1
|
Ding X, Du B, Lu L, Lin K, Sa R, Gao Y, Guo J, Wang N, Huang W. Combining the Optimized Maximum Entropy Model to Detect Key Factors in the Occurrence of Oedaleus decorus asiaticus in the Typical Grasslands of Central and Eastern Inner Mongolia. INSECTS 2024; 15:488. [PMID: 39057221 PMCID: PMC11276687 DOI: 10.3390/insects15070488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 07/28/2024]
Abstract
Grasshoppers pose a significant threat to both natural grassland vegetation and crops. Therefore, comprehending the relationship between environmental factors and grasshopper occurrence is of paramount importance. This study integrated machine learning models (Maxent) using the kuenm package to screen MaxEnt models for grasshopper species selection, while simultaneously fitting remote sensing data of major grasshopper breeding areas in Inner Mongolia, China. It investigated the spatial distribution and key factors influencing the occurrence of typical grasshopper species in grassland ecosystems. The modelling results indicate that a typical steppe has a larger suitable area. The soil type, above biomass, altitude, and temperature, predominantly determine the grasshopper occurrence in typical steppes. This study explicitly delineates the disparate impacts of key environmental factors (meteorology, vegetation, soil, and topography) on grasshopper occurrence in typical steppes. Furthermore, it provides a methodology to guide early warning and precautions for grasshopper pest prevention. The findings of this study will be instrumental in formulating future management measures to guarantee grass ecological environment security and the sustainable development of grassland.
Collapse
Affiliation(s)
- Xiaolong Ding
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (X.D.); (B.D.); (K.L.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hohhot 010010, China
| | - Bobo Du
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (X.D.); (B.D.); (K.L.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hohhot 010010, China
| | - Longhui Lu
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; (L.L.); (J.G.)
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (X.D.); (B.D.); (K.L.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hohhot 010010, China
| | - Rina Sa
- XilinGol Grassland National Nature Reserve Administration, XilinGol 026000, China;
| | - Yang Gao
- Inner Mongolia Academy of Forestry Sciences, Hohhot 010010, China;
| | - Jing Guo
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; (L.L.); (J.G.)
| | - Ning Wang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (X.D.); (B.D.); (K.L.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Hohhot 010010, China
| | - Wenjiang Huang
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; (L.L.); (J.G.)
| |
Collapse
|
2
|
Grele A, Massad TJ, Uckele KA, Dyer LA, Antonini Y, Braga L, Forister ML, Sulca L, Kato M, Lopez HG, Nascimento AR, Parchman T, Simbaña WR, Smilanich AM, Stireman JO, Tepe EJ, Walla T, Richards LA. Intra- and interspecific diversity in a tropical plant clade alter herbivory and ecosystem resilience. eLife 2024; 12:RP86988. [PMID: 38662411 PMCID: PMC11045218 DOI: 10.7554/elife.86988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus Piper on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecific Piper diversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecific Piper richness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.
Collapse
Affiliation(s)
- Ari Grele
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
| | - Tara J Massad
- Department of Scientific Services, Gorongosa National ParkSofalaMozambique
| | - Kathryn A Uckele
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
| | - Lee A Dyer
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
- Hitchcock Center for Chemical Ecology, University of NevadaRenoUnited States
| | - Yasmine Antonini
- Lab. de Biodiversidade, Departamento de Biodiversidade, Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro PretoOuro PretoBrazil
| | - Laura Braga
- Lab. de Biodiversidade, Departamento de Biodiversidade, Evolução e Meio Ambiente, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro PretoOuro PretoBrazil
| | - Matthew L Forister
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
- Hitchcock Center for Chemical Ecology, University of NevadaRenoUnited States
| | - Lidia Sulca
- Departamento de Entomología, Museo de Historia Natural, Universidad Nacional Mayor de San MarcosLimaPeru
| | - Massuo Kato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São PauloSão PauloBrazil
| | - Humberto G Lopez
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
| | | | - Thomas Parchman
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
- Department of Biology, University of NevadaRenoUnited States
| | | | - Angela M Smilanich
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
| | - John O Stireman
- Department of Biological Sciences, Wright State UniversityDaytonUnited States
| | - Eric J Tepe
- Department of Biological Sciences, University of CincinnatiCincinnatiUnited States
| | - Thomas Walla
- Department of Biology, Mesa State CollegeGrand JunctionUnited States
| | - Lora A Richards
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of NevadaRenoUnited States
- Hitchcock Center for Chemical Ecology, University of NevadaRenoUnited States
| |
Collapse
|
3
|
Cease AJ. How Nutrients Mediate the Impacts of Global Change on Locust Outbreaks. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:527-550. [PMID: 38270985 DOI: 10.1146/annurev-ento-120220-110415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Locusts are grasshoppers that can migrate en masse and devastate food security. Plant nutrient content is a key variable influencing population dynamics, but the relationship is not straightforward. For an herbivore, plant quality depends not only on the balance of nutrients and antinutrients in plant tissues, which is influenced by land use and climate change, but also on the nutritional state and demands of the herbivore, as well as its capacity to extract nutrients from host plants. In contrast to the concept of a positive relationship between nitrogen or protein concentration and herbivore performance, a five-decade review of lab and field studies indicates that equating plant N to plant quality is misleading because grasshoppers respond negatively or neutrally to increasing plant N just as often as they respond positively. For locusts specifically, low-N environments are actually beneficial because they supply high energy rates that support migration. Therefore, intensive land use, such as continuous grazing or cropping, and elevated ambient CO2 levels that decrease the protein:carbohydrate ratios of plants are predicted to broadly promote locust outbreaks.
Collapse
Affiliation(s)
- Arianne J Cease
- School of Sustainability, School of Life Sciences, and Global Locust Initiative, Arizona State University, Tempe, Arizona, USA;
| |
Collapse
|
4
|
Ababsa N, Fellah S, Chenchouni H, Lallaouna R, Bouchama K, Baha M, Kribaa M. Structure and diversity of earthworm communities in long-term irrigated soils with raw effluent and treated wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2473-2489. [PMID: 37966196 PMCID: wst_2023_345 DOI: 10.2166/wst.2023.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
This study was conducted in two natural meadows: first, soils were irrigated with raw wastewater (SIRWW) and in the second, soils were irrigated with treated wastewater (SITWW). Earthworms were sampled in eight soil blocks spaced 10 m apart at each site. Earthworm community was characterized and compared using density, biomass, composition, structure, species richness, and diversity parameters. At both meadows, 459 earthworm individuals from two families and seven species were collected. The highest earthworm density and species richness were recorded at SIRWW. Nicodrilus caligenus was the most abundant species. Most of earthworm community parameters decreased significantly at SITWW. Only two species (N. caligenus and Octodrilus complanatus) were common between the two grasslands. Among the seven species identified at both meadows, four (Allolobophora longa, Eisenia foetida, Allolobophora rosea, Allolobophora chlorotica) were exclusively present in SIRWW, whereas a single species (Amynthas sp.) was characterized in SITWW. Three ecological earthworm groups (epigeic, endogeic, and anectic) were represented in SIRWW, with the dominance of endogeics. Further studies are needed to quantify pollution in this soils and the accumulation of pollutant load in earthworms. It is also important to highlight the relationship between the abundance and diversity of earthworms in these two ecosystems with soil biological activity.
Collapse
Affiliation(s)
- Nawal Ababsa
- Department of Ecology and Environment, Faculty of Nature and Life Sciences, University of Khenchela, El-Hamma 40016, Khenchela, Algeria; Laboratory of Natural Resources and Management of Sensitive Environments 'RNAMS', University of Oum-El-Bouaghi, Oum-El-Bouaghi 04000, Algeria E-mail:
| | - Sihem Fellah
- Laboratory of Natural Resources and Management of Sensitive Environments 'RNAMS', University of Oum-El-Bouaghi, Oum-El-Bouaghi 04000, Algeria; Département de Médicine Dentaire, Faculté de Médicine, University of Salah Boubnider Constantine 3, Constantine 25000, Algeria
| | - Haroun Chenchouni
- Laboratory of Natural Resources and Management of Sensitive Environments 'RNAMS', University of Oum-El-Bouaghi, Oum-El-Bouaghi 04000, Algeria; Higher National School of Forests, Khenchela 40000, Algeria
| | - Rania Lallaouna
- Department of Ecology and Environment, Faculty of Nature and Life Sciences, University of Khenchela, El-Hamma 40016, Khenchela, Algeria
| | - Khaled Bouchama
- Department of Ecology and Environment, Faculty of Nature and Life Sciences, University of Khenchela, El-Hamma 40016, Khenchela, Algeria
| | - Mounia Baha
- The Animal Eco-Biology Laboratory (LEBA), École Normale Supérieure de Kouba Bachir El Ibrahimi, Kouba 16050, Algeria
| | - Mohamed Kribaa
- Laboratory of Natural Resources and Management of Sensitive Environments 'RNAMS', University of Oum-El-Bouaghi, Oum-El-Bouaghi 04000, Algeria
| |
Collapse
|
5
|
Garaycochea S, Altier NA, Leoni C, Neal AL, Romero H. Abundance and phylogenetic distribution of eight key enzymes of the phosphorus biogeochemical cycle in grassland soils. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:352-369. [PMID: 37162018 PMCID: PMC10472533 DOI: 10.1111/1758-2229.13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Grassland biomes provide valuable ecosystem services, including nutrient cycling. Organic phosphorus (Po) represents more than half of the total P in soils. Soil microorganisms release organic P through enzymatic processes, with alkaline phosphatases, acid phosphatases and phytases being the key P enzymes involved in the cycling of organic P. This study analysed 74 soil metagenomes from 17 different grassland biomes worldwide to evaluate the distribution and abundance of eight key P enzymes (PhoD, PhoX, PhoA, Nsap-A, Nsap-B, Nsap-C, BPP and CPhy) and their relationship with environmental factors. Our analyses showed that alkaline phosphatase phoD was the dataset's most abundant P-enzyme encoding genes, with a wide phylogenetic distribution. Followed by the acid phosphatases Nsap-A and Nsap-C showed similar abundance but a different distribution in their respective phylogenetic trees. Multivariate analyses revealed that pH, Tmax , SOC and soil moisture were associated with the abundance and diversity of all genes studied. PhoD and phoX genes strongly correlated with SOC and clay, and the phoX gene was more common in soils with low to medium SOC and neutral pH. In particular, P-enzyme genes tended to respond in a positively correlated manner among them, suggesting a complex relationship of abundance and diversity among them.
Collapse
Affiliation(s)
- Silvia Garaycochea
- Instituto Nacional de Investigación Agropecuaria (INIA)Estación Experimental INIA Las BrujasCanelonesUruguay
| | - Nora Adriana Altier
- Instituto Nacional de Investigación Agropecuaria (INIA)Estación Experimental INIA Las BrujasCanelonesUruguay
| | - Carolina Leoni
- Instituto Nacional de Investigación Agropecuaria (INIA)Estación Experimental INIA Las BrujasCanelonesUruguay
| | - Andrew L. Neal
- Net‐Zero and Resilient FarmingRothamsted Research, North WykeOkehamptonUK
| | - Héctor Romero
- Laboratorio de Organización y Evolución del Genoma/Genómica Evolutiva, Departamento de Ecología y Evolución, Facultad de Ciencias/CUREUniversidad de la RepúblicaMaldonadoUruguay
| |
Collapse
|
6
|
Cease AJ, Trumper EV, Medina H, Bazán FC, Frana J, Harrison J, Joaquin N, Learned J, Roca M, Rojas JE, Talal S, Overson RP. Field bands of marching locust juveniles show carbohydrate, not protein, limitation. CURRENT RESEARCH IN INSECT SCIENCE 2023; 4:100069. [PMID: 38161992 PMCID: PMC10757312 DOI: 10.1016/j.cris.2023.100069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 01/03/2024]
Abstract
Locusts are grasshoppers that migrate en masse and devastate food security, yet little is known about the nutritional needs of marching bands in nature. While it has been hypothesized that protein limitation promotes locust marching behavior, migration is fueled by dietary carbohydrates. We studied South American Locust (Schistocerca cancellata) bands at eight sites across Argentina, Bolivia, and Paraguay. Bands ate most frequently from dishes containing carbohydrate artificial diets and minimally from balanced, protein, or control (vitamins and salts) dishes-indicating carbohydrate hunger. This hunger for carbohydrates is likely explained by the observation that local vegetation was generally protein-biased relative to locusts' preferred protein to carbohydrate ratio. This study highlights the importance of studying the nutritional ecology of animals in their environment and suggests that carbohydrate limitation may be a common pattern for migrating insect herbivores.
Collapse
Affiliation(s)
- Arianne J. Cease
- School of Sustainability, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Héctor Medina
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Argentina
| | | | - Jorge Frana
- Instituto Nacional de Tecnología Agropecuaria (INTA), Argentina
| | - Jon Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Nelson Joaquin
- Facultad de Cs. Veterinarias, Universidad Autónoma Gabriel René Moreno (UAGRM), Bolivia
| | | | - Mónica Roca
- Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA), Argentina
| | - Julio E. Rojas
- Departamento de Campañas Fitosanitarias, Dirección de Protección Vegetal, SENAVE, Paraguay
| | - Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Rick P. Overson
- School of Sustainability, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
7
|
Deans C, Hutchison W. The importance of time in nutrient regulation: a case study with spotted-wing Drosophila ( Drosophila suzukii). FRONTIERS IN INSECT SCIENCE 2023; 3:1105531. [PMID: 38469468 PMCID: PMC10926440 DOI: 10.3389/finsc.2023.1105531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/05/2023] [Indexed: 03/13/2024]
Abstract
Introduction The ability of living organisms to acquire the nutrients needed to carry out required physiological functions has important consequences for fitness. However, an organism must not simply meet the requirements for individual nutrients, but must ingest an optimal balance of multiple nutrients. Despite this, animals rarely consume truly balanced resources, and instead commonly feed selectively across multiple unbalanced resources to reach an optimal balance, i.e., intake target. Nutritional research has predominantly focused on the behavioral strategies employed during nutrient regulation, as well as the fitness consequence of failing to meet intake targets, but little work has been done on the temporal aspects of this process. For instance, within what timeframe must organisms reach their intake target before a fitness cost is incurred? Hours, days, weeks? Methods In this study, we investigated how nutrient regulation interval impacts consumption and performance in adult female spotted-wing Drosophila (Drosophila suzukii). Females were constrained to either a protein- orcarbohydrate-biased diet over different time intervals and at different schedules, while control flies were constrained to one diet for the entire feeding period. Results Regulation interval had a significant impact on feeding behavior and consumption. Total consumption was highest on the shorter interval treatments, where diets were alternated more frequently, and declined as the interval period increased. The relative consumption of both diets was statistically-different across intervals and was higher for the carbohydrate-biased diet. Consumption of the protein-biased diet was more variable across intervals and was more strongly impacted by the daily timing of diet switches. Performance data showed that shorter regulation intervals led to longer fly lifespans, a result commonly observed in studies exploring the impacts of diet macronutrient ratio variability on performance. Discussion These results show that the temporal aspects of nutrition, such as feeding intervals and the timing of resource availability, can have strong impacts on feeding behavior, nutrient regulation, and fitness. These results provide an insight into how consumers may deal with changes in host phenology, the availability of hosts, and changes in nutrient availability within hosts. Understanding these mechanisms will be important for predicting responses to changes in nutrient cycling and resource availability mediated by natural and anthropogenic habitat modifications, such as global climate change.
Collapse
Affiliation(s)
- Carrie Deans
- Department of Entomology, University of Minnesota, St. Paul, MN, United States
| | | |
Collapse
|
8
|
Brown JJ, Pascual M, Wimberly MC, Johnson LR, Murdock CC. Humidity - The overlooked variable in the thermal biology of mosquito-borne disease. Ecol Lett 2023; 26:1029-1049. [PMID: 37349261 DOI: 10.1111/ele.14228] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/05/2023] [Indexed: 06/24/2023]
Abstract
Vector-borne diseases cause significant financial and human loss, with billions of dollars spent on control. Arthropod vectors experience a complex suite of environmental factors that affect fitness, population growth and species interactions across multiple spatial and temporal scales. Temperature and water availability are two of the most important abiotic variables influencing their distributions and abundances. While extensive research on temperature exists, the influence of humidity on vector and pathogen parameters affecting disease dynamics are less understood. Humidity is often underemphasized, and when considered, is often treated as independent of temperature even though desiccation likely contributes to declines in trait performance at warmer temperatures. This Perspectives explores how humidity shapes the thermal performance of mosquito-borne pathogen transmission. We summarize what is known about its effects and propose a conceptual model for how temperature and humidity interact to shape the range of temperatures across which mosquitoes persist and achieve high transmission potential. We discuss how failing to account for these interactions hinders efforts to forecast transmission dynamics and respond to epidemics of mosquito-borne infections. We outline future research areas that will ground the effects of humidity on the thermal biology of pathogen transmission in a theoretical and empirical framework to improve spatial and temporal prediction of vector-borne pathogen transmission.
Collapse
Affiliation(s)
- Joel J Brown
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Michael C Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
9
|
Luo Q, Xie H, Chen Z, Ma Y, Yang H, Yang B, Ma Y. Morphology, photosynthetic physiology and biochemistry of nine herbaceous plants under water stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1147208. [PMID: 37063188 PMCID: PMC10098446 DOI: 10.3389/fpls.2023.1147208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Global climate warming and shifts in rainfall patterns are expected to trigger increases in the frequency and magnitude of drought and/or waterlogging stress in plants. To cope with water stress, plants develop diverse tactics. However, the adoption capability and mechanism vary depending upon the plant species identity as well as stress duration and intensity. The objectives of this study were to evaluate the species-dependent responses of alpine herbaceous species to water stress. Nine herbaceous species were subjected to different water stresses (including moderate drought and moderate waterlogging) in pot culture using a randomized complete block design with three replications for each treatment. We hypothesized that water stress would negatively impact plant growth and metabolism. We found considerable interspecies differences in morphological, physiological, and biochemical responses when plants were exposed to the same water regime. In addition, we observed pronounced interactive effects of water regime and plant species identity on plant height, root length, root/shoot ratio, biomass, and contents of chlorophyll a, chlorophyll b, chlorophyll (a+b), carotenoids, malondialdehyde, soluble sugar, betaine, soluble protein and proline, implying that plants respond to water regime differently. Our findings may cast new light on the ecological restoration of grasslands and wetlands in the Qinghai-Tibetan Plateau by helping to select stress-tolerant plant species.
Collapse
Affiliation(s)
- Qiaoyu Luo
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Huichun Xie
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Zhi Chen
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Yonggui Ma
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Haohong Yang
- School of Life Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Qinghai Normal University, Xining, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Bing Yang
- Sichuan Academy of Giant Panda, Chengdu, China
| | - Yushou Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|
10
|
Mariottini Y, Marinelli C, Cepeda R, De Wysiecki ML, Lange CE. Relationship between pest grasshopper densities and climate variables in the southern Pampas of Argentina. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:613-625. [PMID: 35098914 DOI: 10.1017/s000748532100119x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Grasshoppers are one of the most predominant insects in the grasslands of the southern Pampas. In this region, Dichroplus elongatus, Dichroplus maculipennis, Dichroplus pratensis and Borellia bruneri are the most abundant species and have the greatest economic importance. This study aimed to assess the relationship between temporal changes in the density of these species and climate variables associated with temperature and rainfall over an 11-year study period., We monitored 22 sites in different areas of Laprida county from 2005 to 2016. A total of 25 grasshopper species were collected. The most abundant species were D. maculipennis and B. bruneri which reached the highest densities from 2008-2009 to 2010-2011. The rainfall accumulated from September (RAS) to the sampling date and the number of rainy days (RD) largely explained the density variation of B. bruneri. Besides RD and RAS, winter rainfall, rainfall accumulated from October to the sampling date, and thermal amplitude of October (TAO) influenced the density of D. maculipennis. Our results indicated that seasons with less rainfall and fewer RD favored these two species' abundance. We identified that the RD and TAO contributed significantly to variations in the density of D. elongatus. In contrast to the other two species, we recorded D. elongatus in seasons with high rainfall and high RD. A better understanding of the climate influence on the life cycle of these economically important insects may identify key factors in their population dynamics which in turn may improve management options.
Collapse
Affiliation(s)
- Y Mariottini
- Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable (UNICEN-CICPBA), Arroyo seco S/N Campus Universitario, 7000, Tandil, Argentina
| | - C Marinelli
- Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable (UNICEN-CICPBA), Arroyo seco S/N Campus Universitario, 7000, Tandil, Argentina
| | - R Cepeda
- Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable (UNICEN-CICPBA), Arroyo seco S/N Campus Universitario, 7000, Tandil, Argentina
| | - M L De Wysiecki
- Centro de Estudios Parasitológicos y de Vectores (CONICET-UNLP), Boulevard 120 entre 60 y 64, 1900, La Plata, Argentina
- Facultad de Ciencias Naturales y Museo (UNLP), Av. 122 y 60, 1900, La Plata, Argentina
| | - C E Lange
- Centro de Estudios Parasitológicos y de Vectores (CONICET-UNLP), Boulevard 120 entre 60 y 64, 1900, La Plata, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), 526 entre 10 y 11, 1900, La Plata, Argentina
| |
Collapse
|
11
|
Deans CA, Sword GA, Vogel H, Behmer ST. Quantity versus quality: Effects of diet protein-carbohydrate ratios and amounts on insect herbivore gene expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 145:103773. [PMID: 35405259 DOI: 10.1016/j.ibmb.2022.103773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Dietary protein and digestible carbohydrates are two key macronutrients for insect herbivores, but the amounts and ratios of these two macronutrients in plant vegetative tissues can be highly variable. Typically, insect herbivores regulate their protein-carbohydrate intake by feeding selectively on nutritionally complementary plant tissues, but this may not always be possible. Interestingly, lab experiments consistently demonstrate that performance - especially growth and survival - does not vary greatly when caterpillars and nymphal grasshoppers are reared on diets that differ in their protein-carbohydrate content. This suggests insect herbivores employ post-ingestive physiological mechanisms to compensate for variation in diet protein-carbohydrate profile. However, the molecular mechanisms that underlie this compensation are not well understood. Here we explore, for the first time in an insect herbivore, the transcriptional effects of two dietary factors: protein-to-carbohydrate ratio (p:c) and total macronutrient (p + c) content. Specifically, we reared Helicoverpa zea caterpillars on three diets that varied in diet p:c ratio and one diet that varied in total p + c concentration, all within an ecologically-relevant range. We observed two key findings. Caterpillars reared on diets with elevated total p + c content showed large differences in gene expression. In contrast, only small differences in gene expression were observed when caterpillars were reared on diets with different p:c ratios (spanning from protein-biased to carbohydrate-biased). The invariable expression of many metabolic genes across these variable diets suggests that H. zea caterpillars employ a strategy of constitutive expression to deal with protein-carbohydrate imbalances rather than diet-specific changes. This is further supported by two findings. First, few genes were uniquely associated with feeding on a protein- and carbohydrate-biased diet. Second, many differentially-expressed genes were shared across protein-biased, carbohydrate-biased, and concentrated diet treatments. Our study provides insights into the post-ingestive physiological mechanisms insect herbivores employ to regulate protein-carbohydrate intake. Most notably, it suggests that H. zea, and perhaps other generalist species, use similar post-ingestive mechanisms to deal with protein-carbohydrate imbalances - regardless of the direction of the imbalance.
Collapse
Affiliation(s)
- Carrie A Deans
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX, 77843, USA; Department of Entomology, University of Minnesota, 219 Hodson Hall, St. Paul, MN, 55108, USA.
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX, 77843, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, GER, 07745, USA
| | - Spencer T Behmer
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX, 77843, USA
| |
Collapse
|
12
|
Physiological and Population Responses of Nilaparvata lugens after Feeding on Drought-Stressed Rice. INSECTS 2022; 13:insects13040355. [PMID: 35447797 PMCID: PMC9028574 DOI: 10.3390/insects13040355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
Abstract
Simple Summary Drought is considered a critical threat to crop growth and sustainable agriculture worldwide, and it also greatly impacts insect development and population growth. Brown planthopper (BPH), Nilaparvata lugens (Stål), is the predominant rice crop pest in China, and the damaging effects of BPH are enhanced by its strong migratory and reproductive capacities. Our results provide useful information about the effect of drought stress on the poor population growth and negative physiological changes in BPH. Negative changes to water balance and osmotic pressure can cause a decline in the quality of BPH; the GST content of BPH feeding on drought-stressed rice was significantly higher than BPH feeding on non-stressed control plants, and the length of flight muscle sarcomeres and mitochondrial content were decreased in BPH feeding on drought-stressed rice. These findings suggest that water management greatly impacts the physiology and population growth of BPH, and provide a basis for understanding physiological and population-wide responses in BPH during drought stress, which may be helpful in understanding the relationship between drought stress and BPH infestation. Abstract Drought stress greatly impacts insect development and population growth. Some studies have demonstrated increased reproductive capacity in drought-stressed insects; however, physiological changes in the brown planthopper (BPH), Nilaparvata lugens (Stål), during periods of drought are unclear. In this study, BPH fed on drought- stressed rice had lower population numbers than BPH feeding on non-stressed rice. Water content, osmotic pressure of hemolymph and total amino acid content of BPH were significantly lower when BPH fed on drought-stressed rice compared to the non-stressed control; however, glucose content and glutathione S-transferase (GST) activity were significantly higher in BPH fed on drought-stressed rice. The expression of Vitellogenin and Exuperantia in BPH fed on drought-stressed rice was higher than that in BPH feeding on non-stressed control plants. The size of myofibrils and the abundance of mitochondria in BPH flight muscles were significantly lower in BPH fed on drought-stressed rice compared to non-stressed plants. These results indicate that water management impacts the physiology of BPH, which may be useful in understanding the relationship between drought stress and this damaging herbivore.
Collapse
|
13
|
Duan MY, Zhu H, Wang H, Guo SY, Li H, Jiang LL, Li XT, Xie G, Ren BZ. Effects of water deficiency on preference and performance of an insect herbivore Ostrinia furnacalis. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:595-604. [PMID: 33998414 DOI: 10.1017/s0007485321000407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With further climate change still expected, it is predicted to increase the frequency with plants will be water stressed, which subsequently influences phytophagous insects, particularly Lepidoptera with limited mobility of larvae. Previous studies have indicated that oviposition preference and offspring performance of Lepidoptera insects are sensitive to drought separately. However, the integration of their two properties is not always seen. Here, we evaluated changes in oviposition selection and offspring fitness of a Lepidoptera insect under three water-stressed treatments using a model agroecosystem consisting of maize Zea mays, and Asian corn borer Ostrinia furnacalis. Results found that female O. furnacalis preferred to laying their eggs on well-watered maize, and then their offspring tended to survive better, attained bigger larvae mass, and developed more pupae and adults on the preferred maize. Oviposition selection of O. furnacalis positively correlated with height and leaf traits of maize, and offspring fitness positively related with water content and phytochemical traits of hosts. Overall, these results suggest that oviposition choice performed by O. furnacalis reflects the maximization of offspring fitness, supporting preference-performance hypothesis. This finding further highlights that the importance of simultaneous evaluation of performance and performance for water driving forces should be involved, in order to accurately predict population size of O. furnacalis under altered precipitation pattern.
Collapse
Affiliation(s)
- M Y Duan
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - H Zhu
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - H Wang
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - S Y Guo
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - H Li
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - L L Jiang
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - X T Li
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - G Xie
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| | - B Z Ren
- School of Life Sciences/Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|
14
|
Integrated Evaluation of Vegetation Drought Stress through Satellite Remote Sensing. FORESTS 2021. [DOI: 10.3390/f12080974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the coming decades, Bulgaria is expected to be affected by higher air temperatures and decreased precipitation, which will significantly increase the risk of droughts, forest ecosystem degradation and loss of ecosystem services (ES). Drought in terrestrial ecosystems is characterized by reduced water storage in soil and vegetation, affecting the function of landscapes and the ES they provide. An interdisciplinary assessment is required for an accurate evaluation of drought impact. In this study, we introduce an innovative, experimental methodology, incorporating remote sensing methods and a system approach to evaluate vegetation drought stress in complex systems (landscapes and ecosystems) which are influenced by various factors. The elevation and land cover type are key climate-forming factors which significantly impact the ecosystem’s and vegetation’s response to drought. Their influence cannot be sufficiently gauged by a traditional remote sensing-based drought index. Therefore, based on differences between the spectral reflectance of the individual natural land cover types, in a near-optimal vegetation state and divided by elevation, we assigned coefficients for normalization. The coefficients for normalization by elevation and land cover type were introduced in order to facilitate the comparison of the drought stress effect on the ecosystems throughout a heterogeneous territory. The obtained drought coefficient (DC) shows patterns of temporal, spatial, and interspecific differences on the response of vegetation to drought stress. The accuracy of the methodology is examined by field measurements of spectral reflectance, statistical analysis and validation methods using spectral reflectance profiles.
Collapse
|
15
|
Barnett KL, Johnson SN, Facey SL, Gibson-Forty EVJ, Ochoa-Hueso R, Power SA. Altered precipitation and root herbivory affect the productivity and composition of a mesic grassland. BMC Ecol Evol 2021; 21:145. [PMID: 34266378 PMCID: PMC8283849 DOI: 10.1186/s12862-021-01871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Climate change models predict changes in the amount, frequency and seasonality of precipitation events, all of which have the potential to affect the structure and function of grassland ecosystems. While previous studies have examined plant or herbivore responses to these perturbations, few have examined their interactions; even fewer have included belowground herbivores. Given the ecological, economic and biodiversity value of grasslands, and their importance globally for carbon storage and agriculture, this is an important knowledge gap. To address this, we conducted a precipitation manipulation experiment in a former mesic pasture grassland comprising a mixture of C4 grasses and C3 grasses and forbs, in southeast Australia. Rainfall treatments included a control [ambient], reduced amount [50% ambient] and reduced frequency [ambient rainfall withheld for three weeks, then applied as a single deluge event] manipulations, to simulate predicted changes in both the size and frequency of future rainfall events. In addition, half of all experimental plots were inoculated with adult root herbivores (Scarabaeidae beetles). RESULTS We found strong seasonal dependence in plant community responses to both rainfall and root herbivore treatments. The largest effects were seen in the cool season with lower productivity, cover and diversity in rainfall-manipulated plots, while root herbivore inoculation increased the relative abundance of C3, compared to C4, plants. CONCLUSIONS This study highlights the importance of considering not only the seasonality of plant responses to altered rainfall, but also the important role of interactions between abiotic and biotic drivers of vegetation change when evaluating ecosystem-level responses to future shifts in climatic conditions.
Collapse
Affiliation(s)
- Kirk L Barnett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Sarah L Facey
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Eleanor V J Gibson-Forty
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Raul Ochoa-Hueso
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.,Department of Biology, University of Cádiz, Avenida República Árabe Saharaui, 11510, Puerto Real, Cádiz, Spain
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
16
|
Vandegeer RK, Cibils‐Stewart X, Wuhrer R, Hartley SE, Tissue DT, Johnson SN. Leaf silicification provides herbivore defence regardless of the extensive impacts of water stress. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rebecca K. Vandegeer
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Ximena Cibils‐Stewart
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
- Instituto Nacional de Investigación Agropecuaria (INIA) Colonia Uruguay
| | - Richard Wuhrer
- Advanced Materials Characterisation Facility Western Sydney University Penrith NSW Australia
| | - Susan E. Hartley
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - David T. Tissue
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
| |
Collapse
|
17
|
Trisos MO, Parr CL, Davies AB, Leitner M, February EC. Mammalian herbivore movement into drought refugia has cascading effects on savanna insect communities. J Anim Ecol 2021; 90:1753-1763. [PMID: 33844850 DOI: 10.1111/1365-2656.13494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/08/2021] [Indexed: 12/01/2022]
Abstract
Global climate change is predicted to increase the frequency of droughts, with major impacts on tropical savannas. It has been suggested that during drought, increased soil moisture and nutrients on termite mounds could benefit plants but it is unclear how such benefits could cascade to affect insect communities. Here, we describe the effects of drought on vegetation structure, the cascading implications for invertebrates and how termite mounds influence such effects. We compared how changes in grass biomass affected grasshopper and ant diversity on and off Macrotermes mounds before (2012) and during a drought (2016) at two locations that experienced large variation in drought severity (Skukuza and Pretoriuskop) in the Kruger National Park, South Africa. The 2013-2016 drought was not ubiquitous across the study site, with rainfall decreasing at Skukuza and being above average at Pretoriuskop. However, grass biomass declined at both locations. Grasshopper abundance decreased at droughted Skukuza both on and off mounds but decreased on mounds and increased off mounds at non-droughted Pretoriuskop. Ant abundance and species richness increased at Skukuza but remained the same on mounds and decreased off mounds at Pretoriuskop. Our results demonstrate the spatially extensive effects of drought. Despite above average rainfall in 2016 at Pretoriuskop, grass biomass decreased, likely due to an influx of large mammalian herbivores from drought-affected areas. This decrease in grass biomass cascaded to affect grasshoppers and ants, further illustrating the effects of drought on invertebrates in adjoining areas with higher rainfall. Our grasshopper results also suggest that increased drought in savannas will contribute to overall declines in insect abundance. Moreover, our recorded increase in ant abundance was primarily in the form of increases in dominant species, illustrating how drought-induced shifts in relative abundance will likely influence ecosystem structure and function. Our study highlights the phenomenon of spill-over drought effects and suggests rather than mitigating drought, termite mounds can instead become the focus for more intense grazing, with important consequences for insect communities.
Collapse
Affiliation(s)
- Matthew O Trisos
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Catherine L Parr
- School of Environmental Sciences, University of Liverpool, Liverpool, UK.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.,School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits, South Africa
| | - Andrew B Davies
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Monica Leitner
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Edmund C February
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Ozment KA, Welti EAR, Shaffer M, Kaspari M. Tracking nutrients in space and time: Interactions between grazing lawns and drought drive abundances of tallgrass prairie grasshoppers. Ecol Evol 2021; 11:5413-5423. [PMID: 34026017 PMCID: PMC8131794 DOI: 10.1002/ece3.7435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
We contrast the response of arthropod abundance and composition to bison grazing lawns during a drought and non-drought year, with an emphasis on acridid grasshoppers, an important grassland herbivore.Grazing lawns are grassland areas where regular grazing by mammalian herbivores creates patches of short-statured, high nutrient vegetation. Grazing lawns are predictable microsites that modify microclimate, plant structure, community composition, and nutrient availability, with likely repercussions for arthropod communities.One year of our study occurred during an extreme drought. Drought mimics some of the effects of mammalian grazers: decreasing above-ground plant biomass while increasing plant foliar percentage nitrogen.We sampled arthropods and nutrient availability on and nearby ("off") 10 bison-grazed grazing lawns in a tallgrass prairie in NE Kansas. Total grasshopper abundance was higher on grazing lawns and the magnitude of this difference increased in the wetter year of 2019 compared to 2018, when drought led to high grass foliar nitrogen concentrations on and off grazing lawns. Mixed-feeding grasshopper abundances were consistently higher on grazing lawns while grass-feeder and forb-feeder abundances were higher on lawns only in 2019, the wetter year. In contrast, the abundance of other arthropods (e.g., Hemiptera, Hymenoptera, and Araneae) did not differ on and off lawns, but increased overall in 2019, relative to the drought of 2018.Understanding these local scale patterns of abundances and community composition improves predictability of arthropod responses to ongoing habitat change.
Collapse
Affiliation(s)
- Katerina A. Ozment
- Geographical Ecology GroupDepartment of BiologyUniversity of OklahomaNormanOKUSA
| | - Ellen A. R. Welti
- Geographical Ecology GroupDepartment of BiologyUniversity of OklahomaNormanOKUSA
- Senckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
| | | | - Michael Kaspari
- Geographical Ecology GroupDepartment of BiologyUniversity of OklahomaNormanOKUSA
| |
Collapse
|
19
|
Talal S, Cease AJ, Youngblood JP, Farington R, Trumper EV, Medina HE, Rojas JE, Fernando Copa A, Harrison JF. Plant carbohydrate content limits performance and lipid accumulation of an outbreaking herbivore. Proc Biol Sci 2020; 287:20202500. [PMID: 33259763 DOI: 10.1098/rspb.2020.2500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Locusts are major intermittent threats to food security and the ecological factors determining where and when these occur remain poorly understood. For many herbivores, obtaining adequate protein from plants is a key challenge. We tested how the dietary protein : non-structural carbohydrate ratio (p : c) affects the developmental and physiological performance of 4th-5th instar nymphs of the South American locust, Schistocerca cancellata, which has recently resurged in Argentina, Bolivia and Paraguay. Field marching locusts preferred to feed on high carbohydrate foods. Field-collected juveniles transferred to the laboratory selected artificial diets or local plants with low p : c. On single artificial diets, survival rate increased as foods became more carbohydrate-biased. On single local plants, growth only occurred on the plant with the lowest p : c. Most local plants had p : c ratios substantially higher than optimal, demonstrating that field marching locusts must search for adequate carbohydrate or their survival and growth will be carbohydrate-limited. Total body lipids increased as dietary p : c decreased on both artificial and plant diets, and the low lipid contents of field-collected nymphs suggest that obtaining adequate carbohydrate may pose a strong limitation on migration for S. cancellata. Anthropogenic influences such as conversions of forests to pastures, may increase carbohydrate availability and promote outbreaks and migration of some locusts.
Collapse
Affiliation(s)
- Stav Talal
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA.,School of Sustainability, Arizona State University, Tempe, AZ, USA
| | - Arianne J Cease
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA.,School of Sustainability, Arizona State University, Tempe, AZ, USA
| | - Jacob P Youngblood
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Ruth Farington
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | | | | | - Julio E Rojas
- Departamento de Campañas Fitosanitarias, Dirección de Protección Vegetal, SENAVE, Paraguay
| | - A Fernando Copa
- Universidad Autónoma Gabriel René Moreno, Santa Cruz, Bolivia
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| |
Collapse
|
20
|
Le Gall M, Word ML, Beye A, Cease AJ. Physiological status is a stronger predictor of nutrient selection than ambient plant nutrient content for a wild herbivore. CURRENT RESEARCH IN INSECT SCIENCE 2020; 1:100004. [PMID: 36003608 PMCID: PMC9387501 DOI: 10.1016/j.cris.2020.100004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 06/15/2023]
Abstract
There is generally a close relationship between a consumer's food and its optimal nutrients. When there is a mismatch, it is hypothesized that mobile herbivores switch between food items to balance nutrients, however, there are limited data for field populations. In this study, we measured ambient plant nutrient content at two time points and contrasted our results with the nutrient ratio selected by wild female and male grasshoppers (Oedaleus senegalensis). Few plants were near O. senegalensis' optimal protein:carbohydrate ratio (P:C), nor were plants complementary. Grasshoppers collected earlier all regulated for a carbohydrate-biased ratio but females ate slightly more protein. We hypothesized that the long migration undertaken by this species may explain its carbohydrate needs. In contrast to most laboratory studies, grasshoppers collected later did not tightly regulate their P:C. These results suggest that field populations are not shifting their P:C to match seasonal plant nutrient shifts and that mobile herbivores rely on post-ingestive mechanisms in the face of environmental variation. Because this is among the first studies to examine the relationship between ambient nutrient landscape and physiological state our data are a key step in bridging knowledge acquired from lab studies to hypotheses regarding the role ecological factors play in foraging strategies.
Collapse
Affiliation(s)
- Marion Le Gall
- School of Sustainability, Arizona State University, Tempe, AZ, United States
| | - Mira L. Word
- School of Sustainability, Arizona State University, Tempe, AZ, United States
| | - Alioune Beye
- Direction de la Protection des Végétaux, Nganda, Senegal
| | - Arianne J. Cease
- School of Sustainability, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
21
|
Le Gall M, Word ML, Thompson N, Beye A, Cease AJ. Nitrogen fertilizer decreases survival and reproduction of female locusts by increasing plant protein to carbohydrate ratio. J Anim Ecol 2020; 89:2214-2221. [PMID: 32743808 DOI: 10.1111/1365-2656.13288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/19/2020] [Indexed: 12/01/2022]
Abstract
Nitrogen limitation theory predicts that terrestrial plants should benefit from nitrogen inputs and that herbivores should benefit from subsequent higher plant protein contents. While this pattern has generally been supported, some herbivorous insects have shown preference and higher performance on low protein (p), high carbohydrate (c) diets as juveniles. However, little is known about the effects on reproduction in adults. Using nitrogen fertilizer, we demonstrate that high plant p:c has negative effects on Senegalese locust (Orthoptera: Oedaeleus senegalensis) reproduction and survival in an agroecological setting. For this, we measured p:c in millet plants Pennisetum glaucum that received two levels of fertilizer (high and moderate) and a control, then we caged locusts on these plants for 2 weeks. In the laboratory, we gave locusts the choice between untreated millet leaves and leaves that received one of the two fertilization treatment. We found that fertilization increased p:c ratio in a concentration-dependent fashion. We counted the number of locusts alive over the course of 2 weeks and showed that fewer females survived on fertilized plants than on control plants. Females that ate plants from the high fertilization treatment laid lighter eggs. Finally, we showed that female locusts prefer unfertilized plants to plants with a high p:c. We hypothesize that this pattern will apply broadly to species that have extensive carbohydrate needs, such as long-distance migrators. Because many ecological studies focus primarily on nitrogen or protein, and fail to consider carbohydrates, this study has important implications for how ecologists consider nutrient limitation of primary consumers in ecosystems globally.
Collapse
Affiliation(s)
- Marion Le Gall
- School of Sustainability, Arizona State University, Tempe, AZ, USA
| | - Mira L Word
- Earth Wonder Consulting, Columbia Falls, MT, USA
| | - Natalia Thompson
- School of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Alioune Beye
- School of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Arianne J Cease
- School of Sustainability, Arizona State University, Tempe, AZ, USA.,Direction de la Protection des Végétaux, Nganda, Senegal.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
22
|
Hoback WW, Jurzenski J, Farnsworth-Hoback KM, Roeder KA. Invasive Saltcedar and Drought Impact Ant Communities and Isopods in South-Central Nebraska. ENVIRONMENTAL ENTOMOLOGY 2020; 49:607-614. [PMID: 32159754 DOI: 10.1093/ee/nvaa024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The establishment and spread of non-native species often results in negative impacts on biodiversity and ecosystem function. Several species of saltcedar, Tamarix spp. L., have been recently naturalized in large portions of the United States where they have altered plant and animal communities. To test the prediction that saltcedar negatively affects invertebrates, we measured ant genera diversity and the activity density of the exotic isopod Armadillidium vulgare Latrielle (Isopoda: Oniscoidea) for 2 yr using pitfall traps located within 30 5-m2 plots with or without saltcedar at a south-central Nebraska reservoir. From 2005 to 2006, we collected 10,837 ants representing 17 genera and 4,953 A. vulgare. Per plot, the average number of ant genera was not different between saltcedar (x̅ = 3.9) and non-saltcedar areas ( x̅ = 3.9); however, saltcedar plots were compositionally different and more similar from plot to plot (i.e., they had lower beta diversity than control plots) in 2005, but not in 2006. Isopods were likewise temporally affected with higher activity density (+89%) in control plots in 2005, but higher activity density (+27%) in saltcedar plots in 2006. The observed temporal differences occurred as the drought that initially enabled the saltcedar invasion became less severe in 2006. Combined, our results suggest that invertebrate groups like ants, which are generally omnivorous, may be better equipped than more specialized taxa like detritivores to withstand habitat changes due to invasions by non-native species, especially during extreme weather events such as prolonged droughts.
Collapse
Affiliation(s)
- W Wyatt Hoback
- Department of Entomology and Plant Pathology, Oklahoma State University, Noble Research Center, Stillwater, OK
| | - Jessica Jurzenski
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE
- Felsburg, Holt, and Ullvig, Lincoln, NE
| | - Kerri M Farnsworth-Hoback
- Environmental Science Graduate Program, Oklahoma State University, Life Science East, Stillwater, OK
| | - Karl A Roeder
- Department of Biology, University of Oklahoma, Norman, OK
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
23
|
Le Gall M, Word ML, Thompson N, Manneh B, Beye A, Cease AJ. Linking land use and the nutritional ecology of herbivores: A case study with the Senegalese locust. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Marion Le Gall
- School of Sustainability Arizona State University Tempe AZ USA
| | - Mira L. Word
- School of Sustainability Arizona State University Tempe AZ USA
| | - Natalia Thompson
- School of Liberal Arts and Sciences Arizona State University Tempe AZ USA
| | | | - Alioune Beye
- Direction de la Protection des Végétaux Nganda Senegal
| | - Arianne J. Cease
- School of Sustainability Arizona State University Tempe AZ USA
- School of Life Sciences Arizona State University Tempe AZ USA
| |
Collapse
|
24
|
Deans C, Sword GA, Behmer ST. First evidence of protein-carbohydrate regulation in a plant bug (Lygus hesperus). JOURNAL OF INSECT PHYSIOLOGY 2019; 116:118-124. [PMID: 31112715 DOI: 10.1016/j.jinsphys.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/02/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Lygus bugs are highly polyphagous piercing/sucking insects found throughout North America. Collectively, they have been reported to feed on over 330 plant species (one of the broadest host range ever documented for a group of insects); they also feed on many economically important crops. Despite its prevalence across North America and status as a common pest in many agroecosystems, very little is known about how Lygus bugs regulate their intake of nutrients. In reality, little is known about nutrient regulation for most hemipterans, specifically non-phloem feeding species in the suborder Heteroptera. This likely reflects difficulties in developing adequate artificial diets for insects with piercing/sucking mouthparts. There is, however, an artificial diet for L. hersperus, and in this study we modified it and performed choice and no-choice experiments to determine how L. hesperus regulates its intake of two macronutrients - protein (p) and carbohydrates (c) - that are tightly linked to survival and performance in other insect herbivores. In choice experiments L. hesperus was allowed to select between two foods with different protein:carbohydrate ratios. We documented strong regulation for protein and carbohydrates, with late instar nymphs selecting a slightly protein-biased intake target (protein-carbohydrate ratio = 1.5:1). We also performed no-choice experiments, where nymphs were restricted to a single food. Here, the protein-carbohydrate ratio of their food had a strong impact on survival, which was highest for nymphs reared on the treatment with a protein-carbohydrate ratio closest to the self-selected intake target (determined by the choice experiments), but no significant impact on developmental time or mass gain. Our data are the first of their kind for a non-phloem feeding hemipteran and provide a starting point for more broadly understanding and further investigating the nutritional ecology/physiology of Lygus bugs. Our study also provides a framework for exploring nutrient regulation in other hemipterans and for optimizing artificial diets for piercing/sucking insects, especially heteropterans.
Collapse
Affiliation(s)
- Carrie Deans
- Texas A&M University, College Station, TX 77843, United States; University of Minnesota, St. Paul, MN 55108, United States
| | - Gregory A Sword
- Texas A&M University, College Station, TX 77843, United States
| | | |
Collapse
|
25
|
Warne RW, Baer SG, Boyles JG. Community Physiological Ecology. Trends Ecol Evol 2019; 34:510-518. [DOI: 10.1016/j.tree.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023]
|
26
|
Salgado AL, Saastamoinen M. Developmental stage-dependent response and preference for host plant quality in an insect herbivore. Anim Behav 2019; 150:27-38. [PMID: 31024189 PMCID: PMC6467838 DOI: 10.1016/j.anbehav.2019.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/27/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022]
Abstract
Larval-derived nutritional reserves are essential in shaping insects' adult fitness. Early larval instars of many Lepidopteran species are often sessile, and the conditions experienced by these larvae are often highly dependent on the mother's oviposition choice. Later larval stages are more mobile and therefore can choose their food whenever alternatives are available. We tested how feeding on a drought-exposed host plant impacts life history in an insect herbivore, and whether the observed responses depended on developmental stage. We used drought to alter host plant quality of the ribwort plantain, Plantago lanceolata, and assessed whether host plant preference of postdiapause larvae and adult females increased their own or their offspring's performance, respectively, in the Glanville fritillary butterfly, Melitaea cinxia. Larval response to drought-exposed host plants varied with developmental stage: early larval stages (prediapause) had decreased survival and body mass on drought-exposed plants, while later larval stages (postdiapause) developed faster, weighed more and had a higher growth rate on the drought-exposed plants. Postdiapause larvae also showed a preference for drought-exposed host plants, i.e. those that increased their performance, but only when fed on well-watered host plants. Adult females, on the other hand, showed an oviposition preference for well-watered plants, hence matching the performance of their prediapause but not their postdiapause offspring. Our results highlight how variation in environmental conditions generates stage-specific responses in insects. Individuals fine-tune their own or their offspring's diet by behavioural adjustments when variation in host plant quality is available.
Collapse
Affiliation(s)
- Ana L. Salgado
- Research Centre of Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | | |
Collapse
|
27
|
Gao J, Fang C, Zhao B. The latitudinal herbivory hypothesis revisited: To be part is to be whole. Ecol Evol 2019; 9:3681-3688. [PMID: 31015958 PMCID: PMC6467846 DOI: 10.1002/ece3.2759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 12/24/2016] [Accepted: 12/29/2016] [Indexed: 11/17/2022] Open
Abstract
As the big data accumulation in ecology picks up pace, we now have the opportunity to test several macroecological hypotheses, such as the latitudinal herbivory hypothesis (LHH) dated from the 1990s. The LHH proposes that plant-herbivore interactions decrease as latitude increases, that is, from lower latitudinal areas (i.e., the equator) to higher latitudinal areas (i.e., the poles). This hypothesis has been challenged in recent years. In this study, we used the greatest volume dataset of leaf herbivory from the study of Zhang et al. (Journal of Ecology, 104, 2016, 1089) to test the LHH at a global scale, based on a quantile regression model. We found that the mean annual temperature, mean annual precipitation, and potential net primary production were heterogeneously correlated with herbivory at different quantiles or variable intervals. Although the Northern Hemisphere (NH) and the global-scale trends are in accordance with the expected latitudinal variation, the Southern Hemisphere (SH) was found to exhibit inverse trends. The latitude has a negative effect on plant-herbivore interactions in the NH and on a global scale; leaf herbivory decreased more at a given latitude in higher latitudinal areas, which is attributed to harsher survival conditions in these areas. The uniformity of leaf herbivory variability along the climate and latitude gradient in the NH and on a global scale motivates that the loosening of this herbivory variability in the SH is not significant enough to dismiss the prevalence of the LHH, a testable macroecology hypothesis.
Collapse
Affiliation(s)
- Jianguo Gao
- Coastal Ecosystems Research Station of the Yangtze River EstuaryMinistry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringInstitute of Biodiversity ScienceFudan UniversityShanghaiChina
| | - Changming Fang
- Coastal Ecosystems Research Station of the Yangtze River EstuaryMinistry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringInstitute of Biodiversity ScienceFudan UniversityShanghaiChina
| | - Bin Zhao
- Coastal Ecosystems Research Station of the Yangtze River EstuaryMinistry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringInstitute of Biodiversity ScienceFudan UniversityShanghaiChina
| |
Collapse
|
28
|
Welti EAR, Qiu F, Tetreault HM, Ungerer M, Blair J, Joern A. Fire, grazing and climate shape plant–grasshopper interactions in a tallgrass prairie. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13272] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Fan Qiu
- Division of Biology Kansas State University Manhattan Kansas
| | | | - Mark Ungerer
- Division of Biology Kansas State University Manhattan Kansas
| | - John Blair
- Division of Biology Kansas State University Manhattan Kansas
| | - Anthony Joern
- Division of Biology Kansas State University Manhattan Kansas
| |
Collapse
|
29
|
Chronic dryness and wetness and especially pulsed drought threaten a generalist arthropod herbivore. Oecologia 2018; 188:931-943. [PMID: 30206688 DOI: 10.1007/s00442-018-4255-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
Abstract
Under climate change, both wetter and drier conditions, as well as an increase in extreme events like floods or droughts are projected for many areas. So far, studies only investigate the impact of drier or wetter conditions at a single stress severity level but do not consider how different intensities and types of changes affect insect herbivores feeding on stressed plants. Further, how effects of acute stress pulses differ from milder, chronic soil moisture stress is unclear. We investigated how changing soil moisture conditions affect a generalist insect herbivore feeding on grassland plants. We transplanted multi-species sections of grassland into pots and subjected them to different intensities and durations of flooding and drying stress. We compared effects of short, extreme drought and flooding pulses against the effects of milder, but chronic stress. Constantly drier conditions decreased plant and herbivore performance at all levels of stress severity. Severe permanent wetness did not affect plant growth, but decreased pupal weight (- 23%) and survival of larvae (- 34%). Extreme pulsed drought exacerbated negative effects of chronic drying, as most larvae died before they could benefit from rewetting plants after the drought (94% mortality). Pulsed flooding did not affect plants or larval development more than chronic severe wetness. Our findings imply that plant stress negatively affects generalist chewing herbivores, even with mixed diets. Both drier and severely wet, but not mildly wetter conditions, will reduce survival of some species. Especially, extreme droughts appear to have strong negative effects on generalist grassland herbivores.
Collapse
|
30
|
Molecular identification of potential intermediate hosts of Aulonocephalus pennula from the order Orthoptera. J Helminthol 2018. [PMID: 29530106 DOI: 10.1017/s0022149x18000111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aulonocephalus pennula is a heteroxenous nematode that commonly infects a declining game bird, the northern bobwhite quail (Colinus virginianus). There is a lack of information on the life cycle of A. pennula and the potential effects of infection on bobwhites. In order to better understand the life cycle of this parasite, various species from the order Orthoptera were collected from a field site in Mitchell County, Texas. Using polymerase chain reaction (PCR), nine potential intermediate hosts were identified from the 35 orthopteran species collected. Later, ten live specimens were collected to identify larvae within the potential intermediate hosts. Larvae were present in three of these and were sent for sequencing. Similarly, the presence of larvae was confirmed from extra tissues of samples identified as positive with PCR. This was the first study to document potential intermediate hosts, but future studies are needed to confirm that these species are capable of transmitting infection to bobwhite. However, this study demonstrates that PCR has increased sensitivity and may be a valuable tool when determining intermediate hosts.
Collapse
|
31
|
Smith-Ramesh LM, Rosenblatt AE, Schmitz OJ. Multivariate Climate Change Can Favor Large Herbivore Body Size in Food Webs. Am Nat 2018. [DOI: 10.1086/695768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Lenhart PA. Using plant nutrient landscapes to assess Anthropocene effects on insect herbivores. CURRENT OPINION IN INSECT SCIENCE 2017; 23:51-58. [PMID: 29129282 DOI: 10.1016/j.cois.2017.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/30/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Global climate change will dramatically affect insect herbivores through changes in plant quality. Linking how multiple climate factors affect plant macronutrient content may be the most accurate way to understand the response of insect herbivores. Studies should embrace the complexity of interacting climate factors in natural systems and characterize shifts in multidimensional plant nutrient landscapes. This nutrient landscape simplifies interpretation of climate effects, although selection of appropriate currencies, scale, and interactions with allelochemicals present challenges. By assessing climate change through the filter of nutrient landscapes we could gain an understanding of how complex interacting climate change drivers affect the 'buffet' available to different insect herbivores.
Collapse
Affiliation(s)
- Paul A Lenhart
- S-225 Agricultural Science Center N, Department of Entomology, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
33
|
Branson DH. Effects of Altered Seasonality of Precipitation on Grass Production and Grasshopper Performance in a Northern Mixed Prairie. ENVIRONMENTAL ENTOMOLOGY 2017; 46:589-594. [PMID: 28334394 DOI: 10.1093/ee/nvx053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Indexed: 06/06/2023]
Abstract
Climatic changes are leading to differing patterns and timing of precipitation in grassland ecosystems, with the seasonal timing of precipitation affecting plant biomass and plant composition. No previous studies have examined how drought seasonality affects grasshopper performance and the impact of herbivory on vegetation. We modified seasonal patterns of precipitation and grasshopper density in a manipulative experiment to examine if seasonality of drought combined with herbivory affected plant biomass, nitrogen content, and grasshopper performance. Grass biomass was affected by both precipitation and grasshopper density treatments, while nitrogen content of grass was higher with early-season drought. Proportional survival was negatively affected by initial density, while survival was higher with early drought than with full-season drought. Drought timing affected the outcome, with early summer drought increasing grass nitrogen content and grasshopper survival, while season-long and late-season drought did not. The results support arguments that our knowledge of plant responses to seasonal short-term variation in climate is limited and illustrate the importance of experiments manipulating precipitation phenology. The results confirm that understanding the season of drought is critical for predicting grasshopper population dynamics, as extreme early summer drought may be required to strongly affect Melanoplus sanguinipes (F.) performance.
Collapse
Affiliation(s)
- David H Branson
- U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Agricultural Research Lab, 1500 N. Central Ave., Sidney, MT 59270
| |
Collapse
|
34
|
Deans CA, Behmer ST, Tessnow AE, Tamez-Guerra P, Pusztai-Carey M, Sword GA. Nutrition affects insect susceptibility to Bt toxins. Sci Rep 2017; 7:39705. [PMID: 28045087 PMCID: PMC5206677 DOI: 10.1038/srep39705] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022] Open
Abstract
Pesticide resistance represents a major challenge to global food production. The spread of resistance alleles is the primary explanation for observations of reduced pesticide efficacy over time, but the potential for gene-by-environment interactions (plasticity) to mediate susceptibility has largely been overlooked. Here we show that nutrition is an environmental factor that affects susceptibility to Bt toxins. Protein and carbohydrates are two key macronutrients for insect herbivores, and the polyphagous pest Helicoverpa zea self-selects and performs best on diets that are protein-biased relative to carbohydrates. Despite this, most Bt bioassays employ carbohydrate-biased rearing diets. This study explored the effect of diet protein-carbohydrate content on H. zea susceptibility to Cry1Ac, a common Bt endotoxin. We detected a 100-fold increase in LC50 for larvae on optimal versus carbohydrate-biased diets, and significant diet-mediated variation in survival and performance when challenged with Cry1Ac. Our results suggest that Bt resistance bioassays that use ecologically- and physiologically-mismatched diets over-estimate susceptibility and under-estimate resistance.
Collapse
Affiliation(s)
- Carrie A. Deans
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| | - Spencer T. Behmer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Ecology & Evolutionary Biology Graduate Program, Texas A&M University, College Station, TX 77843, USA
| | - Ashley E. Tessnow
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Patricia Tamez-Guerra
- LIV-DEMI, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, N.L. 66455, México
| | | | - Gregory A. Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Ecology & Evolutionary Biology Graduate Program, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
35
|
Does Plant Cultivar Difference Modify the Bottom-Up Effects of Resource Limitation on Plant-Insect Herbivore Interactions? J Chem Ecol 2016; 42:1293-1303. [PMID: 27889865 DOI: 10.1007/s10886-016-0795-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
Variation in resource input to plants triggers bottom-up effects on plant-insect herbivore interactions. However, variation in plant intrinsic traits in response to resource availability may modify the bottom-up effects. Furthermore, the consequences also may depend on the feeding strategy of insect herbivores belonging to different feeding guilds. We evaluated the performance of two insect herbivores from distinct feeding guilds, the leaf miner Tuta absoluta and the phloem feeder Bemisia tabaci. We offered the insects two tomato cultivars growing under optimal nitrogen input vs. nitrogen limitation, or under optimal water input vs. water limitation. We found that: (i) the two cultivars differed in their responses to nitrogen and water limitation by regulating primary (leaf-gas exchange related parameters, leaf nitrogen content, and leaf C/N ratio) and secondary metabolism (main defensive compounds: glycoalkaloids); (ii) for both plant cultivars, nitrogen or water limitation significantly affected T. absoluta survival and development, while B. tabaci survival was affected only by nitrogen limitation; and surprisingly (iii) plant cultivar differences did not modify the negative bottom-up effects of resource limitation on the two insect herbivores. In conclusion, the negative effects of resource limitation cascaded up to insect herbivores even though plant cultivars exhibited various adaptive traits to resource limitation.
Collapse
|
36
|
Deans CA, Behmer ST, Fiene J, Sword GA. Spatio-Temporal, Genotypic, and Environmental Effects on Plant Soluble Protein and Digestible Carbohydrate Content: Implications for Insect Herbivores with Cotton as an Exemplar. J Chem Ecol 2016; 42:1151-1163. [DOI: 10.1007/s10886-016-0772-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/15/2016] [Accepted: 08/07/2016] [Indexed: 12/20/2022]
|
37
|
Rosenblatt AE, Schmitz OJ. Climate Change, Nutrition, and Bottom-Up and Top-Down Food Web Processes. Trends Ecol Evol 2016; 31:965-975. [PMID: 27726943 DOI: 10.1016/j.tree.2016.09.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 11/25/2022]
Abstract
Climate change ecology has focused on climate effects on trophic interactions through the lenses of temperature effects on organismal physiology and phenological asynchronies. Trophic interactions are also affected by the nutrient content of resources, but this topic has received less attention. Using concepts from nutritional ecology, we propose a conceptual framework for understanding how climate affects food webs through top-down and bottom-up processes impacted by co-occurring environmental drivers. The framework integrates climate effects on consumer physiology and feeding behavior with effects on resource nutrient content. It illustrates how studying responses of simplified food webs to simplified climate change might produce erroneous predictions. We encourage greater integrative complexity of climate change research on trophic interactions to resolve patterns and enhance predictive capacities.
Collapse
Affiliation(s)
- Adam E Rosenblatt
- Yale University, School of Forestry and Environmental Studies, 370 Prospect St., New Haven, CT 06511 USA.
| | - Oswald J Schmitz
- Yale University, School of Forestry and Environmental Studies, 370 Prospect St., New Haven, CT 06511 USA
| |
Collapse
|
38
|
Barnett KL, Facey SL. Grasslands, Invertebrates, and Precipitation: A Review of the Effects of Climate Change. FRONTIERS IN PLANT SCIENCE 2016; 7:1196. [PMID: 27547213 PMCID: PMC4974256 DOI: 10.3389/fpls.2016.01196] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/26/2016] [Indexed: 05/05/2023]
Abstract
Invertebrates are the main components of faunal diversity in grasslands, playing substantial roles in ecosystem processes including nutrient cycling and pollination. Grassland invertebrate communities are heavily dependent on the plant diversity and production within a given system. Climate change models predict alterations in precipitation patterns, both in terms of the amount of total inputs and the frequency, seasonality and intensity with which these inputs occur, which will impact grassland productivity. Given the ecological, economic and biodiversity value of grasslands, and their importance globally as areas of carbon storage and agricultural development, it is in our interest to understand how predicted alterations in precipitation patterns will affect grasslands and the invertebrate communities they contain. Here, we review the findings from manipulative and observational studies which have examined invertebrate responses to altered rainfall, with a particular focus on large-scale field experiments employing precipitation manipulations. Given the tight associations between invertebrate communities and their underlying plant communities, invertebrate responses to altered precipitation generally mirror those of the plants in the system. However, there is evidence that species responses to future precipitation changes will be idiosyncratic and context dependent across trophic levels, challenging our ability to make reliable predictions about how grassland communities will respond to future climatic changes, without further investigation. Thus, moving forward, we recommend increased consideration of invertebrate communities in current and future rainfall manipulation platforms, as well as the adoption of new technologies to aid such studies.
Collapse
Affiliation(s)
- Kirk L. Barnett
- Hawkesbury Institute for the Environment, Western Sydney University, PenrithNSW, Australia
| | | |
Collapse
|
39
|
Deans CA, Sword GA, Behmer ST. Nutrition as a neglected factor in insect herbivore susceptibility to Bt toxins. CURRENT OPINION IN INSECT SCIENCE 2016; 15:97-103. [PMID: 27436738 DOI: 10.1016/j.cois.2016.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/23/2016] [Accepted: 04/13/2016] [Indexed: 06/06/2023]
Abstract
The widespread global adoption of Bt crops elevates concerns about the evolution of Bt resistance in insect pest species. Current insecticide resistance management (IRM) strategies focus solely on genetic variation as a causal factor in the evolution of resistance, but ignore the role that environmental factors, such as nutrition, may play. In this opinion paper, we discuss the benefits that insect herbivores gain from consuming foods with protein-carbohydrate content that matches their self-selected protein-carbohydrate intake, and show that even within monocultures there is amply opportunity for insect herbivores to regulate their macronutrient intake. Next we review new data that show that dietary protein and carbohydrates can: firstly, have predictably strong effects on the survival and performance of caterpillars challenged with Bt toxins, and secondly, mediate plasticity in susceptibility to Cry1Ac, which can account for large differences in LC50 values. Nutrition-Bt interactions such as these have important implications for IRM, particularly given that diet-incorporated Bt bioassays commonly use artificial diets that vary substantially from their self-selected optimal diets, which likely results in underestimates of resistance in the field. Failing to bioassay larvae on ecologically-relevant diets can seriously confound the results of Bt resistance monitoring bioassays and undermine our ability to detect resistance in the field.
Collapse
Affiliation(s)
- C A Deans
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA.
| | - G A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; Ecology & Evolutionary Biology Graduate Program, Texas A&M University, College Station, TX 77843, USA
| | - S T Behmer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; Ecology & Evolutionary Biology Graduate Program, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
40
|
Ssepuuya G, Mukisa IM, Nakimbugwe D. Nutritional composition, quality, and shelf stability of processed Ruspolia nitidula (edible grasshoppers). Food Sci Nutr 2016; 5:103-112. [PMID: 28070321 PMCID: PMC5217929 DOI: 10.1002/fsn3.369] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 11/07/2022] Open
Abstract
The nutritional and commercial potential of the edible grasshopper (Ruspolia nitidula, nsenene in Luganda), a delicacy in Uganda and many East African tribes, is limited by a short shelf life and unverified nutritional value. This research established that R. nitidula is nutritious with 36–40% protein, 41–43% fat, 2.5–3.2% carbohydrate, 2.6–3.9% ash, 11.0–14.5% dietary fiber, and 900–2300 μg/100 g total carotenoids on a dry matter basis. Sautéing was the most preferred processing method resulting in grasshoppers with a notably better aroma and flavor. After 12 weeks of storage at room temperature, processed and vacuum packed, ready‐to‐eat grasshoppers maintained their edible quality with an acid value of 3.2 mg KOH/g, a total plate count of log 1.8 cfu/g, and an overall acceptability of 6.7–7.2 on a 9‐point hedonic scale. Further research is required for extending the shelf stability beyond 12 weeks and characterizing the profile of major nutrients.
Collapse
Affiliation(s)
- Geoffrey Ssepuuya
- Department of Food Technology and Nutrition School of Food Technology Nutrition and Bio-Engineering College of Agricultural and Environmental Sciences Makerere University P.O. Box, 7062 Kampala Uganda
| | - Ivan Muzira Mukisa
- Department of Food Technology and Nutrition School of Food Technology Nutrition and Bio-Engineering College of Agricultural and Environmental Sciences Makerere University P.O. Box, 7062 Kampala Uganda
| | - Dorothy Nakimbugwe
- Department of Food Technology and Nutrition School of Food Technology Nutrition and Bio-Engineering College of Agricultural and Environmental Sciences Makerere University P.O. Box, 7062 Kampala Uganda
| |
Collapse
|
41
|
Cook SC, Eubanks MD, Gold RE, Behmer ST. Summer and fall ants have different physiological responses to food macronutrient content. JOURNAL OF INSECT PHYSIOLOGY 2016; 87:35-44. [PMID: 26860359 DOI: 10.1016/j.jinsphys.2016.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Seasonally, long-lived animals exhibit changes in behavior and physiology in response to shifts in environmental conditions, including food abundance and nutritional quality. Ants are long-lived arthropods that, at the colony level, experience such seasonal shifts in their food resources. Previously we reported summer- and fall-collected ants practiced distinct food collection behavior and nutrient intake regulation strategies in response to variable food protein and carbohydrate content, despite being reared in the lab under identical environmental conditions and dietary regimes. Seasonally distinct responses were observed for both no-choice and choice dietary experiments. Using data from these same experiments, our objective here is to examine colony and individual-level physiological traits, colony mortality and growth, food processing, and worker lipid mass, and how these traits change in response to variable food protein-carbohydrate content. For both experiments we found that seasonality per se exerted strong effects on colony and individual level traits. Colonies collected in the summer maintained total worker mass despite high mortality. In contrast, colonies collected in the fall lived longer, and accumulated lipids, including when reared on protein-biased diets. Food macronutrient content had mainly transient effects on physiological responses. Extremes in food carbohydrate content however, elicited a compensatory response in summer worker ants, which processed more protein-biased foods and contained elevated lipid levels. Our study, combined with our previously published work, strongly suggests that underlying physiological phenotypes driving behaviors of summer and fall ants are likely fixed seasonally, and change circannually.
Collapse
Affiliation(s)
- Steven C Cook
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States; Beltsville Agricultural Research Center, Bee Research Laboratory, Beltsville, MD 20705, United States.
| | - Micky D Eubanks
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Roger E Gold
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Spencer T Behmer
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
42
|
Branson DH. Drought Impacts on Competition in Phoetaliotes nebrascensis (Orthoptera Acrididae) in a Northern Mixed Grassland. ENVIRONMENTAL ENTOMOLOGY 2016; 45:492-499. [PMID: 26744453 DOI: 10.1093/ee/nvv225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Global climate change is predicted to significantly modify patterns of precipitation, making it critical to develop a better understanding of how this will modify biotic interactions. Short-term to decadal-scale weather patterns can impact grasshopper population dynamics, but drought impacts on grasshoppers have rarely been studied in manipulative experiments. A cage experiment was conducted in eastern Montana to examine the impact of intra- and interspecific competition and precipitation manipulation treatments on performance of a common melanopline grasshopper Phoetaliotes nebrascensis (Thomas). High-density and drought treatments had similarly strong negative impacts on food availability. Proportional grasshopper survival did not differ significantly by treatment, but density dependence was evident in both body size and reproductive traits. The impact of precipitation and density treatments on grasshopper body size and reproduction were typically similar in magnitude and much larger than interspecific competition, with the exception of male femur length. Even with high late summer precipitation, drought had strong effects on individual body size and future reproduction. This study provides valuable information on population dynamics of an abundant grasshopper, with moderate precipitation reductions negatively affecting reproduction and body size. No positive impacts of drought as predicted by the plant stress hypothesis were observed. The study reinforces the need to examine drought manipulations to better predict grasshopper population changes due to changing climate conditions.
Collapse
Affiliation(s)
- David H Branson
- U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Agricultural Research Lab, 1500 N. Central Avenue, Sidney, MT 59270
| |
Collapse
|
43
|
Scherber C. Insect responses to interacting global change drivers in managed ecosystems. CURRENT OPINION IN INSECT SCIENCE 2015; 11:56-62. [PMID: 28285759 DOI: 10.1016/j.cois.2015.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 06/06/2023]
Abstract
Insects are facing an increasingly stressful combination of global change drivers such as habitat fragmentation, agricultural intensification, pollution, or climatic changes. While single-factor studies have yielded considerable insights, multi-factor manipulations have gained momentum recently. Nevertheless, most work to date has remained within particular domains of research, such as 'habitat destruction' or 'climate change', and linkages among subdisciplines within the ecological literature have remained scarce. Here, I provide an overview of the most recent developments in the field, with a focus on main functional groups of insects, but also their interactions with other organisms. All major global change drivers (landscape modification, climate change, agricultural management) are covered both singly and in interaction. The manuscript concludes with concepts on how to statistically and conceptually deal with interactions in experimental and observational work.
Collapse
Affiliation(s)
- Christoph Scherber
- Agroecology, Department of Crop Science, Georg-August-University Göttingen, Grisebachstr. 6, 37077 Göttingen, Germany; Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany.
| |
Collapse
|