1
|
Sifuentes Ortega R, Peigneux P. Does targeted memory reactivation during slow-wave sleep and rapid eye movement sleep have differential effects on mnemonic discrimination and generalization? Sleep 2024; 47:zsae114. [PMID: 38766994 DOI: 10.1093/sleep/zsae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Targeted memory reactivation (TMR), or the presentation of learning-related cues during sleep, has been shown to benefit memory consolidation for specific memory traces when applied during non-rapid eye movement (NREM) sleep. Prior studies suggest that TMR during rapid eye movement (REM) sleep may play a role in memory generalization processes, but evidence remains scarce. We tested the hypothesis that TMR exerts a differential effect on distinct mnemonic processes as a function of the sleep state (REM vs. NREM) in which TMR is delivered. Mnemonic discrimination and generalization of semantic categories were investigated using an adapted version of the Mnemonic Similarity Task, before and after sleep. Forty-eight participants encoded pictures from eight semantic categories, each associated with a sound. In the pre-sleep immediate test, they had to discriminate "old" (targets) from "similar" (lures) or "new" (foils) pictures. During sleep, half of the sounds were replayed in slow wave sleep (SWS) or REM sleep. Recognition, discrimination, and generalization memory indices were tested in the morning. These indices did not differ between SWS and REM TMR groups or reactivated and non-reactivated item categories. Additional results suggest a positive effect of TMR on performance for highly similar items mostly relying on mnemonic discrimination processes. During sleep, EEG activity after cue presentation increased in the delta-theta and sigma band in the SWS group, and in the beta band in the REM TMR group. These results do not support the hypothesis of differential processing of novel memory traces when TMR is administered in distinctive physiological sleep states.
Collapse
Affiliation(s)
- Rebeca Sifuentes Ortega
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN affiliated at Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Peigneux
- UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN affiliated at Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
2
|
Dias I, Kollarik S, Siegel M, Baumann CR, Moreira CG, Noain D. Novel murine closed-loop auditory stimulation paradigm elicits macrostructural sleep benefits in neurodegeneration. J Sleep Res 2024:e14316. [PMID: 39223830 DOI: 10.1111/jsr.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Boosting slow-wave activity (SWA) by modulating slow waves through closed-loop auditory stimulation (CLAS) might provide a powerful non-pharmacological tool to investigate the link between sleep and neurodegeneration. Here, we established mouse CLAS (mCLAS)-mediated SWA enhancement and explored its effects on sleep deficits in neurodegeneration, by targeting the up-phase of slow waves in mouse models of Alzheimer's disease (AD, Tg2576) and Parkinson's disease (PD, M83). We found that tracking a 2 Hz component of slow waves leads to highest precision of non-rapid eye movement (NREM) sleep detection in mice, and that its combination with a 30° up-phase target produces a significant 15-30% SWA increase from baseline in wild-type (WTAD) and transgenic (TGAD) mice versus a mock stimulation group. Conversely, combining 2 Hz with a 40° phase target yields a significant increase ranging 30-35% in WTPD and TGPD mice. Interestingly, these phase-target-triggered SWA increases are not genotype dependent but strain specific. Sleep alterations that may contribute to disease progression and burden were described in AD and PD lines. Notably, pathological sleep traits were rescued by mCLAS, which elicited a 14% decrease of pathologically heightened NREM sleep fragmentation in TGAD mice, accompanied by a steep decrease in microarousal events during both light and dark periods. Overall, our results indicate that model-tailored phase targeting is key to modulate SWA through mCLAS, prompting the acute alleviation of key neurodegeneration-associated sleep phenotypes and potentiating sleep regulation and consolidation. Further experiments assessing the long-term effect of mCLAS in neurodegeneration may majorly impact the establishment of sleep-based therapies.
Collapse
Affiliation(s)
- Inês Dias
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
| | - Sedef Kollarik
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
| | - Michelle Siegel
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
- Center of Competence Sleep and Health, University of Zurich (UZH), Zurich, Switzerland
| | - Carlos G Moreira
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
- Center of Competence Sleep and Health, University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
3
|
Zhao X, Chen PH, Chen J, Sun H. Manipulated overlapping reactivation of multiple memories promotes explicit gist abstraction. Neurobiol Learn Mem 2024; 213:107953. [PMID: 38950676 DOI: 10.1016/j.nlm.2024.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/19/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
Sleep is considered to promote gist abstraction on the basis of spontaneous memory reactivation. As speculated in the theory of 'information overlap to abstract (iOtA)', 'overlap' between reactivated memories, beyond reactivation, is crucial to gist abstraction. Yet so far, empirical research has not tested this theory by manipulating the factor of 'overlap'. In the current study, 'overlap' itself was manipulated by targeted memory reactivation (TMR), through simultaneously reactivating multiple memories that either contain or do not contain spatially overlapped gist information, to investigate the effect of overlapping reactivation on gist abstraction. This study had a factorial design of 2 factors with 2 levels respectively (spatial overlap/no spatial overlap, TMR/no-TMR). Accordingly, 82 healthy college students (aged 19 ∼ 25, 57 females) were randomized into four groups. After learning 16 pictures, paired with 4 auditory cues (4 pictures - 1 cue) according to the grouping, participants were given a 90-minute nap opportunity. Then TMR cueing was conducted during N2 and slow wave sleep of the nap. Performance in memory task was used to measure gist abstraction. The results showed a significant main effect of TMR on both implicit and explicit gist abstraction, and a marginally significant interaction effect on explicit gist abstraction. Further analyses showed that explicit gist abstraction in the spatial overlap & TMR group was significantly better than in the control group. Moreover, explicit gist abstraction was positively correlated with spindle density. The current study thus indicates that TMR facilitates gist abstraction, and explicit gist abstraction may benefit more from overlapping reactivation.
Collapse
Affiliation(s)
- Xiaoxia Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China
| | - Po-Han Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China
| | - Jie Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 51 HuayuanBei Road, Beijing 100191, China.
| |
Collapse
|
4
|
van der Heijden AC, van der Werf YD, van den Heuvel OA, Talamini LM, van Marle HJF. Targeted memory reactivation to augment treatment in post-traumatic stress disorder. Curr Biol 2024; 34:3735-3746.e5. [PMID: 39116885 DOI: 10.1016/j.cub.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/30/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder with traumatic memories at its core. Post-treatment sleep may offer a unique time window to increase therapeutic efficacy through consolidation of therapeutically modified traumatic memories. Targeted memory reactivation (TMR) enhances memory consolidation by presenting reminder cues (e.g., sounds associated with a memory) during sleep. Here, we applied TMR in PTSD patients to strengthen therapeutic memories during sleep after one treatment session with eye movement desensitization and reprocessing (EMDR). PTSD patients received either slow oscillation (SO) phase-targeted TMR, using modeling-based closed-loop neurostimulation (M-CLNS) with EMDR clicks as a reactivation cue (n = 17), or sham stimulation (n = 16). Effects of TMR on sleep were assessed through high-density polysomnography. Effects on treatment outcome were assessed through subjective, autonomic, and fMRI responses to script-driven imagery (SDI) of the targeted traumatic memory and overall PTSD symptom level. Compared to sham stimulation, TMR led to stimulus-locked increases in SO and spindle dynamics, which correlated positively with PTSD symptom reduction in the TMR group. Given the role of SOs and spindles in memory consolidation, these findings suggest that TMR may have strengthened the consolidation of the EMDR-treatment memory. Clinically, TMR vs. sham stimulation resulted in a larger reduction of avoidance level during SDI. TMR did not disturb sleep or trigger nightmares. Together, these data provide first proof of principle that TMR may be a safe and viable future treatment augmentation strategy for PTSD. The required follow-up studies may implement multi-night TMR or TMR during REM sleep to further establish the clinical effect of TMR for traumatic memories.
Collapse
Affiliation(s)
- Anna C van der Heijden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Lucia M Talamini
- University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands; University of Amsterdam, Amsterdam Brain and Cognition, Nieuwe Achtergracht 1001 NK Amsterdam, the Netherlands
| | - Hein J F van Marle
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Oldenaller 1081 HJ Amsterdam, the Netherlands; ARQ National Psychotrauma Center, Nienoord 1112 XE Diemen, the Netherlands.
| |
Collapse
|
5
|
Bloxham A, Horton CL. Enhancing and advancing the understanding and study of dreaming and memory consolidation: Reflections, challenges, theoretical clarity, and methodological considerations. Conscious Cogn 2024; 123:103719. [PMID: 38941924 DOI: 10.1016/j.concog.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Empirical investigations that search for a link between dreaming and sleep-dependent memory consolidation have focused on testing for an association between dreaming of what was learned, and improved memory performance for learned material. Empirical support for this is mixed, perhaps owing to the inherent challenges presented by the nature of dreams, and methodological inconsistencies. The purpose of this paper is to address critically prevalent assumptions and practices, with the aim of clarifying and enhancing research on this topic, chiefly by providing a theoretical synthesis of existing models and evidence. Also, it recommends the method of Targeted Memory Reactivation (TMR) as a means for investigating if dream content can be linked to specific cued activations. Other recommendations to enhance research practice and enquiry on this subject are also provided, focusing on the HOW and WHY we search for memory sources in dreams, and what purpose (if any) they might serve.
Collapse
Affiliation(s)
- Anthony Bloxham
- Nottingham Trent University, Nottingham, NG1 4FQ, United Kingdom.
| | | |
Collapse
|
6
|
Xia T, Chen D, Zeng S, Yao Z, Liu J, Qin S, Paller KA, Torres Platas SG, Antony JW, Hu X. Aversive memories can be weakened during human sleep via the reactivation of positive interfering memories. Proc Natl Acad Sci U S A 2024; 121:e2400678121. [PMID: 39052838 PMCID: PMC11295023 DOI: 10.1073/pnas.2400678121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Recollecting painful or traumatic experiences can be deeply troubling. Sleep may offer an opportunity to reduce such suffering. We developed a procedure to weaken older aversive memories by reactivating newer positive memories during sleep. Participants viewed 48 nonsense words each paired with a unique aversive image, followed by an overnight sleep. In the next evening, participants learned associations between half of the words and additional positive images, creating interference. During the following non-rapid-eye-movement sleep, auditory memory cues were unobtrusively delivered. Upon waking, presenting cues associated with both aversive and positive images during sleep, as opposed to not presenting cues, weakened aversive memory recall while increasing positive memory intrusions. Substantiating these memory benefits, computational modeling revealed that cueing facilitated evidence accumulation toward positive affect judgments. Moreover, cue-elicited theta brain rhythms during sleep predominantly predicted the recall of positive memories. A noninvasive sleep intervention can thus modify aversive recollection and affective responses.
Collapse
Affiliation(s)
- Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region999077, China
| | - Danni Chen
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region999077, China
| | - Shengzi Zeng
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region999077, China
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA02215
- Department of Psychiatry, Harvard Medical School, Boston, MA02215
| | - Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region999077, China
| | - Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region999077, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group McGovern Institute for Brain Research, Beijing Normal University, Beijing100875, China
| | - Ken A. Paller
- Cognitive Neuroscience Program and Department of Psychology, Northwestern University, Evanston, IL60208
| | - S. Gabriela Torres Platas
- Cognitive Neuroscience Program and Department of Psychology, Northwestern University, Evanston, IL60208
| | - James W. Antony
- Department of Psychology & Child Development, California Polytechnic State University, San Luis Obispo, CA93407
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region999077, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation, Shenzhen518057, China
| |
Collapse
|
7
|
Alipour M, Seok S, Mednick SC, Malerba P. A classification-based generative approach to selective targeting of global slow oscillations during sleep. Front Hum Neurosci 2024; 18:1342975. [PMID: 38415278 PMCID: PMC10896842 DOI: 10.3389/fnhum.2024.1342975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Background Given sleep's crucial role in health and cognition, numerous sleep-based brain interventions are being developed, aiming to enhance cognitive function, particularly memory consolidation, by improving sleep. Research has shown that Transcranial Alternating Current Stimulation (tACS) during sleep can enhance memory performance, especially when used in a closed-loop (cl-tACS) mode that coordinates with sleep slow oscillations (SOs, 0.5-1.5Hz). However, sleep tACS research is characterized by mixed results across individuals, which are often attributed to individual variability. Objective/Hypothesis This study targets a specific type of SOs, widespread on the electrode manifold in a short delay ("global SOs"), due to their close relationship with long-term memory consolidation. We propose a model-based approach to optimize cl-tACS paradigms, targeting global SOs not only by considering their temporal properties but also their spatial profile. Methods We introduce selective targeting of global SOs using a classification-based approach. We first estimate the current elicited by various stimulation paradigms, and optimize parameters to match currents found in natural sleep during a global SO. Then, we employ an ensemble classifier trained on sleep data to identify effective paradigms. Finally, the best stimulation protocol is determined based on classification performance. Results Our study introduces a model-driven cl-tACS approach that specifically targets global SOs, with the potential to extend to other brain dynamics. This method establishes a connection between brain dynamics and stimulation optimization. Conclusion Our research presents a novel approach to optimize cl-tACS during sleep, with a focus on targeting global SOs. This approach holds promise for improving cl-tACS not only for global SOs but also for other physiological events, benefiting both research and clinical applications in sleep and cognition.
Collapse
Affiliation(s)
- Mahmoud Alipour
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- The Ohio State University School of Medicine, Columbus, OH, United States
| | - SangCheol Seok
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Sara C. Mednick
- Department of Cognitive Sciences, University of California, Irvine, Irvine CA, United States
| | - Paola Malerba
- Center for Biobehavioral Health, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- The Ohio State University School of Medicine, Columbus, OH, United States
| |
Collapse
|
8
|
Mickes L, Morgan DP, Fuentes Grandón DA, Boogert S, Kazanina N. Illustrations of interactions needed when investigating sleep using a type of AM-PM PM-AM design. Psychon Bull Rev 2023; 30:2106-2115. [PMID: 37322385 PMCID: PMC10728231 DOI: 10.3758/s13423-023-02248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Sleep has long been thought of and promoted to be beneficial for memory. Some claims that sleep aids memory have been made in the absence of a critical interaction. This condition is necessary when using a commonly-used experimental design (a type of AM-PM PM-AM design). We propose that a sleep effect exists only if there is an interaction between groups (experimental and time-of-day controls) and the time of test or study (morning and evening). We show different patterns of results that would and would not support a sleep effect with empirical and model-generated data from recognition memory experiments and hypothetical data. While we use these data to make our point, our suggestions apply to any memory and non-memory-related investigation (e.g., emotional memory, false memory susceptibility, language learning, problem-solving). Testing for and finding the proper interaction will add to the evidence that sleep boosts performance.
Collapse
Affiliation(s)
| | - David P Morgan
- Department of Clinical Psychology, Heidelberg University, Heidelberg, Germany
- Department of Addiction Behaviour and Addiction Medicine, Heidelberg University, Heidelberg, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | | | | | | |
Collapse
|
9
|
Salgado-Puga K, Rothschild G. Exposure to sounds during sleep impairs hippocampal sharp wave ripples and memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568283. [PMID: 38045371 PMCID: PMC10690295 DOI: 10.1101/2023.11.22.568283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Sleep is critical for the consolidation of recent experiences into long-term memories. As a key underlying neuronal mechanism, hippocampal sharp-wave ripples (SWRs) occurring during sleep define periods of hippocampal reactivation of recent experiences and have been causally linked with memory consolidation. Hippocampal SWR-dependent memory consolidation during sleep is often referred to as occurring during an "offline" state, dedicated to processing internally generated neural activity patterns rather than external stimuli. However, the brain is not fully disconnected from the environment during sleep. In particular, sounds heard during sleep are processed by a highly active auditory system which projects to brain regions in the medial temporal lobe, reflecting an anatomical pathway for sound modulation of hippocampal activity. While neural processing of salient sounds during sleep, such as those of a predator or an offspring, is evolutionarily adaptive, whether ongoing processing of environmental sounds during sleep interferes with SWR-dependent memory consolidation remains unknown. To address this question, we used a closed-loop system to deliver non-waking sound stimuli during or following SWRs in sleeping rats. We found that exposure to sounds during sleep suppressed the ripple power and reduced the rate of SWRs. Furthermore, sounds delivered during SWRs (On-SWR) suppressed ripple power significantly more than sounds delivered 2 seconds after SWRs (Off-SWR). Next, we tested the influence of sound presentation during sleep on memory consolidation. To this end, SWR-triggered sounds were applied during sleep sessions following learning of a conditioned place preference paradigm, in which rats learned a place-reward association. We found that On-SWR sound pairing during post-learning sleep induced a complete abolishment of memory retention 24 h following learning, while leaving memory retention immediately following sleep intact. In contrast, Off-SWR pairing weakened memory 24 h following learning as well as immediately following learning. Notably, On-SWR pairing induced a significantly larger impairment in memory 24 h after learning as compared to Off-SWR pairing. Together, these findings suggest that sounds heard during sleep suppress SWRs and memory consolidation, and that the magnitude of these effects are dependent on sound-SWR timing. These results suggest that exposure to environmental sounds during sleep may pose a risk for memory consolidation processes.
Collapse
|
10
|
Xia T, Antony JW, Paller KA, Hu X. Targeted memory reactivation during sleep influences social bias as a function of slow-oscillation phase and delta power. Psychophysiology 2023; 60:e14224. [PMID: 36458473 PMCID: PMC10085833 DOI: 10.1111/psyp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/27/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022]
Abstract
To understand how memories are reactivated and consolidated during sleep, experimenters have employed the unobtrusive re-presentation of memory cues from a variety of pre-sleep learning tasks. Using this procedure, known as targeted memory reactivation (TMR), we previously found that reactivation of counter-social-bias training during post-training sleep could selectively enhance training effects in reducing unintentional social biases. Here, we describe re-analyses of electroencephalographic (EEG) data from this previous study to characterize neurophysiological correlates of TMR-induced bias reduction. We found that TMR benefits in bias reduction were associated with (a) the timing of memory-related cue presentation relative to the 0.1-1.5 Hz slow-oscillation phase and (b) cue-elicited EEG power within the 1-4 Hz delta range. Although cue delivery was at a fixed rate in this study and not contingent on the slow-oscillation phase, cues were found to be clustered in slow-oscillation upstates for those participants with stronger TMR benefits. Similarly, higher cue-elicited delta power 250-1000 ms after cue onset was also linked with larger TMR benefits. These electrophysiological results substantiate the claim that memory reactivation altered social bias in the original study, while also informing neural explanations of these benefits. Future research should consider these sleep physiology parameters in relation to TMR applications and to memory reactivation in general.
Collapse
Affiliation(s)
- Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, China
| | - James W. Antony
- Department of Psychology, Center for Mind and Brain, University of California, Davis, USA
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, USA
| | - Ken A. Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, USA
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
11
|
Picard-Deland C, Bernardi G, Genzel L, Dresler M, Schoch SF. Memory reactivations during sleep: a neural basis of dream experiences? Trends Cogn Sci 2023; 27:568-582. [PMID: 36959079 DOI: 10.1016/j.tics.2023.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Newly encoded memory traces are spontaneously reactivated during sleep. Since their discovery in the 1990s, these memory reactivations have been discussed as a potential neural basis for dream experiences. New results from animal and human research, as well as from the rapidly growing field of sleep and dream engineering, provide essential insights into this question, and reveal both strong parallels and disparities between the two phenomena. We suggest that, although memory reactivations may contribute to subjective experiences across different states of consciousness, they are not likely to be the primary neural basis of dreaming. We identify important limitations in current research paradigms and suggest novel strategies to address this question empirically.
Collapse
Affiliation(s)
- Claudia Picard-Deland
- Dream and Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, University of Montreal, Montreal, QC, Canada
| | - Giulio Bernardi
- Institutions, Markets, Technologies (IMT) School for Advanced Studies Lucca, Lucca, Italy
| | - Lisa Genzel
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sarah F Schoch
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Center of Competence Sleep and Health Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Abdellahi MEA, Koopman ACM, Treder MS, Lewis PA. Targeting targeted memory reactivation: Characteristics of cued reactivation in sleep. Neuroimage 2023; 266:119820. [PMID: 36535324 DOI: 10.1016/j.neuroimage.2022.119820] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted memory reactivation (TMR) is a technique in which sensory cues associated with memories during wake are used to trigger memory reactivation during subsequent sleep. The characteristics of such cued reactivation, and the optimal placement of TMR cues, remain to be determined. We built an EEG classification pipeline that discriminated reactivation of right- and left-handed movements and found that cues which fall on the up-going transition of the slow oscillation (SO) are more likely to elicit a classifiable reactivation. We also used a novel machine learning pipeline to predict the likelihood of eliciting a classifiable reactivation after each TMR cue using the presence of spindles and features of SOs. Finally, we found that reactivations occurred either immediately after the cue or one second later. These findings greatly extend our understanding of memory reactivation and pave the way for development of wearable technologies to efficiently enhance memory through cueing in sleep.
Collapse
Affiliation(s)
- Mahmoud E A Abdellahi
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff CF24 4HQ, United Kingdom.
| | - Anne C M Koopman
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff CF24 4HQ, United Kingdom
| | - Matthias S Treder
- School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, United Kingdom
| | - Penelope A Lewis
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
13
|
Xia T, Yao Z, Guo X, Liu J, Chen D, Liu Q, Paller KA, Hu X. Updating memories of unwanted emotions during human sleep. Curr Biol 2023; 33:309-320.e5. [PMID: 36584677 PMCID: PMC9979073 DOI: 10.1016/j.cub.2022.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 12/30/2022]
Abstract
Post-learning sleep contributes to memory consolidation. Yet it remains contentious whether sleep affords opportunities to modify or update emotional memories, particularly when people would prefer to forget those memories. Here, we attempted to update memories during sleep, using spoken positive words paired with cues to recent memories of aversive events. Affective updating using positive words during human non-rapid eye movement (NREM) sleep, compared with using neutral words instead, reduced negative affective judgments in post-sleep tests, suggesting that the recalled events were perceived as less aversive. Electroencephalogram (EEG) analyses showed that positive words modulated theta and spindle/sigma activity; specifically, to the extent that theta power was larger for the positive words than for the memory cues that followed, participants judged the memory cues less negatively. Moreover, to the extent that sigma power was larger for the positive words than for the memory cues that followed, participants forgot more episodic details about aversive events. Notably, when the onset of individual positive words coincided with the up-phase of slow oscillations (a state characterized by increased cortical excitability during NREM sleep), affective updating was more successful. In sum, we altered the affective content of memories via the strategic pairing of positive words and memory cues during sleep, linked with EEG theta power increases and the slow oscillation up-phase. These findings suggest novel possibilities for modifying unwanted memories during sleep, which would not require people to consciously confront memories that they prefer to avoid.
Collapse
Affiliation(s)
- Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xue Guo
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610068, China
| | - Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Danni Chen
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Qiang Liu
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610068, China; Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, Dalian 116029, China.
| | - Ken A Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen 518057, China.
| |
Collapse
|
14
|
Lipinska G, Austin H, Moonsamy JR, Henry M, Lewis R, Baldwin DS, Thomas KGF, Stuart B. Preferential consolidation of emotional reactivity during sleep: A systematic review and meta-analysis. Front Behav Neurosci 2022; 16:976047. [PMID: 36268469 PMCID: PMC9578377 DOI: 10.3389/fnbeh.2022.976047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
Many studies have investigated whether sleep affects cognitively unmodulated reactivity to emotional stimuli. These studies operationalize emotion regulation by using subjective and/or objective measures to compare pre- and post-sleep reactivity to the same emotional stimuli. Findings have been inconsistent: some show that sleep attenuates emotional reactivity, whereas others report enhanced or maintained reactivity. Across-study methodological differences may account for discrepant findings. To resolve the questions of whether sleep leads to the attenuation, enhancement, or maintenance of emotional reactivity, and under which experimental conditions particular effects are observed, we undertook a synthesized narrative and meta-analytic approach. We searched PubMed, PsycINFO, PsycARTICLES, Web of Science, and Cochrane Library databases for relevant articles, using search terms determined a priori and search limits of language = English, participants = human, and dates = January 2006–June 2021. Our final sample included 24 studies that investigated changes in emotional reactivity in response to negatively and/or positively valenced material compared to neutral material over a period of sleep compared to a matched period of waking. Primary analyses used random effects modeling to investigate whether sleep preferentially modulates reactivity in response to emotional stimuli; secondary analyses examined potential moderators of the effect. Results showed that sleep (or equivalent periods of wakefulness) did not significantly affect psychophysiological measures of reactivity to negative or neutral stimuli. However, self-reported arousal ratings of negative stimuli were significantly increased post-sleep but not post-waking. Sub-group analyses indicated that (a) sleep-deprived participants, compared to those who slept or who experienced daytime waking, reacted more strongly and negatively in response to positive stimuli; (b) nap-exposed participants, compared to those who remained awake or who slept a full night, rated negative pictures less negatively; and (c) participants who did not obtain substantial REM sleep, compared to those who did and those exposed to waking conditions, had attenuated reactivity to neutral stimuli. We conclude that sleep may affect emotional reactivity, but that studies need more consistency in methodology, commitment to collecting both psychophysiological and self-report measures, and should report REM sleep parameters. Using these methodological principles would promote a better understanding of under which conditions particular effects are observed.
Collapse
Affiliation(s)
- Gosia Lipinska
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Gosia Lipinska
| | - Holly Austin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jasmin R. Moonsamy
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Michelle Henry
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
- Numeracy Centre, Centre for Higher Education Development, University of Cape Town, Cape Town, South Africa
| | - Raphaella Lewis
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - David S. Baldwin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Kevin G. F. Thomas
- UCT Sleep Sciences and Applied Cognitive Science and Experimental Neuroscience Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Beth Stuart
- Centre for Evaluation and Methods, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
15
|
Cunningham TJ, Stickgold R, Kensinger EA. Investigating the effects of sleep and sleep loss on the different stages of episodic emotional memory: A narrative review and guide to the future. Front Behav Neurosci 2022; 16:910317. [PMID: 36105652 PMCID: PMC9466000 DOI: 10.3389/fnbeh.2022.910317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
For two decades, sleep has been touted as one of the primary drivers for the encoding, consolidation, retention, and retrieval of episodic emotional memory. Recently, however, sleep's role in emotional memory processing has received renewed scrutiny as meta-analyses and reviews have indicated that sleep may only contribute a small effect that hinges on the content or context of the learning and retrieval episodes. On the one hand, the strong perception of sleep's importance in maintaining memory for emotional events may have been exacerbated by publication bias phenomena, such as the "winner's curse" and "file drawer problem." On the other hand, it is plausible that there are sets of circumstances that lead to consistent and reliable effects of sleep on emotional memory; these circumstances may depend on factors such as the placement and quality of sleep relative to the emotional experience, the content and context of the emotional experience, and the probes and strategies used to assess memory at retrieval. Here, we review the literature on how sleep (and sleep loss) influences each stage of emotional episodic memory. Specifically, we have separated previous work based on the placement of sleep and sleep loss in relation to the different stages of emotional memory processing: (1) prior to encoding, (2) immediately following encoding during early consolidation, (3) during extended consolidation, separated from initial learning, (4) just prior to retrieval, and (5) post-retrieval as memories may be restructured and reconsolidated. The goals of this review are three-fold: (1) examine phases of emotional memory that sleep may influence to a greater or lesser degree, (2) explicitly identify problematic overlaps in traditional sleep-wake study designs that are preventing the ability to better disentangle the potential role of sleep in the different stages of emotional memory processing, and (3) highlight areas for future research by identifying the stages of emotional memory processing in which the effect of sleep and sleep loss remains under-investigated. Here, we begin the task of better understanding the contexts and factors that influence the relationship between sleep and emotional memory processing and aim to be a valuable resource to facilitate hypothesis generation and promote important future research.
Collapse
Affiliation(s)
- Tony J. Cunningham
- Center for Sleep and Cognition, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, United States
| | - Robert Stickgold
- Center for Sleep and Cognition, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Elizabeth A. Kensinger
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
16
|
van der Heijden AC, van den Heuvel OA, van der Werf YD, Talamini LM, van Marle HJF. Sleep as a window to target traumatic memories. Neurosci Biobehav Rev 2022; 140:104765. [PMID: 35803396 DOI: 10.1016/j.neubiorev.2022.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a severe psychiatric disorder in which traumatic memories result in flashbacks and nightmares. With one-third of patients not responding to standard exposure-based psychotherapy, new treatment strategies are needed. Sleep offers a unique time window to enhance therapeutic efficacy. Traumatic memories that are neutralized in therapy need to be stored back into memory (consolidated) during sleep to solidify the treatment effect. New basic research shows that memory consolidation can be enhanced by presenting sounds or scents that were linked to the memory at encoding, again during sleep. This procedure, termed targeted memory reactivation (TMR), has, despite its clinical potential, not been tested in (PTSD) patients. In this narrative review, we explore the potential of TMR as a new sleep-based treatment for PTSD. First we provide the necessary background on the memory and sleep principles underlying PTSD as well as the present applications and conditional factors of TMR. Then, we will discuss the outstanding questions and most promising experimental avenues when testing TMR to treat traumatic memories.
Collapse
Affiliation(s)
- A C van der Heijden
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Department Anatomy & Neuroscience, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Amsterdam, the Netherlands.
| | - O A van den Heuvel
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Department Anatomy & Neuroscience, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, the Netherlands
| | - Y D van der Werf
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Department Anatomy & Neuroscience, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Amsterdam, the Netherlands
| | - L M Talamini
- University of Amsterdam, Dept. of Psychology, Brain & Cognition, Nieuwe Achtergracht 129B, 1018 WS Amsterdam, the Netherlands
| | - H J F van Marle
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Department Anatomy & Neuroscience, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amstelveenseweg 589, 1081 JC Amsterdam, the Netherlands
| |
Collapse
|
17
|
Targeted memory reactivation in REM but not SWS selectively reduces arousal responses. Commun Biol 2021; 4:404. [PMID: 33767319 PMCID: PMC7994443 DOI: 10.1038/s42003-021-01854-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence suggests that sleep can help to decouple the memory of emotional experiences from their associated affective charge. This process is thought to rely on the spontaneous reactivation of emotional memories during sleep, though it is still unclear which sleep stage is optimal for such reactivation. We examined this question by explicitly manipulating memory reactivation in both rapid-eye movement sleep (REM) and slow-wave sleep (SWS) using targeted memory reactivation (TMR) and testing the impact of this manipulation on habituation of subjective arousal responses across a night. Our results show that TMR during REM, but not SWS significantly decreased subjective arousal, and this effect is driven by the more negative stimuli. These results support one aspect of the sleep to forget, sleep to remember (SFSR) hypothesis which proposes that emotional memory reactivation during REM sleep underlies sleep-dependent habituation. Hutchison et al. played sounds, which were paired with either emotionally negative or neutral images, to participants during either REM or slow-wave stages of sleep. They demonstrated that such targeted memory reactivation during REM sleep, but not slow-wave sleep, significantly decreased arousal. This provides key information about memory consolidation/loss during sleep.
Collapse
|
18
|
Lancel M, van Marle HJF, Van Veen MM, van Schagen AM. Disturbed Sleep in PTSD: Thinking Beyond Nightmares. Front Psychiatry 2021; 12:767760. [PMID: 34899428 PMCID: PMC8654347 DOI: 10.3389/fpsyt.2021.767760] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Sleep disturbances frequently co-occur with posttraumatic stress disorder (PTSD). Insomnia and nightmares are viewed as core symptoms of PTSD. Yet, relations between disturbed sleep and PTSD are far more complex: PTSD is linked to a broad range of sleep disorders and disturbed sleep markedly affects PTSD-outcome. This article provides a concise overview of the literature on prevalent comorbid sleep disorders, their reciprocal relation with PTSD and possible underlying neurophysiological mechanisms. Furthermore, diagnostic procedures, standard interventions-particularly first choice non-pharmacological therapies-and practical problems that often arise in the assessment and treatment of sleep disturbances in PTSD are described. Finally, we will present some perspectives on future multidisciplinary clinical and experimental research to develop new, more effective sleep therapies to improve both sleep and PTSD.
Collapse
Affiliation(s)
- Marike Lancel
- Centre of Expertise on Sleep and Psychiatry, GGZ Drenthe Mental Health Institute, Assen, Netherlands.,Department of Clinical Psychology and Experimental Psychopathology, University of Groningen, Groningen, Netherlands
| | - Hein J F van Marle
- Department of Psychiatry, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam UMC, Amsterdam, Netherlands.,GGZ InGeest Specialized Mental Health Care, Amsterdam, Netherlands
| | - Maaike M Van Veen
- Centre of Expertise on Sleep and Psychiatry, GGZ Drenthe Mental Health Institute, Assen, Netherlands
| | | |
Collapse
|
19
|
Reactivation during sleep with incomplete reminder cues rather than complete ones stabilizes long-term memory in humans. Commun Biol 2020; 3:733. [PMID: 33277601 PMCID: PMC7718244 DOI: 10.1038/s42003-020-01457-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 10/31/2020] [Indexed: 01/15/2023] Open
Abstract
Reactivation by reminder cues labilizes memories during wakefulness, requiring reconsolidation to persist. In contrast, during sleep, cued reactivation seems to directly stabilize memories. In reconsolidation, incomplete reminders are more effective in reactivating memories than complete reminders by inducing a mismatch, i.e. a discrepancy between expected and actual events. Whether mismatch is likewise detected during sleep is unclear. Here we test whether cued reactivation during sleep is more effective for mismatch-inducing incomplete than complete reminders. We first establish that only incomplete but not complete reminders labilize memories during wakefulness. When complete or incomplete reminders are presented during 40-min sleep, both reminders are equally effective in stabilizing memories. However, when extending the retention interval for another 7 hours (following 40-min sleep), only incomplete but not complete reminders stabilize memories, regardless of the extension containing wakefulness or sleep. We propose that, during sleep, only incomplete reminders initiate long-term memory stabilization via mismatch detection. Forcato et al. show that incomplete reminder cues rather than complete ones stabilize human memories during sleep. This study suggests that only incomplete reminders initiate long-term memory stabilization via mismatch detection during sleep.
Collapse
|
20
|
Fröhlich F, Lustenberger C. Neuromodulation of sleep rhythms in schizophrenia: Towards the rational design of non-invasive brain stimulation. Schizophr Res 2020; 221:71-80. [PMID: 32354662 PMCID: PMC7316586 DOI: 10.1016/j.schres.2020.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/01/2023]
Abstract
Brain function critically depends on oscillatory synchronization of neuronal populations both during wake and sleep. Originally, neural oscillations have been discounted as an epiphenomenon. More recently, specific deficits in the structure of brain oscillations have been linked to psychiatric diseases. For example, schizophrenia is hallmarked by abnormalities in different brain oscillations. Key sleep rhythms during NEM sleep such as sleep spindles, which are implicated in memory consolidation and are related to cognitive functions, are strongly diminished in these patients compared to healthy controls. To date, it remains unclear whether these reductions in sleep oscillations are causal for the functional impairments observed in schizophrenia. The application of non-invasive brain stimulation permits the causal examination of brain network dynamics and will help to establish the causal association of sleep oscillations and symptoms of schizophrenia. To accomplish this, stimulation paradigms that selectively engage specific network targets such as sleep spindles or slow waves are needed. We propose that the successful development and application of these non-invasive brain stimulation approaches will require rational design that takes network dynamics and neuroanatomical information into account. The purpose of this article is to prepare the grounds for the next steps towards such rational design of non-invasive stimulation, with a special focus on electrical and auditory stimulation. First, we briefly summarize the deficits in network dynamics during sleep in schizophrenia. Then, we discuss today's and tomorrow's non-invasive brain stimulation modalities to engage these network targets.
Collapse
Affiliation(s)
- Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
21
|
|
22
|
van Kesteren MTR, Meeter M. How to optimize knowledge construction in the brain. NPJ SCIENCE OF LEARNING 2020; 5:5. [PMID: 32655882 PMCID: PMC7339924 DOI: 10.1038/s41539-020-0064-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/20/2020] [Indexed: 05/03/2023]
Abstract
Well-structured knowledge allows us to quickly understand the world around us and make informed decisions to adequately control behavior. Knowledge structures, or schemas, are presumed to aid memory encoding and consolidation of new experiences so we cannot only remember the past, but also guide behavior in the present and predict the future. However, very strong schemas can also lead to unwanted side effects such as false memories and misconceptions. To overcome this overreliance on a schema, we should aim to create robust schemas that are on the one hand strong enough to help to remember and predict, but also malleable enough to avoid such undesirable side effects. This raises the question as to whether there are ways to deliberately influence knowledge construction processes, with the goal to reach such optimally balanced schemas. Here, we will discuss how the mnemonic processes in our brains build long-term knowledge and, more specifically, how different phases of memory formation (encoding, consolidation, retrieval, and reconsolidation) contribute to this schema build-up. We finally provide ways how to best keep a balance between generalized semantic and detailed episodic memories, which can prove very useful in, e.g., educational settings.
Collapse
Affiliation(s)
- Marlieke Tina Renée van Kesteren
- Section of Education Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institute of Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- LEARN! Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn Meeter
- Section of Education Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- LEARN! Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Gao C, Fillmore P, Scullin MK. Classical music, educational learning, and slow wave sleep: A targeted memory reactivation experiment. Neurobiol Learn Mem 2020; 171:107206. [PMID: 32145407 DOI: 10.1016/j.nlm.2020.107206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 11/19/2022]
Abstract
Poor sleep in college students compromises the memory consolidation processes necessary to retain course materials. A solution may lie in targeting reactivation of memories during sleep (TMR). Fifty undergraduate students completed a college-level microeconomics lecture (mathematics-based) while listening to distinctive classical music (Chopin, Beethoven, and Vivaldi). After they fell asleep, we re-played the classical music songs (TMR) or a control noise during slow wave sleep. Relative to the control condition, the TMR condition showed an 18% improvement for knowledge transfer items that measured concept integration (d = 0.63), increasing the probability of "passing" the test with a grade of 70 or above (OR = 4.68, 95%CI: 1.21, 18.04). The benefits of TMR did not extend to a 9-month follow-up test when performance dropped to floor levels, demonstrating that long-term-forgetting curves are largely resistant to experimentally-consolidated memories. Spectral analyses revealed greater frontal theta activity during slow wave sleep in the TMR condition than the control condition (d = 0.87), and greater frontal theta activity across conditions was associated with protection against long-term-forgetting at the next-day and 9-month follow-up tests (rs = 0.42), at least in female students. Thus, students can leverage instrumental music-which they already commonly pair with studying-to help prepare for academic tests, an approach that may promote course success and persistence.
Collapse
Affiliation(s)
- Chenlu Gao
- Baylor University, Department of Psychology and Neuroscience, Waco, TX, United States
| | - Paul Fillmore
- Baylor University, Department of Communication Sciences and Disorders, Waco, TX, United States
| | - Michael K Scullin
- Baylor University, Department of Psychology and Neuroscience, Waco, TX, United States.
| |
Collapse
|
24
|
Hu X, Cheng LY, Chiu MH, Paller KA. Promoting memory consolidation during sleep: A meta-analysis of targeted memory reactivation. Psychol Bull 2020; 146:218-244. [PMID: 32027149 PMCID: PMC7144680 DOI: 10.1037/bul0000223] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeted memory reactivation (TMR) is a methodology employed to manipulate memory processing during sleep. TMR studies have great potential to advance understanding of sleep-based memory consolidation and corresponding neural mechanisms. Research making use of TMR has developed rapidly, with over 70 articles published in the last decade, yet no quantitative analysis exists to evaluate the overall effects. Here we present the first meta-analysis of sleep TMR, compiled from 91 experiments with 212 effect sizes (N = 2,004). Based on multilevel modeling, overall sleep TMR was highly effective (Hedges' g = 0.29, 95% CI [0.21, 0.38]), with a significant effect for two stages of non-rapid-eye-movement (NREM) sleep (Stage NREM 2: Hedges' g = 0.32, 95% CI [0.04, 0.60]; and slow-wave sleep: Hedges' g = 0.27, 95% CI [0.20, 0.35]). In contrast, TMR was not effective during REM sleep nor during wakefulness in the present analyses. Several analysis strategies were used to address the potential relevance of publication bias. Additional analyses showed that TMR improved memory across multiple domains, including declarative memory and skill acquisition. Given that TMR can reinforce many types of memory, it could be useful for various educational and clinical applications. Overall, the present meta-analysis provides substantial support for the notion that TMR can influence memory storage during NREM sleep, and that this method can be useful for understanding neurocognitive mechanisms of memory consolidation. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Xiaoqing Hu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Larry Y. Cheng
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Man Hey Chiu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Ken A. Paller
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Cognitive Neuroscience Program, Northwestern University, Evanston, IL, USA
| |
Collapse
|
25
|
Schechtman E, Witkowski S, Lampe A, Wilson BJ, Paller KA. Targeted memory reactivation during sleep boosts intentional forgetting of spatial locations. Sci Rep 2020; 10:2327. [PMID: 32047183 PMCID: PMC7012837 DOI: 10.1038/s41598-020-59019-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022] Open
Abstract
Although we experience thousands of distinct events on a daily basis, relatively few are committed to memory. The human capacity to intentionally control which events will be remembered has been demonstrated using learning procedures with instructions to purposely avoid committing specific items to memory. In this study, we used a variant of the item-based directed-forgetting procedure and instructed participants to memorize the location of some images but not others on a grid. These instructions were conveyed using a set of auditory cues. Then, during an afternoon nap, we unobtrusively presented a cue that was used to instruct participant to avoid committing the locations of some images to memory. After sleep, memory was worse for to-be-forgotten image locations associated with the presented sound relative to those associated with a sound that was not presented during sleep. We conclude that memory processing during sleep can serve not only to secure memory storage but also to weaken it. Given that intentional suppression may be used to weaken unpleasant memories, such sleep-based strategies may help accelerate treatments for memory-related disorders such as post-traumatic stress disorder.
Collapse
Affiliation(s)
- Eitan Schechtman
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA.
| | - Sarah Witkowski
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Anna Lampe
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Brianna J Wilson
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Ken A Paller
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
26
|
How Targeted Memory Reactivation Promotes the Selective Strengthening of Memories in Sleep. Curr Biol 2019; 29:R906-R912. [DOI: 10.1016/j.cub.2019.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Strachan JWA, Guttesen AÁV, Smith AK, Gaskell MG, Tipper SP, Cairney SA. Investigating the formation and consolidation of incidentally learned trust. J Exp Psychol Learn Mem Cogn 2019; 46:684-698. [PMID: 31355651 PMCID: PMC7115124 DOI: 10.1037/xlm0000752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
People make inferences about the trustworthiness of others based on their observed gaze behavior. Faces that consistently look toward a target location are rated as more trustworthy than those that look away from the target. Representations of trust are important for future interactions; yet little is known about how they are consolidated in long-term memory. Sleep facilitates memory consolidation for incidentally learned information and may therefore support the retention of trust representations. We investigated the consolidation of trust inferences across periods of sleep or wakefulness. In addition, we employed a memory cueing procedure (targeted memory reactivation [TMR]) in a bid to strengthen certain trust memories over others. We observed no difference in the retention of trust inferences following delays of sleep or wakefulness, and there was no effect of TMR in either condition. Interestingly, trust inferences remained stable 1 week after learning, irrespective of the initial postlearning delay. A second experiment showed that this implicit learning occurs despite participants’ being unable to explicitly recall the gaze behavior of specific faces immediately after encoding. Together, these results suggest that gist-like, social inferences are formed at the time of learning without retaining the original episodic memory and thus do not benefit from offline consolidation through replay. We discuss our findings in the context of a novel framework whereby trust judgments reflect an efficient, powerful, and adaptable storage device for social information.
Collapse
|
28
|
Lucas HD, Creery JD, Hu X, Paller KA. Grappling With Implicit Social Bias: A Perspective From Memory Research. Neuroscience 2019; 406:684-697. [PMID: 30742963 PMCID: PMC6511463 DOI: 10.1016/j.neuroscience.2019.01.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/06/2019] [Accepted: 01/21/2019] [Indexed: 11/28/2022]
Abstract
There is now widespread consensus that social biases often influence actions independently of the actor's intention or awareness. The notion that we are sometimes blind to the origins of our thoughts, attitudes, and behaviors also features prominently in research into domain-general human memory systems, which has a long history of distinguishing between implicit and explicit repercussions of past experience. A shared challenge across these fields of study is thus to identify techniques for effectively managing the contents of our memory stores, particularly those aspects into which we have limited metacognitive insight. In the present review, we examine recent developments in the cognitive neuroscience of human memory that speak to this challenge as it applies to the social domain. One area of progress pertains to the role of individuation, the process of attending to and representing in memory unique characteristics of individuals, which can limit the influence of generalizations based on social categories. A second body of work concerns breakthroughs in understanding memory consolidation, which determines the fate of newly encoded memories. We discuss the promise of each of these developments for identifying ways to become better stewards of our social minds. More generally, we suggest that, as with other forms of learning and memory, intentional practice and rehearsal may be critical in learning to minimize unwanted biases.
Collapse
Affiliation(s)
- Heather D Lucas
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jessica D Creery
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ken A Paller
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
29
|
Göldi M, Rasch B. Effects of targeted memory reactivation during sleep at home depend on sleep disturbances and habituation. NPJ SCIENCE OF LEARNING 2019; 4:5. [PMID: 31069114 PMCID: PMC6497651 DOI: 10.1038/s41539-019-0044-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Targeted memory reactivation (TMR) during sleep improves memory consolidation. However, it is still unknown whether TMR also benefits memory in real-life conditions. We tested whether TMR during sleep enhances Dutch-German vocabulary learning when applied during multiple nights at home in an unsupervised fashion. During 3 consecutive nights, 66 healthy young participants used an mp3-player to play Dutch words during sleep, without any control of sleep or awakenings by tones (unsupervised TMR). Unsupervised TMR benefitted overall memory scores only in a subgroup of participants, who reported no disturbances by TMR during sleep. Participants who reported general disturbances of sleep showed no benefit, while TMR specifically impaired memory in a third group who reported specific disturbances by the played words during sleep. Separate analysis per night indicated that memory benefits by TMR were significant in the entire sample in the third night only. Our results indicate that sleep disturbances and habituation might be critical factors for the success of unsupervised TMR in a home setting. Habituation to the TMR process as well as automatic sleep monitoring and avoidance of auditory-induced awakenings might be a precondition to successful application of TMR to language learning in real-life.
Collapse
Affiliation(s)
- Maurice Göldi
- Department of Psychology, University of Fribourg, Rue P.-A.-Faucigny 2, CH-1701 Fribourg, Switzerland
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Rue P.-A.-Faucigny 2, CH-1701 Fribourg, Switzerland
| |
Collapse
|
30
|
Cellini N, Shimizu RE, Connolly PM, Armstrong DM, Hernandez LT, Polakiewicz AG, Estrada R, Aguilar-Simon M, Weisend MP, Mednick SC, Simons SB. Short Duration Repetitive Transcranial Electrical Stimulation During Sleep Enhances Declarative Memory of Facts. Front Hum Neurosci 2019; 13:123. [PMID: 31031612 PMCID: PMC6474382 DOI: 10.3389/fnhum.2019.00123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/22/2019] [Indexed: 11/13/2022] Open
Abstract
Transcranial electrical stimulation (tES) during sleep has been shown to successfully modulate memory consolidation. Here, we tested the effect of short duration repetitive tES (SDR-tES) during a daytime nap on the consolidation of declarative memory of facts in healthy individuals. We use a previously described approach to deliver the stimulation at regular intervals during non-rapid eye movement (NREM) sleep, specifically stage NREM2 and NREM3. Similar to previous studies using tES, we find enhanced memory performance compared to sham both after sleep and 48 h later. We also observed an increase in the proportion of time spent in NREM3 sleep and SDR-tES boosted the overall rate of slow oscillations (SOs) during NREM2/NREM3 sleep. Retrospective investigation of brain activity immediately preceding stimulation suggests that increases in the SO rate are more likely when stimulation is delivered during quiescent and asynchronous periods of activity in contrast to other closed-loop approaches which target phasic stimulation during ongoing SOs.
Collapse
Affiliation(s)
- Nicola Cellini
- Department of General Psychology, University of Padova, Padova, Italy
- Department of Cognitive Science, University of California, Irvine, Irvine, CA, United States
| | | | | | | | - Lexus T. Hernandez
- Department of Cognitive Science, University of California, Irvine, Irvine, CA, United States
| | | | | | | | | | - Sara C. Mednick
- Department of Cognitive Science, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
31
|
Cellini N, Mercurio M, Sarlo M. The Fate of Emotional Memories Over a Week: Does Sleep Play Any Role? Front Psychol 2019; 10:481. [PMID: 30890991 PMCID: PMC6411793 DOI: 10.3389/fpsyg.2019.00481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Although there is a wide consensus on how sleep processes declarative memories, how sleep affects emotional memories remains elusive. Moreover, studies assessing the long-term effect of sleep on emotional memory consolidation are scarce. Studies testing subclinical populations characterized by REM abnormalities are also lacking. Here we aimed to (i) investigate the fate of emotional memories and the potential unbinding (or preservation) between content and affective tone over time (i.e., 1 week), (ii) explore the role of seven nights of sleep (recorded via actigraphy) in emotional memory consolidation, and (iii) assess whether participants with self-reported mild-moderate depressive symptoms forget less emotional information compared to participants with low depression symptoms. We found that, although at the immediate recognition session emotional information was forgotten more than neutral information, a week later it was forgotten less than neutral information. This effect was observed both in participants with low and mild-moderate depressive symptoms. We also observed an increase in valence rating over time for negative pictures, whereas perceived arousal diminished a week later for both types of stimuli (unpleasant and neutral); an initial decrease was already observable at the immediate recognition session. Interestingly, we observed a negative association between sleep efficiency across the week and change in memory discrimination for unpleasant pictures over time, i.e., participants who slept worse were the ones who forgot less emotional information. Our results suggest that emotional memories are resistant to forgetting, particularly when sleep is disrupted, and they are not affected by non-clinical depression symptomatology.
Collapse
Affiliation(s)
- Nicola Cellini
- Department of General Psychology, University of Padua, Padua, Italy
| | - Marco Mercurio
- Department of General Psychology, University of Padua, Padua, Italy
| | - Michela Sarlo
- Department of General Psychology, University of Padua, Padua, Italy
- Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
32
|
Çalışkan G, Stork O. Hippocampal network oscillations at the interplay between innate anxiety and learned fear. Psychopharmacology (Berl) 2019; 236:321-338. [PMID: 30417233 DOI: 10.1007/s00213-018-5109-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
The hippocampus plays a central role as a hub for episodic memory and as an integrator of multimodal sensory information in time and space. Thereby, it critically determines contextual setting and specificity of episodic memories. It is also a key site for the control of innate anxiety states and involved in psychiatric diseases with heightened anxiety and generalized fear memory such as post-traumatic stress disorder (PTSD). Expression of both innate "unlearned" anxiety and "learned" fear requires contextual processing and engagement of a brain-wide network including the hippocampus together with the amygdala and medial prefrontal cortex. Strikingly, the hippocampus is also the site of emergence of oscillatory rhythms that coordinate information processing and filtering in this network. Here, we review data on how the hippocampal network oscillations and their coordination with amygdalar and prefrontal oscillations are engaged in innate threat evaluation. We further explore how such innate oscillatory communication might have an impact on contextualization and specificity of "learned" fear. We illustrate the partial overlap of fear and anxiety networks that are built by the hippocampus in conjunction with amygdala and prefrontal cortex. We further propose that (mal)-adaptive interplay via (dis)-balanced oscillatory communication between the anxiety network and the fear network may determine the strength of fear memories and their resistance to extinction.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|