1
|
Bazzal AA, Hoteit BH, Chokor M, Safawi A, Zibara Z, Rizk F, Kawssan A, Danaf N, Msheik L, Hamdar H. Potential therapeutic applications of medical gases in cancer treatment. Med Gas Res 2025; 15:309-317. [PMID: 39829166 DOI: 10.4103/mgr.medgasres-d-24-00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Medical gases were primarily used for respiratory therapy and anesthesia, which showed promising potential in the cancer therapy. Several physiological and pathological processes were affected by the key gases, such as oxygen, carbon dioxide, nitric oxide, hydrogen sulfide, and carbon monoxide. Oxygen targets shrinking the tumor via hyperbaric oxygen therapy, and once combined with radiation therapy it enhances its effect. Nitric oxide has both anti- and pro-tumor effects depending on its level; at high doses, it triggers cell death while at low doses it supports cancer growth. The same concept is applied to hydrogen sulfide which promotes cancer growth by enhancing mitochondrial bioenergetics and supporting angiogenesis at low concentrations, while at high concentrations it induces cancer cell death while sparing normal cells. Furthermore, carbon dioxide helps induce apoptosis and improve oxygenation for cancer treatments by increasing the release of oxygen from hemoglobin. Moreover, high-dose carbon monoxide gas therapy has demonstrated significant tumor reductions in vivo and is supported by nanomedicine and specialized medicines to boost its delivery to tumor cells and the availability of hydrogen peroxide. Despite the promising potentials of these gases, several challenges remain. Gas concentrations should be regulated to balance pro-tumor and anti-tumor effects for gases such as nitric oxide and hydrogen sulfide. Furthermore, effective delivery systems, such as nanoparticles, should be developed for targeted therapy.
Collapse
Affiliation(s)
- Abbas Al Bazzal
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Bassel H Hoteit
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Mariam Chokor
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Abdallah Safawi
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Zahraa Zibara
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Fatima Rizk
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Aya Kawssan
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Naseeb Danaf
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Layal Msheik
- Faculty of Medical Science, Lebanese University, Hadath, Beirut, Lebanon
| | - Hiba Hamdar
- Research Department, Plovdiv Medical University, Plovdiv, Bulgaria
- Research Department, Medical Learning Skills Academy, Beirut, Lebanon
| |
Collapse
|
2
|
Jiang ZL, Liu Y, Zhang CH, Chu T, Yang YL, Zhu YW, Wang Y, Liu YF, Zhang YX, Feng ZF, Ji XY, Wu DD. Emerging roles of hydrogen sulfide in colorectal cancer. Chem Biol Interact 2024; 403:111226. [PMID: 39237072 DOI: 10.1016/j.cbi.2024.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, plays a key role in several critical physiological and pathological processes in vivo, including vasodilation, anti-infection, anti-tumor, anti-inflammation, and angiogenesis. In colorectal cancer (CRC), aberrant overexpression of H2S-producing enzymes has been observed. Due to the important role of H2S in the proliferation, growth, and death of cancer cells, H2S can serve as a potential target for cancer therapy. In this review, we thoroughly analyzed the underlying mechanism of action of H2S in CRC from the following aspects: the synthesis and catabolism of H2S in CRC cells and its effect on cell signal transduction pathways; the inhibition effects of exogenous H2S donors with different concentrations on the growth of CRC cells and the underlying mechanism of H2S in garlic and other natural products. Furthermore, we elucidate the expression characteristics of H2S in CRC and construct a comprehensive H2S-related signaling pathway network, which has important basic and practical significance for promoting the clinical research of H2S-related drugs.
Collapse
Affiliation(s)
- Zhi-Liang Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yi Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Lun Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Medicine, Huaxian County People's Hospital, Anyang, Henan, 456400, China; Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
3
|
Ciani L, Libonati A, Dri M, Pomella S, Campanella V, Barillari G. About a Possible Impact of Endodontic Infections by Fusobacterium nucleatum or Porphyromonas gingivalis on Oral Carcinogenesis: A Literature Overview. Int J Mol Sci 2024; 25:5083. [PMID: 38791123 PMCID: PMC11121237 DOI: 10.3390/ijms25105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Periodontitis is linked to the onset and progression of oral squamous cell carcinoma (OSCC), an epidemiologically frequent and clinically aggressive malignancy. In this context, Fusobacterium (F.) nucleatum and Porphyromonas (P.) gingivalis, two bacteria that cause periodontitis, are found in OSCC tissues as well as in oral premalignant lesions, where they exert pro-tumorigenic activities. Since the two bacteria are present also in endodontic diseases, playing a role in their pathogenesis, here we analyze the literature searching for information on the impact that endodontic infection by P. gingivalis or F. nucleatum could have on cellular and molecular events involved in oral carcinogenesis. Results from the reviewed papers indicate that infection by P. gingivalis and/or F. nucleatum triggers the production of inflammatory cytokines and growth factors in dental pulp cells or periodontal cells, affecting the survival, proliferation, invasion, and differentiation of OSCC cells. In addition, the two bacteria and the cytokines they induce halt the differentiation and stimulate the proliferation and invasion of stem cells populating the dental pulp or the periodontium. Although most of the literature confutes the possibility that bacteria-induced endodontic inflammatory diseases could impact on oral carcinogenesis, the papers we have analyzed and discussed herein recommend further investigations on this topic.
Collapse
Affiliation(s)
- Luca Ciani
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Antonio Libonati
- Department of Surgical Sciences, Catholic University of Our Lady of Good Counsel of Tirane, 1001 Tirana, Albania;
| | - Maria Dri
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Vincenzo Campanella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (S.P.); (V.C.)
| |
Collapse
|
4
|
Gao W, Liu YF, Zhang YX, Wang Y, Jin YQ, Yuan H, Liang XY, Ji XY, Jiang QY, Wu DD. The potential role of hydrogen sulfide in cancer cell apoptosis. Cell Death Discov 2024; 10:114. [PMID: 38448410 PMCID: PMC10917771 DOI: 10.1038/s41420-024-01868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.
Collapse
Affiliation(s)
- Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
5
|
Yan Q, He S, Feng L, Zhang M, Han C, Wu Y, Wang C, Ma X, Ma T. A Turn-On Fluorescent Probe for Highly Selective Detection and Visualization of Hydrogen Sulfide in Fungi. Molecules 2024; 29:577. [PMID: 38338322 PMCID: PMC10856155 DOI: 10.3390/molecules29030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Hydrogen sulfide (H2S) is a significant actor in the virulence and pathogenicity of fungi. The analysis of endogenous H2S in fungi benefits the prevention and treatment of pathogenic infections. Herein, a H2S-activated turn-on fluorescent probe named DDX-DNP was developed for the sensitive and selective detection of H2S. Using DDX-DNP, the ability of several oral fungi strains to produce H2S was identified, which was also validated using a typical chromogenic medium. In addition, DDX-DNP was successfully used for the visual sensing of endogenous H2S in fungal cells via microscope, flow cytometry, and colony imaging, along with a specific validation with the co-incubation of H2S production inhibitors in living cells. Above all, DDX-DNP could be used for H2S detection, the fluorescent imaging of fungi, and even the identification of related fungi.
Collapse
Affiliation(s)
- Qingsong Yan
- School of Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shengui He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China; (S.H.); (M.Z.)
| | - Lei Feng
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; (L.F.); (Y.W.); (X.M.)
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China;
| | - Ming Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China; (S.H.); (M.Z.)
| | - Chaoyan Han
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China;
| | - Yuzhuo Wu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; (L.F.); (Y.W.); (X.M.)
| | - Chao Wang
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian 116044, China;
| | - Xiaochi Ma
- Second Affiliated Hospital, Dalian Medical University, Dalian 116023, China; (L.F.); (Y.W.); (X.M.)
| | - Tonghui Ma
- School of Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
Youness RA, Habashy DA, Khater N, Elsayed K, Dawoud A, Hakim S, Nafea H, Bourquin C, Abdel-Kader RM, Gad MZ. Role of Hydrogen Sulfide in Oncological and Non-Oncological Disorders and Its Regulation by Non-Coding RNAs: A Comprehensive Review. Noncoding RNA 2024; 10:7. [PMID: 38250807 PMCID: PMC10801522 DOI: 10.3390/ncrna10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Recently, myriad studies have defined the versatile abilities of gasotransmitters and their synthesizing enzymes to play a "Maestro" role in orchestrating several oncological and non-oncological circuits and, thus, nominated them as possible therapeutic targets. Although a significant amount of work has been conducted on the role of nitric oxide (NO) and carbon monoxide (CO) and their inter-relationship in the field of oncology, research about hydrogen sulfide (H2S) remains in its infancy. Recently, non-coding RNAs (ncRNAs) have been reported to play a dominating role in the regulation of the endogenous machinery system of H2S in several pathological contexts. A growing list of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are leading the way as upstream regulators for H2S biosynthesis in different mammalian cells during the development and progression of human diseases; therefore, their targeting can be of great therapeutic benefit. In the current review, the authors shed the light onto the biosynthetic pathways of H2S and their regulation by miRNAs and lncRNAs in various oncological and non-oncological disorders.
Collapse
Affiliation(s)
- Rana A. Youness
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Danira Ashraf Habashy
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Nour Khater
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Kareem Elsayed
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Sousanna Hakim
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Reham M. Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| |
Collapse
|
7
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
8
|
Oza PP, Kashfi K. The Triple Crown: NO, CO, and H 2S in cancer cell biology. Pharmacol Ther 2023; 249:108502. [PMID: 37517510 PMCID: PMC10529678 DOI: 10.1016/j.pharmthera.2023.108502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are three endogenously produced gases with important functions in the vasculature, immune defense, and inflammation. It is increasingly apparent that, far from working in isolation, these three exert many effects by modulating each other's activity. Each gas is produced by three enzymes, which have some tissue specificities and can also be non-enzymatically produced by redox reactions of various substrates. Both NO and CO share similar properties, such as activating soluble guanylate cyclase (sGC) to increase cyclic guanosine monophosphate (cGMP) levels. At the same time, H2S both inhibits phosphodiesterase 5A (PDE5A), an enzyme that metabolizes sGC and exerts redox regulation on sGC. The role of NO, CO, and H2S in the setting of cancer has been quite perplexing, as there is evidence for both tumor-promoting and pro-inflammatory effects and anti-tumor and anti-inflammatory activities. Each gasotransmitter has been found to have dual effects on different aspects of cancer biology, including cancer cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and immunomodulation. These seemingly contradictory actions may relate to each gas having a dual effect dependent on its local flux. In this review, we discuss the major roles of NO, CO, and H2S in the context of cancer, with an effort to highlight the dual nature of each gas in different events occurring during cancer progression.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA.
| |
Collapse
|
9
|
Ma W, Zhang X, Zhuang L. Exogenous Hydrogen Sulfide Induces A375 Melanoma Cell Apoptosis Through Overactivation of the Unfolded Protein Response. Clin Cosmet Investig Dermatol 2023; 16:1641-1651. [PMID: 37396710 PMCID: PMC10314752 DOI: 10.2147/ccid.s412588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023]
Abstract
Purpose Melanomas are highly malignant and rapidly develop drug resistance due to dysregulated apoptosis. Therefore, pro-apoptotic agents could be effective for the management of melanoma. Hydrogen sulfide is ubiquitous in the body, and exogenous hydrogen sulfide has been reported to show inhibitory and pro-apoptotic effects on cancer cells. However, whether high concentrations of exogenous hydrogen sulfide have pro-apoptotic effects on melanoma and its mechanisms remain unknown. Hence, this study aimed to explore the pro-apoptotic effects and mechanisms of exogenous hydrogen sulfide on the A375 melanoma cell line treated with a hydrogen sulfide donor (NaHS). Methods The cell proliferation test, flow cytometric analysis, Hoechst 33258 staining, and Western blotting of B-cell lymphoma 2 and cleaved caspase-3 were used to explore the pro-apoptotic effects of hydrogen sulfide on A375 cells. The transcriptional profile of NaHS-treated A375 cells was further explored via high-throughput sequencing. Western blotting of phosphorylated inositol-requiring enzyme 1α (p-IRE1α), phosphorylated protein kinase R-like ER kinase (p-PERK), phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α), C/EBP homologous protein, glucose-regulating protein 78, IRE1α, PERK, and eIF2α was performed to verify the changes in the transcriptional profile. Results NaHS inhibited A375 melanoma cell proliferation and induced apoptosis. The endoplasmic reticulum stress unfolded protein response and apoptosis-associated gene expression was upregulated in NaHS-treated A375 melanoma cells. The overactivation of the unfolded protein response and increase in endoplasmic reticulum stress was verified at the protein level. Conclusion Treatment with NaHS increased endoplasmic reticulum stress, which triggered the overactivation of the unfolded protein response and ultimately lead to melanoma cell apoptosis. The pro-apoptotic effect of NaHS suggests that it can be explored as a potential therapeutic agent in melanoma.
Collapse
Affiliation(s)
- Weiyuan Ma
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Xiuwen Zhang
- Department of Dermatology, Weihai Municipal Hospital, Weihai, Shandong Province, People’s Republic of China
| | - Le Zhuang
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
10
|
Min JY, Chun KS, Kim DH. The versatile utility of cysteine as a target for cancer treatment. Front Oncol 2023; 12:997919. [PMID: 36741694 PMCID: PMC9893486 DOI: 10.3389/fonc.2022.997919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2022] [Indexed: 01/20/2023] Open
Abstract
Owing to its unique nucleophilicity, cysteine is an attractive sulfhydryl-containing proteinogenic amino acid. It is also utilized in various metabolic pathways and redox homeostasis, as it is used for the component of major endogenous antioxidant glutathione and the generation of sulfur-containing biomolecules. In addition, cysteine is the most nucleophilic amino acid of proteins and can react with endogenous or exogenous electrophiles which can result in the formation of covalent bonds, which can alter the cellular states and functions. Moreover, post-translational modifications of cysteines trigger redox signaling and affect the three-dimensional protein structure. Protein phosphorylation mediated by kinases and phosphatases play a key role in cellular signaling that regulates many physiological and pathological processes, and consequently, the modification of cysteine regulates its activities. The modification of cysteine residues in proteins is critically important for the design of novel types of pharmacological agents. Therefore, in cancer metabolism and cancer cell survival, cysteine plays an essential role in redox regulation of cellular status and protein function. This review summarizes the diverse regulatory mechanisms of cysteine bound to or free from proteins in cancer. Furthermore, it can enhance the comprehension of the role of cysteine in tumor biology which can help in the development of novel effective cancer therapies.
Collapse
Affiliation(s)
- Jin-Young Min
- Department of Chemistry, Kyonggi University, Suwon, Gyeonggi-do, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon, Gyeonggi-do, Republic of Korea,*Correspondence: Do-Hee Kim,
| |
Collapse
|
11
|
Khattak S, Rauf MA, Khan NH, Zhang QQ, Chen HJ, Muhammad P, Ansari MA, Alomary MN, Jahangir M, Zhang CY, Ji XY, Wu DD. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules 2022; 27:3389. [PMID: 35684331 PMCID: PMC9181954 DOI: 10.3390/molecules27113389] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous biologically active gas produced in mammalian tissues. It plays a very critical role in many pathophysiological processes in the body. It can be endogenously produced through many enzymes analogous to the cysteine family, while the exogenous source may involve inorganic sulfide salts. H2S has recently been well investigated with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders. H2S is considered an oncogenic gas, and a potential therapeutic target for treating and diagnosing cancers, due to its role in mediating the development of tumorigenesis. Here in this review, an in-detail up-to-date explanation of the potential role of H2S in different malignancies has been reported. The study summarizes the synthesis of H2S, its roles, signaling routes, expressions, and H2S release in various malignancies. Considering the critical importance of this active biological molecule, we believe this review in this esteemed journal will highlight the oncogenic role of H2S in the scientific community.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Muhammad Jahangir
- Department of Psychiatric and Mental Health, Central South University, Changsha 410078, China;
| | - Chun-Yang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of General Thoracic Surgery, Hami Central Hospital, Hami 839000, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
12
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
13
|
Chen Y, Huang Z, Tang Z, Huang Y, Huang M, Liu H, Ziebolz D, Schmalz G, Jia B, Zhao J. More Than Just a Periodontal Pathogen –the Research Progress on Fusobacterium nucleatum. Front Cell Infect Microbiol 2022; 12:815318. [PMID: 35186795 PMCID: PMC8851061 DOI: 10.3389/fcimb.2022.815318] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Fusobacterium nucleatum is a common oral opportunistic bacterium that can cause different infections. In recent years, studies have shown that F. nucleatum is enriched in lesions in periodontal diseases, halitosis, dental pulp infection, oral cancer, and systemic diseases. Hence, it can promote the development and/or progression of these conditions. The current study aimed to assess research progress in the epidemiological evidence, possible pathogenic mechanisms, and treatment methods of F. nucleatum in oral and systemic diseases. Novel viewpoints obtained in recent studies can provide knowledge about the role of F. nucleatum in hosts and a basis for identifying new methods for the diagnosis and treatment of F. nucleatum-related diseases.
Collapse
Affiliation(s)
- Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Bo Jia, ; Jianjiang Zhao,
| | - Jianjiang Zhao
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
- *Correspondence: Bo Jia, ; Jianjiang Zhao,
| |
Collapse
|
14
|
Ding H, Chang J, He F, Gai S, Yang P. Hydrogen Sulfide: An Emerging Precision Strategy for Gas Therapy. Adv Healthc Mater 2022; 11:e2101984. [PMID: 34788499 DOI: 10.1002/adhm.202101984] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/06/2021] [Indexed: 12/13/2022]
Abstract
Advances in nanotechnology have enabled the rapid development of stimuli-responsive therapeutic nanomaterials for precision gas therapy. Hydrogen sulfide (H2 S) is a significant gaseous signaling molecule with intrinsic biochemical properties, which exerts its various physiological effects under both normal and pathological conditions. Various nanomaterials with H2 S-responsive properties, as new-generation therapeutic agents, are explored to guide therapeutic behaviors in biological milieu. The cross disciplinary of H2 S is an emerging scientific hotspot that studies the chemical properties, biological mechanisms, and therapeutic effects of H2 S. This review summarizes the state-of-art research on H2 S-related nanomedicines. In particular, recent advances in H2 S therapeutics for cancer, such as H2 S-mediated gas therapy and H2 S-related synergistic therapies (combined with chemotherapy, photodynamic therapy, photothermal therapy, and chemodynamic therapy) are highlighted. Versatile imaging techniques for real-time monitoring H2 S during biological diagnosis are reviewed. Finally, the biosafety issues, current challenges, and potential possibilities in the evolution of H2 S-based therapy that facilitate clinical translation to patients are discussed.
Collapse
Affiliation(s)
- He Ding
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Jinhu Chang
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| |
Collapse
|
15
|
Wu DD, Ngowi EE, Zhai YK, Wang YZ, Khan NH, Kombo AF, Khattak S, Li T, Ji XY. Role of Hydrogen Sulfide in Oral Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1886277. [PMID: 35116090 PMCID: PMC8807043 DOI: 10.1155/2022/1886277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Oral diseases are among the most common human diseases yet less studied. These diseases affect both the physical, mental, and social health of the patients resulting in poor quality of life. They affect all ages, although severe stages are mostly observed in older individuals. Poor oral hygiene, genetics, and environmental factors contribute enormously to the development and progression of these diseases. Although there are available treatment options for these diseases, the recurrence of the diseases hinders their efficiency. Oral volatile sulfur compounds (VSCs) are highly produced in oral cavity as a result of bacteria activities. Together with bacteria components such as lipopolysaccharides, VSCs participate in the progression of oral diseases by regulating cellular activities and interfering with the immune response. Hydrogen sulfide (H2S) is a gaseous neurotransmitter primarily produced endogenously and is involved in the regulation of cellular activities. The gas is also among the VSCs produced by oral bacteria. In numerous diseases, H2S have been reported to have dual effects depending on the cell, concentration, and donor used. In oral diseases, high production and subsequent utilization of this gas have been reported. Also, this high production is associated with the progression of oral diseases. In this review, we will discuss the production of H2S in oral cavity, its interaction with cellular activities, and most importantly its role in oral diseases.
Collapse
Affiliation(s)
- Dong-Dong Wu
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Yuan-Kun Zhai
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ahmad Fadhil Kombo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
16
|
Ngowi EE, Afzal A, Sarfraz M, Khattak S, Zaman SU, Khan NH, Li T, Jiang QY, Zhang X, Duan SF, Ji XY, Wu DD. Role of hydrogen sulfide donors in cancer development and progression. Int J Biol Sci 2021; 17:73-88. [PMID: 33390834 PMCID: PMC7757040 DOI: 10.7150/ijbs.47850] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, a vast number of potential cancer therapeutic targets have emerged. However, developing efficient and effective drugs for the targets is of major concern. Hydrogen sulfide (H2S), one of the three known gasotransmitters, is involved in the regulation of various cellular activities such as autophagy, apoptosis, migration, and proliferation. Low production of H2S has been identified in numerous cancer types. Treating cancer cells with H2S donors is the common experimental technique used to improve H2S levels; however, the outcome depends on the concentration/dose, time, cell type, and sometimes the drug used. Both natural and synthesized donors are available for this purpose, although their effects vary independently ranging from strong cancer suppressors to promoters. Nonetheless, numerous signaling pathways have been reported to be altered following the treatments with H2S donors which suggest their potential in cancer treatment. This review will analyze the potential of H2S donors in cancer therapy by summarizing key cellular processes and mechanisms involved.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan
| | - Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shams Uz Zaman
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
17
|
Xiao Q, Ying J, Qiao Z, Yang Y, Dai X, Xu Z, Zhang C, Xiang L. Exogenous hydrogen sulfide inhibits human melanoma cell development via suppression of the PI3K/AKT/ mTOR pathway. J Dermatol Sci 2020; 98:26-34. [PMID: 32098704 DOI: 10.1016/j.jdermsci.2020.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Melanoma is one of the most aggressive, therapy-resistant skin cancers in the world. Hydrogen sulfide (H2S), a newly discovered gasotransmitter, plays a crucial role in the progression and development of many types of cancers. However, the effect of H2S on human skin melanoma remains to be elucidated. OBJECTIVE We aimed to explore the effect of exogenous H2S on melanoma cells and its underlying mechanisms. METHODS In this study, human skin melanoma cell lines, including A375 and SK-MEL-28, were treated with a donor of H2S (NaHS). CCK-8, scratch assay, flow cytometric analysis, western blotting and transmission electron microscopy (TEM) were performed to explore the effects of H2S on cell behaviors. RESULTS Treatment with NaHS inhibited cell proliferation, migration and division, while it could induce cell apoptosis and autophagy in melanoma cell lines. Moreover, NaHS significantly decreased the expression of p-PI3K, p-Akt and mTOR proteins. Furthermore, insulin-like growth factor-1 (IGF-1), the activator of PI3K/AKT/mTOR pathway, could reverse the cell behaviors caused by NaHS. CONCLUSION Our results demonstrated that exogenous hydrogen sulfide could inhibit human melanoma cell development via suppression of the PI3K/AKT/mTOR pathway. Hydrogen sulfide might serve as a potential therapeutic option for melanoma.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Jiayi Ying
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhuhui Qiao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Xiaoxi Dai
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhongyi Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
18
|
ADT-OH, a hydrogen sulfide-releasing donor, induces apoptosis and inhibits the development of melanoma in vivo by upregulating FADD. Cell Death Dis 2020; 11:33. [PMID: 31949127 PMCID: PMC6965651 DOI: 10.1038/s41419-020-2222-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide (H2S) is now widely considered the third endogenous gasotransmitter and plays critical roles in cancer biological processes. In this study, we demonstrate that 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), the most widely used moiety for synthesising slow-releasing H2S donors, induces melanoma cell death in vitro and in vivo. Consistent with previous reports, ADT-OH inhibited IκBɑ degradation, resulting in reduced NF-κB activation and subsequent downregulation of the NF-κB-targeted anti-apoptotic proteins XIAP and Bcl-2. More importantly, we found that ADT-OH suppressed the ubiquitin-induced degradation of FADD by downregulating the expression of MKRN1, an E3 ubiquitin ligase of FADD. In addition, ADT-OH had no significant therapeutic effect on FADD-knockout B16F0 cells or FADD-knockdown A375 cells. Based on these findings, we evaluated the combined effects of ADT-OH treatment and FADD overexpression on melanoma cell death in vivo using a mouse xenograft model. As expected, tumour-specific delivery of FADD through a recombinant Salmonella strain, VNP-FADD, combined with low-dose ADT-OH treatment significantly inhibited tumour growth and induced cancer cell apoptosis. Taken together, our data suggest that ADT-OH is a promising cancer therapeutic drug that warrants further investigation into its potential clinical applications.
Collapse
|
19
|
Xie S, Fu T, He L, Qiu L, Liu H, Tan W. DNA-Capped Silver Nanoflakes as Fluorescent Nanosensor for Highly Sensitive Imaging of Endogenous H2S in Cell Division Cycles. Anal Chem 2019; 91:15404-15410. [DOI: 10.1021/acs.analchem.9b02527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sitao Xie
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Lei He
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Honglin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- School of Food and Biological Engineering, Hefei University of Technology, Anhui 230009, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Hydrogen Sulfide: Emerging Role in Bladder, Kidney, and Prostate Malignancies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2360945. [PMID: 31781328 PMCID: PMC6875223 DOI: 10.1155/2019/2360945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is the latest member of the gasotransmitter family and known to play essential roles in cancer pathophysiology. H2S is produced endogenously and can be administered exogenously. Recent studies showed that H2S in cancers has both pro- and antitumor roles. Understanding the difference in the expression and localization of tissue-specific H2S-producing enzymes in healthy and cancer tissues allows us to develop tools for cancer diagnosis and treatment. Urological malignancies are some of the most common cancers in both men and women, and their early detection is vital since advanced cancers are recurrent, metastatic, and often resistant to treatment. This review summarizes the roles of H2S in cancer and looks at current studies investigating H2S activity and expression of H2S-producing enzymes in urinary cancers. We specifically focused on urothelial carcinoma, renal cell carcinoma, and prostate cancer, as they form the majority of newly diagnosed urinary cancers. Recent studies show that besides the physiological activity of H2S in cancer cells, there are patterns between the development and prognosis of urinary cancers and the expression of H2S-producing enzymes and indirectly the H2S levels. Though controversial and not completely understood, studying the expression of H2S-producing enzymes in cancer tissue may represent an avenue for novel diagnostic and therapeutic strategies for addressing urological malignancies.
Collapse
|
21
|
Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M, Moore PK, Bian JS. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer? Antioxid Redox Signal 2019; 31:1-38. [PMID: 29790379 PMCID: PMC6551999 DOI: 10.1089/ars.2017.7058] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023]
Abstract
Significance: Hydrogen sulfide (H2S) has been recognized as the third gaseous transmitter alongside nitric oxide and carbon monoxide. In the past decade, numerous studies have demonstrated an active role of H2S in the context of cancer biology. Recent Advances: The three H2S-producing enzymes, namely cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3MST), have been found to be highly expressed in numerous types of cancer. Moreover, inhibition of CBS has shown anti-tumor activity, particularly in colon cancer, ovarian cancer, and breast cancer, whereas the consequence of CSE or 3MST inhibition remains largely unexplored in cancer cells. Intriguingly, H2S donation at high amounts or a long time duration has also been observed to induce cancer cell apoptosis in vitro and in vivo while sparing noncancerous fibroblast cells. Therefore, a bell-shaped model has been proposed to explain the role of H2S in cancer development. Specifically, endogenous H2S or a relatively low level of exogenous H2S may exhibit a pro-cancer effect, whereas exposure to H2S at a higher amount or for a long period may lead to cancer cell death. This indicates that inhibition of H2S biosynthesis and H2S supplementation serve as two distinct ways for cancer treatment. This paradoxical role of H2S has stimulated the enthusiasm for the development of novel CBS inhibitors, H2S donors, and H2S-releasing hybrids. Critical Issues: A clear relationship between H2S level and cancer progression remains lacking. The possibility that the altered levels of these byproducts have influenced the cell viability of cancer cells has not been excluded in previous studies when modulating H2S producing enzymes. Future Directions: The consequence of CSE or 3MST inhibition in cancer cells need to be examined in the future. Better portrayal of the crosstalk among these gaseous transmitters may not only lead to an in-depth understanding of cancer progression but also shed light on novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lei Ding
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-zhong Xie
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Yong Yang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | | | - Philip K. Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Viegas J, Esteves AF, Cardoso EM, Arosa FA, Vitale M, Taborda-Barata L. Biological Effects of Thermal Water-Associated Hydrogen Sulfide on Human Airways and Associated Immune Cells: Implications for Respiratory Diseases. Front Public Health 2019; 7:128. [PMID: 31231626 PMCID: PMC6560203 DOI: 10.3389/fpubh.2019.00128] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
Natural mineral (thermal) waters have been used for centuries as treatment for various diseases. However, the scientific background of such therapeutic action is mostly empiric and based on knowledge acquired over time. Among the various types of natural mineral waters, sulfurous thermal waters (STWs) are the most common type in the center of Portugal. STWs are characterized by high pH, poor mineralization, and the presence of several ions and salts, such as bicarbonate, sodium, fluoride, silica, and carbonate. Furthermore, these waters are indicated as a good option for the treatment of various illnesses, namely respiratory diseases (e.g., allergic rhinitis, asthma, and chronic obstructive pulmonary disease). From the sulfide species present in these waters, hydrogen sulfide (H2S) stands out due to its abundance. In healthy conditions, H2S-related enzymes (e.g., cystathionine β-synthase and cystathionine γ-lyase) are expressed in human lungs, where they have mucolytic, antioxidant, anti-inflammatory, and antibacterial roles, thus contributing to airway epithelium homeostasis. These roles occur mainly through S-sulfhydration, a post-translational modification through which H2S is able to change the activity of several targets, such as ion channels, second messengers, proteins, among others. However, in respiratory diseases the metabolism of H2S is altered, which seems to contribute somehow to the respiratory deterioration. Moreover, H2S has been regarded as a good biomarker of airway dysfunction and severity, and can be measured in serum, sputum, and exhaled air. Hence, in this review we will recapitulate the effects of STWs on lung epithelial-immune crosstalk through the action of its main component, H2S.
Collapse
Affiliation(s)
- Joana Viegas
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana Filipa Esteves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Elsa M Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Escola Superior da Saúde, IPG-Instituto Politécnico da Guarda, Guarda, Portugal
| | - Fernando A Arosa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Marco Vitale
- DiMeC-Department of Medicine & Surgery, University of Parma, Parma, Italy.,FoRST-Fondazione per la Ricerca Scientifica Termale, Rome, Italy
| | - Luís Taborda-Barata
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,NuESA-Health & Environment Study Group, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Department of Immunoallergology, CHUCB-Cova da Beira University Hospital Centre, Covilhã, Portugal
| |
Collapse
|
23
|
Nyein CM, Zhong X, Lu J, Luo H, Wang J, Rapposelli S, Li M, Ou-Yang Y, Pi R, He X. Synthesis and anti-glioblastoma effects of artemisinin-isothiocyanate derivatives. RSC Adv 2018; 8:40974-40983. [PMID: 35557894 PMCID: PMC9091658 DOI: 10.1039/c8ra08162j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/19/2018] [Indexed: 11/29/2022] Open
Abstract
A series of novel artemisinin (ART) derivatives containing an isothiocyanate (ITC) group were synthesized. All the compounds showed more potent anti-tumor effects than those of parent dihydroartemisinin (DHA) towards glioblastoma multiforme U87 in vitro. Among them, 5b had the strongest cytotoxic activity which exerted its effects in a concentration-dependent but not time-dependent manner (IC50 7.41 μM for 24 h, 7.35 μM for 72 h). Pyknosis was observed in 5b-treated U87 cells. Multiple intrinsic apoptotic pathways were induced by 5b including the upregulation of caspase 9, the release of cytochrome c, an increase of the proapoptotic protein Bax, a decrease of the anti-apoptotic protein Bcl 2, and the activation of execution pathways by the upregulation of caspase 3. In addition to apoptosis, an autophagic mechanism was also involved in 5b-induced cytotoxicity to human GBM U87 cells by upregulating the expression of LC3-II and downregulating p62. Furthermore, 5b also significantly attenuated the migration of U87 cells. Therefore, our results suggest that 5b may be a promising molecule for the further development of a novel drug for the treatment of glioblastoma. Synthesis of artemisinin-isothiocyanate derivatives; evaluation of the cytotoxic effects of these compounds on U87 human glioblastoma cells; compound 5b induced apoptosis and autophagy in U87 cells; compound 5b significantly inhibited the migration of U87 cells.![]()
Collapse
Affiliation(s)
- Chan Myae Nyein
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou 510006 China .,School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China .,Biotechnology Research Department, Ministry of Education Kyauk-se Myanmar
| | - Xiaolin Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Junfeng Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Huijuan Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Jiamin Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa Via Bonanno, 6 56126 Pisa Italy.,Interdepartmental Research Center for Biology and Pathology of Aging, University of Pisa Via Bonanno, 6 56126 Pisa Italy
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou China
| | - Ying Ou-Yang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou 510120 China
| | - Rongbiao Pi
- School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China .,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou China
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| |
Collapse
|
24
|
Youness RA, Assal RA, Abdel Motaal A, Gad MZ. A novel role of sONE/NOS3/NO signaling cascade in mediating hydrogen sulphide bilateral effects on triple negative breast cancer progression. Nitric Oxide 2018; 80:12-23. [PMID: 30081213 DOI: 10.1016/j.niox.2018.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
Hydrogen sulphide (H2S) gas has been recognized as an intracellular mediator influencing an array of signaling pathways. Yet, the role of H2S in cancer progression has been controversial. This study aims to unravel the role of exogenous H2S in triple negative breast cancer (TNBC) and to further investigate any possible association of H2S mediated actions with the endogenous production of nitric oxide (NO) gas. A wide concentration range of NaHS (20-2000 μM) and a variable reaction time (2-72 h) were probed. A bell-shaped impact of H2S on TNBC cellular viability, proliferation, migration, invasion and colony forming ability was repeatedly observed in the aggressive TNBC cell lines, MDA-MB-231 but not in hormone receptor positive, MCF-7 cells. This bell-shaped effect was found to be shifted towards the left upon increasing the reaction time within the range of 2-24 h. However, this was totally opposed in case of continuous exposure (72 h) to exogenous H2S. An inverted bell-shaped effect of H2S on TNBC cellular growth, migration, proliferation and colony forming ability was shown. Moreover, this study provided the first evidence of a possible involvement of NO in mediating H2S actions in TNBC. Such intricate cross-talk was found to be orchestrated by the novel lncRNA, sONE and its down-stream target NOS3 building up a novel axis, sONE/NOS3/NO, that was shown to play a pivotal role in plotting the bilateral effect of H2S on TNBC progression. Finally, this study showed that low and continuous exposure of H2S serves as a novel, selective and effective strategy in harnessing TNBC oncogenic profile through cGMP dependent and independent pathways where alterations of cell cycle regulatory proteins such as TP53 and c-Myc was observed. Moreover, NaHS could repress TNBC migration and invasion capacities through repressing the intracellular adhesion molecule, ICAM-1. In conclusion, this study provides an insight about the role of exogenous H2S in TNBC cell lines highlighting a novel crosstalk between H2S and NO orchestrated by sONE/NOS3 axis.
Collapse
Affiliation(s)
- Rana Ahmed Youness
- Department of Pharmaceutical Biology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al-Khames, 11835, Cairo, Egypt
| | - Reem Amr Assal
- Department of Pharmacology and Toxicology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al-Khames, 11835, Cairo, Egypt
| | - Amira Abdel Motaal
- Pharmacognosy Department, College of Pharmacy, King Khalid University, Abha, 61441, Saudi Arabia; Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mohamed Zakaria Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al-Khames, 11835, Cairo, Egypt.
| |
Collapse
|
25
|
Bierbaumer L, Schwarze UY, Gruber R, Neuhaus W. Cell culture models of oral mucosal barriers: A review with a focus on applications, culture conditions and barrier properties. Tissue Barriers 2018; 6:1479568. [PMID: 30252599 PMCID: PMC6389128 DOI: 10.1080/21688370.2018.1479568] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the function of oral mucosal epithelial barriers is essential for a plethora of research fields such as tumor biology, inflammation and infection diseases, microbiomics, pharmacology, drug delivery, dental and biomarker research. The barrier properties are comprised by a physical, a transport and a metabolic barrier, and all these barrier components play pivotal roles in the communication between saliva and blood. The sum of all epithelia of the oral cavity and salivary glands is defined as the blood-saliva barrier. The functionality of the barrier is regulated by its microenvironment and often altered during diseases. A huge array of cell culture models have been developed to mimic specific parts of the blood-saliva barrier, but no ultimate standard in vitro models have been established. This review provides a comprehensive overview about developed in vitro models of oral mucosal barriers, their applications, various cultivation protocols and corresponding barrier properties.
Collapse
Affiliation(s)
- Lisa Bierbaumer
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| | - Uwe Yacine Schwarze
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Reinhard Gruber
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria.,d Department of Periodontology , School of Dental Medicine, University of Bern , Bern , Switzerland
| | - Winfried Neuhaus
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| |
Collapse
|
26
|
Meram AT, Chen J, Patel S, Kim DD, Shirley B, Covello P, Coppola D, Wei EX, Ghali G, Kevil CG, Shackelford RE. Hydrogen Sulfide Is Increased in Oral Squamous Cell Carcinoma Compared to Adjacent Benign Oral Mucosae. Anticancer Res 2018; 38:3843-3852. [PMID: 29970504 PMCID: PMC7771275 DOI: 10.21873/anticanres.12668] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM Hydrogen sulfide (H2S) and the enzymes that synthesize it, cystathionine-b-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate, are increased in different human malignancies. Due to its short half-life, H2S concentrations have not been directly measured in a human malignancy. Here we directly measured in vivo H2S levels within oral squamous cell carcinoma (OSCC). PATIENTS AND METHODS Punch biopsies of OSCC and benign mucosae from 15 patients were analyzed by HPLC, western blotting, and tissue microarray analyses. RESULTS H2S concentrations were significantly higher in OSCC compared to adjacent benign oral mucosae. Western blot and tissue microarray studies revealed significantly increased cystathionine-b-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate, phopho-Stat3, mitoNEET, hTERT, and MAPK protein levels in OSCC. CONCLUSION H2S concentrations and the enzymes that synthesize it are significantly increased in OSCC. Here, for the first time H2S concentrations within a living human malignancy were measured and compared to adjacent counterpart benign tissue.
Collapse
Affiliation(s)
- Andrew T Meram
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Jie Chen
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Stavan Patel
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Dongsoo D Kim
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Brett Shirley
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Paul Covello
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Eric X Wei
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Ghali Ghali
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A
| | - Rodney E Shackelford
- Department of Pathology and Translational Pathobiology Louisiana State University Health Sciences Center, Shreveport, LA, U.S.A.
| |
Collapse
|
27
|
Yang CT, Chen L, Xu S, Day JJ, Li X, Xian M. Recent Development of Hydrogen Sulfide Releasing/Stimulating Reagents and Their Potential Applications in Cancer and Glycometabolic Disorders. Front Pharmacol 2017; 8:664. [PMID: 29018341 PMCID: PMC5623001 DOI: 10.3389/fphar.2017.00664] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022] Open
Abstract
As an important endogenous gaseous signaling molecule, hydrogen sulfide (H2S) exerts various effects in the body. A variety of pathological changes, such as cancer, glycometabolic disorders, and diabetes, are associated with altered endogenous levels of H2S, especially decreased. Therefore, the supplement of H2S is of great significance for the treatment of diseases containing the above pathological changes. At present, many efforts have been made to increase the in vivo levels of H2S by administration of gaseous H2S, simple inorganic sulfide salts, sophisticated synthetic slow-releasing controllable H2S donors or materials, and using H2S stimulating agents. In this article, we reviewed the recent development of H2S releasing/stimulating reagents and their potential applications in two common pathological processes including cancer and glycometabolic disorders.
Collapse
Affiliation(s)
- Chun-Tao Yang
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Li Chen
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shi Xu
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Jacob J Day
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Xiang Li
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
28
|
Wang C, Xu X, Jin H, Liu G. Nicotine may promote tongue squamous cell carcinoma progression by activating the Wnt/β-catenin and Wnt/PCP signaling pathways. Oncol Lett 2017; 13:3479-3486. [PMID: 28521453 PMCID: PMC5431205 DOI: 10.3892/ol.2017.5899] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
To investigate the effects and the possible underlying mechanisms of nicotine stimulation on tongue squamous cell carcinoma (TSCC) progression, a TSCC cell line Cal27 and 34 samples of paraffin-embedded TSCC were examined. Immunofluorescence, western blot analysis, and TOP/FOP flash, CCK-8, wound healing and Transwell invasion assays were used to evaluate Cal27 in response to nicotine stimulation. We also investigated expression levels of related proteins of Wnt/β-catenin and Wnt/PCP pathways in paraffin-embedded TSCC samples with or without a history of smoking by immunohistochemistry. Nicotine stimulation can promote proliferation, migration, and invasion of TSCC cells in vitro, downregulate E-cadherin, and activate the Wnt/β-catenin and Wnt/PCP pathways, which could be antagonized by the α7 nicotine acetylcholine receptor (α7 nAChR) inhibitor α-BTX. Moreover, the expression levels of β-catenin, Wnt5a and Ror2 were higher in TSCC patients with a history of smoking than those without a history of smoking. Our results suggest nicotine may promote tongue squamous carcinoma cells progression by activating the Wnt/β-catenin and Wnt/PCP signaling pathways and may play a significant role in the progression and metastasis of smoking-related TSCC.
Collapse
Affiliation(s)
- Chengze Wang
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xin Xu
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hairu Jin
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Gangli Liu
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
29
|
Functional and Molecular Insights of Hydrogen Sulfide Signaling and Protein Sulfhydration. J Mol Biol 2016; 429:543-561. [PMID: 28013031 DOI: 10.1016/j.jmb.2016.12.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), a novel gasotransmitter, is endogenously synthesized by multiple enzymes that are differentially expressed in the peripheral tissues and central nervous systems. H2S regulates a wide range of physiological processes, namely cardiovascular, neuronal, immune, respiratory, gastrointestinal, liver, and endocrine systems, by influencing cellular signaling pathways and sulfhydration of target proteins. This review focuses on the recent progress made in H2S signaling that affects mechanistic and functional aspects of several biological processes such as autophagy, inflammation, proliferation and differentiation of stem cell, cell survival/death, and cellular metabolism under both physiological and pathological conditions. Moreover, we highlighted the cross-talk between nitric oxide and H2S in several bilogical contexts.
Collapse
|
30
|
Zhang S, Bian H, Li X, Wu H, Bi Q, Yan Y, Wang Y. Hydrogen sulfide promotes cell proliferation of oral cancer through activation of the COX2/AKT/ERK1/2 axis. Oncol Rep 2016; 35:2825-32. [PMID: 26987083 DOI: 10.3892/or.2016.4691] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/27/2016] [Indexed: 11/05/2022] Open
Abstract
Hydrogen sulfide, the third gaseous transmitter, is one of the main causes of halitosis in the oral cavity. It is generally considered as playing a deleterious role in many oral diseases including oral cancer. However, the regulatory mechanisms involved in the effects of hydrogen sulfide on oral cancer growth remain largely unknown. In the present study, we investigated the underlying mechanisms through CCK-8 assay, EdU incorporation, real-time PCR, western blot and pathway blockade assays. Our results showed that hydrogen sulfide promoted oral cancer cell proliferation through activation of the COX2, AKT and ERK1/2 pathways in a dose-dependent manner. Blocking any of the three above pathways inhibited hydrogen sulfide-induced oral cancer cell proliferation. Meanwhile, blockade of COX2 by niflumic acid downregulated NaHS-induced p-ERK and p-AKT expression. Inactivation of the AKT pathway by GSK690693 significantly decreased NaHS‑induced p-ERK1/2 expression, and inhibition of the ERK1/2 pathway by U0126 markedly increased NaHS-induced p-AKT expression. Either the AKT or ERK1/2 inhibitor did not significantly alter the COX2 expression level. Our data revealed, for the first time, that hydrogen sulfide promotes oral cancer cell proliferation through activation of the COX2/AKT/ERK1/2 axis, suggesting new potential targets to eliminate the effect of hydrogen sulfide on the development of oral cancer.
Collapse
Affiliation(s)
- Shuai Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Huan Bian
- Department of Stomatology, The First Affiliated Hospital of the Chinese PLA General Hospital, Beijing, P.R. China
| | - Xiaoxu Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Huanhuan Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Qingwei Bi
- Department of Oral Surgery, Hospital for Oral Disease Prevention and Treatment, Harbin, Heilongjiang, P.R. China
| | - Yingbin Yan
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, Tianjin, P.R. China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| |
Collapse
|
31
|
Hydrogen sulfide in cancer: Friend or foe? Nitric Oxide 2015; 50:38-45. [PMID: 26297862 DOI: 10.1016/j.niox.2015.08.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/26/2015] [Accepted: 08/17/2015] [Indexed: 01/07/2023]
Abstract
Hydrogen sulfide (H2S) is the third gaseous signaling molecule that plays important roles in cancer biological processes. Recent studies indicate that H2S has both pro-cancer and anti-cancer effects. Endogenous H2S can exert pro-cancer functions through induction of angiogenesis regulation of mitochondrial bioenergetics, acceleration of cell cycle progression, and anti-apoptosis mechanisms. Thus, the inhibition of the production of H2S in cancer cells may be a new cancer treatment strategy. In contrast to the pro-cancer effect of H2S, relatively high concentrations of exogenous H2S could suppress the growth of cancer cells by inducing uncontrolled intracellular acidification, inducing cell cycle arrest, and promoting apoptosis. Therefore, H2S donors and H2S-releasing hybrids could be designed and developed as novel anti-cancer drugs. In this review, the production and metabolism of H2S in cancer cells are summarized and the role and mechanism of H2S in cancer development and progression are further discussed.
Collapse
|
32
|
Abstract
Hydrogen sulfide (H2S) donors including organosulfur compounds (OSC), inorganic sulfide salts, and synthetic compounds are useful tools in studies to elucidate the effects of H2S in cancer biology. Studies using such donors have shown the ability of H2S to suppress tumor growth both in vitro and in vivo, with some of them suggesting the selectivity of its cytotoxic effects to cancer cells. In addition to promoting cancer cell death, H2S donors were also found to inhibit cancer angiogenesis and metastasis. The underlying mechanisms for the anticancer activities of H2S involve (1) cell signaling pathways, such as MAPK and STAT; (2) cell cycle regulation; (3) microRNAs regulation; and (4) cancer metabolism and pH regulation. Altogether, compiling evidences have demonstrated the great potential of using H2S donors as anticancer agents. Nevertheless, the application and development of H2S for therapy are still facing challenges as identification of molecular targets of H2S awaits further investigation.
Collapse
|