1
|
Bellasio C, Stuart-Williams H, Farquhar GD, Flexas J. Fast dehydration reduces bundle sheath conductance in C 4 maize and sorghum. THE NEW PHYTOLOGIST 2024. [PMID: 39460370 DOI: 10.1111/nph.20167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/07/2024] [Indexed: 10/28/2024]
Abstract
In the face of anthropogenic warming, drought poses an escalating threat to food production. C4 plants offer promise in addressing this threat. C4 leaves operate a biochemical CO2 concentrating mechanism that exchanges metabolites between two partially isolated compartments (mesophyll and bundle sheath), which confers high-productivity potential in hot climates boosting water use efficiency. However, when C4 leaves experience dehydration, photosynthesis plummets. This paper explores the physiological mechanisms behind this decline. In a fast dehydration experiment, we measured the fluxes and isotopic composition of water and CO2 in the gas exchanged by leaves, and we interpreted results using a novel biochemical model and analysis of elasticity. Our findings show that, while CO2 supply to the mesophyll and to the bundle sheath persisted during dehydration, there was a decrease in CO2 conductance at the bundle sheath-mesophyll interface. We interpret this as causing a slowdown of intercellular metabolite exchange - an essential feature of C4 photosynthesis. This would impede the supply of reducing power to the bundle sheath, leading to phosphoglycerate accumulation and feedback inhibition of Rubisco carboxylation. The interplay between this rapid sensitivity and the effectiveness of coping strategies that C4 plants deploy may be an overlooked driver of their competitive performance.
Collapse
Affiliation(s)
- Chandra Bellasio
- Laboratory of Theoretical and Applied Crop Ecophysiology, School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, D04V1W8, Ireland
- Department of Chemistry, Biology and Biotechnology, Università Degli Studi Di Perugia, Perugia, 06123, Italy
- Biology of Plants Under Mediterranean Conditions, Department of Biology, University of the Balearic Islands, 07122, Palma, Illes Balears, Spain
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | | | - Graham D Farquhar
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Jaume Flexas
- Biology of Plants Under Mediterranean Conditions, Department of Biology, University of the Balearic Islands, 07122, Palma, Illes Balears, Spain
- Agro-Environmental and Water Economics Research Institute (INAGEA), Complex Balear de Recerca, Desenvolupament Tecnològic i Innovació (Parc Bit), Carrer Blaise Pascal, 6, 07120, Palma, Illes Balears, Spain
| |
Collapse
|
2
|
Bellasio C. Instantaneous growth: a compact measure of efficient carbon and nitrogen allocation in leaves and roots of C 3 and C 4 plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14535. [PMID: 39431421 DOI: 10.1111/ppl.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 10/22/2024]
Abstract
Elucidating plant functions and identifying crop productivity bottlenecks requires the accurate quantification of their performance. This task has been attained through photosynthetic models. However, their traditional focus on the leaf's capacity to uptake CO2 is becoming increasingly restrictive. Advanced bioengineering of C3 plants has made it possible to increase rates of CO2 assimilation by packing photosynthetic structures more densely within leaves. The operation of mechanisms that concentrate CO2 inside leaves can boost rates of assimilation while requiring a lower investment in carboxylating enzymes. Therefore, whether in the context of spontaneous plants or modern manipulation, considering trade-offs in resource utilization efficiency emerges as a critical necessity. I've developed a concise and versatile analytical model that simulates concurrent leaf and root growth by balancing instantaneous fluxes of carbon and nitrogen. Carbon is made available by leaf photosynthesis, encompassing all types of biochemistries, while nitrogen is either taken up by roots or remobilized after senescence. The allocation of leaf nitrogen between light or carbon reactions was determined using a fitting algorithm: growth maximisation was the only reliable fitting goal. Both the leaf nitrogen pool and the root-to-leaf ratio responded realistically to various environmental drivers (CO2 concentration, light intensity, soil nitrogen), replicating trends typically observed in plants. Furthermore, modifying the strength of CO2 concentrating mechanisms proved sufficient to alter the root-to-leaf ratio between C3 and C4 types. This direct and mechanistic one-to-one link convincingly demonstrates, for the first time, the functional dependence of a morphological trait on a single biochemical property.
Collapse
Affiliation(s)
- Chandra Bellasio
- Laboratory of Theoretical and Applied Crop Ecophysiology, School of Biology & Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Chemistry, Biology and Biotechnology, Università Degli Studi di Perugia, Perugia, Italy
- University of the Balearic Islands, Palma, Illes Balears, Spain
- Research School of Biology, Australian National University, Acton, ACT, Australia
| |
Collapse
|
3
|
Bellasio C, Lundgren MR. The operation of PEPCK increases light harvesting plasticity in C 4 NAD-ME and NADP-ME photosynthetic subtypes: A theoretical study. PLANT, CELL & ENVIRONMENT 2024; 47:2288-2309. [PMID: 38494958 DOI: 10.1111/pce.14869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024]
Abstract
The repeated emergence of NADP-malic enzyme (ME), NAD-ME and phosphoenolpyruvate carboxykinase (PEPCK) subtypes of C4 photosynthesis are iconic examples of convergent evolution, which suggests that these biochemistries do not randomly assemble, but are instead specific adaptations resulting from unknown evolutionary drivers. Theoretical studies that are based on the classic biochemical understanding have repeatedly proposed light-use efficiency as a possible benefit of the PEPCK subtype. However, quantum yield measurements do not support this idea. We explore this inconsistency here via an analytical model that features explicit descriptions across a seamless gradient between C4 biochemistries to analyse light harvesting and dark photosynthetic metabolism. Our simulations show that the NADP-ME subtype, operated by the most productive crops, is the most efficient. The NAD-ME subtype has lower efficiency, but has greater light harvesting plasticity (the capacity to assimilate CO2 in the broadest combination of light intensity and spectral qualities). In both NADP-ME and NAD-ME backgrounds, increasing PEPCK activity corresponds to greater light harvesting plasticity but likely imposed a reduction in photosynthetic efficiency. We draw the first mechanistic links between light harvesting and C4 subtypes, providing the theoretical basis for future investigation.
Collapse
Affiliation(s)
- Chandra Bellasio
- Laboratory of Theoretical and Applied Crop Ecophysiology, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Department of Chemistry, Biology ond Biotechnology, Università Degli Studi Di Perugia, Perugia, Italy
- Department of Biology, University of the Balearic Islands, Palma, Illes Balears, Spain
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
4
|
Opoku E, Sahu PP, Findurová H, Holub P, Urban O, Klem K. Differential physiological and production responses of C3 and C4 crops to climate factor interactions. FRONTIERS IN PLANT SCIENCE 2024; 15:1345462. [PMID: 38371407 PMCID: PMC10869619 DOI: 10.3389/fpls.2024.1345462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
This study examined the effect of the interactions of key factors associated with predicted climate change (increased temperature, and drought) and elevated CO2 concentration on C3 and C4 crop representatives, barley and sorghum. The effect of two levels of atmospheric CO2 concentration (400 and 800 ppm), three levels of temperature regime (21/7, 26/12 and 33/19°C) and two regimes of water availability (simulation of drought by gradual reduction of irrigation and well-watered control) in all combinations was investigated in a pot experiment within growth chambers for barley variety Bojos and sorghum variety Ruby. Due to differences in photosynthetic metabolism in C3 barley and C4 sorghum, leading to different responses to elevated CO2 concentration, we hypothesized mitigation of the negative drought impact in barley under elevated CO2 concentration and, conversely, improved performance of sorghum at high temperatures. The results demonstrate the decoupling of photosynthetic CO2 assimilation and production parameters in sorghum. High temperatures and elevated CO2 concentration resulted in a significant increase in sorghum above- and below-ground biomass under sufficient water availability despite the enhanced sensitivity of photosynthesis to high temperatures. However, the negative effect of drought is amplified by the effect of high temperature, similarly for biomass and photosynthetic rates. Sorghum also showed a mitigating effect of elevated CO2 concentration on the negative drought impact, particularly in reducing the decrease of relative water content in leaves. In barley, no significant factor interactions were observed, indicating the absence of mitigating the negative drought effects by elevated CO2 concentration. These complex interactions imply that, unlike barley, sorghum can be predicted to have a much higher variability in response to climate change. However, under conditions combining elevated CO2 concentration, high temperature, and sufficient water availability, the outperforming of C4 crops can be expected. On the contrary, the C3 crops can be expected to perform even better under drought conditions when accompanied by lower temperatures.
Collapse
Affiliation(s)
- Emmanuel Opoku
- Laboratory of Ecological Plant Physiology, Global Change Research Institute Czech Academy of Sciences (CAS), Brno, Czechia
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Pranav Pankaj Sahu
- Laboratory of Ecological Plant Physiology, Global Change Research Institute Czech Academy of Sciences (CAS), Brno, Czechia
| | - Hana Findurová
- Laboratory of Ecological Plant Physiology, Global Change Research Institute Czech Academy of Sciences (CAS), Brno, Czechia
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Petr Holub
- Laboratory of Ecological Plant Physiology, Global Change Research Institute Czech Academy of Sciences (CAS), Brno, Czechia
| | - Otmar Urban
- Laboratory of Ecological Plant Physiology, Global Change Research Institute Czech Academy of Sciences (CAS), Brno, Czechia
| | - Karel Klem
- Laboratory of Ecological Plant Physiology, Global Change Research Institute Czech Academy of Sciences (CAS), Brno, Czechia
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
5
|
Shobade SO, Zabotina OA, Nilsen-Hamilton M. Plant root associated chitinases: structures and functions. FRONTIERS IN PLANT SCIENCE 2024; 15:1344142. [PMID: 38362446 PMCID: PMC10867124 DOI: 10.3389/fpls.2024.1344142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024]
Abstract
Chitinases degrade chitin, a linear homopolymer of β-1,4-linked N-acetyl-D-glucosamine (GlcNAc) residues found in the cell walls of fungi and the exoskeletons of arthropods. They are secreted by the roots into the rhizosphere, a complex and dynamic environment where intense nutrient exchange occurs between plants and microbes. Here we modeled, expressed, purified, and characterized Zea mays and Oryza sativa root chitinases, and the chitinase of a symbiotic bacterium, Chitinophaga oryzae 1303 for their activities with chitin, di-, tri-, and tetra-saccharides and Aspergillus niger, with the goal of determining their role(s) in the rhizosphere and better understanding the molecular mechanisms underlying plant-microbe interactions. We show that Zea mays basic endochitinase (ZmChi19A) and Oryza sativa chitinase (OsChi19A) are from the GH19 chitinase family. The Chitinophaga oryzae 1303 chitinase (CspCh18A) belongs to the GH18 family. The three enzymes have similar apparent K M values of (20-40 µM) for the substrate 4-MU-GlcNAc3. They vary in their pH and temperature optima with OsChi19A activity optimal between pH 5-7 and 30-40°C while ZmChi19A and CspCh18A activities were optimal at pH 7-9 and 50-60°C. Modeling and site-directed mutation of ZmChi19A identified the catalytic cleft and the active residues E147 and E169 strategically positioned at ~8.6Å from each other in the folded protein. Cleavage of 4-MU-GlcNAc3 was unaffected by the absence of the CBD but diminished in the absence of the flexible C-terminal domain. However, unlike for the soluble substrate, the CBD and the newly identified flexible C-terminal domain were vital for inhibiting Aspergillus niger growth. The results are consistent with the involvement of the plant chitinases in defense against pathogens like fungi that have chitin exoskeletons. In summary, we have characterized the functional features and structural domains necessary for the activity of two plant root chitinases that are believed to be involved in plant defense and a bacterial chitinase that, along with the plant chitinases, may participate in nutrient recycling in the rhizosphere.
Collapse
Affiliation(s)
- Samuel O. Shobade
- Ames National Laboratory, U. S. Department of Energy, Ames, IA, United States
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Olga A. Zabotina
- Ames National Laboratory, U. S. Department of Energy, Ames, IA, United States
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Marit Nilsen-Hamilton
- Ames National Laboratory, U. S. Department of Energy, Ames, IA, United States
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
6
|
Bellasio C. The slope of assimilation rate against stomatal conductance should not be used as a measure of water use efficiency or stomatal control over assimilation. PHOTOSYNTHESIS RESEARCH 2023; 158:195-199. [PMID: 37902923 PMCID: PMC10695868 DOI: 10.1007/s11120-023-01054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/28/2023] [Indexed: 11/01/2023]
Abstract
Quantifying water use efficiency, and the impact of stomata on CO2 uptake are pivotal in physiology and efforts to improve crop yields. Although tempting, relying on regression slopes from assimilation-stomatal conductance plots to estimate water use efficiency or stomatal control over assimilation is erroneous. Through numerical simulations, I substantiate this assertion. I propose the term 'instantaneous transpiration efficiency' for the assimilation-to-transpiration ratio to avoid confusion with 'intrinsic water use efficiency' which refers to the assimilation-to-stomatal conductance ratio, and recommend to compute both metrics for each gas exchange data point.
Collapse
Affiliation(s)
- Chandra Bellasio
- Biology of Plants Under Mediterranean Conditions, Department of Biology, University of the Balearic Islands, 07122, Palma, Illes Balears, Spain.
- Laboratory of Theoretical and Applied Crop Ecophysiology, School of Biology & Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|