1
|
Sharma G, Haak D, Westwood JH, Askew S, Barney JN. Transgenerational phenotypic responses to herbicide stress are more rapid than to shade and simulated herbivory in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2375-2384. [PMID: 39024389 DOI: 10.1111/tpj.16923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Abstract
Weeds in agricultural settings continually adapt to stresses from ecological and anthropogenic sources, in some cases leading to resistant populations. However, consequences of repeated sub-lethal exposure of these stressors on fitness and stress "memory" over generations remain poorly understood. We measured plant performance over a transgenerational experiment with Arabidopsis thaliana where plants were exposed to sub-lethal stress induced by the herbicides glyphosate or trifloxysulfuron, stresses from clipping or shading in either one (G1) or four successive generations (G1-G4), and control plants that never received stress. We found that fourth-generation (G4) plants that had been subjected to three generations of glyphosate or trifloxysulfuron stress produced higher post-stress biomass, seed weight, and rosette area as compared to that produced by plants that experienced stress only in the first generation (G1). By the same measure, clipping and shade were more influential on floral development time (shade) and seed weight (clipping) but did not show responsive phenotypes for vegetative metrics after multiple generations. Overall, we found that plants exhibited more rapid transgenerational vegetative "stress memory" to herbicides while reproductive plasticity was stressor dependent and similar between clipping/shade and anthropogenic stressors. Our study suggests that maternal plant stress memory aids next-generation plants to respond and survive better under the same stressors.
Collapse
Affiliation(s)
- Gourav Sharma
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - David Haak
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - James H Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Shawn Askew
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Jacob N Barney
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
2
|
Authier A, Cerdán P, Auge G. Non-stressful temperature changes affect transgenerational phenotypic plasticity across the life cycle of Arabidopsis thaliana plants. ANNALS OF BOTANY 2023; 132:1259-1270. [PMID: 37956109 PMCID: PMC10902895 DOI: 10.1093/aob/mcad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND AND AIMS Plants respond in a plastic manner to seasonal changes, often resulting in adaptation to environmental variation. Although much is known about how seasonality regulates developmental transitions within generations, transgenerational effects of non-stressful environmental changes are only beginning to be unveiled. This study aimed to evaluate the effects of ambient temperature changes on the expression of transgenerational plasticity in key developmental traits of Arabidopsis thaliana plants. METHODS We grew Columbia-0 plants in two contrasting temperature environments (18 and 24 °C) during their whole life cycles, or the combination of those temperatures before and after bolting (18-24 and 24-18 °C) across two generations. We recorded seed germination, flowering time and reproductive biomass production for the second generation, and seed size of the third generation. KEY RESULTS The environment during the whole life cycle of the first generation of plants, even that experienced before flowering, influenced the germination response and flowering time of the second generation. These effects showed opposing directions in a pattern dependent on the life stage experiencing the cue in the first generation. In contrast, the production of reproductive biomass depended on the immediate environment of the progeny generation. Finally, the seed area of the third generation was influenced positively by correlated environments across generations. CONCLUSIONS Our results suggest that non-stressful environmental changes affect the expression of key developmental traits across generations, although those changes can have contrasting effects depending on the parental and grandparental life stage that perceives the cue. Thus, transgenerational effects in response to non-stressful cues might influence the expression of life-history traits and potential adaptation of future generations.
Collapse
Affiliation(s)
- Ailén Authier
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Cerdán
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires – Consejo Nacional de Investigaciones Científicas y Tecnológicas (IIBBA – CONICET), Buenos Aires, Argentina
| | - Gabriela Auge
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Auge G, Hankofer V, Groth M, Antoniou-Kourounioti R, Ratikainen I, Lampei C. Plant environmental memory: implications, mechanisms and opportunities for plant scientists and beyond. AOB PLANTS 2023; 15:plad032. [PMID: 37415723 PMCID: PMC10321398 DOI: 10.1093/aobpla/plad032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
Plants are extremely plastic organisms. They continuously receive and integrate environmental information and adjust their growth and development to favour fitness and survival. When this integration of information affects subsequent life stages or the development of subsequent generations, it can be considered an environmental memory. Thus, plant memory is a relevant mechanism by which plants respond adaptively to different environments. If the cost of maintaining the response is offset by its benefits, it may influence evolutionary trajectories. As such, plant memory has a sophisticated underlying molecular mechanism with multiple components and layers. Nonetheless, when mathematical modelling is combined with knowledge of ecological, physiological, and developmental effects as well as molecular mechanisms as a tool for understanding plant memory, the combined potential becomes unfathomable for the management of plant communities in natural and agricultural ecosystems. In this review, we summarize recent advances in the understanding of plant memory, discuss the ecological requirements for its evolution, outline the multilayered molecular network and mechanisms required for accurate and fail-proof plant responses to variable environments, point out the direct involvement of the plant metabolism and discuss the tremendous potential of various types of models to further our understanding of the plant's environmental memory. Throughout, we emphasize the use of plant memory as a tool to unlock the secrets of the natural world.
Collapse
Affiliation(s)
| | - Valentin Hankofer
- Institute of Biochemical Plant Pathology, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Neuherberg, Germany
| | - Martin Groth
- Institute of Functional Epigenetics, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Neuherberg, Germany
| | - Rea Antoniou-Kourounioti
- School of Molecular Biosciences, University of Glasgow, Sir James Black Building, University Ave, Glasgow G12 8QQ, UK
| | - Irja Ratikainen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
| | - Christian Lampei
- Department of Biology (FB17), Plant Ecology and Geobotany Group, University of Marburg, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| |
Collapse
|
4
|
Conrady M, Lampei C, Bossdorf O, Hölzel N, Michalski S, Durka W, Bucharova A. Plants cultivated for ecosystem restoration can evolve toward a domestication syndrome. Proc Natl Acad Sci U S A 2023; 120:e2219664120. [PMID: 37155873 PMCID: PMC10193954 DOI: 10.1073/pnas.2219664120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
The UN Decade on Ecosystem Restoration calls for upscaling restoration efforts, but many terrestrial restoration projects are constrained by seed availability. To overcome these constraints, wild plants are increasingly propagated on farms to produce seeds for restoration projects. During on-farm propagation, the plants face non-natural conditions with different selection pressures, and they might evolve adaptations to cultivation that parallel those of agricultural crops, which could be detrimental to restoration success. To test this, we compared traits of 19 species grown from wild-collected seeds to those from their farm-propagated offspring of up to four cultivation generations, produced by two European seed growers, in a common garden experiment. We found that some plants rapidly evolved across cultivated generations towards increased size and reproduction, lower within-species variability, and more synchronized flowering. In one species, we found evolution towards less seed shattering. These trait changes are typical signs of the crop domestication syndrome, and our study demonstrates that it can also occur during cultivation of wild plants, within only few cultivated generations. However, there was large variability between cultivation lineages, and the observed effect sizes were generally rather moderate, which suggests that the detected evolutionary changes are unlikely to compromise farm-propagated seeds for ecosystem restoration. To mitigate the potential negative effects of unintended selection, we recommend to limit the maximum number of generations the plants can be cultivated without replenishing the seed stock from new wild collections.
Collapse
Affiliation(s)
- Malte Conrady
- Institute of Landscape Ecology, University of Münster, 48149Münster, Germany
- Department of Biology, Philipps-University Marburg, 35043Marburg, Germany
| | - Christian Lampei
- Institute of Landscape Ecology, University of Münster, 48149Münster, Germany
- Department of Biology, Philipps-University Marburg, 35043Marburg, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution & Ecology, University of Tübingen, 72076Tübingen, Germany
| | - Norbert Hölzel
- Institute of Landscape Ecology, University of Münster, 48149Münster, Germany
| | - Stefan Michalski
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, 06120Halle, Germany
| | - Walter Durka
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, 06120Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103Leipzig, Germany
| | - Anna Bucharova
- Institute of Landscape Ecology, University of Münster, 48149Münster, Germany
- Department of Biology, Philipps-University Marburg, 35043Marburg, Germany
| |
Collapse
|
5
|
Latzel V, Fischer M, Groot M, Gutzat R, Lampei C, Ouborg J, Parepa M, Schmid K, Vergeer P, Zhang Y, Bossdorf O. Parental environmental effects are common and strong, but unpredictable, in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 237:1014-1023. [PMID: 36319609 DOI: 10.1111/nph.18591] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The phenotypes of plants can be influenced by the environmental conditions experienced by their parents. However, there is still much uncertainty about how common and how predictable such parental environmental effects really are. We carried out a comprehensive experimental test for parental effects, subjecting plants of multiple Arabidopsis thaliana genotypes to 24 different biotic or abiotic stresses, or combinations thereof, and comparing their offspring phenotypes in a common environment. The majority of environmental stresses caused significant parental effects, with -35% to +38% changes in offspring fitness. The expression of parental effects was strongly genotype-dependent, and multiple environmental stresses often acted nonadditively when combined. The direction and magnitude of parental effects were unrelated to the direct effects on the parents: Some environmental stresses did not affect the parents but caused substantial effects on offspring, while for others, the situation was reversed. Our study demonstrates that parental environmental effects are common and often strong in A. thaliana, but they are genotype-dependent, act nonadditively, and are difficult to predict. We should thus be cautious with generalizing from simple studies with single plant genotypes and/or only few individual environmental stresses. A thorough and general understanding of parental effects requires large multifactorial experiments.
Collapse
Affiliation(s)
- Vít Latzel
- Institute of Botany of the CAS, Zámek 1, 252 43, Průhonice, Czech Republic
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Maartje Groot
- Department of Experimental Plant Ecology, Radboud University, PO Box 9100, 6500 GL, Nijmegen, the Netherlands
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Christian Lampei
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
- Institute of Biology, University of Marburg, Karl-von-Frisch-Straße 8, 35032, Marburg, Germany
| | - Joop Ouborg
- Department of Experimental Plant Ecology, Radboud University, PO Box 9100, 6500 GL, Nijmegen, the Netherlands
| | - Madalin Parepa
- Plant Evolutionary Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Karl Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
| | - Philippine Vergeer
- Department of Experimental Plant Ecology, Radboud University, PO Box 9100, 6500 GL, Nijmegen, the Netherlands
- Plant Ecology and Nature Conservation Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - Yuanye Zhang
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Oliver Bossdorf
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
- Plant Evolutionary Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| |
Collapse
|
6
|
Matesanz S, Ramos-Muñoz M, Rubio Teso ML, Iriondo JM. Effects of parental drought on offspring fitness vary among populations of a crop wild relative. Proc Biol Sci 2022; 289:20220065. [PMID: 36000234 PMCID: PMC9399706 DOI: 10.1098/rspb.2022.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/26/2022] [Indexed: 01/17/2023] Open
Abstract
Transgenerational plasticity is a form of non-genetic inheritance that can reduce or enhance offspring fitness depending on parental stress. Yet, the adaptive value of such parental environmental effects and whether their expression varies among populations remain largely unknown. We used self-fertilized lines from climatically distinct populations of the crop wild relative Lupinus angustifolius. In the parental generation, full-siblings were grown in two contrasting watering environments. Then, to robustly separate the within-generation and transgenerational response to drought, we reciprocally assigned the offspring of parents to the same experimental treatments. We measured key functional traits and assessed lifetime reproductive fitness. Offspring of drought-stressed parents produced less reproductive biomass, but a similar number of lighter seeds, in dry soil compared to offspring of genetically identical, well-watered parents, an effect not mediated by differences in seed provisioning. Importantly, while the offspring of parents grown in the favourable environment responded to drought by slightly increasing individual seed mass, the pattern of plasticity of the offspring of drought-grown parents showed the opposite direction, and the negative effects of parental drought on seed mass were more pronounced in populations from cooler and moist habitats. Overall, our results show that parental effects may override immediate adaptive responses to drought and provide evidence of population-level variation in the expression of transgenerational plasticity.
Collapse
Affiliation(s)
- Silvia Matesanz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Marina Ramos-Muñoz
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - María Luisa Rubio Teso
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - José María Iriondo
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| |
Collapse
|
7
|
Stanik N, Lampei C, Rosenthal G. Drought stress triggers differential survival and functional trait responses in the establishment of Arnica montana seedlings. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:1086-1096. [PMID: 34263990 DOI: 10.1111/plb.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
The establishment and survival of seedlings are critical stages in the life cycle of plants and therefore usually well timed to humid and favourable conditions. Climate projections suggest that the threatened mountain grassland species Arnica montana may be increasingly exposed to drought stress. However, studies that focus on the species' early development are missing. We evaluated impacts of drought-induced stress on A. montana seedlings in their early establishment phase and identified traits that could cause the species' fitness to decline. In a greenhouse experiment, we tested the response of A. montana seedlings to different drought levels (moderate, strong, extreme). To assess their fitness under increasing drought, we evaluated survival of the seedlings based on four senescence stages and measured the performance of above- and belowground morphological and physiological functional traits. Arnica montana seedlings showed high resistance to drought. Senescence accelerated and survival declined only under strong and extreme drought conditions. However, the seedlings' vegetative performance decreased even with moderate drought, as indicated by smaller values of most leaf traits and some root traits. Physiological trait response was less sensitive. Drought stress hinders the establishment and survival of A. montana seedlings. Following the functional trait responses to drought and their association with survival, we suggest declining leaf length, leaf width, and leaf number are sensitive traits that can lead to a decline in performance.
Collapse
Affiliation(s)
- N Stanik
- Department of Landscape and Vegetation Ecology, Institute of Landscape Architecture and Environmental Planning, University of Kassel, Kassel, Germany
| | - C Lampei
- Biodiversity and Ecosystem Research Group, Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - G Rosenthal
- Department of Landscape and Vegetation Ecology, Institute of Landscape Architecture and Environmental Planning, University of Kassel, Kassel, Germany
| |
Collapse
|
8
|
Alvarez M, Bleich A, Donohue K. Genetic differences in the temporal and environmental stability of transgenerational environmental effects. Evolution 2021; 75:2773-2790. [PMID: 34586633 DOI: 10.1111/evo.14367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/31/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Environments influence the expression of phenotypes of individuals, their progeny, and even their grandprogeny. The duration of environmental effects and how they are modified by subsequent environments are predicted to be targets of natural selection in variable environments. However, little is known about the genetic basis of the temporal persistence of environmental effects and their stability of expression across subsequent environments, or even the extent to which natural genotypes differ in these attributes of environmental effects. We factorially manipulated the thermal environment experienced in three successive generations, to quantify the temporal persistence and environmental stability of temperature effects in contrasting genotypes of Arabidopsis thaliana. We found that genotypes differed in the manner in which environmental effects dissipated across successive generations, the manner in which responses to ancestral environments were stably expressed in present environments, the manner in which ancestral environments altered responses to present environments, and in the manner in which ancestral environments altered fitness in present conditions. Genetic variation exists in nature for these trait-specific environmental responses, suggesting that the temporal persistence and stability of environmental effects in variable environments have the potential to evolve in response to natural selection imposed by different environments and sequences of environments.
Collapse
Affiliation(s)
| | - Andrew Bleich
- Department of Biology, Duke University, Durham, North Carolina, 27708
| | - Kathleen Donohue
- Department of Biology, Duke University, Durham, North Carolina, 27708
| |
Collapse
|
9
|
Chano V, Domínguez-Flores T, Hidalgo-Galvez MD, Rodríguez-Calcerrada J, Pérez-Ramos IM. Epigenetic responses of hare barley (Hordeum murinum subsp. leporinum) to climate change: an experimental, trait-based approach. Heredity (Edinb) 2021; 126:748-762. [PMID: 33608652 PMCID: PMC8102545 DOI: 10.1038/s41437-021-00415-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
The impact of reduced rainfall and increased temperatures forecasted by climate change models on plant communities will depend on the capacity of plant species to acclimate and adapt to new environmental conditions. The acclimation process is mainly driven by epigenetic regulation, including structural and chemical modifications on the genome that do not affect the nucleotide sequence. In plants, one of the best-known epigenetic mechanisms is cytosine-methylation. We evaluated the impact of 30% reduced rainfall (hereafter "drought" treatment; D), 3 °C increased air temperature ("warming"; W), and the combination of D and W (WD) on the phenotypic and epigenetic variability of Hordeum murinum subsp. leporinum L., a grass species of high relevance in Mediterranean agroforestry systems. A full factorial experiment was set up in a savannah-like ecosystem located in southwestern Spain. H. murinum exhibited a large phenotypic plasticity in response to climatic conditions. Plants subjected to warmer conditions (i.e., W and WD treatments) flowered earlier, and those subjected to combined stress (WD) showed a higher investment in leaf area per unit of leaf mass (i.e., higher SLA) and produced heavier seeds. Our results also indicated that both the level and patterns of methylation varied substantially with the climatic treatments, with the combination of D and W inducing a clearly different epigenetic response compared to that promoted by D and W separately. The main conclusion achieved in this work suggests a potential role of epigenetic regulation of gene expression for the maintenance of homoeostasis and functional stability under future climate change scenarios.
Collapse
Affiliation(s)
- Víctor Chano
- grid.4711.30000 0001 2183 4846Research Group “Sistemas Forestales Mediterráneos”, Instituto de Recursos Naturales y Agrobiología de Sevilla. Dpto, Biogeoquímica, Ecología Vegetal y Microbiana, Consejo Superior de Investigaciones Científicas, Av. Reina Mercedes 10, 41012 Sevilla, Spain ,grid.5690.a0000 0001 2151 2978Research Group “Sistemas Naturales e Historia Forestal”, ETSI Montes, Forestal y del Medio Natural. Dpto, Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain ,grid.7450.60000 0001 2364 4210Present Address: Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Tania Domínguez-Flores
- grid.5690.a0000 0001 2151 2978Research Group “Sistemas Naturales e Historia Forestal”, ETSI Montes, Forestal y del Medio Natural. Dpto, Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Maria Dolores Hidalgo-Galvez
- grid.4711.30000 0001 2183 4846Research Group “Sistemas Forestales Mediterráneos”, Instituto de Recursos Naturales y Agrobiología de Sevilla. Dpto, Biogeoquímica, Ecología Vegetal y Microbiana, Consejo Superior de Investigaciones Científicas, Av. Reina Mercedes 10, 41012 Sevilla, Spain
| | - Jesús Rodríguez-Calcerrada
- grid.5690.a0000 0001 2151 2978Research Group “Sistemas Naturales e Historia Forestal”, ETSI Montes, Forestal y del Medio Natural. Dpto, Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Ignacio Manuel Pérez-Ramos
- grid.4711.30000 0001 2183 4846Research Group “Sistemas Forestales Mediterráneos”, Instituto de Recursos Naturales y Agrobiología de Sevilla. Dpto, Biogeoquímica, Ecología Vegetal y Microbiana, Consejo Superior de Investigaciones Científicas, Av. Reina Mercedes 10, 41012 Sevilla, Spain
| |
Collapse
|
10
|
Mertens D, Boege K, Kessler A, Koricheva J, Thaler JS, Whiteman NK, Poelman EH. Predictability of Biotic Stress Structures Plant Defence Evolution. Trends Ecol Evol 2021; 36:444-456. [PMID: 33468354 DOI: 10.1016/j.tree.2020.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
To achieve ecological and reproductive success, plants need to mitigate a multitude of stressors. The stressors encountered by plants are highly dynamic but typically vary predictably due to seasonality or correlations among stressors. As plants face physiological and ecological constraints in responses to stress, it can be beneficial for plants to evolve the ability to incorporate predictable patterns of stress in their life histories. Here, we discuss how plants predict adverse conditions, which plant strategies integrate predictability of biotic stress, and how such strategies can evolve. We propose that plants commonly optimise responses to correlated sequences or combinations of herbivores and pathogens, and that the predictability of these patterns is a key factor governing plant strategies in dynamic environments.
Collapse
Affiliation(s)
- Daan Mertens
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | - Noah K Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
11
|
López Sánchez A, Pascual-Pardo D, Furci L, Roberts MR, Ton J. Costs and Benefits of Transgenerational Induced Resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:644999. [PMID: 33719325 PMCID: PMC7952753 DOI: 10.3389/fpls.2021.644999] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 05/20/2023]
Abstract
Recent evidence suggests that stressed plants employ epigenetic mechanisms to transmit acquired resistance traits to their progeny. However, the evolutionary and ecological significance of transgenerational induced resistance (t-IR) is poorly understood because a clear understanding of how parents interpret environmental cues in relation to the effectiveness, stability, and anticipated ecological costs of t-IR is lacking. Here, we have used a full factorial design to study the specificity, costs, and transgenerational stability of t-IR following exposure of Arabidopsis thaliana to increasing stress intensities by a biotrophic pathogen, a necrotrophic pathogen, and salinity. We show that t-IR in response to infection by biotrophic or necrotrophic pathogens is effective against pathogens of the same lifestyle. This pathogen-mediated t-IR is associated with ecological costs, since progeny from biotroph-infected parents were more susceptible to both necrotrophic pathogens and salt stress, whereas progeny from necrotroph-infected parents were more susceptible to biotrophic pathogens. Hence, pathogen-mediated t-IR provides benefits when parents and progeny are in matched environments but is associated with costs that become apparent in mismatched environments. By contrast, soil salinity failed to mediate t-IR against salt stress in matched environments but caused non-specific t-IR against both biotrophic and necrotrophic pathogens in mismatched environments. However, the ecological relevance of this non-specific t-IR response remains questionable as its induction was offset by major reproductive costs arising from dramatically reduced seed production and viability. Finally, we show that the costs and transgenerational stability of pathogen-mediated t-IR are proportional to disease pressure experienced by the parents, suggesting that plants use disease severity as an environmental proxy to adjust investment in t-IR.
Collapse
Affiliation(s)
- Ana López Sánchez
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Ana López Sánchez,
| | - David Pascual-Pardo
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Leonardo Furci
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Michael R. Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Jurriaan Ton
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
- Jurriaan Ton,
| |
Collapse
|
12
|
Alvarez M, Bleich A, Donohue K. Genotypic variation in the persistence of transgenerational responses to seasonal cues. Evolution 2020; 74:2265-2280. [PMID: 32383475 DOI: 10.1111/evo.13996] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/09/2020] [Accepted: 04/26/2020] [Indexed: 01/01/2023]
Abstract
Phenotypes respond to environments experienced directly by an individual, via phenotypic plasticity, or to the environment experienced by ancestors, via transgenerational environmental effects. The adaptive value of environmental effects depends not only on the strength and direction of the induced response but also on how long the response persists within and across generations, and how stably it is expressed across environments that are encountered subsequently. Little is known about the genetic basis of those distinct components, or even whether they exhibit genetic variation. We tested for genetic differences in the inducibility, temporal persistence, and environmental stability of transgenerational environmental effects in Arabidopsis thaliana. Genetic variation existed in the inducibility of transgenerational effects on traits expressed across the life cycle. Surprisingly, the persistence of transgenerational effects into the third generation was uncorrelated with their induction in the second generation. Although environmental effects for some traits in some genotypes weakened over successive generations, others were stronger or even in the opposite direction in more distant generations. Therefore, transgenerational effects in more distant generations are not merely caused by the retention or dissipation of those expressed in prior generations, but they may be genetically independent traits with the potential to evolve independently.
Collapse
Affiliation(s)
- Mariano Alvarez
- Department of Biology, Duke University, Durham, North Carolina, 27708
| | - Andrew Bleich
- Department of Biology, Duke University, Durham, North Carolina, 27708
| | - Kathleen Donohue
- Department of Biology, Duke University, Durham, North Carolina, 27708
| |
Collapse
|