, suggesting that FdARFs may be involved in the response to abiotic stress. Expression profiling analysis showed that most of the FdARF genes were expressed in the roots, stems, leaves, and tubers of F. dibotrys, but their expression exhibits a certain degree of tissue specificity. qRT-PCR analysis revealed that most members of the FdARF gene were up- or down-regulated in response to abiotic stress. The results of this study expand our understanding of the functional role of FdARFs in response to abiotic stress and lay a theoretical foundation for further exploration of other functions of FdARF genes.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Nan Ma
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Ziyong Gao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yangguang Hua
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yu Cao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Dengpan Yin
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
2
|
Huang X, He Y, Zhang K, Shi Y, Zhao H, Lai D, Lin H, Wang X, Yang Z, Xiao Y, Li W, Ouyang Y, Woo SH, Quinet M, Georgiev MI, Fernie AR, Liu X, Zhou M. Evolution and Domestication of a Novel Biosynthetic Gene Cluster Contributing to the Flavonoid Metabolism and High-Altitude Adaptability of Plants in the Fagopyrum Genus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403603. [PMID: 39312476 DOI: 10.1002/advs.202403603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/15/2024] [Indexed: 09/25/2024]
Abstract
The diversity of secondary metabolites is an important means for plants to cope with the complex and ever-changing terrestrial environment. Plant biosynthetic gene clusters (BGCs) are crucial for the biosynthesis of secondary metabolites. The domestication and evolution of BGCs and how they affect plant secondary metabolites biosynthesis and environmental adaptation are still not fully understood. Buckwheat exhibits strong resistance and abundant secondary metabolites, especially flavonoids, allowing it to thrive in harsh environments. A non-canonical BGC named UFGT3 cluster is identified, which comprises a phosphorylase kinase (PAK), two transcription factors (MADS1/2), and a glycosyltransferase (UFGT3), forming a complete molecular regulatory module involved in flavonoid biosynthesis. This cluster is selected during Tartary buckwheat domestication and is widely present in species of the Fagopyrum genus. In wild relatives of cultivated buckwheat, a gene encoding anthocyanin glycosyltransferase (AGT), which glycosylates pelargonidin into pelargonidin-3-O-glucoside, is found inserted into this cluster. The pelargonidin-3-O-glucoside can help plants resist UV stress, endowing wild relatives with stronger high-altitude adaptability. This study provides a new research paradigm for the evolutionary dynamics of plant BGCs, and offers new perspectives for exploring the mechanism of plant ecological adaptability driven by environmental stress through the synthesis of secondary metabolites.
Collapse
Affiliation(s)
- Xu Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuqi He
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kaixuan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaliang Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Dili Lai
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangru Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhimin Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yawen Xiao
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yinan Ouyang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sun Hee Woo
- Department of Agronomy, Chungbuk National University, Cheongju, 28644, South Korea
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université Catholique de Louvain, Croix du Sud 45, boîte L7.07.13, Louvain-la-Neuve, B-1348, Belgium
| | - Milen I Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, 4000, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Xu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meiliang Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
3
|
Weng WF, Yao X, Zhao M, Fang Z, Yang S, Ruan JJ. Novel mutations in acetolactate synthase confer high levels of resistance to tribenuron-methyl in Fagopyrum tataricum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106039. [PMID: 39277366 DOI: 10.1016/j.pestbp.2024.106039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 09/17/2024]
Abstract
Tartary buckwheat (Fagopyrum tataricum) field weeds are rich in species, with many weeds causing reduced quality, yield, and crop failure. The selection of herbicide-resistant Tartary buckwheat varieties, while applying low-toxicity and efficient herbicides as a complementary weed control system, is one way to improve Tartary buckwheat yield and quality. Therefore, the development of herbicide-resistant varieties is important for the breeding of Tartary buckwheat. In this experiment, 50 mM ethyl methyl sulfonate solution was used to treat Tartary buckwheat seeds (M1) and then planted in the field. Harvested seeds (M2) were planted in the experiment field of Guizhou University, and when seedlings had 5-7 leaves, the seedlings were sprayed with 166 mg/L tribenuron-methyl (TBM). A total of 15 resistant plants were obtained, of which three were highly resistant. Using the homologous cloning method, an acetolactate synthase (ALS) gene encoding 547 amino acids was identified in Tartary buckwheat. A GTG (valine) to GGA (glycine) mutation (V409G) occurred at position 409 of the ALS gene in the high tribenuron-methyl resistant mutant sm113. The dm36 mutant harbored a double mutation, a deletion mutation at position 405, and a GTG (valine) to GGA (glycine) mutation (V411G) at position 411. The dm110 mutant underwent a double mutation: an ATG (methionine) to AGG (arginine) mutation (M333R) at position 333 and an insertion mutation at position 372. The synthesis of Chl a, Chl b, total Chl, and Car was significantly inhibited by TBM treatment. TBM was more efficient at suppressing the growth of wild-type plants than that of mutant plants. Antioxidant enzyme activities such as ascorbate peroxidase, peroxidase, and superoxide dismutase were significantly higher in resistant plants than in wild-type after spraying with TBM; malondialdehyde content was significantly lower than in wild-type plants after spraying with TBM. Plants with a single-site mutation in the ALS gene could survive, but their growth was affected by herbicide application. In contrast, plants with dual-site mutations in the ALS gene were not affected, indicating that plants with dual-site mutations in the ALS gene showed higher levels of resistance than plants with a single-site mutation in the ALS gene.
Collapse
Affiliation(s)
- Wen-Feng Weng
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xin Yao
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Mengyu Zhao
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Zhongming Fang
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Sanwei Yang
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Jing-Jun Ruan
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
4
|
Song Y, Long C, Wang Y, An Y, Lu Y. Advancements in multi-omics for nutraceutical enhancement and traits improvement in buckwheat. Crit Rev Biotechnol 2024:1-26. [PMID: 39160127 DOI: 10.1080/07388551.2024.2373282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 05/31/2024] [Indexed: 08/21/2024]
Abstract
Buckwheat (Fagopyrum spp.) is a typical pseudocereal, valued for its extensive nutraceutical potential as well as its centuries-old cultivation. Tartary buckwheat and common buckwheat have been used globally and become well-known nutritious foods due to their high quantities of: proteins, flavonoids, and minerals. Moreover, its increasing demand makes it critical to improve nutraceutical, traits and yield. In this review, bioactive compounds accumulated in buckwheat were comprehensively evaluated according to their chemical structure, properties, and physiological function. Biosynthetic pathways of flavonoids, phenolic acids, and fagopyrin were methodically summarized, with the regulation of flavonoid biosynthesis. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these certain compounds are being synthesized in buckwheat still remains uncovered. The functional genes involved in the biosynthesis of flavonols, stress response, and plant development were identified based on multi-omics research. Furthermore, it delves into the applications of multi-omics in improving buckwheat's agronomic traits, including: yield, nutritional content, stress resilience, and bioactive compounds biosynthesis. While pangenomics combined with other omics to mine elite genes, the regulatory network and mechanism of specific agronomic traits and biosynthetic of bioactive components, and developing a more efficient genetic transformation system for genetic engineering require further investigation for the execution of breeding designs aimed at enhancing desirable traits in buckwheat. This critical review will provide a comprehensive understanding of multi-omics for nutraceutical enhancement and traits improvement in buckwheat.
Collapse
Affiliation(s)
- Yingjie Song
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, P.R. China
| |
Collapse
|
5
|
Gong S, Gan H, Chu J, Wang Z, Sun J. A chromosome-level genome assembly provides insights into the local adaptation of Tamarix austromongolica in the Yellow River Basin, China. DNA Res 2024; 31:dsae021. [PMID: 38946223 PMCID: PMC11306577 DOI: 10.1093/dnares/dsae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/02/2024] Open
Abstract
Tamarix austromongolica is endemic to the Yellow River Basin and has adapted to diverse ecological settings in the region, including the arid areas of northwestern China and the saline soil regions of the Yellow River Delta. However, the genetic basis of its local adaptation remains unclear. We report a chromosome-level assembly of the T. austromongolica genome based on PacBio high-fidelity sequencing and Hi-C technology. The 12 pseudochromosomes cover 98.44% of the 1.32 Gb assembly, with a contig N50 of 52.57 Mb and a BUSCO score of 98.2%. The genome comprises 913.6 Mb (68.83%) of repetitive sequences and 22,374 protein-coding genes. Genome evolution analyses suggest that genes under positive selection and significantly expanded gene families have facilitated T. austromongolica's adaptability to diverse environmental factors and high resistance to diseases. Using genotyping-by-sequencing, we conducted population structure and selection analyses of 114 samples from 15 sites. Two genetic groups were identified, and 114 and 289 candidate genes were assigned to the populations of the northwestern and eastern parts of the Yellow River, respectively. Furthermore, we discovered numerous candidate genes associated with high-altitude adaptability and salt tolerance. This research provides valuable genomic resources for the evolutionary study and genetic breeding of tamarisk.
Collapse
Affiliation(s)
- Shuai Gong
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Honghao Gan
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jianmin Chu
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, PR China
| | - Zhaoshan Wang
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Jia Sun
- Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| |
Collapse
|
6
|
Li Y, Zhao ZA, Hu J, Lei T, Chen Q, Li J, Yang L, Hu D, Gao S. MeJA-induced hairy roots in Plumbago auriculata L. by RNA-seq profiling and key synthase provided new insights into the sustainable production of plumbagin and saponins. FRONTIERS IN PLANT SCIENCE 2024; 15:1411963. [PMID: 39070915 PMCID: PMC11272555 DOI: 10.3389/fpls.2024.1411963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/30/2024]
Abstract
Naturally synthesized secondary metabolites in plants are considered an important source of drugs, food additives, etc. Among them, research on natural plant medicinal components and their synthesis mechanisms has always been of high concern. We identified a novel medicinal floral crop, Plumbago auriculata L., that can be treated with methyl jasmonate (MeJA) for the rapid or sustainable production of natural bioactives from hairy roots. In the study, we globally analyzed the changes in the accumulation of plumbagin and others in the hairy roots of Plumbago auriculata L. hairy roots (PAHR) 15834 in P. auriculata L. based on 100 μmol/L of MeJA treatment by RNA-seq profiling, and we found that there was a significant increase in the accumulation of plumbagin and saponin before 24 h. To explain the principle of co-accumulation, it showed that MeJA induced JA signaling and the shikimic acid pathway, and the methylvaleric acid (MVA) pathway was activated downstream subsequently by the Mfuzz and weighted gene co-expression analysis. Under the shared metabolic pathway, the high expression of PAL3 and HMGR promoted the activity of the "gateway enzymes" phenylalanine ammonia lyase (PAL) and 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), which respectively induced the high expression of key reaction enzyme genes, including chalcone synthase (CHS), isopentenyl diphosphate (IPP), and farnesyl pyrophosphate synthase (FPS), that led to the synthesis of plumbagin and saponin. We speculated that large amounts of ketones and/or aldehydes were formed under the action of these characteristic enzymes, ultimately achieving their co-accumulation through polyketone and high-level sugar and amino acid metabolism. The study results provided a theoretical basis for carrying out the factory refinement and biosynthesis of plumbagin and saponins and also provided new ideas for fully exploiting multifunctional agricultural crops and plants and developing new agricultural by-products.
Collapse
Affiliation(s)
- Yirui Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zi-an Zhao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Ju Hu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiani Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Di Hu
- School of Fine Arts and Calligraphy, Sichuan Normal University, Chengdu, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Zheng SH, Diao YC, Du J, Li JT, Zhao S, Liu MJ, Lin HC, Zeng Y, Wang JY. Genomics and resequencing of Fagopyrum dibotrys from different geographic regions reveals species evolution and genetic diversity. FRONTIERS IN PLANT SCIENCE 2024; 15:1380157. [PMID: 38919820 PMCID: PMC11196786 DOI: 10.3389/fpls.2024.1380157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Fagopyrum dibotrys, belonging to the family Polygonaceae and genus Fagopyrum, is used in traditional Chinese medicine and is rich in beneficial components, such as flavonoids. As its abundant medicinal value has become increasingly recognized, its excessive development poses a considerable challenge to wild germplasm resources, necessitating artificial cultivation and domestication. Considering these factors, a high-quality genome of F. dibotrys was assembled and the evolutionary relationships within Caryophyllales were compared, based on which 58 individual samples of F. dibotrys were re-sequenced. We found that the samples could be categorized into three purebred populations and regions distributed at distinct elevations. Our varieties were cultivated from the parental populations of the subpopulation in central Yunnan. F. dibotrys is speculated to have originated in the high-altitude Tibetan Plateau region, and that its combination with flavonoids can protect plants against ultraviolet radiation; this infers a subpopulation with a high accumulation of flavonoids. This study assembled a high-quality genome and provided a theoretical foundation for the future introduction, domestication, and development of cultivated varieties of F. dibotrys.
Collapse
Affiliation(s)
- Si-hao Zheng
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Yong-chao Diao
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Jie Du
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Jin-tong Li
- China Traditional Chinese Medicine Seed&Seeding, Co., Ltd, Beijing, China
| | - Sha Zhao
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Mei-juan Liu
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Hui-cai Lin
- China Traditional Chinese Medicine Seed&Seeding, Co., Ltd, Beijing, China
| | - Yan Zeng
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| | - Ji-yong Wang
- China National Traditional Chinese Medicine Co., Ltd, Beijing, China
| |
Collapse
|
8
|
Liu Y, Guan C, Chen Y, Shi Y, Long O, Lin H, Zhang K, Zhou M. Evolutionary analysis of MADS-box genes in buckwheat species and functional study of FdMADS28 in flavonoid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108637. [PMID: 38670031 DOI: 10.1016/j.plaphy.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
The MADS-box gene family is a transcription factor family that is widely expressed in plants. It controls secondary metabolic processes in plants and encourages the development of tissues like roots and flowers. However, the phylogenetic analysis and evolutionary model of MADS-box genes in Fagopyrum species has not been reported yet. This study identified the MADS-box genes of three buckwheat species at the whole genome level, and conducted systematic evolution and physicochemical analysis. The results showed that these genes can be divided into four subfamilies, with fragment duplication being the main way for the gene family expansion. During the domestication process from golden buckwheat to tartary buckwheat and the common buckwheat, the Ka/Ks ratio indicated that most members of the family experienced strong purification selection pressure, and with individual gene pairs experiencing positive selection. In addition, we combined the expression profile data of the MADS genes, mGWAS data, and WGCNA data to mine genes FdMADS28/48/50 that may be related to flavonoid metabolism. The results also showed that overexpression of FdMADS28 could increase rutin content by decreasing Kaempferol pathway content in hairy roots, and increase the resistance and growth of hairy roots to PEG and NaCl. This study systematically analyzed the evolutionary relationship of MADS-box genes in the buckwheat species, and elaborated on the expression patterns of MADS genes in different tissues under biotic and abiotic stresses, laying an important theoretical foundation for further elucidating their role in flavonoid metabolism.
Collapse
Affiliation(s)
- Yang Liu
- Sanya Nan Fan Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chaonan Guan
- Sanya Nan Fan Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanyuan Chen
- College of Agriculture, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Yaliang Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ou Long
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Lin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meiliang Zhou
- Sanya Nan Fan Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
9
|
Zhang T, Zhou L, Pu Y, Tang Y, Liu J, Yang L, Zhou T, Feng L, Wang X. A chromosome-level genome reveals genome evolution and molecular basis of anthraquinone biosynthesis in Rheum palmatum. BMC PLANT BIOLOGY 2024; 24:261. [PMID: 38594606 PMCID: PMC11005207 DOI: 10.1186/s12870-024-04972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Rhubarb is one of common traditional Chinese medicine with a diverse array of therapeutic efficacies. Despite its widespread use, molecular research into rhubarb remains limited, constraining our comprehension of the geoherbalism. RESULTS We assembled the genome of Rheum palmatum L., one of the source plants of rhubarb, to elucidate its genome evolution and unpack the biosynthetic pathways of its bioactive compounds using a combination of PacBio HiFi, Oxford Nanopore, Illumina, and Hi-C scaffolding approaches. Around 2.8 Gb genome was obtained after assembly with more than 99.9% sequences anchored to 11 pseudochromosomes (scaffold N50 = 259.19 Mb). Transposable elements (TE) with a continuous expansion of long terminal repeat retrotransposons (LTRs) is predominant in genome size, contributing to the genome expansion of R. palmatum. Totally 30,480 genes were predicted to be protein-coding genes with 473 significantly expanded gene families enriched in diverse pathways associated with high-altitude adaptation for this species. Two successive rounds of whole genome duplication event (WGD) shared by Fagopyrum tataricum and R. palmatum were confirmed. We also identified 54 genes involved in anthraquinone biosynthesis and other 97 genes entangled in flavonoid biosynthesis. Notably, RpALS emerged as a compelling candidate gene for the octaketide biosynthesis after the key residual screening. CONCLUSION Overall, our findings offer not only an enhanced understanding of this remarkable medicinal plant but also pave the way for future innovations in its genetic breeding, molecular design, and functional genomic studies.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lipan Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Pu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yadi Tang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
10
|
Zhang H, He Q, Xing L, Wang R, Wang Y, Liu Y, Zhou Q, Li X, Jia Z, Liu Z, Miao Y, Lin T, Li W, Du H. The haplotype-resolved genome assembly of autotetraploid rhubarb Rheum officinale provides insights into its genome evolution and massive accumulation of anthraquinones. PLANT COMMUNICATIONS 2024; 5:100677. [PMID: 37634079 PMCID: PMC10811376 DOI: 10.1016/j.xplc.2023.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Rheum officinale, a member of the Polygonaceae family, is an important medicinal plant that is widely used in traditional Chinese medicine. Here, we report a 7.68-Gb chromosome-scale assembly of R. officinale with a contig N50 of 3.47 Mb, which was clustered into 44 chromosomes across four homologous groups. Comparative genomics analysis revealed that transposable elements have made a significant contribution to its genome evolution, gene copy number variation, and gene regulation and expression, particularly of genes involved in metabolite biosynthesis, stress resistance, and root development. We placed the recent autotetraploidization of R. officinale at ∼0.58 mya and analyzed the genomic features of its homologous chromosomes. Although no dominant monoploid genomes were observed at the overall expression level, numerous allele-differentially-expressed genes were identified, mainly with different transposable element insertions in their regulatory regions, suggesting that they functionally diverged after polyploidization. Combining genomics, transcriptomics, and metabolomics, we explored the contributions of gene family amplification and tetraploidization to the abundant anthraquinone production of R. officinale, as well as gene expression patterns and differences in anthraquinone content among tissues. Our report offers unprecedented genomic resources for fundamental research on the autopolyploid herb R. officinale and guidance for polyploid breeding of herbs.
Collapse
Affiliation(s)
- Hongyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Longsheng Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ruyu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yu Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Qinghong Zhou
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Xuanzhao Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Zheng Jia
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Ze Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Yuqing Miao
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Basic Science Center for Biotic Interaction in Hebei, Hebei University, Baoding 071000, China.
| |
Collapse
|
11
|
Huo D, Xiao X, Zhang X, Hao X, Hao Z, Li E. Exploration of unique starch physicochemical properties of novel buckwheat lines created by crossing Golden buckwheat and Tatary buckwheat. Food Chem X 2023; 20:100949. [PMID: 38144746 PMCID: PMC10739759 DOI: 10.1016/j.fochx.2023.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 12/26/2023] Open
Abstract
Buckwheat is considered as a healthy cereal food, and it is essential to cultivate new buckwheat lines with good starch physicochemical properties for both consumers and food producers. Six novel buckwheat (Duoku, Dk) were generated by crossing of Golden buckwheat and Tatary buckwheat, and their kernel appearance properties and starch physicochemical properties were analyzed together with one domestic line (Cimiqiao) and one wild line (Yeku). The results showed that Dk samples had better appearance properties than two control samples. The Dk samples showed lower amylose content, similar amylopectin molecular structure and chain length distributions, and larger starch granules compared with Cimiqiao. The digestion results showed that two Dk samples: Dk6 & Dk9 had high resistant starch content; while the other two Dk samples: Dk37 & Dk38 had a steady glucose releasing rate. The Dk samples also showed high gelatinization temperature, indicating they were good raw materials for producing glass noodle. This study proved that Dk buckwheat had unique starch physicochemical properties, and could be used as new food materials in the future.
Collapse
Affiliation(s)
- Dongao Huo
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xue Xiao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xuefeng Hao
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China
| | - Zhanyang Hao
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan 030619, China
| | - Enpeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Zhang K, He Y, Lu X, Shi Y, Zhao H, Li X, Li J, Liu Y, Ouyang Y, Tang Y, Ren X, Zhang X, Yang W, Sun Z, Zhang C, Quinet M, Luthar Z, Germ M, Kreft I, Janovská D, Meglič V, Pipan B, Georgiev MI, Studer B, Chapman MA, Zhou M. Comparative and population genomics of buckwheat species reveal key determinants of flavor and fertility. MOLECULAR PLANT 2023; 16:1427-1444. [PMID: 37649255 PMCID: PMC10512774 DOI: 10.1016/j.molp.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023]
Abstract
Common buckwheat (Fagopyrum esculentum) is an ancient crop with a world-wide distribution. Due to its excellent nutritional quality and high economic and ecological value, common buckwheat is becoming increasingly important throughout the world. The availability of a high-quality reference genome sequence and population genomic data will accelerate the breeding of common buckwheat, but the high heterozygosity due to the outcrossing nature has greatly hindered the genome assembly. Here we report the assembly of a chromosome-scale high-quality reference genome of F. esculentum var. homotropicum, a homozygous self-pollinating variant of common buckwheat. Comparative genomics revealed that two cultivated buckwheat species, common buckwheat (F. esculentum) and Tartary buckwheat (F. tataricum), underwent metabolomic divergence and ecotype differentiation. The expansion of several gene families in common buckwheat, including FhFAR genes, is associated with its wider distribution than Tartary buckwheat. Copy number variation of genes involved in the metabolism of flavonoids is associated with the difference of rutin content between common and Tartary buckwheat. Furthermore, we present a comprehensive atlas of genomic variation based on whole-genome resequencing of 572 accessions of common buckwheat. Population and evolutionary genomics reveal genetic variation associated with environmental adaptability and floral development between Chinese and non-Chinese cultivated groups. Genome-wide association analyses of multi-year agronomic traits with the content of flavonoids revealed that Fh05G014970 is a potential major regulator of flowering period, a key agronomic trait controlling the yield of outcrossing crops, and that Fh06G015130 is a crucial gene underlying flavor-associated flavonoids. Intriguingly, we found that the gene translocation and sequence variation of FhS-ELF3 contribute to the homomorphic self-compatibility of common buckwheat. Collectively, our results elucidate the genetic basis of speciation, ecological adaptation, fertility, and unique flavor of common buckwheat, and provide new resources for future genomics-assisted breeding of this economically important crop.
Collapse
Affiliation(s)
- Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Xiang Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yaliang Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China; College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Li
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, China
| | - Jinlong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yinan Ouyang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Yu Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China
| | - Xue Ren
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, China
| | - Xuemei Zhang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, China
| | - Weifei Yang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, China
| | - Zhaoxia Sun
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Chunhua Zhang
- Tongliao Institute Agricultural and Animal Husbandry Sciences, Tongliao 028015, Inner Mongolia, China
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université Catholique de Louvain, Croix du Sud 4-5, boîte L7.07.13, B-1348, Louvain-la-Neuve, Belgium
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ivan Kreft
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; Nutrition Institute, Tržaška 40, 1000 Ljubljana, Slovenia
| | - Dagmar Janovská
- Gene Bank, Crop Research Institute, Drnovská 507, Prague 6, Czech Republic
| | - Vladimir Meglič
- Agricultural Institute of Slovenia, Hacquetova ulica, Ljubljana, Slovenia
| | - Barbara Pipan
- Agricultural Institute of Slovenia, Hacquetova ulica, Ljubljana, Slovenia
| | - Milen I Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China.
| |
Collapse
|
13
|
Li Y, Wang Z, Zhu M, Niu Z, Li M, Zheng Z, Hu H, Lu Z, Zhang J, Wan D, Chen Q, Yang Y. A chromosome-scale Rhubarb (Rheum tanguticum) genome assembly provides insights into the evolution of anthraquinone biosynthesis. Commun Biol 2023; 6:867. [PMID: 37612424 PMCID: PMC10447539 DOI: 10.1038/s42003-023-05248-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Rhubarb is the collective name for various perennial plants from the genus Rheum L. and the Polygonaceae family. They are one of the most ancient, commonly used, and important herbs in traditional Chinese medicine. Rhubarb is a major source of anthraquinones, but how they are synthesized remains largely unknown. Here, we generate a genome sequence assembly of one important medicinal rhubarb R. tanguticum at the chromosome level, with 2.76 Gb assembled into 11 chromosomes. The genome is shaped by two recent whole-genome duplication events and recent bursts of retrotransposons. Metabolic analyses show that the major anthraquinones are mainly synthesized in its roots. Transcriptomic analysis reveals a co-expression module with a high correlation to anthraquinone biosynthesis that includes key chalcone synthase genes. One CHS, four CYP450 and two BGL genes involved in secondary metabolism show significantly upregulated expression levels in roots compared with other tissues and clustered in the co-expression module, which implies that they may also act as candidate genes for anthraquinone biosynthesis. This study provides valuable insights into the genetic bases of anthraquinone biosynthesis that will facilitate improved breeding practices and agronomic properties for rhubarb in the future.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhenyue Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Mingjia Zhu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhimin Niu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Minjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hongyin Hu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Jin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
14
|
He Y, Zhang K, Li S, Lu X, Zhao H, Guan C, Huang X, Shi Y, Kang Z, Fan Y, Li W, Chen C, Li G, Long O, Chen Y, Hu M, Cheng J, Xu B, Chapman MA, Georgiev MI, Fernie AR, Zhou M. Multiomics analysis reveals the molecular mechanisms underlying virulence in Rhizoctonia and jasmonic acid-mediated resistance in Tartary buckwheat (Fagopyrum tataricum). THE PLANT CELL 2023; 35:2773-2798. [PMID: 37119263 PMCID: PMC10396374 DOI: 10.1093/plcell/koad118] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Rhizoctonia solani is a devastating soil-borne pathogen that seriously threatens the cultivation of economically important crops. Multiple strains with a very broad host range have been identified, but only 1 (AG1-IA, which causes rice sheath blight disease) has been examined in detail. Here, we analyzed AG4-HGI 3 originally isolated from Tartary buckwheat (Fagopyrum tataricum), but with a host range comparable to AG1-IA. Genome comparison reveals abundant pathogenicity genes in this strain. We used multiomic approaches to improve the efficiency of screening for disease resistance genes. Transcriptomes of the plant-fungi interaction identified differentially expressed genes associated with virulence in Rhizoctonia and resistance in Tartary buckwheat. Integration with jasmonate-mediated transcriptome and metabolome changes revealed a negative regulator of jasmonate signaling, cytochrome P450 (FtCYP94C1), as increasing disease resistance probably via accumulation of resistance-related flavonoids. The integration of resistance data for 320 Tartary buckwheat accessions identified a gene homolog to aspartic proteinase (FtASP), with peak expression following R. solani inoculation. FtASP exhibits no proteinase activity but functions as an antibacterial peptide that slows fungal growth. This work reveals a potential mechanism behind pathogen virulence and host resistance, which should accelerate the molecular breeding of resistant varieties in economically essential crops.
Collapse
Affiliation(s)
- Yuqi He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Shijuan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiang Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Chaonan Guan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xu Huang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Yaliang Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Zhen Kang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Yu Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Wei Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Cheng Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Guangsheng Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Ou Long
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Yuanyuan Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Mang Hu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Milen I Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv 4000, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Crop Gene Bank Building, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
15
|
Ma N, Yin D, Liu Y, Gao Z, Cao Y, Chen T, Huang Z, Jia Q, Wang D. Succession of endophytic fungi and rhizosphere soil fungi and their correlation with secondary metabolites in Fagopyrum dibotrys. Front Microbiol 2023; 14:1220431. [PMID: 37601353 PMCID: PMC10434241 DOI: 10.3389/fmicb.2023.1220431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Golden buckwheat (Fagopyrum dibotrys, also known as F. acutatum) is a traditional edible herbal medicinal plant with a large number of secondary metabolites and is considered to be a source of therapeutic compounds. Different ecological environments have a significant impact on their compound content and medicinal effects. However, little is known about the interactions between soil physicochemical properties, the rhizosphere, endophytic fungal communities, and secondary metabolites in F. dibotrys. In this study, the rhizosphere soil and endophytic fungal communities of F. dibotrys in five different ecological regions in China were identified based on high-throughput sequencing methods. The correlations between soil physicochemical properties, active components (total saponins, total flavonoids, proanthocyanidin, and epicatechin), and endophytic and rhizosphere soil fungi of F. dibotrys were analyzed. The results showed that soil pH, soil N, OM, and P were significantly correlated with the active components of F. dibotrys. Among them, epicatechin, proanthocyanidin, and total saponins were significantly positively correlated with soil pH, while proanthocyanidin content was significantly positively correlated with STN, SAN, and OM in soil, and total flavone content was significantly positively correlated with P in soil. In soil microbes, Mortierella, Trechispora, Exophiala, Ascomycota_unclassified, Auricularia, Plectosphaerella, Mycena, Fungi_unclassified, Agaricomycetes_unclassified, Coprinellus, and Pseudaleuria were significantly related to key secondary metabolites of F. dibotrys. Diaporthe and Meripilaceae_unclassified were significantly related to key secondary metabolites in the rhizome. This study presents a new opportunity to deeply understand soil-plant-fungal symbioses and secondary metabolites in F. dibotrys, as well as provides a scientific basis for using biological fertilization strategies to improve the quality of F. dibotrys.
Collapse
Affiliation(s)
- Nan Ma
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dengpan Yin
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ying Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ziyong Gao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yu Cao
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Tongtong Chen
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ziyi Huang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Kong W, Wang Y, Zhang S, Yu J, Zhang X. Recent Advances in Assembly of Complex Plant Genomes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:427-439. [PMID: 37100237 PMCID: PMC10787022 DOI: 10.1016/j.gpb.2023.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/18/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Over the past 20 years, tremendous advances in sequencing technologies and computational algorithms have spurred plant genomic research into a thriving era with hundreds of genomes decoded already, ranging from those of nonvascular plants to those of flowering plants. However, complex plant genome assembly is still challenging and remains difficult to fully resolve with conventional sequencing and assembly methods due to high heterozygosity, highly repetitive sequences, or high ploidy characteristics of complex genomes. Herein, we summarize the challenges of and advances in complex plant genome assembly, including feasible experimental strategies, upgrades to sequencing technology, existing assembly methods, and different phasing algorithms. Moreover, we list actual cases of complex genome projects for readers to refer to and draw upon to solve future problems related to complex genomes. Finally, we expect that the accurate, gapless, telomere-to-telomere, and fully phased assembly of complex plant genomes could soon become routine.
Collapse
Affiliation(s)
- Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiaxin Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
17
|
Chen K, Yang H, Peng Y, Liu D, Zhang J, Zhao Z, Wu L, Lin T, Bai L, Wang L. Genomic analyses provide insights into the polyploidization-driven herbicide adaptation in Leptochloa weeds. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37154437 PMCID: PMC10363762 DOI: 10.1111/pbi.14065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
Polyploidy confers a selective advantage under stress conditions; however, whether polyploidization mediates enhanced herbicide adaptation remains largely unknown. Tetraploid Leptochloa chinensis is a notorious weed in the rice ecosystem, causing severe yield loss in rice. In China, L. chinensis has only one sister species, the diploid L. panicea, whose damage is rarely reported. To gain insights into the effects of polyploidization on herbicide adaptation, we first assembled a high-quality genome of L. panicea and identified genome structure variations with L. chinensis. Moreover, we identified herbicide-resistance genes specifically expanded in L. chinensis, which may confer a greater herbicide adaptability in L. chinensis. Analysis of gene retention and loss showed that five herbicide target-site genes and several herbicide nontarget-site resistance gene families were retained during polyploidization. Notably, we identified three pairs of polyploidization-retained genes including LcABCC8, LcCYP76C1 and LcCYP76C4 that may enhance herbicide resistance. More importantly, we found that both copies of LcCYP76C4 were under herbicide selection during the spread of L. chinensis in China. Furthermore, we identified another gene potentially involved in herbicide resistance, LcCYP709B2, which is also retained during polyploidization and under selection. This study provides insights into the genomic basis of the enhanced herbicide adaptability of Leptochloa weeds during polyploidization and provides guidance for the precise and efficient control of polyploidy weeds.
Collapse
Affiliation(s)
- Ke Chen
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Haona Yang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yajun Peng
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Ducai Liu
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | | | - Zhenghong Zhao
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
| | - Lamei Wu
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Tao Lin
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Lianyang Bai
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lifeng Wang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha, China
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou, China
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
18
|
Zhou J, He W, Wang J, Liao X, Xiang K, Ma M, Liu Z, Li Y, Tembrock LR, Wu Z, Liu L. The pan-plastome of tartary buckwheat (fagopyrum tataricum): key insights into genetic diversity and the history of lineage divergence. BMC PLANT BIOLOGY 2023; 23:212. [PMID: 37088810 PMCID: PMC10123988 DOI: 10.1186/s12870-023-04218-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Tartary buckwheat (Fagopyrum tataricum) is an important food and medicine crop plant, which has been cultivated for 4000 years. A nuclear genome has been generated for this species, while an intraspecific pan-plastome has yet to be produced. As such a detailed understanding of the maternal genealogy of Tartary buckwheat has not been thoroughly investigated. RESULTS In this study, we de novo assembled 513 complete plastomes of Fagopyrum and compared with 8 complete plastomes of Fagopyrum downloaded from the NCBI database to construct a pan-plastome for F. tartaricum and resolve genomic variation. The complete plastomes of the 513 newly assembled Fagopyrum plastome sizes ranged from 159,253 bp to 159,576 bp with total GC contents ranged from 37.76 to 37.97%. These plastomes all maintained the typical quadripartite structure, consisting of a pair of inverted repeat regions (IRA and IRB) separated by a large single copy region (LSC) and a small single copy region (SSC). Although the structure and gene content of the Fagopyrum plastomes are conserved, numerous nucleotide variations were detected from which population structure could be resolved. The nucleotide variants were most abundant in the non-coding regions of the genome and of those the intergenic regions had the most. Mutational hotspots were primarily found in the LSC regions. The complete 521 Fagopyrum plastomes were divided into five genetic clusters, among which 509 Tartary buckwheat plastomes were divided into three genetic clusters (Ft-I/Ft-II/Ft-III). The genetic diversity in the Tartary buckwheat genetic clusters was the greatest in Ft-III, and the genetic distance between Ft-I and Ft-II was the largest. Based on the results of population structure and genetic diversity analysis, Ft-III was further subdivided into three subgroups Ft-IIIa, Ft-IIIb, and Ft-IIIc. Divergence time estimation indicated that the genera Fagopyrum and Rheum (rhubarb) shared a common ancestor about 48 million years ago (mya) and that intraspecies divergence in Tartary buckwheat began around 0.42 mya. CONCLUSIONS The resolution of pan-plastome diversity in Tartary buckwheat provides an important resource for future projects such as marker-assisted breeding and germplasm preservation.
Collapse
Affiliation(s)
- Jiawei Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
- College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Perth, 6150, Australia
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Kunli Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Mingchuan Ma
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China
- Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan, 030031, China
| | - Zhang Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China
- Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan, 030031, China
| | - Yongyao Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Zhiqiang Wu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
- College of Horticulture, Shanxi Agricultural University, Shanxi, 030801, China.
| | - Longlong Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, 030031, China.
- Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan, 030031, China.
| |
Collapse
|
19
|
Study of the phytochemical profile of hydroponically cultivated buckwheat (Fagopyrum esculentum Moench) at different phenological stages. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
20
|
Pinski A, Zhou M, Betekhtin A. Editorial: Advances in buckwheat research. FRONTIERS IN PLANT SCIENCE 2023; 14:1190090. [PMID: 37143884 PMCID: PMC10152880 DOI: 10.3389/fpls.2023.1190090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023]
Affiliation(s)
- Artur Pinski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
- *Correspondence: Artur Pinski, ; Meiliang Zhou, ; Alexander Betekhtin,
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Artur Pinski, ; Meiliang Zhou, ; Alexander Betekhtin,
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
- *Correspondence: Artur Pinski, ; Meiliang Zhou, ; Alexander Betekhtin,
| |
Collapse
|
21
|
Zhang Z, Zhang J, Lu P, Wu B, Liu M, Gao J, Wang C, Bai K, Guo G. Six Underutilized Grain Crops for Food and Nutrition in China. PLANTS 2022; 11:plants11192451. [PMID: 36235316 PMCID: PMC9572796 DOI: 10.3390/plants11192451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Underutilized grain crops are an essential part of the food system that supports humankind. A number of these crops can be found in China, such as barley, buckwheat, broomcorn millet, foxtail millet, oat, and sorghum, which have characteristics such as containing more nutritional elements, being resistant to biotic and abiotic stresses, and having strong adaptability to poor environments. The diversity of these crops provides options for farmers’ livelihoods and healthy food for the population. Although some mentioned crops such as barley, oat, and sorghum are not underutilized crops globally, they could be considered underutilized in China as they were more important in the past and could be revitalized for food and nutrition in the future. This paper reviews current progress in research and development in the areas of germplasm resource conservation, variety improvement, cultivation technologies, processing, and the nutrition and benefits of six underutilized grain crops in China. It is concluded that underutilized grain crops could play a critical role in food and nutritional security in China.
Collapse
Affiliation(s)
- Zongwen Zhang
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Alliance of Bioversity International and International Centre for Tropical Agriculture, Beijing 100081, China
- Correspondence: (Z.Z.); (G.G.)
| | - Jing Zhang
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ping Lu
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Wu
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minxuan Liu
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Gao
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunchao Wang
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Keyu Bai
- Alliance of Bioversity International and International Centre for Tropical Agriculture, Beijing 100081, China
- Institute of Agricultural Resources and Regional Planning of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ganggang Guo
- Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Z.Z.); (G.G.)
| |
Collapse
|
22
|
Zhang C, Jiang Y, Liu C, Shi L, Li J, Zeng Y, Guo L, Wang S. Identification of Medicinal Compounds of Fagopyri Dibotryis Rhizome from Different Origins and Its Varieties Using UPLC-MS/MS-Based Metabolomics. Metabolites 2022; 12:metabo12090790. [PMID: 36144195 PMCID: PMC9503457 DOI: 10.3390/metabo12090790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Fagopyrum dibotrys, being native to southwest China, is widely distributed in Yunnan, Guizhou Provinces and Chongqing City. However, the quality of medicinal materials growing in different origins varies greatly, and cannot meet the market demand for high-quality F. dibotrys. In this study, 648 metabolites were identified, and phenolic compounds of F. dibotrys from different origins were clearly separated by principal component analysis (PCA). Our results suggested that the medicinal differences of F. dibotrys from different origins can be elucidated via the variations in the abundance of the phenolic and flavonoid compounds. We found that the epicatechin, total flavonoids and total tannin content in Yunnan Qujing (YQ) and Yunnan Kunming (YK) were higher than those in Chongqing Shizhu (CS), Chongqing Fuling (CF) and Guizhou Bijie (GB), suggesting that Yunnan Province can be considered as one of the areas that produce high-quality medicinal materials. Additionally, 1,6-di-O-galloyl-β-D-glucose, 2,3-di-O-galloyl-D-glucose and gallic acid could be used as ideal marker compounds for the quality control of F. dibotrys from different origins caused by metabolites, and the F. dibotrys planted in Yunnan Province is well worth exploiting.
Collapse
Affiliation(s)
- Chengcai Zhang
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yang Jiang
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing 334220, China
| | - Changzheng Liu
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Linyuan Shi
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jintong Li
- China National Traditional Chinese Medicine, Co., Ltd., Beijing 100191, China
| | - Yan Zeng
- China National Traditional Chinese Medicine, Co., Ltd., Beijing 100191, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (L.G.); (S.W.)
| | - Sheng Wang
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing 334220, China
- Correspondence: (L.G.); (S.W.)
| |
Collapse
|