1
|
Ciaramidaro A, Toppi J, Vogel P, Freitag CM, Siniatchkin M, Astolfi L. Synergy of the mirror neuron system and the mentalizing system in a single brain and between brains during joint actions. Neuroimage 2024; 299:120783. [PMID: 39187218 DOI: 10.1016/j.neuroimage.2024.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems-MENT and MNS-during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels. In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.
Collapse
Affiliation(s)
- Angela Ciaramidaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Viale Allegri 9, 42121 Reggio Emilia, Italy; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany.
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Pascal Vogel
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Institute of Neurophysiology, Neuroscience Center, Goethe University, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt/M, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Laura Astolfi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| |
Collapse
|
2
|
Cheng S, Wang J, Luo R, Hao N. Brain to brain musical interaction: A systematic review of neural synchrony in musical activities. Neurosci Biobehav Rev 2024; 164:105812. [PMID: 39029879 DOI: 10.1016/j.neubiorev.2024.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The use of hyperscanning technology has revealed the neural mechanisms underlying multi-person interaction in musical activities. However, there is currently a lack of integration among various research findings. This systematic review aims to provide a comprehensive understanding of the social dynamics and brain synchronization in music activities through the analysis of 32 studies. The findings illustrate a strong correlation between inter-brain synchronization (IBS) and various musical activities, with the frontal, central, parietal, and temporal lobes as the primary regions involved. The application of hyperscanning not only advances theoretical research but also holds practical significance in enhancing the effectiveness of music-based interventions in therapy and education. The review also utilizes Predictive Coding Models (PCM) to provide a new perspective for interpreting neural synchronization in music activities. To address the limitations of current research, future studies could integrate multimodal data, adopt novel technologies, use non-invasive techniques, and explore additional research directions.
Collapse
Affiliation(s)
- Shate Cheng
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Jiayi Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ruiyi Luo
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| |
Collapse
|
3
|
Zhou X, Wong PCM. Hyperscanning to explore social interaction among autistic minds. Neurosci Biobehav Rev 2024; 163:105773. [PMID: 38889594 DOI: 10.1016/j.neubiorev.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Hyperscanning - the monitoring of brain activity of two or more people simultaneously - has emerged to be a popular tool for assessing neural features of social interaction. This perspective article focuses on hyperscanning studies that use functional near-infrared spectroscopy (fNIRS), a technique that is very conducive to studies requiring naturalistic paradigms. In particular, we are interested in neural features that are related to social interaction deficits among individuals with autism spectrum disorders (ASD). This population has received relatively little attention in research using neuroimaging hyperscanning techniques, compared to neurotypical individuals. The study is outlined as follows. First, we summarize the findings about brain-behavior connections related to autism from previously published fNIRS hyperscanning studies. Then, we propose a preliminary theoretical framework of inter-brain coherence (IBC) with testable hypotheses concerning this population. Finally, we provide two examples of areas of inquiry in which studies could be particularly relevant for social-emotional/behavioral development for autistic children, focusing on intergenerational relationships in family units and learning in classroom settings in mainstream schools.
Collapse
Affiliation(s)
- Xin Zhou
- Brain and Mind Institute, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Patrick C M Wong
- Brain and Mind Institute, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Linguistics and Modern Languages, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
4
|
Abalde SF, Rigby A, Keller PE, Novembre G. A framework for joint music making: Behavioral findings, neural processes, and computational models. Neurosci Biobehav Rev 2024; 167:105816. [PMID: 39032841 DOI: 10.1016/j.neubiorev.2024.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Across different epochs and societies, humans occasionally gather to jointly make music. This universal form of collective behavior is as fascinating as it is fragmentedly understood. As the interest in joint music making (JMM) rapidly grows, we review the state-of-the-art of this emerging science, blending behavioral, neural, and computational contributions. We present a conceptual framework synthesizing research on JMM within four components. The framework is centered upon interpersonal coordination, a crucial requirement for JMM. The other components imply the influence of individuals' (past) experience, (current) social factors, and (future) goals on real-time coordination. Our aim is to promote the development of JMM research by organizing existing work, inspiring new questions, and fostering accessibility for researchers belonging to other research communities.
Collapse
Affiliation(s)
- Sara F Abalde
- Neuroscience of Perception and Action Lab, Italian Institute of Technology, Rome, Italy; The Open University Affiliated Research Centre at the Istituto Italiano di Tecnologia, Italy.
| | - Alison Rigby
- Neurosciences Graduate Program, University of California, San Diego, USA
| | - Peter E Keller
- Center for Music in the Brain, Aarhus University, Denmark; Department of Clinical Medicine, Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Denmark; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology, Rome, Italy
| |
Collapse
|
5
|
Müller V, Lindenberger U. Hyper-brain hyper-frequency network topology dynamics when playing guitar in quartet. Front Hum Neurosci 2024; 18:1416667. [PMID: 38919882 PMCID: PMC11196789 DOI: 10.3389/fnhum.2024.1416667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Ensemble music performance is a highly coordinated form of social behavior requiring not only precise motor actions but also synchronization of different neural processes both within and between the brains of ensemble players. In previous analyses, which were restricted to within-frequency coupling (WFC), we showed that different frequencies participate in intra- and inter-brain coordination, exhibiting distinct network topology dynamics that underlie coordinated actions and interactions. However, many of the couplings both within and between brains are likely to operate across frequencies. Hence, to obtain a more complete picture of hyper-brain interaction when musicians play the guitar in a quartet, cross-frequency coupling (CFC) has to be considered as well. Furthermore, WFC and CFC can be used to construct hyper-brain hyper-frequency networks (HB-HFNs) integrating all the information flows between different oscillation frequencies, providing important details about ensemble interaction in terms of network topology dynamics (NTD). Here, we reanalyzed EEG (electroencephalogram) data obtained from four guitarists playing together in quartet to explore changes in HB-HFN topology dynamics and their relation to acoustic signals of the music. Our findings demonstrate that low-frequency oscillations (e.g., delta, theta, and alpha) play an integrative or pacemaker role in such complex networks and that HFN topology dynamics are specifically related to the guitar quartet playing dynamics assessed by sound properties. Simulations by link removal showed that the HB-HFN is relatively robust against loss of connections, especially when the strongest connections are preserved and when the loss of connections only affects the brain of one guitarist. We conclude that HB-HFNs capture neural mechanisms that support interpersonally coordinated action and behavioral synchrony.
Collapse
Affiliation(s)
- Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
| |
Collapse
|
6
|
Tamburro G, Bruña R, Fiedler P, De Fano A, Raeisi K, Khazaei M, Zappasodi F, Comani S. An Analytical Approach for Naturalistic Cooperative and Competitive EEG-Hyperscanning Data: A Proof-of-Concept Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2995. [PMID: 38793851 PMCID: PMC11125252 DOI: 10.3390/s24102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Investigating the neural mechanisms underlying both cooperative and competitive joint actions may have a wide impact in many social contexts of human daily life. An effective pipeline of analysis for hyperscanning data recorded in a naturalistic context with a cooperative and competitive motor task has been missing. We propose an analytical pipeline for this type of joint action data, which was validated on electroencephalographic (EEG) signals recorded in a proof-of-concept study on two dyads playing cooperative and competitive table tennis. Functional connectivity maps were reconstructed using the corrected imaginary part of the phase locking value (ciPLV), an algorithm suitable in case of EEG signals recorded during turn-based competitive joint actions. Hyperbrain, within-, and between-brain functional connectivity maps were calculated in three frequency bands (i.e., theta, alpha, and beta) relevant during complex motor task execution and were characterized with graph theoretical measures and a clustering approach. The results of the proof-of-concept study are in line with recent findings on the main features of the functional networks sustaining cooperation and competition, hence demonstrating that the proposed pipeline is promising tool for the analysis of joint action EEG data recorded during cooperation and competition using a turn-based motor task.
Collapse
Affiliation(s)
- Gabriella Tamburro
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience (C3N), Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Department of Radiology, Rehabilitation and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, IdISSC, 28040 Madrid, Spain
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Antonio De Fano
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Khadijeh Raeisi
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Mohammad Khazaei
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Filippo Zappasodi
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
- Institute for Advanced Biomedical Technologies, University “Gabriele d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy
| | - Silvia Comani
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| |
Collapse
|
7
|
Konrad K, Gerloff C, Kohl SH, Mehler DMA, Mehlem L, Volbert EL, Komorek M, Henn AT, Boecker M, Weiss E, Reindl V. Interpersonal neural synchrony and mental disorders: unlocking potential pathways for clinical interventions. Front Neurosci 2024; 18:1286130. [PMID: 38529267 PMCID: PMC10962391 DOI: 10.3389/fnins.2024.1286130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Interpersonal synchronization involves the alignment of behavioral, affective, physiological, and brain states during social interactions. It facilitates empathy, emotion regulation, and prosocial commitment. Mental disorders characterized by social interaction dysfunction, such as Autism Spectrum Disorder (ASD), Reactive Attachment Disorder (RAD), and Social Anxiety Disorder (SAD), often exhibit atypical synchronization with others across multiple levels. With the introduction of the "second-person" neuroscience perspective, our understanding of interpersonal neural synchronization (INS) has improved, however, so far, it has hardly impacted the development of novel therapeutic interventions. Methods To evaluate the potential of INS-based treatments for mental disorders, we performed two systematic literature searches identifying studies that directly target INS through neurofeedback (12 publications; 9 independent studies) or brain stimulation techniques (7 studies), following PRISMA guidelines. In addition, we narratively review indirect INS manipulations through behavioral, biofeedback, or hormonal interventions. We discuss the potential of such treatments for ASD, RAD, and SAD and using a systematic database search assess the acceptability of neurofeedback (4 studies) and neurostimulation (4 studies) in patients with social dysfunction. Results Although behavioral approaches, such as engaging in eye contact or cooperative actions, have been shown to be associated with increased INS, little is known about potential long-term consequences of such interventions. Few proof-of-concept studies have utilized brain stimulation techniques, like transcranial direct current stimulation or INS-based neurofeedback, showing feasibility and preliminary evidence that such interventions can boost behavioral synchrony and social connectedness. Yet, optimal brain stimulation protocols and neurofeedback parameters are still undefined. For ASD, RAD, or SAD, so far no randomized controlled trial has proven the efficacy of direct INS-based intervention techniques, although in general brain stimulation and neurofeedback methods seem to be well accepted in these patient groups. Discussion Significant work remains to translate INS-based manipulations into effective treatments for social interaction disorders. Future research should focus on mechanistic insights into INS, technological advancements, and rigorous design standards. Furthermore, it will be key to compare interventions directly targeting INS to those targeting other modalities of synchrony as well as to define optimal target dyads and target synchrony states in clinical interventions.
Collapse
Affiliation(s)
- Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - Christian Gerloff
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
- Department of Applied Mathematics and Theoretical Physics, Cambridge Centre for Data-Driven Discovery, University of Cambridge, Cambridge, United Kingdom
| | - Simon H. Kohl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - David M. A. Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- School of Psychology, Cardiff University Brain Research Imaging Center (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Lena Mehlem
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Emily L. Volbert
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Maike Komorek
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Alina T. Henn
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Maren Boecker
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Institute of Medical Psychology and Medical Sociology, University Hospital RWTH, Aachen, Germany
| | - Eileen Weiss
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Institute of Medical Psychology and Medical Sociology, University Hospital RWTH, Aachen, Germany
| | - Vanessa Reindl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Department of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Lender A, Perdikis D, Gruber W, Lindenberger U, Müller V. Dynamics in interbrain synchronization while playing a piano duet. Ann N Y Acad Sci 2023; 1530:124-137. [PMID: 37824090 DOI: 10.1111/nyas.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Humans interact with each other through actions that are implemented by sensory and motor processes. To investigate the role of interbrain synchronization emerging during interpersonal action coordination, electroencephalography data from 13 pairs of pianists were recorded simultaneously while they performed a duet together. The study aimed to investigate whether interbrain phase couplings can be reduced to similar bottom-up driven processes during synchronous play, or rather represent cognitive top-down control required during periods of higher coordination demands. To induce such periods, one of the musicians acted as a confederate who deliberately desynchronized the play. As intended, on the behavioral level, the perturbation caused a breakdown in the synchronization of the musicians' play and in its stability across trials. On the brain level, interbrain synchrony, as measured by the interbrain phase coherence (IPC), increased in the delta and theta frequency bands during perturbation as compared to non-perturbed trials. Interestingly, this increase in IPC in the delta band was accompanied by the shift of the phase difference angle from in-phase toward anti-phase synchrony. In conclusion, the current study demonstrates that interbrain synchronization is based on the interpersonal temporal alignment of different brain mechanisms and is not simply reducible to similar sensory or motor responses.
Collapse
Affiliation(s)
- Anja Lender
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Dionysios Perdikis
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Walter Gruber
- Department of Physiological Psychology, University of Salzburg, Salzburg, Austria
| | - Ulman Lindenberger
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Viktor Müller
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Berlin, Germany
| |
Collapse
|
9
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
10
|
Michalareas G, Rudwan IM, Lehr C, Gessini P, Tavano A, Grabenhorst M. A scalable and robust system for audience EEG recordings. Heliyon 2023; 9:e20725. [PMID: 37876480 PMCID: PMC10590850 DOI: 10.1016/j.heliyon.2023.e20725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/25/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
The neural mechanisms that unfold when humans form a large group defined by an overarching context, such as audiences in theater or sports, are largely unknown and unexplored. This is mainly due to the lack of availability of a scalable system that can record the brain activity from a significantly large portion of such an audience simultaneously. Although the technology for such a system has been readily available for a long time, the high cost as well as the large overhead in human resources and logistic planning have prohibited the development of such a system. However, during the recent years reduction in technology costs and size have led to the emergence of low-cost, consumer-oriented EEG systems, developed primarily for recreational use. Here by combining such a low-cost EEG system with other off-the-shelve hardware and tailor-made software, we develop in the lab and test in a cinema such a scalable EEG hyper-scanning system. The system has a robust and stable performance and achieves accurate unambiguous alignment of the recorded data of the different EEG headsets. These characteristics combined with small preparation time and low-cost make it an ideal candidate for recording large portions of audiences.
Collapse
Affiliation(s)
- Georgios Michalareas
- Department of Cognitive Neuropsychology, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | | | - Claudia Lehr
- Department of Cognitive Neuropsychology, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Paolo Gessini
- Department of Aerospace Engineering, University of Brasilia, Brazil
| | - Alessandro Tavano
- Department of Cognitive Neuropsychology, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Matthias Grabenhorst
- Department of Cognitive Neuropsychology, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience, Frankfurt, Germany
| |
Collapse
|
11
|
Maidhof C, Müller V, Lartillot O, Agres K, Bloska J, Asano R, Odell-Miller H, Fachner J. Intra- and inter-brain coupling and activity dynamics during improvisational music therapy with a person with dementia: an explorative EEG-hyperscanning single case study. Front Psychol 2023; 14:1155732. [PMID: 37842703 PMCID: PMC10570426 DOI: 10.3389/fpsyg.2023.1155732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Objective Real-life research into the underlying neural dynamics of improvisational music therapy, used with various clinical populations, is largely lacking. This single case study explored within-session differences in musical features and in within- and between-brain coupling between a Person with Dementia (PwD) and a music therapist during a music therapy session. Methods Dual-EEG from a music therapist and a PwD (male, 31 years) was recorded. Note density, pulse clarity and synchronicity were extracted from audio-visual data. Three music therapists identified moments of interest and no interest (MOI/MONI) in two drum improvisations. The Integrative Coupling Index, reflecting time-lagged neural synchronization, and musical features were compared between the MOI and MONI. Results Between-brain coupling of 2 Hz activity was increased during the MOI, showing anteriority of the therapist's neural activity. Within-brain coupling for the PwD was stronger from frontal and central areas during the MOI, but within-brain coupling for the therapist was stronger during MONI. Differences in musical features indicated that both acted musically more similar to one another during the MOI. Conclusion Within-session differences in neural synchronization and musical features highlight the dynamic nature of music therapy. Significance The findings contribute to a better understanding of social and affective processes in the brain and (interactive) musical behaviors during specific moments in a real-life music therapy session. This may provide insights into the role of such moments for relational-therapeutic processes.
Collapse
Affiliation(s)
- Clemens Maidhof
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
- Josef Ressel Centre for Personalized Music Therapy, University of Applied Sciences IMC Krems, Krems an der Donau, Austria
| | - Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Olivier Lartillot
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Kat Agres
- Yong Siew Toh Conservatory of Music, National University of Singapore, Singapore, Singapore
- Centre for Music and Health, National University of Singapore, Singapore, Singapore
| | - Jodie Bloska
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
| | - Rie Asano
- Institute of Musicology, University of Cologne, Cologne, Germany
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Helen Odell-Miller
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
| | - Jörg Fachner
- Cambridge Institute for Music Therapy Research, Anglia Ruskin University, Cambridge, United Kingdom
- Josef Ressel Centre for Personalized Music Therapy, University of Applied Sciences IMC Krems, Krems an der Donau, Austria
| |
Collapse
|
12
|
Müller V, Fairhurst MT, van Vugt FT, Keller PE, Müller MF. Editorial: Interpersonal synchrony and network dynamics in social interaction. Front Hum Neurosci 2022; 16:1095735. [DOI: 10.3389/fnhum.2022.1095735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
|
13
|
Lange EB, Omigie D, Trenado C, Müller V, Wald-Fuhrmann M, Merrill J. In touch: Cardiac and respiratory patterns synchronize during ensemble singing with physical contact. Front Hum Neurosci 2022; 16:928563. [PMID: 35992947 PMCID: PMC9390082 DOI: 10.3389/fnhum.2022.928563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Musical ensemble performances provide an ideal environment to gain knowledge about complex human interactions. Network structures of synchronization can reflect specific roles of individual performers on the one hand and a higher level of organization of all performers as a superordinate system on the other. This study builds on research on joint singing, using hyperscanning of respiration and heart rate variability (HRV) from eight professional singers. Singers performed polyphonic music, distributing their breathing within the same voice and singing without and with physical contact: that is touching each other's shoulder or waist. The idea of singing with touch was motivated by historical depictions of ensemble performances that showed singers touching each other. It raises the question of the potential benefit of touch for group performances. From a psycho-physiological point of view, physical contact should increase the synchronization of singing coordination. The results confirm previous findings on synchronization of respiration and HRV during choir singing and extend those findings to a non-homophonic musical repertoire while also revealing an increase in synchronization in respiration during physical contact. These effects were significant across different frequency ranges. The effect of physical contact was stronger when all singers were singing in comparison to the partial ensemble. Importantly, the synchronization could not be fully explained by the singing action (i.e., singing the same voice, or singing vs. listening) or by the standing position or touch. This finding suggests a higher level of organization of all singers, forming a superordinate system.
Collapse
Affiliation(s)
- Elke B. Lange
- Music Department, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- *Correspondence: Elke B. Lange
| | - Diana Omigie
- Music Department, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Carlos Trenado
- Music Department, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Melanie Wald-Fuhrmann
- Music Department, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Max Planck NYU Center for Music, Language, and Emotions, Frankfurt am Main, Germany
| | - Julia Merrill
- Music Department, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
- Institute of Music, University of Kassel, Kassel, Germany
| |
Collapse
|
14
|
Nazneen T, Islam IB, Sajal MSR, Jamal W, Amin MA, Vaidyanathan R, Chau T, Mamun KA. Recent Trends in Non-invasive Neural Recording Based Brain-to-Brain Synchrony Analysis on Multidisciplinary Human Interactions for Understanding Brain Dynamics: A Systematic Review. Front Comput Neurosci 2022; 16:875282. [PMID: 35782087 PMCID: PMC9245014 DOI: 10.3389/fncom.2022.875282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
The study of brain-to-brain synchrony has a burgeoning application in the brain-computer interface (BCI) research, offering valuable insights into the neural underpinnings of interacting human brains using numerous neural recording technologies. The area allows exploring the commonality of brain dynamics by evaluating the neural synchronization among a group of people performing a specified task. The growing number of publications on brain-to-brain synchrony inspired the authors to conduct a systematic review using the PRISMA protocol so that future researchers can get a comprehensive understanding of the paradigms, methodologies, translational algorithms, and challenges in the area of brain-to-brain synchrony research. This review has gone through a systematic search with a specified search string and selected some articles based on pre-specified eligibility criteria. The findings from the review revealed that most of the articles have followed the social psychology paradigm, while 36% of the selected studies have an application in cognitive neuroscience. The most applied approach to determine neural connectivity is a coherence measure utilizing phase-locking value (PLV) in the EEG studies, followed by wavelet transform coherence (WTC) in all of the fNIRS studies. While most of the experiments have control experiments as a part of their setup, a small number implemented algorithmic control, and only one study had interventional or a stimulus-induced control experiment to limit spurious synchronization. Hence, to the best of the authors' knowledge, this systematic review solely contributes to critically evaluating the scopes and technological advances of brain-to-brain synchrony to allow this discipline to produce more effective research outcomes in the remote future.
Collapse
Affiliation(s)
- Tahnia Nazneen
- Advanced Intelligent Multidisciplinary Systems Lab, Institute of Advanced Research, United International University, Dhaka, Bangladesh
| | - Iffath Binta Islam
- Advanced Intelligent Multidisciplinary Systems Lab, Institute of Advanced Research, United International University, Dhaka, Bangladesh
| | - Md. Sakibur Rahman Sajal
- Advanced Intelligent Multidisciplinary Systems Lab, Institute of Advanced Research, United International University, Dhaka, Bangladesh
- Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| | | | - M. Ashraful Amin
- Department of Computer Science and Engineering, Independent University, Dhaka, Bangladesh
| | - Ravi Vaidyanathan
- Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Tom Chau
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Khondaker A. Mamun
- Advanced Intelligent Multidisciplinary Systems Lab, Institute of Advanced Research, United International University, Dhaka, Bangladesh
- Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| |
Collapse
|
15
|
Luft CDB, Zioga I, Giannopoulos A, Di Bona G, Binetti N, Civilini A, Latora V, Mareschal I. Social synchronization of brain activity increases during eye-contact. Commun Biol 2022; 5:412. [PMID: 35508588 PMCID: PMC9068716 DOI: 10.1038/s42003-022-03352-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Humans make eye-contact to extract information about other people’s mental states, recruiting dedicated brain networks that process information about the self and others. Recent studies show that eye-contact increases the synchronization between two brains but do not consider its effects on activity within single brains. Here we investigate how eye-contact affects the frequency and direction of the synchronization within and between two brains and the corresponding network characteristics. We also evaluate the functional relevance of eye-contact networks by comparing inter- and intra-brain networks of friends vs. strangers and the direction of synchronization between leaders and followers. We show that eye-contact increases higher inter- and intra-brain synchronization in the gamma frequency band. Network analysis reveals that some brain areas serve as hubs linking within- and between-brain networks. During eye-contact, friends show higher inter-brain synchronization than strangers. Dyads with clear leader/follower roles demonstrate higher synchronization from leader to follower in the alpha frequency band. Importantly, eye-contact affects synchronization between brains more than within brains, demonstrating that eye-contact is an inherently social signal. Future work should elucidate the causal mechanisms behind eye-contact induced synchronization. Friends making eye-contact have higher inter-brain synchronization than strangers. Eye-contact affects neural synchronization between brains more than within a brain, highlighting that eye-contact is an inherently social signal.
Collapse
Affiliation(s)
- Caroline Di Bernardi Luft
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom.
| | - Ioanna Zioga
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Anastasios Giannopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), Athens, Greece
| | - Gabriele Di Bona
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Nicola Binetti
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom
| | - Andrea Civilini
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom.,Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, I-95123, Catania, Italy.,The Alan Turing Institute, The British Library, London, NW1 2DB, United Kingdom.,Complexity Science Hub, Josefstäadter Strasse 39, A 1080, Vienna, Austria
| | - Isabelle Mareschal
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom
| |
Collapse
|
16
|
Müller V. Neural Synchrony and Network Dynamics in Social Interaction: A Hyper-Brain Cell Assembly Hypothesis. Front Hum Neurosci 2022; 16:848026. [PMID: 35572007 PMCID: PMC9101304 DOI: 10.3389/fnhum.2022.848026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mounting neurophysiological evidence suggests that interpersonal interaction relies on continual communication between cell assemblies within interacting brains and continual adjustments of these neuronal dynamic states between the brains. In this Hypothesis and Theory article, a Hyper-Brain Cell Assembly Hypothesis is suggested on the basis of a conceptual review of neural synchrony and network dynamics and their roles in emerging cell assemblies within the interacting brains. The proposed hypothesis states that such cell assemblies can emerge not only within, but also between the interacting brains. More precisely, the hyper-brain cell assembly encompasses and integrates oscillatory activity within and between brains, and represents a common hyper-brain unit, which has a certain relation to social behavior and interaction. Hyper-brain modules or communities, comprising nodes across two or several brains, are considered as one of the possible representations of the hypothesized hyper-brain cell assemblies, which can also have a multidimensional or multilayer structure. It is concluded that the neuronal dynamics during interpersonal interaction is brain-wide, i.e., it is based on common neuronal activity of several brains or, more generally, of the coupled physiological systems including brains.
Collapse
Affiliation(s)
- Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
17
|
Chabin T, Gabriel D, Comte A, Haffen E, Moulin T, Pazart L. Interbrain emotional connection during music performances is driven by physical proximity and individual traits. Ann N Y Acad Sci 2021; 1508:178-195. [PMID: 34750828 DOI: 10.1111/nyas.14711] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022]
Abstract
How musical emotions and the pleasure derived from music, regardless of the musical valence, can be shared between individuals is a fascinating question, and investigating it can shed light on the function of musical reward. We carried out our investigations in a natural setting during an international competition for orchestra conductors. Participants (n = 15) used a dedicated smartphone app to report their subjective emotional experiences in real time while we recorded their cerebral activity using electroencephalography and their electrodermal activity. The overall behavioral real-time behavioral ratings suggest a possible social influence on the reported and felt pleasure. The physically closer the participants, the more similar their reported pleasure. By calculating the interindividual cerebral coherence (n = 21 pairs), we showed that when people simultaneously reported either high or low pleasure, their cerebral activities were closer than for simultaneous neutral pleasure reports. Participants' skin conductance levels were also more coupled when reporting higher emotional degrees simultaneously. More importantly, the participants who were physically closer had higher cerebral coherence, but only when they simultaneously reported a high level of pleasure. We propose that emotional contagion and/or emotional resonance mechanisms could explain why a form of "emotional connecting force" arises between people during shared appraisal situations.
Collapse
Affiliation(s)
- Thibault Chabin
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique INSERM CIC 1431, Besançon, France.,Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation Neuraxess, Centre Hospitalier Universitaire de Besançon, Université de Bourgogne Franche-Comté, Besançon, France.,Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, Besançon, France
| | - Damien Gabriel
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique INSERM CIC 1431, Besançon, France.,Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation Neuraxess, Centre Hospitalier Universitaire de Besançon, Université de Bourgogne Franche-Comté, Besançon, France.,Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, Besançon, France
| | - Alexandre Comte
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique INSERM CIC 1431, Besançon, France.,Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation Neuraxess, Centre Hospitalier Universitaire de Besançon, Université de Bourgogne Franche-Comté, Besançon, France.,Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, Besançon, France
| | - Emmanuel Haffen
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique INSERM CIC 1431, Besançon, France.,Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation Neuraxess, Centre Hospitalier Universitaire de Besançon, Université de Bourgogne Franche-Comté, Besançon, France.,Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, Besançon, France
| | - Thierry Moulin
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique INSERM CIC 1431, Besançon, France.,Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation Neuraxess, Centre Hospitalier Universitaire de Besançon, Université de Bourgogne Franche-Comté, Besançon, France.,Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, Besançon, France
| | - Lionel Pazart
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique INSERM CIC 1431, Besançon, France.,Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation Neuraxess, Centre Hospitalier Universitaire de Besançon, Université de Bourgogne Franche-Comté, Besançon, France.,Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
18
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Julia Sliwa
- Sorbonne Université, Paris Brain Institute-Institut du Cerveau, Inserm, CNRS, APHP, Hopital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
19
|
Müller V, Lindenberger U. Probing associations between interbrain synchronization and interpersonal action coordination during guitar playing. Ann N Y Acad Sci 2021; 1507:146-161. [PMID: 34510474 DOI: 10.1111/nyas.14689] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022]
Abstract
Playing music in an ensemble is a highly coordinated human action involving musicians' brain-body interactions at different levels of physical and cortical organization in time and space. It has been suggested that interbrain phase synchronization plays an essential role in musical interaction. In this study, we aimed to explore associations between interbrain synchronization and interpersonal action coordination, using electroencephalographic recordings of the brain activity of guitarists playing in a duet as well as the acoustic recordings of their music. By applying phase synchronization algorithms to the musicians' brain activities and the sounds produced during guitar playing, we show that synchronous brain activity is strongly related to instrument sounds and behavioral play-onset synchrony, as indicated by phase alignment in relation to the time differences in play onsets and an angular-linear correlation between phase and time differences across trials and guitarist pairs. Interestingly, this correlation was especially strong in the first part of the music piece, when the guitarists seem to adjust their coordinated play onsets and brain rhythms actively. This suggests that the methods capturing intra- and interbrain synchronization and its relations to coordinated playing provide crucial information about the underlying mechanisms of interpersonal action coordination.
Collapse
Affiliation(s)
- Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| |
Collapse
|
20
|
Müller V, Ohström KRP, Lindenberger U. Interactive brains, social minds: Neural and physiological mechanisms of interpersonal action coordination. Neurosci Biobehav Rev 2021; 128:661-677. [PMID: 34273378 DOI: 10.1016/j.neubiorev.2021.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/14/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022]
Abstract
It is now widely accepted that inter-brain synchronization is an important and inevitable mechanism of interpersonal action coordination and social interaction behavior. This review of the current literature focuses first on the forward model for interpersonal action coordination and functional system theory for biological systems, two broadly similar concepts for adaptive system behavior. Further, we review interacting-brain and/or hyper-brain dynamics studies, to show the interplay between intra- and inter-brain connectivity resulting in hyper-brain network structure and network topology dynamics, and consider the functioning of interacting brains as a superordinate system. The concept of a superordinate system, or superorganism, is then evaluated with respect to neuronal and physiological systems group dynamics, which show further accompanying mechanisms of interpersonal interaction. We note that fundamental problems need to be resolved to better understand the neural mechanisms of interpersonal action coordination.
Collapse
Affiliation(s)
- Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin, 14195, Germany.
| | - Kira-Rahel P Ohström
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin, 14195, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin, 14195, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, England, and Berlin, Germany
| |
Collapse
|
21
|
Short MR, Hernandez-Pavon JC, Jones A, Pons JL. EEG hyperscanning in motor rehabilitation: a position paper. J Neuroeng Rehabil 2021; 18:98. [PMID: 34112208 PMCID: PMC8194127 DOI: 10.1186/s12984-021-00892-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/31/2021] [Indexed: 11/10/2022] Open
Abstract
Studying the human brain during interpersonal interaction allows us to answer many questions related to motor control and cognition. For instance, what happens in the brain when two people walking side by side begin to change their gait and match cadences? Adapted from the neuroimaging techniques used in single-brain measurements, hyperscanning (HS) is a technique used to measure brain activity from two or more individuals simultaneously. Thus far, HS has primarily focused on healthy participants during social interactions in order to characterize inter-brain dynamics. Here, we advocate for expanding the use of this electroencephalography hyperscanning (EEG-HS) technique to rehabilitation paradigms in individuals with neurological diagnoses, namely stroke, spinal cord injury (SCI), Parkinson's disease (PD), and traumatic brain injury (TBI). We claim that EEG-HS in patient populations with impaired motor function is particularly relevant and could provide additional insight on neural dynamics, optimizing rehabilitation strategies for each individual patient. In addition, we discuss future technologies related to EEG-HS that could be developed for use in the clinic as well as technical limitations to be considered in these proposed settings.
Collapse
Affiliation(s)
- Matthew R Short
- Legs + Walking Lab, Shirley Ryan AbilityLab, Floor 24, 355 E Erie St, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Julio C Hernandez-Pavon
- Legs + Walking Lab, Shirley Ryan AbilityLab, Floor 24, 355 E Erie St, Chicago, IL, 60611, USA.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alyssa Jones
- Legs + Walking Lab, Shirley Ryan AbilityLab, Floor 24, 355 E Erie St, Chicago, IL, 60611, USA
| | - Jose L Pons
- Legs + Walking Lab, Shirley Ryan AbilityLab, Floor 24, 355 E Erie St, Chicago, IL, 60611, USA. .,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA. .,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
22
|
Müller V, Perdikis D, Mende MA, Lindenberger U. Interacting brains coming in sync through their minds: an interbrain neurofeedback study. Ann N Y Acad Sci 2021; 1500:48-68. [PMID: 33956993 DOI: 10.1111/nyas.14605] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
Neurophysiological evidence shows that interpersonal action coordination is accompanied by interbrain synchronization (IBS). However, the functional significance of this association remains unclear. Using two experimental designs, we explored whether IBS is amenable to neurofeedback (NFB). Feedback was provided either as two balls approaching each other (so-called ball design), or as two pendula, each reflecting the oscillatory activity of one of the two participants (so-called pendulum design). The NFB was provided at delta (i.e., 2.5 Hz) and theta (i.e., 5 Hz) electroencephalography frequencies, and manipulated by enhanced and inverse feedback. We showed that the participants were able to increase IBS by using NFB, especially when it was fed back at the theta frequency. Apart from intra- and interbrain coupling, other oscillatory activities (e.g., power spectral density, peak amplitude, and peak frequency) also changed during the task compared with the rest. Moreover, all the measures showed specific correlations with the subjective postsurvey item scores, reflecting subjective feeling and appraisal. We conclude that the use of IBS for NFB might help in specifying the contribution of IBS to interpersonal action coordination and in providing important information about the neural mechanisms of social interaction and the causal dimension of IBS.
Collapse
Affiliation(s)
- Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Dionysios Perdikis
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Brain Simulation Section, Department of Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Melinda A Mende
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Division of Cognitive Sciences, Department of Psychology, University of Potsdam, Potsdam, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| |
Collapse
|
23
|
Inter-brain synchronization during a cooperative task reflects the sense of joint agency. Neuropsychologia 2021; 154:107770. [PMID: 33548249 DOI: 10.1016/j.neuropsychologia.2021.107770] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/08/2020] [Accepted: 01/31/2021] [Indexed: 01/02/2023]
Abstract
People feel the sense of 'joint agency', which is the sense that 'we' did it, during a mutually cooperative action. Previous studies have reported that the inter-brain synchronization occurs during a mutually cooperative action, nevertheless the neural correlates of the sense of joint agency remains unclear. Here, we investigated whether the sense of joint agency reflects the inter-brain synchronization during a joint action. The pairs of participants engaged in constant rhythm tapping tasks with alternative (turn-taking) or sequential (non-turn-taking) coordination. Electroencephalograms (EEGs) of the participant pair during the tasks were simultaneously measured (hyperscanned), and the participants were subsequently asked to rate the sense of joint agency. The results showed that the participants felt strong sense of joint agency in the turn-taking cooperative actions, but not in the non-turn-taking actions. Moreover, EEG theta (4-7 Hz) oscillations were more synchronized between the frontal region in the leader, who tapped the first, and the right temporo-parietal region in the follower, who tapped following the leader, during the turn-taking cooperative actions than during the non-turn-taking cooperative actions. Furthermore, the degree of inter-brain synchronization was significantly correlated with the sense of joint agency, as well as the temporal accuracy of the tapping actions of the pair. These results indicate that the sense of joint agency strongly reflects the inter-brain synchronization, which depends on the quality of mutual cooperation during a joint action.
Collapse
|
24
|
Reinero DA, Dikker S, Van Bavel JJ. Inter-brain synchrony in teams predicts collective performance. Soc Cogn Affect Neurosci 2021; 16:43-57. [PMID: 32991728 PMCID: PMC7812618 DOI: 10.1093/scan/nsaa135] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023] Open
Abstract
Despite decades of research in economics and psychology attempting to identify ingredients that make up successful teams, neuroscientists have only just begun to study how multiple brains interact. Recent research has shown that people's brain activity becomes synchronized with others' (inter-brain synchrony) during social engagement. However, little is known as to whether inter-brain synchrony relates to collective behavior within teams. Here, we merge the nascent field of group neuroscience with the extant literature of team dynamics and collective performance. We recruited 174 participants in groups of 4 and randomly assigned them to complete a series of problem-solving tasks either independently or as a team, while simultaneously recording each person's brain activity using an electroencephalography hyperscanning setup. This design allowed us to examine the relationship between group identification and inter-brain synchrony in explaining collective performance. As expected, teammates identified more strongly with one another, cooperated more on an economic game, and outperformed the average individual on most problem-solving tasks. Crucially, inter-brain synchrony, but not self-reported group identification, predicted collective performance among teams. These results suggest that inter-brain synchrony can be informative in understanding collective performance among teams where self-report measures may fail to capture behavior.
Collapse
Affiliation(s)
- Diego A Reinero
- Department of Psychology, New York University, New York, NY, USA
| | - Suzanne Dikker
- Department of Psychology, New York University, New York, NY, USA
| | - Jay J Van Bavel
- Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
25
|
Are the new mobile wireless EEG headsets reliable for the evaluation of musical pleasure? PLoS One 2021; 15:e0244820. [PMID: 33382801 PMCID: PMC7775075 DOI: 10.1371/journal.pone.0244820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022] Open
Abstract
Since the beginning of the 20th century, electroencephalography (EEG) has been used in a wide variety of applications, both for medical needs and for the study of various cerebral processes. With the rapid development of the technique, more and more precise and advanced tools have emerged for research purposes. However, the main constraints of these devices have often been the high price and, for some devices the low transportability and the long set-up time. Nevertheless, a broad range of wireless EEG devices have emerged on the market without these constraints, but with a lower signal quality. The development of EEG recording on multiple participants simultaneously, and new technological solutions provides further possibilities to understand the cerebral emotional dynamics of a group. A great number of studies have compared and tested many mobile devices, but have provided contradictory results. It is therefore important to test the reliability of specific wireless devices in a specific research context before developing a large-scale study. The aim of this study was to assess the reliability of two wireless devices (g.tech Nautilus SAHARA electrodes and Emotiv™ Epoc +) for the detection of musical emotions, in comparison with a gold standard EEG device. Sixteen participants reported feeling emotional pleasure (from low pleasure up to musical chills) when listening to their favorite chill-inducing musical excerpts. In terms of emotion detection, our results show statistically significant concordance between Epoc + and the gold standard device in the left prefrontal and left temporal areas in the alpha frequency band. We validated the use of the Emotiv™ Epoc + for research into musical emotion. We did not find any significant concordance between g.tech and the gold standard. This suggests that Emotiv Epoc is more appropriate for musical emotion investigations in natural settings.
Collapse
|
26
|
Chabin T, Gabriel D, Chansophonkul T, Michelant L, Joucla C, Haffen E, Moulin T, Comte A, Pazart L. Cortical Patterns of Pleasurable Musical Chills Revealed by High-Density EEG. Front Neurosci 2020; 14:565815. [PMID: 33224021 PMCID: PMC7670092 DOI: 10.3389/fnins.2020.565815] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/29/2020] [Indexed: 01/02/2023] Open
Abstract
Music has the capacity to elicit strong positive feelings in humans by activating the brain's reward system. Because group emotional dynamics is a central concern of social neurosciences, the study of emotion in natural/ecological conditions is gaining interest. This study aimed to show that high-density EEG (HD-EEG) is able to reveal patterns of cerebral activities previously identified by fMRI or PET scans when the subject experiences pleasurable musical chills. We used HD-EEG to record participants (11 female, 7 male) while listening to their favorite pleasurable chill-inducing musical excerpts; they reported their subjective emotional state from low pleasure up to chills. HD-EEG results showed an increase of theta activity in the prefrontal cortex when arousal and emotional ratings increased, which are associated with orbitofrontal cortex activation localized using source localization algorithms. In addition, we identified two specific patterns of chills: a decreased theta activity in the right central region, which could reflect supplementary motor area activation during chills and may be related to rhythmic anticipation processing, and a decreased theta activity in the right temporal region, which may be related to musical appreciation and could reflect the right superior temporal gyrus activity. The alpha frontal/prefrontal asymmetry did not reflect the felt emotional pleasure, but the increased frontal beta to alpha ratio (measure of arousal) corresponded to increased emotional ratings. These results suggest that EEG may be a reliable method and a promising tool for the investigation of group musical pleasure through musical reward processing.
Collapse
Affiliation(s)
- Thibault Chabin
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
| | - Damien Gabriel
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
- INSERM CIC 1431, Centre d’Investigation Clinique de Besançon, Centre Hospitalier Universitaire de Besançon, Besançon, France
- Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation – Neuraxess, Centre Hospitalier Universitaire de Besançon, Université Bourgogne Franche-Comté, Besançon, France
| | - Tanawat Chansophonkul
- INSERM CIC 1431, Centre d’Investigation Clinique de Besançon, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Lisa Michelant
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
| | - Coralie Joucla
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
| | - Emmanuel Haffen
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
- INSERM CIC 1431, Centre d’Investigation Clinique de Besançon, Centre Hospitalier Universitaire de Besançon, Besançon, France
- Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation – Neuraxess, Centre Hospitalier Universitaire de Besançon, Université Bourgogne Franche-Comté, Besançon, France
| | - Thierry Moulin
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
- INSERM CIC 1431, Centre d’Investigation Clinique de Besançon, Centre Hospitalier Universitaire de Besançon, Besançon, France
- Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation – Neuraxess, Centre Hospitalier Universitaire de Besançon, Université Bourgogne Franche-Comté, Besançon, France
| | - Alexandre Comte
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
- INSERM CIC 1431, Centre d’Investigation Clinique de Besançon, Centre Hospitalier Universitaire de Besançon, Besançon, France
- Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation – Neuraxess, Centre Hospitalier Universitaire de Besançon, Université Bourgogne Franche-Comté, Besançon, France
| | - Lionel Pazart
- Laboratoire de Neurosciences Intégratives et Cliniques, EA 481, Université Bourgogne Franche-Comté, Besançon, France
- INSERM CIC 1431, Centre d’Investigation Clinique de Besançon, Centre Hospitalier Universitaire de Besançon, Besançon, France
- Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation – Neuraxess, Centre Hospitalier Universitaire de Besançon, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
27
|
Brain-to-Brain Neural Synchrony During Social Interactions: A Systematic Review on Hyperscanning Studies. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196669] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of this study was to conduct a comprehensive review on hyperscanning research (measuring brain activity simultaneously from more than two people interacting) using an explicit systematic method, the preferred reporting items for systematic reviews and meta-analyses (PRISMA). Data were searched from IEEE Xplore, PubMed, Engineering Village, Web of Science and Scopus databases. Inclusion criteria were journal articles written in English from 2000 to 19 June 2019. A total of 126 empirical studies were screened out to address three specific questions regarding the neuroimaging method, the application domain, and the experiment paradigm. Results showed that the most used neuroimaging method with hyperscanning was magnetoencephalography/electroencephalography (MEG/EEG; 47%), and the least used neuroimaging method was hyper-transcranial Alternating Current Stimulation (tACS) (1%). Applications in cognition accounted for almost half the studies (48%), while educational applications accounted for less than 5% of the studies. Applications in decision-making tasks were the second most common (26%), shortly followed by applications in motor synchronization (23%). The findings from this systematic review that were based on documented, transparent and reproducible searches should help build cumulative knowledge and guide future research regarding inter-brain neural synchrony during social interactions, that is, hyperscanning research.
Collapse
|
28
|
Kingsbury L, Hong W. A Multi-Brain Framework for Social Interaction. Trends Neurosci 2020; 43:651-666. [PMID: 32709376 PMCID: PMC7484406 DOI: 10.1016/j.tins.2020.06.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Social interaction can be seen as a dynamic feedback loop that couples action, reaction, and internal cognitive processes across individual agents. A fuller understanding of the social brain requires a description of how the neural dynamics across coupled brains are linked and how they coevolve over time. We elaborate a multi-brain framework that considers social interaction as an integrated network of neural systems that dynamically shape behavior, shared cognitive states, and social relationships. We describe key findings from multi-brain experiments in humans and animal models that shed new light on the function of social circuits in health and disease. Finally, we discuss recent progress in elucidating the cellular-level mechanisms underlying inter-brain neural dynamics and outline key areas for future research.
Collapse
Affiliation(s)
- Lyle Kingsbury
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Weizhe Hong
- Department of Biological Chemistry and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Astolfi L, Toppi J, Ciaramidaro A, Vogel P, Freitag CM, Siniatchkin M. Raising the bar: Can dual scanning improve our understanding of joint action? Neuroimage 2020; 216:116813. [PMID: 32276053 DOI: 10.1016/j.neuroimage.2020.116813] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Two-person neuroscience (2 PN) is a recently introduced conceptual and methodological framework used to investigate the neural basis of human social interaction from simultaneous neuroimaging of two or more subjects (hyperscanning). In this study, we adopted a 2 PN approach and a multiple-brain connectivity model to investigate the neural basis of a form of cooperation called joint action. We hypothesized different intra-brain and inter-brain connectivity patterns when comparing the interpersonal properties of joint action with non-interpersonal conditions, with a focus on co-representation, a core ability at the basis of cooperation. 32 subjects were enrolled in dual-EEG recordings during a computerized joint action task including three conditions: one in which the dyad jointly acted to pursue a common goal (joint), one in which each subject interacted with the PC (PC), and one in which each subject performed the task individually (Solo). A combination of multiple-brain connectivity estimation and specific indices derived from graph theory allowed to compare interpersonal with non-interpersonal conditions in four different frequency bands. Our results indicate that all the indices were modulated by the interaction, and returned a significantly stronger integration of multiple-subject networks in the joint vs. PC and Solo conditions. A subsequent classification analysis showed that features based on multiple-brain indices led to a better discrimination between social and non-social conditions with respect to single-subject indices. Taken together, our results suggest that multiple-brain connectivity can provide a deeper insight into the understanding of the neural basis of cooperation in humans.
Collapse
Affiliation(s)
- Laura Astolfi
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, Italy; IRCCS, Fondazione Santa Lucia, Rome, Italy.
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, Italy; IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - Angela Ciaramidaro
- Department of Education and Human Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Frankfurt University Hospital, Goethe University, Frankfurt/M, Germany
| | - Pascal Vogel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Frankfurt University Hospital, Goethe University, Frankfurt/M, Germany; Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt/M, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Frankfurt University Hospital, Goethe University, Frankfurt/M, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Frankfurt University Hospital, Goethe University, Frankfurt/M, Germany; Clinic of Child and Adolescent Psychiatry and Psychotherapy, Evangelical Hospital Bethel (EvKB), Bielefeld, Germany
| |
Collapse
|
30
|
Chabin T, Tio G, Comte A, Joucla C, Gabriel D, Pazart L. The Relevance of a Conductor Competition for the Study of Emotional Synchronization Within and Between Groups in a Natural Musical Setting. Front Psychol 2020; 10:2954. [PMID: 32010021 PMCID: PMC6979053 DOI: 10.3389/fpsyg.2019.02954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
Group emotional dynamics are a central concern in the study of human interaction and communication. To study group emotions, the social context of a musical event in natural conditions may overcome several limits of laboratory experiments and could provide a suitable framework. This study aimed to evaluate if cultural events such as a conductor competition could welcome scientific research for the study of group emotional sharing. We led an observational study, which suggests that in this particular context, public, musicians and jury would agree to participate and to wear neurophysiological and physiological devices to monitor their emotional state during the competition. Self-administrated scales showed that, in the context of a musical competition, members of the public felt strong musical emotions such as music chills. Our results suggest that such a specific competition design is a suitable experimental model to lead an experiment under ecological conditions to effectively investigate collective emotional synchronization. In the future, with the implementation of an acquisition system recording synchronous neurophysiological data for a large group of participants, we may be able to highlight mechanisms involved in emotional synchronization in a natural musical setting.
Collapse
Affiliation(s)
- Thibault Chabin
- Laboratoire de Neurosciences Intégratives et Cliniques EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Grégory Tio
- Laboratoire de Neurosciences Intégratives et Cliniques EA481, Université Bourgogne Franche-Comté, Besançon, France.,Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique INSERM CIC 1431, Besançon, France
| | - Alexandre Comte
- Laboratoire de Neurosciences Intégratives et Cliniques EA481, Université Bourgogne Franche-Comté, Besançon, France.,Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique INSERM CIC 1431, Besançon, France.,Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation - Neuraxess, Besançon, France
| | - Coralie Joucla
- Laboratoire de Neurosciences Intégratives et Cliniques EA481, Université Bourgogne Franche-Comté, Besançon, France
| | - Damien Gabriel
- Laboratoire de Neurosciences Intégratives et Cliniques EA481, Université Bourgogne Franche-Comté, Besançon, France.,Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique INSERM CIC 1431, Besançon, France.,Plateforme de Neuroimagerie Fonctionnelle et Neurostimulation - Neuraxess, Besançon, France
| | - Lionel Pazart
- Laboratoire de Neurosciences Intégratives et Cliniques EA481, Université Bourgogne Franche-Comté, Besançon, France.,Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique INSERM CIC 1431, Besançon, France
| |
Collapse
|
31
|
Müller V, Lindenberger U. Dynamic Orchestration of Brains and Instruments During Free Guitar Improvisation. Front Integr Neurosci 2019; 13:50. [PMID: 31551723 PMCID: PMC6738335 DOI: 10.3389/fnint.2019.00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/20/2019] [Indexed: 11/29/2022] Open
Abstract
Playing music in ensemble requires enhanced sensorimotor coordination and the non-verbal communication of musicians that need to coordinate their actions precisely with those of others. As shown in our previous studies on guitar duets, and also on a guitar quartet, intra- and inter-brain synchronization plays an essential role during such interaction. At the same time, sensorimotor coordination as an essential part of this interaction requires being in sync with the auditory signals coming from the played instruments. In this study, using acoustic recordings of guitar playing and electroencephalographic (EEG) recordings of brain activity from guitarists playing in duet, we aimed to explore whether the musicians' brain activity synchronized with instrument sounds produced during guitar playing. To do so, we established an analytical method based on phase synchronization between time-frequency transformed guitar signals and raw EEG signals. Given phase synchronization, or coupling between guitar and brain signals, we constructed so-called extended hyper-brain networks comprising all possible interactions between two guitars and two brains. Applying a graph-theoretical approach to these networks assessed across time, we present dynamic changes of coupling strengths or dynamic orchestration of brains and instruments during free guitar improvisation for the first time. We also show that these dynamic network topology changes are oscillatory in nature and are characterized by specific spectral peaks, indicating the temporal structure in the synchronization patterns between guitars and brains. Moreover, extended hyper-brain networks exhibit specific modular organization varying in time, and binding each time, different parts of the network into the modules, which were mostly heterogeneous (i.e., comprising signals from different instruments and brains or parts of them). This suggests that the method capturing synchronization between instruments and brains when playing music provides crucial information about the underlying mechanisms. We conclude that this method may be an indispensable tool in the investigation of social interaction, music therapy, and rehabilitation dynamics.
Collapse
Affiliation(s)
- Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
| |
Collapse
|
32
|
Li H, Yao R, Xia X, Yin G, Deng H, Yang P. Adjustment of Synchronization Stability of Dynamic Brain-Networks Based on Feature Fusion. Front Hum Neurosci 2019; 13:98. [PMID: 31001095 PMCID: PMC6455007 DOI: 10.3389/fnhum.2019.00098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 03/04/2019] [Indexed: 11/13/2022] Open
Abstract
When the brain is active, the neural activities of different regions are integrated on various spatial and temporal scales; this is termed the synchronization phenomenon in neurobiological theory. This synchronicity is also the main underlying mechanism for information integration and processing in the brain. Clinical medicine has found that some of the neurological diseases that are difficult to cure have deficiencies or abnormalities in the whole or local integration processes of the brain. By studying the synchronization capabilities of the brain-network, we can intensively describe and characterize both the state of the interactions between brain regions and their differences between people with a mental illness and a set of controls by measuring the rapid changes in brain activity in patients with psychiatric disorders and the strength and integrity of their entire brain network. This is significant for the study of mental illness. Because static brain network connection methods are unable to assess the dynamic interactions within the brain, we introduced the concepts of dynamics and variability in a constructed EEG brain functional network based on dynamic connections, and used it to analyze the variability in the time characteristics of the EEG functional network. We used the spectral features of the brain network to extract its synchronization features and used the synchronization features to describe the process of change and the differences in the brain network's synchronization ability between a group of patients and healthy controls during a working memory task. We propose a method based on the fusion of traditional features and spectral features to achieve an adjustment of the patient's brain network synchronization ability, so that its synchronization ability becomes consistent with that of healthy controls, theoretically achieving the purpose of the treatment of the diseases. Studying the stability of brain network synchronization can provide new insights into the pathogenic mechanism and cure of mental diseases and has a wide range of potential applications.
Collapse
Affiliation(s)
- Haifang Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Rong Yao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Xiaoluan Xia
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Guimei Yin
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Hongxia Deng
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Pengfei Yang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
33
|
Müller V, Delius JAM, Lindenberger U. Hyper-Frequency Network Topology Changes During Choral Singing. Front Physiol 2019; 10:207. [PMID: 30899229 PMCID: PMC6416178 DOI: 10.3389/fphys.2019.00207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/18/2019] [Indexed: 01/08/2023] Open
Abstract
Choral singing requires the coordination of physiological subsystems within and across individuals. Previously, we suggested that the choir functions as a superordinate system that imposes boundary conditions on the dynamic features of the individual singers and found reliable differences in the network topography by analyzing within- and cross-frequency couplings (WFC and CFC, respectively). Here, we further refine our analyses to investigate hyper-frequency network (HFN) topology structures (i.e., the layout or arrangement of connections) using a graph-theoretical approach. In a sample of eleven singers and one conductor engaged in choral singing (aged between 23 and 56 years, and including five men and seven women), we calculated phase coupling (WFC and CFC) between respiratory, cardiac, and vocalizing subsystems across ten frequencies of interest. All these couplings were used for construction of HFN with nodes being a combination of frequency components and subsystems across choir participants. With regard to the network topology measures, we found that clustering coefficients (CCs) as well as local and global efficiency were highest and characteristic path lengths, correspondingly, were shortest when the choir sang a canon in parts as compared to singing it in unison. Furthermore, these metrics revealed a significant relationship to individual heart rate, as an indicator of arousal, and to an index of heart rate variability indicated by the LF/HF ratio (low and high frequency, respectively), and reflecting the balance between sympathetic and parasympathetic activity. In addition, we found that the CC and local efficiency for groups singing the same canon part were higher than for groups of singers constructed randomly post hoc, indicating stronger neighbor–neighbor connections in the former. We conclude that network topology dynamics are a crucial determinant of group behavior and may represent a potent biomarker for social interaction.
Collapse
Affiliation(s)
- Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Julia A M Delius
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| |
Collapse
|
34
|
Matusz PJ, Turoman N, Tivadar RI, Retsa C, Murray MM. Brain and Cognitive Mechanisms of Top–Down Attentional Control in a Multisensory World: Benefits of Electrical Neuroimaging. J Cogn Neurosci 2019; 31:412-430. [DOI: 10.1162/jocn_a_01360] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In real-world environments, information is typically multisensory, and objects are a primary unit of information processing. Object recognition and action necessitate attentional selection of task-relevant from among task-irrelevant objects. However, the brain and cognitive mechanisms governing these processes remain not well understood. Here, we demonstrate that attentional selection of visual objects is controlled by integrated top–down audiovisual object representations (“attentional templates”) while revealing a new brain mechanism through which they can operate. In multistimulus (visual) arrays, attentional selection of objects in humans and animal models is traditionally quantified via “the N2pc component”: spatially selective enhancements of neural processing of objects within ventral visual cortices at approximately 150–300 msec poststimulus. In our adaptation of Folk et al.'s [Folk, C. L., Remington, R. W., & Johnston, J. C. Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044, 1992] spatial cueing paradigm, visual cues elicited weaker behavioral attention capture and an attenuated N2pc during audiovisual versus visual search. To provide direct evidence for the brain, and so, cognitive, mechanisms underlying top–down control in multisensory search, we analyzed global features of the electrical field at the scalp across our N2pcs. In the N2pc time window (170–270 msec), color cues elicited brain responses differing in strength and their topography. This latter finding is indicative of changes in active brain sources. Thus, in multisensory environments, attentional selection is controlled via integrated top–down object representations, and so not only by separate sensory-specific top–down feature templates (as suggested by traditional N2pc analyses). We discuss how the electrical neuroimaging approach can aid research on top–down attentional control in naturalistic, multisensory settings and on other neurocognitive functions in the growing area of real-world neuroscience.
Collapse
Affiliation(s)
- Pawel J. Matusz
- University of Applied Sciences Western Switzerland (HES-SO Valais)
- University Hospital Centre and University of Lausanne
- Vanderbilt University, Nashville, TN
| | - Nora Turoman
- University Hospital Centre and University of Lausanne
| | - Ruxandra I. Tivadar
- University Hospital Centre and University of Lausanne
- University of Lausanne and Fondation Asile des Aveugles
| | - Chrysa Retsa
- University Hospital Centre and University of Lausanne
| | - Micah M. Murray
- University Hospital Centre and University of Lausanne
- Vanderbilt University, Nashville, TN
- University of Lausanne and Fondation Asile des Aveugles
| |
Collapse
|