1
|
Zhang R, Khare P, Banerjee P, Ivan C, Schneider S, Barbaglio F, Clise-Dwyer K, Jensen VB, Thompson E, Mendoza M, Chiorazzi N, Chen SS, Yan XJJ, Jain N, Ghia P, Caligaris-Cappio F, Mendonsa R, Kasimsetty S, Swoboda R, Bayraktar R, Wierda W, Gandhi V, Calin GA, Keating MJ, Bertilaccio MTS. The DLEU2/miR-15a/miR-16-1 cluster shapes the immune microenvironment of chronic lymphocytic leukemia. Blood Cancer J 2024; 14:168. [PMID: 39438453 PMCID: PMC11496494 DOI: 10.1038/s41408-024-01142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
The development and progression of chronic lymphocytic leukemia (CLL) depend on genetic abnormalities and on the immunosuppressive microenvironment. We have explored the possibility that genetic drivers might be responsible for the immune cell dysregulation that shapes the protumor microenvironment. We performed a transcriptome analysis of coding and non-coding RNAs (ncRNAs) during leukemia progression in the Rag2-/-γc-/- MEC1-based xenotransplantation model. The DLEU2/miR-16 locus was found downmodulated in monocytes/macrophages of leukemic mice. To validate the role of this cluster in the tumor immune microenvironment, we generated a mouse model that simultaneously mimics the overexpression of hTCL1 and the germline deletion of the minimal deleted region (MDR) encoding the DLEU2/miR-15a/miR-16-1 cluster. This model provides an innovative and faster CLL system where monocyte differentiation and macrophage polarization are exacerbated, and T-cells are dysfunctional. MDR deletion inversely correlates with the levels of predicted target proteins including BCL2 and PD1/PD-L1 on murine CLL cells and immune cells. The inverse correlation of miR-15a/miR-16-1 with target proteins has been confirmed on patient-derived immune cells. Forced expression of miR-16-1 interferes with monocyte differentiation into tumor-associated macrophages, indicating that selected ncRNAs drive the protumor phenotype of non-malignant immune cells.
Collapse
MESH Headings
- MicroRNAs/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Animals
- Mice
- Tumor Microenvironment/immunology
- Humans
- RNA, Long Noncoding/genetics
- Tumor Suppressor Proteins/genetics
- Multigene Family
Collapse
Affiliation(s)
- Ronghua Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyanka Khare
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyanka Banerjee
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Caris Life Sciences, Irving, TX, USA
| | - Sarah Schneider
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Federica Barbaglio
- Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Karen Clise-Dwyer
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vanessa Behrana Jensen
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erika Thompson
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marisela Mendoza
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, USA
- Departments of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, USA
- Northwell Health Cancer Institute, Lake Success, NY, USA
| | - Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Xiao-Jie Joy Yan
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paolo Ghia
- B cell neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Federico Caligaris-Cappio
- Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- AIRC (Associazione Italiana per la Ricerca sul Cancro), 20123, Milan, Italy
| | | | | | | | - Recep Bayraktar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
2
|
van Niekerk G, Coelmont L, Alpizar YA, Kelchtermans L, Broeckhoven E, Dallmeier K. GLP-1R agonist therapy and vaccine response: Neglected implications. Cytokine Growth Factor Rev 2024; 78:14-24. [PMID: 39025754 DOI: 10.1016/j.cytogfr.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs), such as semaglutide (Ozempic®), have emerged as effective treatments for diabetes and weight management. However, recent evidence indicates that GLP-1R signalling influences various tissues, including the immune system. Notably, GLP-1 has a short half-life (< 5 minutes) and exists in the picomolar range, while GLP-1RAs like semaglutide have extended half-lives of several days and are administered at supraphysiological doses. This review explores the potential impact of these medications on vaccine efficacy. We examine evidence suggesting that GLP-1RAs may attenuate vaccine responses through direct effects on immune cells and modulation of other tissues. Additionally, we discuss how GLP-1R signalling may create a tolerogenic environment, potentially reducing vaccine immunogenicity. Given the widespread use of GLP-1RAs, it is crucial to understand their impact on immune responses and the translational implications for vaccination outcomes.
Collapse
Affiliation(s)
- Gustav van Niekerk
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lara Kelchtermans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Elias Broeckhoven
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Virology, Antiviral Drug and Vaccine Research, Laboratory of Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium.
| |
Collapse
|
3
|
Liao R, Hsu JY, Aboelella NS, McKeever JA, Thomas-Toth AT, Koh AS, LaBelle JL. Venetoclax Induces BCL-2-Dependent Treg to TH17 Plasticity to Enhance the Antitumor Efficacy of Anti-PD-1 Checkpoint Blockade. Cancer Immunol Res 2024; 12:1074-1089. [PMID: 38810242 PMCID: PMC11293981 DOI: 10.1158/2326-6066.cir-23-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 03/01/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The specific BCL-2 small molecule inhibitor venetoclax induces apoptosis in a wide range of malignancies, which has led to rapid clinical expansion in its use alone and in combination with chemotherapy and immune-based therapies against a myriad of cancer types. While lymphocytes, and T cells in particular, rely heavily on BCL-2 for survival and function, the effects of small molecule blockade of the BCL-2 family on surviving immune cells is not fully understood. We aimed to better understand the effect of systemic treatment with venetoclax on regulatory T cells (Treg), which are relatively resistant to cell death induced by specific drugging of BCL-2 compared to other T cells. We found that BCL-2 blockade altered Treg transcriptional profiles and mediated Treg plasticity toward a TH17-like Treg phenotype, resulting in increased IL17A production in lymphoid organs and within the tumor microenvironment. Aligned with previously described augmented antitumor effects observed when combining venetoclax with anti-PD-1 checkpoint inhibition, we also demonstrated that Treg-specific genetic BCL-2 knockout combined with anti-PD-1 induced tumor regression and conferred overlapping genetic changes with venetoclax-treated Tregs. As long-term combination therapies using venetoclax gain more traction in the clinic, an improved understanding of the immune-modulatory effects caused by venetoclax may allow expansion of its use against malignancies and immune-related diseases.
Collapse
Affiliation(s)
- Rosy Liao
- Department of Pediatrics, Section of Hematology and Oncology, University of Chicago, Chicago, IL USA
| | - Jocelyn Y. Hsu
- Department of Pediatrics, Section of Hematology and Oncology, University of Chicago, Chicago, IL USA
| | - Nada S. Aboelella
- Department of Pediatrics, Section of Hematology and Oncology, University of Chicago, Chicago, IL USA
| | | | - Anika T. Thomas-Toth
- Department of Pediatrics, Section of Hematology and Oncology, University of Chicago, Chicago, IL USA
| | - Andrew S. Koh
- Department of Pathology, University of Chicago, Chicago, IL USA
| | - James L. LaBelle
- Department of Pediatrics, Section of Hematology and Oncology, University of Chicago, Chicago, IL USA
| |
Collapse
|
4
|
Shen J, Si J, Wang Q, Mao Y, Gao W, Duan S. Current status and future perspectives in dysregulated miR-492. Gene 2023; 877:147518. [PMID: 37295631 DOI: 10.1016/j.gene.2023.147518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded small non-coding RNAs with a length of 21-23 nucleotides. One such miRNA, miR-492, is located in the KRT19 pseudogene 2 (KRT19P2) of chromosome 12q22 and can also be generated from the processing of the KRT19 transcript at chromosome 17q21. Aberrant expression of miR-492 has been observed in cancers of various physiological systems. miR-492 has been shown to target at least 11 protein-coding genes, which are involved in the regulation of cellular behaviors such as growth, cell cycle, proliferation, epithelial- mesenchymal transition (EMT), invasion and migration. The expression of miR-492 can be regulated by both endogenous and exogenous factors. Furthermore, miR-492 is involved in the regulation of several signaling pathways including the PI3K/AKT signaling pathway, WNT/β-catenin signaling pathway, and MAPK signaling pathway. High expression of miR-492 has been closely associated with shorter overall survival in patients with gastric cancer, ovarian cancer, oropharyngeal carcinoma, colorectal cancer, and hepatocellular carcinoma. This study systematically summarizes the related research findings on miR-492, providing potential insights for future investigations.
Collapse
Affiliation(s)
- Jinze Shen
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Jiahua Si
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Qurui Wang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Yunan Mao
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Wei Gao
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Scanlan A, Zhang Z, Koneru R, Reece M, Gavegnano C, Anderson AM, Tyor W. A Rationale and Approach to the Development of Specific Treatments for HIV Associated Neurocognitive Impairment. Microorganisms 2022; 10:2244. [PMID: 36422314 PMCID: PMC9699382 DOI: 10.3390/microorganisms10112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 05/22/2024] Open
Abstract
Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.
Collapse
Affiliation(s)
- Aaron Scanlan
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhan Zhang
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rajeth Koneru
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Monica Reece
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Christina Gavegnano
- Department of Pathology, Division of Experimental Pathology, Emory University, Atlanta, GA 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | - Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Tyor
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Wang X, Bajpai AK, Gu Q, Centeno A, Starlard-Davenport A, Prins P, Xu F, Lu L. A systems genetics approach delineates the role of Bcl2 in leukemia pathogenesis. Leuk Res 2022; 114:106804. [PMID: 35182904 PMCID: PMC9272521 DOI: 10.1016/j.leukres.2022.106804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 02/06/2022] [Indexed: 01/11/2023]
Abstract
Leukemia is a group of malignancies of the blood forming tissues, and is characterized by the uncontrolled proliferation of blood cells. In the United States, it accounts for approximately 3.5% and 4% of all cancer-related incidences and mortalities, respectively. The current study aimed to explore the role of Bcl2 and associated genes in leukemia pathogenesis using a systems genetics approach. The transcriptome data from BXD Recombinant Inbred (RI) mice was analyzed to identify the expression of Bcl2 in myeloid cells. eQTL mapping was performed to select the potential chromosomal region and subsequently identify the candidate gene modulating the expression of Bcl2. Furthermore, gene enrichment and protein-protein interaction (PPI) analyses of the Bcl2-coexpressed genes were performed to demonstrate the role of Bcl2 in leukemia pathogenesis. The Bcl2-coexpressed genes were found to be enriched in various hematopoietic system related functions, and multiple pathways related to signaling, immune response, and cancer. The PPI network analysis demonstrated direct interaction of hematopoietic function related genes, such as Bag3, Bak1, Bcl2l11, Bmf, Mapk9, Myc, Ppp2r5c, and Ppp3ca with Bcl2. The eQTL mapping identified a 4.5 Mb genomic region on chromosome 11, potentially regulating the expression of Bcl2. A multi-criteria filtering process identified Top2a, among the genes located in the mapped locus, as the best candidate upstream regulator for Bcl2 expression variation. Hence, the current study provides better insights into the role of Bcl2 in leukemia pathogenesis and demonstrates the significance of our approach in gaining new knowledge on leukemia. Furthermore, our findings from the PPI network analysis and eQTL mapping provide supporting evidence of leukemia-associated genes, which can be further explored for their functional importance in leukemia. DATA AVAILABILITY: The myeloid cell transcriptomic data of the BXD mice used in this study can be accessed through our GeneNetwork (http://www.genenetwork.org) with the accession number of GN144.
Collapse
Affiliation(s)
- Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qingqing Gu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA,Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China
| | - Arthur Centeno
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pjotr Prins
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fuyi Xu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China.
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
7
|
Liu L, Cheng X, Yang H, Lian S, Jiang Y, Liang J, Chen X, Mo S, Shi Y, Zhao S, Li J, Jiang R, Yang DH, Wu Y. BCL-2 expression promotes immunosuppression in chronic lymphocytic leukemia by enhancing regulatory T cell differentiation and cytotoxic T cell exhaustion. Mol Cancer 2022; 21:59. [PMID: 35193595 PMCID: PMC8862474 DOI: 10.1186/s12943-022-01516-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) results in increased susceptibility to infections. T cell dysfunction is not associated with CLL in all patients; therefore, it is important to identify CLL patients with T cell defects. The role of B-cell lymphoma-2 (BCL-2) in CLL has been explored; however, few studies have examined its role in T cells in CLL patients. Herein, we have investigated the regulatory role of BCL-2 in T cells in the CLL tumor microenvironment. METHODS The expression of BCL-2 in T cells was evaluated using flow cytometry. The regulatory roles of BCL-2 were investigated using single-cell RNA sequencing (scRNA-seq) and verified using multi-parameter flow cytometry on CD4 and CD8 T cells. The clinical features of BCL-2 expression in T cells in CLL were also explored. RESULTS We found a significant increase in BCL-2 expression in the T cells of CLL patients (n = 266). Single cell RNA sequencing (scRNA-seq) indicated that BCL-2+CD4+ T cells had the gene signature of increased regulatory T cells (Treg); BCL-2+CD8+ T cells showed the gene signature of exhausted cytotoxic T lymphocytes (CTL); and increased expression of BCL-2 was associated with T cell activation and cellular adhesion. The results from scRNA-seq were verified in peripheral T cells from 70 patients with CLL, wherein BCL-2+CD4+ T cells were enriched with Tregs and had higher expression of interleukin-10 and transforming growth factor-β than BCL-2-CD4+ T cells. BCL-2 expression in CD8+T cells was associated with exhausted cells (PD-1+Tim-3+) and weak expression of granzyme B and perforin. T cell-associated cytokine profiling revealed a negative association between BCL-2+ T cells and T cell activation. Decreased frequencies and recovery functions of BCL-2+T cells were observed in CLL patients in complete remission after treatment with venetoclax. CONCLUSION BCL-2 expression in the T cells of CLL patients is associated with immunosuppression via promotion of Treg abundance and CTL exhaustion.
Collapse
Affiliation(s)
- Lu Liu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Xianfeng Cheng
- Department of Clinical laboratory, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Hui Yang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Senlin Lian
- Jiangsu Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.,State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuegen Jiang
- Department of Clinical laboratory, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Jinhua Liang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Xiao Chen
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Suo Mo
- Department of Clinical laboratory, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Yu Shi
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Sishu Zhao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Jianyong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Runqiu Jiang
- Jiangsu Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China. .,State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China. .,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Yujie Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China. .,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
8
|
Ludwig LM, Hawley KM, Banks DB, Thomas-Toth AT, Blazar BR, McNerney ME, Leverson JD, LaBelle JL. Venetoclax imparts distinct cell death sensitivity and adaptivity patterns in T cells. Cell Death Dis 2021; 12:1005. [PMID: 34707089 PMCID: PMC8551340 DOI: 10.1038/s41419-021-04285-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022]
Abstract
BH3 mimetics are increasingly used as anti-cancer therapeutics either alone or in conjunction with other chemotherapies. However, mounting evidence has also demonstrated that BH3 mimetics modulate varied amounts of apoptotic signaling in healthy immune populations. In order to maximize their clinical potential, it will be essential to understand how BH3 mimetics affect discrete immune populations and to determine how BH3 mimetic pressure causes immune system adaptation. Here we focus on the BCL-2 specific inhibitor venetoclax (ABT-199) and its effects following short-term and long-term BCL-2 blockade on T cell subsets. Seven day "short-term" ex vivo and in vivo BCL-2 inhibition led to divergent cell death sensitivity patterns in CD8+ T cells, CD4+ T cells, and Tregs resulting in shifting of global T cell populations towards a more memory T cell state with increased expression of BCL-2, BCL-XL, and MCL-1. However, twenty-eight day "long-term" BCL-2 blockade following T cell-depleted bone marrow transplantation did not lead to changes in the global T cell landscape. Despite the lack of changes in T cell proportions, animals treated with venetoclax developed CD8+ and CD4+ T cells with high levels of BCL-2 and were more resistant to apoptotic stimuli following expansion post-transplant. Further, we demonstrate through RNA profiling that T cells adapt while under BCL-2 blockade post-transplant and develop a more activated genotype. Taken together, these data emphasize the importance of evaluating how BH3 mimetics affect the immune system in different treatment modalities and disease contexts and suggest that venetoclax should be further explored as an immunomodulatory compound.
Collapse
Affiliation(s)
- Lindsey M. Ludwig
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - Katrina M. Hawley
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - David B. Banks
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Medical Scientist Training Program, University of Chicago, Chicago, IL USA
| | - Anika T. Thomas-Toth
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| | - Bruce R. Blazar
- grid.17635.360000000419368657Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN USA
| | - Megan E. McNerney
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA ,grid.170205.10000 0004 1936 7822Department of Pathology, University of Chicago, Chicago, IL USA
| | - Joel D. Leverson
- grid.431072.30000 0004 0572 4227AbbVie Inc., North Chicago, IL USA
| | - James L. LaBelle
- grid.170205.10000 0004 1936 7822Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL USA
| |
Collapse
|
9
|
Can the New and Old Drugs Exert an Immunomodulatory Effect in Acute Myeloid Leukemia? Cancers (Basel) 2021; 13:cancers13164121. [PMID: 34439275 PMCID: PMC8393879 DOI: 10.3390/cancers13164121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary The advent of novel immunotherapeutic strategies has revealed the importance of immune dysregulation and of a tolerogenic microenvironment for acute myeloid leukemia (AML) fitness. We reviewed the “off-target” effects on the immune system of different drugs used in the treatment of AML to explore the advantages of this unexpected interaction. Abstract Acute myeloid leukemia (AML) is considered an immune-suppressive neoplasm capable of evading immune surveillance through cellular and environmental players. Increasing knowledge of the immune system (IS) status at diagnosis seems to suggest ever more attention of the crosstalk between the leukemic clone and its immunologic counterpart. During the last years, the advent of novel immunotherapeutic strategies has revealed the importance of immune dysregulation and suppression for leukemia fitness. Considering all these premises, we reviewed the “off-target” effects on the IS of different drugs used in the treatment of AML, focusing on the main advantages of this interaction. The data reported support the idea that a successful therapeutic strategy should consider tailored approaches for performing leukemia eradication by both direct blasts killing and the engagement of the IS.
Collapse
|
10
|
Abiri A, Lavigne M, Rezaei M, Nikzad S, Zare P, Mergny JL, Rahimi HR. Unlocking G-Quadruplexes as Antiviral Targets. Pharmacol Rev 2021; 73:897-923. [PMID: 34045305 DOI: 10.1124/pharmrev.120.000230] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Guanine-rich DNA and RNA sequences can fold into noncanonical nucleic acid structures called G-quadruplexes (G4s). Since the discovery that these structures may act as scaffolds for the binding of specific ligands, G4s aroused the attention of a growing number of scientists. The versatile roles of G4 structures in viral replication, transcription, and translation suggest direct applications in therapy or diagnostics. G4-interacting molecules (proteins or small molecules) may also affect the balance between latent and lytic phases, and increasing evidence reveals that G4s are implicated in generally suppressing viral processes, such as replication, transcription, translation, or reverse transcription. In this review, we focus on the discovery of G4s in viruses and the role of G4 ligands in the antiviral drug discovery process. After assessing the role of viral G4s, we argue that host G4s participate in immune modulation, viral tumorigenesis, cellular pathways involved in virus maturation, and DNA integration of viral genomes, which can be potentially employed for antiviral therapeutics. Furthermore, we scrutinize the impediments and shortcomings in the process of studying G4 ligands and drug discovery. Finally, some unanswered questions regarding viral G4s are highlighted for prospective future projects. SIGNIFICANCE STATEMENT: G-quadruplexes (G4s) are noncanonical nucleic acid structures that have gained increasing recognition during the last few decades. First identified as relevant targets in oncology, their importance in virology is now increasingly clear. A number of G-quadruplex ligands are known: viral transcription and replication are the main targets of these ligands. Both viral and cellular G4s may be targeted; this review embraces the different aspects of G-quadruplexes in both host and viral contexts.
Collapse
Affiliation(s)
- Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (A.A., S.N.); Institut Pasteur, Department of Virology, UMR 3569 CNRS, Paris, France (M.L.); Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran (M.R.); Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland (P.Z.); Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland (P.Z.); Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau cedex, France (J.-L.M.); Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran (H.-R.R.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (H.-R.R.)
| | - Marc Lavigne
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (A.A., S.N.); Institut Pasteur, Department of Virology, UMR 3569 CNRS, Paris, France (M.L.); Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran (M.R.); Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland (P.Z.); Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland (P.Z.); Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau cedex, France (J.-L.M.); Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran (H.-R.R.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (H.-R.R.)
| | - Masoud Rezaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (A.A., S.N.); Institut Pasteur, Department of Virology, UMR 3569 CNRS, Paris, France (M.L.); Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran (M.R.); Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland (P.Z.); Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland (P.Z.); Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau cedex, France (J.-L.M.); Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran (H.-R.R.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (H.-R.R.)
| | - Sanaz Nikzad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (A.A., S.N.); Institut Pasteur, Department of Virology, UMR 3569 CNRS, Paris, France (M.L.); Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran (M.R.); Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland (P.Z.); Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland (P.Z.); Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau cedex, France (J.-L.M.); Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran (H.-R.R.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (H.-R.R.)
| | - Peyman Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (A.A., S.N.); Institut Pasteur, Department of Virology, UMR 3569 CNRS, Paris, France (M.L.); Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran (M.R.); Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland (P.Z.); Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland (P.Z.); Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau cedex, France (J.-L.M.); Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran (H.-R.R.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (H.-R.R.)
| | - Jean-Louis Mergny
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (A.A., S.N.); Institut Pasteur, Department of Virology, UMR 3569 CNRS, Paris, France (M.L.); Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran (M.R.); Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland (P.Z.); Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland (P.Z.); Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau cedex, France (J.-L.M.); Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran (H.-R.R.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (H.-R.R.)
| | - Hamid-Reza Rahimi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (A.A., S.N.); Institut Pasteur, Department of Virology, UMR 3569 CNRS, Paris, France (M.L.); Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran (M.R.); Dioscuri Center of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland (P.Z.); Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland (P.Z.); Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau cedex, France (J.-L.M.); Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran (H.-R.R.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran (H.-R.R.)
| |
Collapse
|
11
|
Loss of BIM in T cells results in BCL-2 family BH3-member compensation but incomplete cell death sensitivity normalization. Apoptosis 2021; 25:247-260. [PMID: 31993851 DOI: 10.1007/s10495-020-01593-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BIM is the master BH3-only BCL-2 family regulator of lymphocyte survival. To understand how long-term loss of BIM affects apoptotic resistance in T cells we studied animals with T cell-specific deletion of Bim. Unlike CD19CREBimfl/fl animals, LCKCREBimfl/fl mice have pronounced early lymphocytosis followed by normalization of lymphocyte counts over time. This normalization occurred in mature T cells, as thymocyte development and apoptotic sensitivity remained abnormal in LCKCREBimfl/fl mice. T cells from aged mice experienced normalization of their absolute cell numbers and responses against various apoptotic stimuli. mRNA expression levels of BCL-2 family proteins in CD4+ and CD8+ T cells from young and old mice revealed upregulation of several BH3-only proteins, including Puma, Noxa, and Bmf. Despite upregulation of various BH3 proteins, there were no differences in anti-apoptotic BCL-2 protein dependency in these cells. However, T cells had continued resistance to direct BIM BH3-induced mitochondrial depolarization. This study further highlights the importance of BIM in cell death maintenance in T cells and provides new insight into the dynamism underlying BH3-only regulation of T cell homeostasis versus induced cell death and suggests that CD4+ and CD8+ T cells compensate differently in response to loss of Bim.
Collapse
|
12
|
Ringelstein-Harlev S. Immune dysfunction complexity in chronic lymphocytic leukemia ‒ an issue to consider when designing novel therapeutic strategies. Leuk Lymphoma 2020; 61:2050-2058. [PMID: 32336174 DOI: 10.1080/10428194.2020.1755857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A complex interplay between chronic lymphocytic leukemia (CLL) cells and different constituents of the immune system generally results in immune tolerance. As targeted therapies are gaining a critical role in the therapeutic landscape of this disease, their impact on the already perturbed immune milieu needs to be considered. This review addresses the issues of basic immune dysfunction in CLL which is further complicated by the effects of a number of novel targeted therapies used for this malignancy. These new approaches may simultaneously facilitate both anti- and pro-cancer activity, potentially compromising the depth of response to therapy. Current evidence suggests that exploiting combination therapy could potentially overcome at least part of these deleterious effects, thereby prolonging response to treatment and helping to restore immune activity.
Collapse
Affiliation(s)
- Shimrit Ringelstein-Harlev
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
13
|
Impact of BH3-mimetics on Human and Mouse Blood Leukocytes: A Comparative Study. Sci Rep 2020; 10:222. [PMID: 31937836 PMCID: PMC6959258 DOI: 10.1038/s41598-019-57000-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/20/2019] [Indexed: 01/22/2023] Open
Abstract
BH3-mimetics are small molecule inhibitors that neutralize the function of anti-apoptotic BCL-2 family members. BH3-mimetics have recently gained a lot of popularity in oncology because of their success in cancer treatment. However, BH3-mimetics might have a broader clinical application. Here, we established an ex vivo flow cytometric assay allowing the comparison of the impact of BH3-mimetics (ABT-199, ABT-263, WEHI-539, and S63845) on leukocyte populations of both, healthy human subjects and C57BL/6 J wild type mice. BH3-mimetics were added to freshly drawn blood that was diluted 1/2 in cell medium, and BH3-mimetics-mediated impact on leukocyte count was assessed by flow cytometry. Our results demonstrate that responses towards 1μM of BH3-mimetics can be identical as well as considerably different in leukocytes of humans and mice. For instance, the inhibition of BCL-2 by ABT-199 caused cell death in all types of lymphocytes in mice but was exclusively specific for B cells in humans. Moreover, inhibition of BCL-XL by WEHI-539 affected solely mouse leukocytes while targeting MCL-1 by S63845 resulted in efficient induction of cell death in human neutrophils but not in their mouse counterparts. Our ex vivo assay enables initial identification of analogies and differences between human and mouse leukocytes in response towards BH3-mimetics.
Collapse
|
14
|
Tosello Boari J, Araujo Furlan CL, Fiocca Vernengo F, Rodriguez C, Ramello MC, Amezcua Vesely MC, Gorosito Serrán M, Nuñez NG, Richer W, Piaggio E, Montes CL, Gruppi A, Acosta Rodríguez EV. IL-17RA-Signaling Modulates CD8+ T Cell Survival and Exhaustion During Trypanosoma cruzi Infection. Front Immunol 2018; 9:2347. [PMID: 30364284 PMCID: PMC6193063 DOI: 10.3389/fimmu.2018.02347] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022] Open
Abstract
The IL-17 family contributes to host defense against many intracellular pathogens by mechanisms that are not fully understood. CD8+ T lymphocytes are key elements against intracellular microbes, and their survival and ability to mount cytotoxic responses are orchestrated by several cytokines. Here, we demonstrated that IL-17RA-signaling cytokines sustain pathogen-specific CD8+ T cell immunity. The absence of IL-17RA and IL-17A/F during Trypanosoma cruzi infection resulted in increased tissue parasitism and reduced frequency of parasite-specific CD8+ T cells. Impaired IL-17RA-signaling in vivo increased apoptosis of parasite-specific CD8+ T cells, while in vitro recombinant IL-17 down-regulated the pro-apoptotic protein BAD and promoted the survival of activated CD8+ T cells. Phenotypic, functional, and transcriptomic profiling showed that T. cruzi-specific CD8+ T cells derived from IL-17RA-deficient mice presented features of cell dysfunction. PD-L1 blockade partially restored the magnitude of CD8+ T cell responses and parasite control in these mice. Adoptive transfer experiments established that IL-17RA-signaling is intrinsically required for the proper maintenance of functional effector CD8+ T cells. Altogether, our results identify IL-17RA and IL-17A as critical factors for sustaining CD8+ T cell immunity to T. cruzi.
Collapse
Affiliation(s)
- Jimena Tosello Boari
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Cintia L. Araujo Furlan
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Constanza Rodriguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - María C. Ramello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - María C. Amezcua Vesely
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Melisa Gorosito Serrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Nicolás G. Nuñez
- SiRIC TransImm “Translational Immunotherapy Team,” Translational Research Department, Research Center, PSL Research University, INSERM U932, Institut Curie, Paris, France
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Wilfrid Richer
- SiRIC TransImm “Translational Immunotherapy Team,” Translational Research Department, Research Center, PSL Research University, INSERM U932, Institut Curie, Paris, France
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Eliane Piaggio
- SiRIC TransImm “Translational Immunotherapy Team,” Translational Research Department, Research Center, PSL Research University, INSERM U932, Institut Curie, Paris, France
- Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Carolina L. Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Eva V. Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| |
Collapse
|
15
|
Torrealba N, Rodriguez-Berriguete G, Fraile B, Olmedilla G, Martínez-Onsurbe P, Sánchez-Chapado M, Paniagua R, Royuela M. PI3K pathway and Bcl-2 family. Clinicopathological features in prostate cancer. Aging Male 2018; 21:211-222. [PMID: 29316844 DOI: 10.1080/13685538.2018.1424130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathways and Bcl-2 family play a central role in prostate cancer (PC). The aim was to determine influence in the biochemical progression in PC. To evaluate the association between clinic pathological and immunohistochemical variables, Spearman's test was performed. Log-rank test and Kaplan-Meier curves were used for survival comparisons. To explore the correlation of the studied immunohistochemical parameters and the established prognostic variables with biochemical progression, univariate and multivariate Cox proportional Hazard regression analyses were performed. Spearman analysis showed correlation between stroma expression and tumor expression of PI3K with biochemical progression (p = .009, p = .004), respectively, and tumor immunohistochemical score with biochemical progression (p = .051). In the multivariate Cox regression model, only PI3K was retained as independent predictors of biochemical progression. In stroma expression, PI3K is (HR 0.172, 95% CI 0.065-0.452, p = .000); tumor expression, PI3K is (HR 0.087, 95% CI 0.026-0.293, p = .000), and tumor immunohistochemical score (HR 0.382, 95% CI 0.209-0.697 p = .002). Our results suggest a role for prostatic expression of PI3K was prognostic markers for PC. PI3K/AKT/mTOR and Bcl-2 family are becoming an important therapeutic target and predictive biomarkers of onset and progression of PC.
Collapse
Affiliation(s)
- Norelia Torrealba
- a Department of Biomedicine and Biotechnology , University of Alcalá , Alcalá de Henares , Spain
| | | | - Benito Fraile
- a Department of Biomedicine and Biotechnology , University of Alcalá , Alcalá de Henares , Spain
| | - Gabriel Olmedilla
- b Department of Pathology , University of Alcalá , Alcalá de Henares , Spain
| | | | | | - Ricardo Paniagua
- a Department of Biomedicine and Biotechnology , University of Alcalá , Alcalá de Henares , Spain
| | - Mar Royuela
- a Department of Biomedicine and Biotechnology , University of Alcalá , Alcalá de Henares , Spain
| |
Collapse
|
16
|
Chokeshaiusaha K, Sananmuang T, Puthier D, Nguyen C. An innovative approach to predict immune-associated genes mutually targeted by cow and human milk microRNAs expression profiles. Vet World 2018; 11:1203-1209. [PMID: 30410222 PMCID: PMC6200572 DOI: 10.14202/vetworld.2018.1203-1209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Aim: Milk is rich in miRNAs - the endogenous small non-coding RNA responsible for gene post-transcriptional silencing. Milk miRNAs were previously evidenced to affect consumer’s immune response. While most studies relied on a few well-characterized milk miRNAs to relate their immunoregulatory roles on target genes among mammals, this study introduced a procedure to predict the target genes based on overall milk miRNA expression profiles - the miRNome data of cow and human. Materials and Methods: Cow and human milk miRNome expression datasets of cow and human milk lipids at 2, 4, and 6 months of lactation periods were preprocessed and predicted for their target genes using TargetScanHuman. Enrichment analysis was performed using target genes to extract the immune-associated gene ontology (GO) terms shared between the two species. The genes within these terms with more than 50 different miRNAs of each species targeting were selected and reviewed for their immunological functions. Results: A total of 146 and 129 miRNAs were identified in cow and human milk with several miRNAs reproduced from other previous reports. Enrichment analysis revealed nine immune-related GO terms shared between cow and human (adjusted p≤0.01). There were 14 genes related to these terms with more than 50 miRNA genes of each species targeting them. These genes were evidenced for their major roles in lymphocyte stimulation and differentiation. Conclusion: A novel procedure to determine mutual immune-associated genes targeted by milk miRNAs was demonstrated using cow and human milk miRNome data. As far as we know, this was the 1st time that milk miRNA target genes had been identified based on such cross-species approach. Hopefully, the introduced strategy should hereby facilitate a variety of cross-species miRNA studies in the future.
Collapse
Affiliation(s)
- Kaj Chokeshaiusaha
- Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand
| | - Thanida Sananmuang
- Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand
| | - Denis Puthier
- Aix-Marseille Université, INSERM UMR 1090, TAGC, Marseille, France
| | - Catherine Nguyen
- Aix-Marseille Université, INSERM UMR 1090, TAGC, Marseille, France
| |
Collapse
|
17
|
Memory responses of natural killer cells. Semin Immunol 2017; 31:11-19. [PMID: 28863960 DOI: 10.1016/j.smim.2017.08.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells have traditionally been classified as a cellular component of the innate immune system, given their ability to rapidly produce effector cytokines and kill infected or transformed cells without prior exposure. More recently, NK cells have been shown to possess features of adaptive immunity such as clonal expansion, longevity, and robust recall responses. NK cell memory can be broadly divided into two categories: antigen-specific and antigen-independent. In the first case, exposure to certain viral or hapten stimuli endows NK cells with antigen-specific immunological memory, similar to T and B cells. In the second case, exposure of NK cells to specific cytokine milieus can imprint long-lasting changes on effector functions, resulting in antigen-independent memory-like NK cells. In this review, we discuss the various conditions that promote generation of these two categories of memory NK cells, and the mechanistic requirements underlying these processes.
Collapse
|
18
|
Morris G, Walder K, Carvalho AF, Tye SJ, Lucas K, Berk M, Maes M. The role of hypernitrosylation in the pathogenesis and pathophysiology of neuroprogressive diseases. Neurosci Biobehav Rev 2017; 84:453-469. [PMID: 28789902 DOI: 10.1016/j.neubiorev.2017.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/02/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
There is a wealth of data indicating that de novo protein S-nitrosylation in general and protein transnitrosylation in particular mediates the bulk of nitric oxide signalling. These processes enable redox sensing and facilitate homeostatic regulation of redox dependent protein signalling, function, stability and trafficking. Increased S-nitrosylation in an environment of increasing oxidative and nitrosative stress (O&NS) is initially a protective mechanism aimed at maintaining protein structure and function. When O&NS becomes severe, mechanisms governing denitrosylation and transnitrosylation break down leading to the pathological state referred to as hypernitrosylation (HN). Such a state has been implicated in the pathogenesis and pathophysiology of several neuropsychiatric and neurodegenerative diseases and we investigate its potential role in the development and maintenance of neuroprogressive disorders. In this paper, we propose a model whereby the hypernitrosylation of a range of functional proteins and enzymes lead to changes in activity which conspire to produce at least some of the core abnormalities contributing to the development and maintenance of pathology in these illnesses.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, United Kingdom
| | - Ken Walder
- Deakin University, The Centre for Molecular and Medical Research, School of Medicine, P.O. Box 291, Geelong, 3220, Australia
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, 60430-040, Fortaleza, CE, Brazil
| | - Susannah J Tye
- Deakin University, The Centre for Molecular and Medical Research, School of Medicine, P.O. Box 291, Geelong, 3220, Australia; Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, 60430-040, Fortaleza, CE, Brazil; Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia.
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
19
|
Datta P, Webb LMC, Avdo I, Pascall J, Butcher GW. Survival of mature T cells in the periphery is intrinsically dependent on GIMAP1 in mice. Eur J Immunol 2016; 47:84-93. [PMID: 27792288 PMCID: PMC5244661 DOI: 10.1002/eji.201646599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/08/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022]
Abstract
An effective immune system depends upon the survival of mature T cells in the periphery. Members of the GIMAP family of GTPases have been proposed to regulate this homeostasis, supported by the paucity of peripheral T cells in rodents deficient for either GIMAP1 or GIMAP5. It is unclear whether this lack of T cells is a consequence of an ontological defect, causing the thymus to generate and export T cells incapable of surviving in the periphery, or whether (alternatively or additionally) mature T cells intrinsically require GIMAP1 for survival. Using the ERT2 Cre+ transgene, we conditionally deleted Gimap1 in C57BL/6 mice and demonstrate that GIMAP1 is intrinsically required for the survival of mature T cells in the periphery. We show that, in contrast to GIMAP5, this requirement is independent of the T-cells' activation status. We investigated the nature of the survival defect in GIMAP1-deficient CD4+ T cells and show that the death occurring after GIMAP1 ablation is accompanied by mitochondrial depolarization and activation of the extrinsic apoptotic pathway. This study shows that GIMAP1 is critical for maintaining the peripheral T-cell pool in mice and offers a potent target for the treatment of T-cell-mediated diseases.
Collapse
Affiliation(s)
- Preeta Datta
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Louise M C Webb
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Inxhina Avdo
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - John Pascall
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
20
|
Zhong S, Li YG, Ji DF, Lin TB, Lv ZQ. Protocatechualdehyde Induces S-Phase Arrest and Apoptosis by Stimulating the p27(KIP1)-Cyclin A/D1-CDK2 and Mitochondrial Apoptotic Pathways in HT-29 Cells. Molecules 2016; 21:molecules21070934. [PMID: 27447597 PMCID: PMC6274009 DOI: 10.3390/molecules21070934] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 11/26/2022] Open
Abstract
Protocatechualdehyde (PCA) extracted from Phellinus gilvus exhibits anti-cancer activity in human colorectal carcinoma cells (HT-29). However, the underlying mechanisms remain poorly understood. We performed an in vitro study involving MTT, flow cytometry, RT-PCR, and western blot analyses to investigate the effects of PCA treatment on cell proliferation, cell cycle distribution, apoptosis, and expression of several cell cycle-related genes in HT-29 cells. The treatment enhanced S-phase cell cycle and apoptosis in HT-29 cells in a dose-dependent manner. Western blot results showed that PCA treatment decreased the expression levels of cyclin A, cyclin D1, and p27KIP1 but increased those of cyclin-dependent kinase 2 (CDK2) in HT-29 cells. Furthermore, the expression levels of B-cell lymphoma/leukemia-2 (Bcl-2) and B-cell lymphoma/leukemia-xL (Bcl-xL) were down-regulated, whereas the levels of BH3-interacting domain death agonist (Bid), Bcl-2 homologous antagonist/killer (Bak), and cytosolic cytochrome c were significantly upregulated. Thus, the enzymes caspases-9, -3, -8, and -6 were found to be activated in HT-29 cells with PCA treatment. These results indicate that PCA-induced S-phase cell cycle arrest and apoptosis involve p27KIP1-mediated activation of the cyclin-A/D1-Cdk2 signaling pathway and the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Shi Zhong
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China.
| | - You-Gui Li
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China.
| | - Dong-Feng Ji
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China.
| | - Tian-Bao Lin
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China.
| | - Zhi-Qiang Lv
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China.
| |
Collapse
|
21
|
Aboalhaija NH, Zihlif MA, Taha MO. Discovery of new selective cytotoxic agents against Bcl-2 expressing cancer cells using ligand-based modeling. Chem Biol Interact 2016; 250:12-26. [PMID: 26954606 DOI: 10.1016/j.cbi.2016.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
|
22
|
Onel B, Carver M, Wu G, Timonina D, Kalarn S, Larriva M, Yang D. A New G-Quadruplex with Hairpin Loop Immediately Upstream of the Human BCL2 P1 Promoter Modulates Transcription. J Am Chem Soc 2016; 138:2563-70. [PMID: 26841249 DOI: 10.1021/jacs.5b08596] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The abnormal overexpression of the BCL2 gene is associated with many human tumors. We found a new 28-mer G-quadruplex-forming sequence, P1G4, immediately upstream of the human BCL2 gene P1 promoter. The P1G4 is shown to be a transcription repressor using a promoter-driven luciferase assay; its inhibitory effect can be markedly enhanced by the G-quadruplex-interactive compound TMPyP4. G-quadruplex can readily form in the P1G4 sequence under physiological salt condition as shown by DMS footprinting. P1G4 and previously identified Pu39 G-quadruplexes appear to form independently in adjacent regions in the BCL2 P1 promoter. In the extended BCL2 P1 promoter region containing both Pu39 and P1G4, P1G4 appears to play a more dominant role in repressing the transcriptional activity. Using NMR spectroscopy, the P1G4 G-quadruplex appears to be a novel dynamic equilibrium of two parallel structures, one regular with two 1-nt loops and a 12-nt middle loop and another broken-strand with three 1-nt loops and a 11-nt middle loop; both structures adopt a novel hairpin (stem-loop duplex) conformation in the long loop. The dynamic equilibrium of two closely related structures and the unique hairpin loop conformation are specific to the P1G4 sequence and distinguish the P1G4 quadruplex from other parallel structures. The presence of P1G4 and Pu39 in adjacent regions of the BCL2 P1 promoter suggests a mechanism for precise regulation of BCL2 gene transcription. The unique P1G4 G-quadruplex may provide a specific target for small molecules to modulate BCL2 gene transcription.
Collapse
Affiliation(s)
| | - Megan Carver
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , 1703 E. Mabel St, Tucson, Arizona 85721, United States
| | - Guanhui Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , 1703 E. Mabel St, Tucson, Arizona 85721, United States
| | | | | | - Marti Larriva
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , 1703 E. Mabel St, Tucson, Arizona 85721, United States
| | - Danzhou Yang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , 1703 E. Mabel St, Tucson, Arizona 85721, United States
| |
Collapse
|
23
|
Ludwig LM, Nassin ML, Hadji A, LaBelle JL. Killing Two Cells with One Stone: Pharmacologic BCL-2 Family Targeting for Cancer Cell Death and Immune Modulation. Front Pediatr 2016; 4:135. [PMID: 28066751 PMCID: PMC5174130 DOI: 10.3389/fped.2016.00135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022] Open
Abstract
A crucial component of regulating organismal homeostasis is maintaining proper cell number and eliminating damaged or potentially malignant cells. Apoptosis, or programed cell death, is the mechanism responsible for this equilibrium. The intrinsic apoptotic pathway is also especially important in the development and maintenance of the immune system. Apoptosis is essential for proper positive and negative selection during B- and T-cell development and for efficient contraction of expanded lymphocytes following an immune response. Tight regulation of the apoptotic pathway is critical, as excessive cell death can lead to immunodeficiency while apoptotic resistance can lead to aberrant lymphoproliferation and autoimmune disease. Dysregulation of cell death is implicated in a wide range of hematological malignancies, and targeting various components of the apoptotic machinery in these cases is an attractive chemotherapeutic strategy. A wide array of compounds has been developed with the purpose of reactivating the intrinsic apoptotic pathway. These compounds, termed BH3 mimetics are garnering considerable attention as they gain greater clinical oncologic significance. As their use expands, it will be imperative to understand the effects these compounds have on immune homeostasis. Uncovering their potential immunomodulatory activity may allow for administration of BH3 mimetics for direct tumor cell killing as well as novel therapies for a wide range of immune-based directives. This review will summarize the major proteins involved in the intrinsic apoptotic pathway and define their roles in normal immune development and disease. Clinical and preclinical BH3 mimetics are described within the context of what is currently known about their ability to affect immune function. Prospects for future antitumor immune amplification and immune modulation are then proposed.
Collapse
Affiliation(s)
- Lindsey M Ludwig
- Section of Hematology, Oncology, Stem Cell Transplantation, Department of Pediatrics, University of Chicago, Comer Children's Hospital, Chicago, IL, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| | - Michele L Nassin
- Section of Hematology, Oncology, Stem Cell Transplantation, Department of Pediatrics, University of Chicago, Comer Children's Hospital , Chicago, IL , USA
| | - Abbas Hadji
- Section of Hematology, Oncology, Stem Cell Transplantation, Department of Pediatrics, University of Chicago, Comer Children's Hospital , Chicago, IL , USA
| | - James L LaBelle
- Section of Hematology, Oncology, Stem Cell Transplantation, Department of Pediatrics, University of Chicago, Comer Children's Hospital, Chicago, IL, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Simonyan L, Renault TT, da Costa Novais MJ, Sousa MJ, Côrte-Real M, Camougrand N, Gonzalez C, Manon S. Regulation of Bax/mitochondria interaction by AKT. FEBS Lett 2015; 590:13-21. [DOI: 10.1002/1873-3468.12030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Stéphen Manon
- CNRS; Université de Bordeaux, UMR5095; Bordeaux France
| |
Collapse
|
25
|
Chaurasia MK, Palanisamy R, Harikrishnan R, Arasu MV, Al-Dhabi NA, Arockiaraj J. Molecular profiles and pathogen-induced transcriptional responses of prawn B cell lymphoma-2 related ovarian killer protein (BOK). FISH & SHELLFISH IMMUNOLOGY 2015; 45:598-607. [PMID: 25982403 DOI: 10.1016/j.fsi.2015.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
In this study, we have reported a molecular characterization of the first B cell lymphoma-2 (BCL-2) related ovarian killer protein (BOK) from freshwater prawn Macrobrachium rosenbergii (Mr). BOK is a novel pro-apoptotic protein of the BCL-2 family that entails in mediating apoptosis to remove cancer cells. A cDNA sequence of MrBOK was identified from the prawn cDNA library and its full length was obtained by internal sequencing. The coding region of MrBOK yields a polypeptide of 291 amino acids. The analysis revealed that MrBOK contains a transmembrane helix at V(261)-L(283) and a putative BCL-2 family domain at V(144)-W(245). MrBOK also possessed four putative BCL-2 homology domains including BH1, BH2, BH3 and weak BH4. The BH3 contains 21 binding sites and among them five residues are highly conserved with the aligned BOK proteins. The homology analysis showed that MrBOK shared maximum similarity with the Caligus rogercresseyi BOK A. The topology of the phylogenetic tree was classified into nine sister groups which includes BOK, BAK, BAX, BAD, BCL-2, BCL-XL, NR13 and MCL members. The BOK protein group further sub-grouped into vertebrate and invertebrate BOK, wherein MrBOK located within insect monophyletic clad of invertebrate BOK. The secondary structural analysis showed that MrBOK contains 11 α-helices (52.2%) which are connected over random coils (47.7%). The 3D structure of MrBOK showed three central helices (α6, α7 and α8) which formed the core of the protein and are flanked on one side by α1, α2 and α3, and on the other side by α4, α5 and α11. MrBOK mRNA is expressed most abundantly (P < 0.05) in ovary compared to other tissues taken for analysis. Hence ovary was selected to study the possible roles of MrBOK mRNA regulation upon bacterial (Aeromonas hydrophila and Vibrio harveyi) and viral [white spot syndrome virus (WSSV) and M. rosenbergii nodovirus] infection. During bacterial and viral infection, the highest MrBOK mRNA transcription was varied at different time points. In bacterial infected ovary tissue, the highest mRNA expression was at 24 h post-infection, whereas in viral infection, the expression was highest at 48 h post-infection. Thus we can conclude that MrBOK functions as an apoptotic protein in intracellular programmed cell-death pathway to counteract the anti-apoptotic proteins released by bacterial and viral pathogens at the time of infection. This is the first study that emphasizes the importance of BOK during bacterial and viral infection in crustacean.
Collapse
Affiliation(s)
- Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
26
|
Zhang L, Tong X, Li J, Huang Y, Hu X, Chen Y, Huang J, Wang J, Liu B. Apoptotic and autophagic pathways with relevant small-molecule compounds, in cancer stem cells. Cell Prolif 2015; 48:385-97. [PMID: 26013704 DOI: 10.1111/cpr.12191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/24/2015] [Indexed: 02/05/2023] Open
Abstract
Accumulating evidence demonstrates existence of cancer stem cells (CSCs), which are suspected of contributing to cancer cell self-renewal capacity and resistance to radiation and/or chemotherapy. Including evasion of apoptosis and autophagic cell death, CSCs have revealed abilities to resist cell death, making them appealing targets for cancer therapy. Recently, molecular mechanisms of apoptosis and of autophagy in CSCs have been gradually explored, comparing them in stem cells and in cancer cells; distinct expression of these systems in CSCs may elucidate how these cells exert their capacity of unlimited self-renewal and hierarchical differentiation. Due to their proposed ability to drive tumour initiation and progression, CSCs may be considered to be potentially useful pharmacological targets. Further, multiple compounds have been verified as triggering apoptosis and/or autophagy, suppressing tumour growth, thus providing new strategies for cancer therapy. In this review, we summarized regulation of apoptosis and autophagy in CSCs to elucidate how key proteins participate in control of survival and death; in addition, currently well-studied compounds that target CSC apoptosis and autophagy are selectively presented. With increasing attention to CSCs in cancer therapy, researchers are now trying to find responses to unsolved questions as unambiguous as possible, which may provide novel insight into future anti-cancer regimes.
Collapse
Affiliation(s)
- Lan Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xupeng Tong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingjing Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Huang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyue Hu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinhui Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bo Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
27
|
Wu A, Wu K, Li M, Bao L, Shen X, Li S, Li J, Yang Z. Upregulation of microRNA-492 induced by epigenetic drug treatment inhibits the malignant phenotype of clear cell renal cell carcinoma in vitro. Mol Med Rep 2015; 12:1413-20. [PMID: 25815441 DOI: 10.3892/mmr.2015.3550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 02/13/2015] [Indexed: 11/06/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of cancer of the renal parenchyma. MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length, which function as post‑transcriptional regulators. Recently, the downregulation of miRNA (miR)-492 was observed to be associated with ccRCC; however, the molecular mechanism by which miR492 inhibited ccRCC remained to be elucidated. In the present study, it was demonstrated that miR-492 was markedly downregulated in ccRCC tissues when compared with adjacent normal tissues, as determined by reverse transcription-quantitative poymerase chain reaction (PCR). This downregulation was predominantly due to the hypermethylation of the CpG island of the miR-492 promoter, which was detected by methylation specific PCR and bisulfite genomic sequencing PCR, and was shown to inhibit miR-492 transcription. Through the use of a DNA demethylation agent, 5-aza-2'-deoxycytidine or the histone deacetylase inhibitor 4-phenylbutyric acid, the expression level of miR-492 was significantly upregulated in ccRCC cells, which further inhibited cell proliferation and invasion, while promoting cell apoptosis and adhesion. In conclusion, the present study provided novel insights into the potential mechanisms involved in ccRCC and it is hypothesized that miR-492 may become a promising therapeutic agent in the treatment of ccRCC.
Collapse
Affiliation(s)
- Aibing Wu
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Kunpeng Wu
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Mingchun Li
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Lingli Bao
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiang Shen
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Shunjun Li
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Jinmei Li
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Zhixiong Yang
- Oncology Center, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
28
|
Shokhirev MN, Almaden J, Davis-Turak J, Birnbaum HA, Russell TM, Vargas JAD, Hoffmann A. A multi-scale approach reveals that NF-κB cRel enforces a B-cell decision to divide. Mol Syst Biol 2015; 11:783. [PMID: 25680807 PMCID: PMC4358656 DOI: 10.15252/msb.20145554] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding the functions of multi-cellular organs in terms of the molecular networks within each cell is an important step in the quest to predict phenotype from genotype. B-lymphocyte population dynamics, which are predictive of immune response and vaccine effectiveness, are determined by individual cells undergoing division or death seemingly stochastically. Based on tracking single-cell time-lapse trajectories of hundreds of B cells, single-cell transcriptome, and immunofluorescence analyses, we constructed an agent-based multi-modular computational model to simulate lymphocyte population dynamics in terms of the molecular networks that control NF-κB signaling, the cell cycle, and apoptosis. Combining modeling and experimentation, we found that NF-κB cRel enforces the execution of a cellular decision between mutually exclusive fates by promoting survival in growing cells. But as cRel deficiency causes growing B cells to die at similar rates to non-growing cells, our analysis reveals that the phenomenological decision model of wild-type cells is rooted in a biased race of cell fates. We show that a multi-scale modeling approach allows for the prediction of dynamic organ-level physiology in terms of intra-cellular molecular networks.
Collapse
Affiliation(s)
- Maxim N Shokhirev
- Department of Chemistry and Biochemistry, Signaling Systems Laboratory, UCSD, La Jolla, CA, USA San Diego Center for Systems Biology, UCSD, La Jolla, CA, USA Bioinformatics and Systems Biology Graduate Program, UCSD, La Jolla, CA, USA
| | - Jonathan Almaden
- Department of Chemistry and Biochemistry, Signaling Systems Laboratory, UCSD, La Jolla, CA, USA Biological Sciences Graduate Program, UCSD, La Jolla, CA, USA
| | - Jeremy Davis-Turak
- Department of Chemistry and Biochemistry, Signaling Systems Laboratory, UCSD, La Jolla, CA, USA San Diego Center for Systems Biology, UCSD, La Jolla, CA, USA Bioinformatics and Systems Biology Graduate Program, UCSD, La Jolla, CA, USA
| | - Harry A Birnbaum
- Department of Chemistry and Biochemistry, Signaling Systems Laboratory, UCSD, La Jolla, CA, USA San Diego Center for Systems Biology, UCSD, La Jolla, CA, USA Institute for Quantitative and Computational Biosciences, Los Angeles, CA, USA Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | | | - Jesse A D Vargas
- Department of Chemistry and Biochemistry, Signaling Systems Laboratory, UCSD, La Jolla, CA, USA San Diego Center for Systems Biology, UCSD, La Jolla, CA, USA Institute for Quantitative and Computational Biosciences, Los Angeles, CA, USA Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Alexander Hoffmann
- Department of Chemistry and Biochemistry, Signaling Systems Laboratory, UCSD, La Jolla, CA, USA San Diego Center for Systems Biology, UCSD, La Jolla, CA, USA Institute for Quantitative and Computational Biosciences, Los Angeles, CA, USA Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, USA
| |
Collapse
|
29
|
Hojo-Souza NS, Pereira DB, Mendes TAO, Passos LSA, Gazzinelli-Guimarães AC, Gazzinelli-Guimarães PH, Tada MS, Zanini GM, Bartholomeu DC, Fujiwara RT, Bueno LL. CD4+ T cells apoptosis in Plasmodium vivax infection is mediated by activation of both intrinsic and extrinsic pathways. Malar J 2015; 14:5. [PMID: 25559491 PMCID: PMC4326293 DOI: 10.1186/1475-2875-14-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reduction in the number of circulating blood lymphocytes (lymphocytopaenia) has been reported during clinical episodes of malaria and is normalized after treatment with anti-malaria drugs. While this phenomenon is well established in malaria infection, the underlying mechanisms are still not fully elucidated. In the present study, the occurrence of apoptosis and its pathways in CD4+ T cells was investigated in naturally Plasmodium vivax-infected individuals from a Brazilian endemic area (Porto Velho - RO). METHODS Blood samples were collected from P. vivax-infected individuals and healthy donors. The apoptosis was characterized by cell staining with Annexin V/FITC and propidium iodide and the apoptosis-associated gene expression profile was carried out using RT2 Profiler PCR Array-Human Apoptosis. The plasma TNF level was determined by ELISA. The unpaired t-test or Mann-Whitney test was applied according to the data distribution. RESULTS Plasmodium vivax-infected individuals present low number of leukocytes and lymphocytes with a higher percentage of CD4+ T cells in early and/or late apoptosis. Increased gene expression was observed for TNFRSF1B and Bid, associated with a reduction of Bcl-2, in individuals with P. vivax malaria. Furthermore, these individuals showed increased plasma levels of TNF compared to malaria-naive donors. CONCLUSIONS The results of the present study suggest that P. vivax infection induces apoptosis of CD4+ T cells mediated by two types of signaling: by activation of the TNFR1 death receptor (extrinsic pathway), which is amplified by Bid, and by decreased expression of the anti-apoptotic protein Bcl-2 (intrinsic pathway). The T lymphocytes apoptosis could reflect a strategy of immune evasion triggered by the parasite, enabling their persistence but also limiting the occurrence of immunopathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lilian L Bueno
- Department of Parasitology, Institute of Biological Science, Federal University of Minas Gerais, Av, Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
30
|
Elkholi R, Renault TT, Serasinghe MN, Chipuk JE. Putting the pieces together: How is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer Metab 2014; 2:16. [PMID: 25621172 PMCID: PMC4304082 DOI: 10.1186/2049-3002-2-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/20/2014] [Indexed: 02/08/2023] Open
Abstract
In order to solve a jigsaw puzzle, one must first have the complete picture to logically connect the pieces. However, in cancer biology, we are still gaining an understanding of all the signaling pathways that promote tumorigenesis and how these pathways can be pharmacologically manipulated by conventional and targeted therapies. Despite not having complete knowledge of the mechanisms that cause cancer, the signaling networks responsible for cancer are becoming clearer, and this information is serving as a solid foundation for the development of rationally designed therapies. One goal of chemotherapy is to induce cancer cell death through the mitochondrial pathway of apoptosis. Within this review, we present the pathways that govern the cellular decision to undergo apoptosis as three distinct, yet connected puzzle pieces: (1) How do oncogene and tumor suppressor pathways regulate apoptosis upstream of mitochondria? (2) How does the B-cell lymphoma 2 (BCL-2) family influence tumorigenesis and chemotherapeutic responses? (3) How is post-mitochondrial outer membrane permeabilization (MOMP) regulation of cell death relevant in cancer? When these pieces are united, it is possible to appreciate how cancer signaling directly impacts upon the fundamental cellular mechanisms of apoptosis and potentially reveals novel pharmacological targets within these pathways that may enhance chemotherapeutic success.
Collapse
Affiliation(s)
- Rana Elkholi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1425 Madison Avenue, Box 1130, New York, NY 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| | - Thibaud T Renault
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1425 Madison Avenue, Box 1130, New York, NY 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| | - Madhavika N Serasinghe
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1425 Madison Avenue, Box 1130, New York, NY 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1425 Madison Avenue, Box 1130, New York, NY 10029, USA.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA.,The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1130, New York, NY 10029, USA
| |
Collapse
|
31
|
Zekavati A, Nasir A, Alcaraz A, Aldrovandi M, Marsh P, Norton JD, Murphy JJ. Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells. PLoS One 2014; 9:e102625. [PMID: 25014217 PMCID: PMC4094554 DOI: 10.1371/journal.pone.0102625] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/22/2014] [Indexed: 12/25/2022] Open
Abstract
The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3' untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the 'maximum information coefficient' (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3' untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3' untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells.
Collapse
Affiliation(s)
- Anna Zekavati
- Division of Immunology, Infection and Inflammatory Disease, King's College London, London, United Kingdom
| | - Asghar Nasir
- Division of Immunology, Infection and Inflammatory Disease, King's College London, London, United Kingdom
| | - Amor Alcaraz
- Department of Biomedical Sciences, University of Westminster, London, United Kingdom
| | - Maceler Aldrovandi
- Division of Immunology, Infection and Inflammatory Disease, King's College London, London, United Kingdom
| | - Phil Marsh
- Division of Endocrinology, King's College London, London, United Kingdom
| | - John D. Norton
- School of Biological Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - John J. Murphy
- Division of Immunology, Infection and Inflammatory Disease, King's College London, London, United Kingdom
- Department of Biomedical Sciences, University of Westminster, London, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Ciucci T, Bosselut R. Gimap and T cells: a matter of life or death. Eur J Immunol 2014; 44:348-51. [PMID: 24510500 DOI: 10.1002/eji.201344375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 12/29/2013] [Accepted: 01/13/2014] [Indexed: 11/08/2022]
Abstract
GTPase immune-associated proteins (Gimap) genes encode evolutionarily conserved GTP-binding proteins that are preferentially expressed in immune cells. Specific members have been shown to be involved in lymphocyte development, or are associated with inflammatory and autoimmune diseases. However, the function of these proteins remains poorly understood, both at the cellular and molecular levels. A new study in this issue of the European Journal of Immunology [Eur. J. Immunol. 2014. 44: 561-572] points to the distinct but partly overlapping functions of two members of this family, Gimap3 and Gimap5, and offers new insight into their potential functions in T cells.
Collapse
Affiliation(s)
- Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
33
|
Targeting the mitochondrial apoptotic pathway: a preferred approach in hematologic malignancies? Cell Death Dis 2014; 5:e1098. [PMID: 24603326 PMCID: PMC3973243 DOI: 10.1038/cddis.2014.61] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 02/05/2023]
Abstract
Acquired resistance toward apoptosis represents one of the hallmarks of human cancer and a major cause of the inefficacy of most anticancer treatment regimens. Based on its ability to inhibit apoptosis, the B-cell lymphoma/leukemia 2 (Bcl-2) protein family has garnered the most attention as a promising therapeutic target in cancer. Accordingly, efforts have lately been focused on the development of drugs targeting Bcl-2 proteins with considerable therapeutic success, particularly in hematologic malignancies. Here, we review the previous studies and highlight the pivotal role of the Bcl-2 protein family in the homeostasis of hematologic tissue compartment. This knowledge provides more insight into why some cancers are more sensitive to Bcl-2 targeting than others and will foster the clinical evaluation of Bcl-2-targeting strategies in cancer by avoiding severe on-target side effects in the development of healthy tissues.
Collapse
|
34
|
Ouyang YB, Giffard RG. MicroRNAs affect BCL-2 family proteins in the setting of cerebral ischemia. Neurochem Int 2013; 77:2-8. [PMID: 24373752 DOI: 10.1016/j.neuint.2013.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/09/2013] [Accepted: 12/16/2013] [Indexed: 02/01/2023]
Abstract
The BCL-2 family is centrally involved in the mechanism of cell death after cerebral ischemia. It is well known that the proteins of the BCL-2 family are key regulators of apoptosis through controlling mitochondrial outer membrane permeabilization. Recent findings suggest that many BCL-2 family members are also directly involved in controlling transmission of Ca(2+) from the endoplasmic reticulum (ER) to mitochondria through a specialization called the mitochondria-associated ER membrane (MAM). Increasing evidence supports the involvement of microRNAs (miRNAs), some of them targeting BCL-2 family proteins, in the regulation of cerebral ischemia. In this mini-review, after highlighting current knowledge about the multiple functions of BCL-2 family proteins and summarizing their relationship to outcome from cerebral ischemia, we focus on the regulation of BCL-2 family proteins by miRNAs, especially miR-29 which targets multiple BCL-2 family proteins.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Rona G Giffard
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Kakkola L, Denisova OV, Tynell J, Viiliäinen J, Ysenbaert T, Matos RC, Nagaraj A, Ohman T, Kuivanen S, Paavilainen H, Feng L, Yadav B, Julkunen I, Vapalahti O, Hukkanen V, Stenman J, Aittokallio T, Verschuren EW, Ojala PM, Nyman T, Saelens X, Dzeyk K, Kainov DE. Anticancer compound ABT-263 accelerates apoptosis in virus-infected cells and imbalances cytokine production and lowers survival rates of infected mice. Cell Death Dis 2013; 4:e742. [PMID: 23887633 PMCID: PMC3730437 DOI: 10.1038/cddis.2013.267] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/23/2013] [Accepted: 06/21/2013] [Indexed: 12/30/2022]
Abstract
ABT-263 and its structural analogues ABT-199 and ABT-737 inhibit B-cell lymphoma 2 (Bcl-2), BCL2L1 long isoform (Bcl-xL) and BCL2L2 (Bcl-w) proteins and promote cancer cell death. Here, we show that at non-cytotoxic concentrations, these small molecules accelerate the deaths of non-cancerous cells infected with influenza A virus (IAV) or other viruses. In particular, we demonstrate that ABT-263 altered Bcl-xL interactions with Bcl-2 antagonist of cell death (Bad), Bcl-2-associated X protein (Bax), uveal autoantigen with coiled-coil domains and ankyrin repeats protein (UACA). ABT-263 thereby activated the caspase-9-mediated mitochondria-initiated apoptosis pathway, which, together with the IAV-initiated caspase-8-mediated apoptosis pathway, triggered the deaths of IAV-infected cells. Our results also indicate that Bcl-xL, Bcl-2 and Bcl-w interact with pattern recognition receptors (PRRs) that sense virus constituents to regulate cellular apoptosis. Importantly, premature killing of IAV-infected cells by ABT-263 attenuated the production of key pro-inflammatory and antiviral cytokines. The imbalance in cytokine production was also observed in ABT-263-treated IAV-infected mice, which resulted in an inability of the immune system to clear the virus and eventually lowered the survival rates of infected animals. Thus, the results suggest that the chemical inhibition of Bcl-xL, Bcl-2 and Bcl-w could potentially be hazardous for cancer patients with viral infections.
Collapse
Affiliation(s)
- L Kakkola
- The Institute for Molecular Medicine Finland, FIMM, Helsinki 00290, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|