1
|
Archer LC, Atkinson SN, Lunn NJ, Penk SR, Molnár PK. Energetic constraints drive the decline of a sentinel polar bear population. Science 2025; 387:516-521. [PMID: 39883750 DOI: 10.1126/science.adp3752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025]
Abstract
Human-driven Arctic warming and resulting sea ice loss have been associated with declines in several polar bear populations. However, quantifying how individual responses to environmental change integrate and scale to influence population dynamics in polar bears has yet to be achieved. We developed an individual-based bioenergetic model and hindcast population dynamics across 42 years of observed sea ice conditions in Western Hudson Bay, a region undergoing rapid environmental change. The model successfully captured trends in individual morphometrics, reproduction, and population abundance observed over four decades of empirical monitoring data. Our study provides evidence for the interplay between individual energetics and environmental constraints in shaping population dynamics and for the fundamental role of a single limiting mechanism-energy-underpinning the decline of an apex Arctic predator.
Collapse
Affiliation(s)
- Louise C Archer
- Laboratory of Quantitative Global Change Ecology, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | | | - Nicholas J Lunn
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, Edmonton, AB, Canada
| | - Stephanie R Penk
- Laboratory of Quantitative Global Change Ecology, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Péter K Molnár
- Laboratory of Quantitative Global Change Ecology, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
van Aswegen M, Szabo A, Currie JJ, Stack SH, West KL, Hofmann N, Christiansen F, Bejder L. Energetic cost of gestation and prenatal growth in humpback whales. J Physiol 2025; 603:529-550. [PMID: 39661448 DOI: 10.1113/jp287304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/15/2024] [Indexed: 12/13/2024] Open
Abstract
Improving our understanding of energy allocation in reproduction is key for accurately parameterizing bioenergetic models to assess population responses to environmental perturbations and anthropogenic disturbance. We quantified the energetic cost of gestation in humpback whales (Megaptera novaeangliae) using historical whaling records, non-invasive unoccupied aerial system (UAS) photogrammetry and post mortem tissue samples. First, we estimated relative birth size using body length measurements of 678 mother-fetus pairs from historical whaling records and 987 mother-calf pairs measured in situ using UAS-photogrammetry. The total energetic cost of gestation includes fetal growth (FG), heat increment of gestation and placental tissue development. FG was modelled from conception to birth, with fetal volume and mass estimated using the volume-to-length relationship of perinatal calves and published humpback whale tissue composition estimates. Tissue-specific energy content was quantified using post mortem bone, muscle, viscera and blubber samples from a neonatal humpback whale. Placental tissue development was estimated using humpback whale placental tissue and published equations. Relative birth length was found to be 33.75% (95% CI: 32.10-34.61) of maternal length. FG rates and absolute birth size increased with maternal length, with exponential growth in fetal length, volume and mass resulting in minimal energetic costs over the first two quadmesters (0.01-1.08%) before increasing significantly in the final quadmester (98.92%). Gestational heat constituted the greatest energetic cost (90.42-94.95%), followed by fetal (4.58-7.76%) and placental (0.37-1.83%) tissue growth. Our findings highlight the energetic costs endured by capital breeding females preceding parturition, with the most substantial energetic costs of gestation coinciding with migration and fasting. KEY POINTS: We quantified the energetic cost of gestation using body length measurements of mother-fetus pairs from historical whaling records, length estimates of mother-calf pairs measured in situ using aerial photogrammetry and post mortem tissue samples. Fetal growth rates and birth size increased with maternal length, with fetal length, volume and mass increasing exponentially over gestation. Energetic costs over the first two quadmesters were negligible (0.01-1.08%) before increasing significantly in the final quadmester (98.92%). Though larger females incur nearly twice the energetic cost of smaller females, they are likely buffered by greater absolute energy reserves, suggesting smaller females may be less resilient to perturbations in energy balance. We demonstrate the significant energetic costs incurred by pregnant humpback whales, with most of the energetic expenditure occurring over the final 100 days of gestation. Late-pregnant females are, therefore, particularly vulnerable to disruptions in energy balance, given periods of greatest energetic stress coincide with fasting and migration.
Collapse
Affiliation(s)
- Martin van Aswegen
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
- Alaska Whale Foundation, Petersburg, AK, USA
| | - Andy Szabo
- Alaska Whale Foundation, Petersburg, AK, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Kāne'ohe, Hawai'i, USA
| | - Jens J Currie
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
- Pacific Whale Foundation, Maui, HI, USA
| | - Stephanie H Stack
- Pacific Whale Foundation, Maui, HI, USA
- Southern Ocean Persistent Organic Pollutants Program, School of Environment and Science, Griffith University, Queensland, Australia
| | - Kristi L West
- Health and Stranding Lab, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
- Health and Stranding Lab, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Nicholas Hofmann
- Health and Stranding Lab, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Fredrik Christiansen
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Lars Bejder
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
van Aswegen M, Szabo A, Currie JJ, Stack SH, Evans L, Straley J, Neilson J, Gabriele C, Cates K, Steel D, Bejder L. Maternal investment, body condition and calf growth in humpback whales. J Physiol 2025; 603:551-578. [PMID: 39665538 DOI: 10.1113/jp287379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 12/13/2024] Open
Abstract
Given recent declines in North Pacific humpback whale (Megaptera novaeangliae) reproductive output and calf survival, there is additional urgency to better understand how mother-calf pairs allocate energy resources across their migratory cycle. Here, unoccupied aerial system (UAS; or drone) photogrammetry was used to quantify the body size and condition (BC) of humpback whales on their Hawai'i (HI) breeding and Southeast Alaska (SEAK) feeding grounds. Between 2018 and 2022, we collected 2410 measurements of 1659 individuals. Rates of change in body volume (BV) and length (BL) were quantified using 803 repeat measurements of 275 individuals. On average, HI mothers lost 0.106 m3 or 96.84 kg day-1 while fasting, equivalent to 2641 MJ day-1 or 830 kg of krill and 424 kg of Pacific herring daily. HI calf BV and BL increased by 0.035 m3 and 2.6 cm day-1, respectively. In SEAK, maternal BV increased by 0.015 m3 or 14.54 kg day-1 (367 MJ day-1), while calf BV and BL increased by 0.039 m3 and 0.93 cm day-1, respectively. Maternal investment in calf growth correlated with both female BL and BC, with larger females producing larger, faster-growing calves. Finally, using 330 measurements from 156 females, we quantified differences in BC increase over four feeding seasons. Lactating females exhibited an average BC increase of 6.10%, half that of unclassified females (13.51%) and six times lower than pregnant females (37%). These findings represent novel insights into the life history of humpback whales across their migratory cycle, providing key baseline data for bioenergetic models elucidating the effects of anthropogenic disturbance and rapidly changing ocean ecosystems. KEY POINTS: On average, Hawai'i (HI) mothers lost 0.106 m3 or 96.84 kg day-1, equivalent to 2641 MJ day-1. Over a 60 day period, this corresponded to an estimated mean energetic cost of 158 GJ, or ≈50 tons of krill or ≈25 tons of Pacific herring, surpassing the total energetic cost of gestation estimated for humpback whales of similar length. In Southeast Alaska (SEAK), maternal body volume (BV) increased by just 0.015 m3 or 14.54 kg day-1 (367 MJ day-1). Further, SEAK lactating females showed the slowest rates of growth in body width and condition over a 150 day period compared to non-lactating females. Maternal investment in calf growth correlated with both maternal length and body condition, with larger females producing larger, faster-growing calves. In HI, however, the ratio between maternal BV lost and calf BV gained (conversion efficiency) was relatively low compared to other mammals.
Collapse
Affiliation(s)
- Martin van Aswegen
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
- Alaska Whale Foundation, Petersburg, Alaska, USA
| | - Andy Szabo
- Alaska Whale Foundation, Petersburg, Alaska, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Jens J Currie
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
- Pacific Whale Foundation, Maui, Hawai'i, USA
| | - Stephanie H Stack
- Pacific Whale Foundation, Maui, Hawai'i, USA
- Southern Ocean Persistent Organic Pollutants Program, School of Environment and Science, Griffith University, Queensland, Australia
| | - Lewis Evans
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | | | - Janet Neilson
- Glacier Bay National Park and Preserve, Gustavus, Alaska, USA
| | | | - Kelly Cates
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - Debbie Steel
- Marine Mammal Institute, Oregon State University, Newport, Oregon, USA
| | - Lars Bejder
- Marine Mammal Research Program, Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Spampinato M, Siciliano A, Travaglione A, Chianese T, Mileo A, Libralato G, Guida M, Trifuoggi M, De Gregorio V, Rosati L. Unravelling the ecotoxicological impacts of gadolinium (Gd) on Mytilus galloprovincialis embryos and sperm in seawater: A preliminary study. Heliyon 2024; 10:e31087. [PMID: 38826730 PMCID: PMC11141363 DOI: 10.1016/j.heliyon.2024.e31087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
As the demand for rare earth elements (REEs) continues to surge in diverse industrial and medical domains, the ecological consequences of their ubiquitous presence have garnered heightened attention. Among the REEs, gadolinium (Gd), commonly used in medical imaging contrast agents, has emerged as a pivotal concern due to its inadvertent introduction into marine ecosystems via wastewater release. This study delves into the complex ecotoxicological implications of Gd contamination, focusing on its impact on the embryonic development and sperm functionality of Mytilus galloprovincialis. The findings from this study underscore the potential hazards posed by this rare element, offering a critical perspective on the ecological risks associated with Gd. Notably, this exploratory work reveals that Gd exerts a significant embryotoxic effect at elevated concentrations, with an observed half maximal effective concentration (EC50) value of 0.026 mg/L. Additionally, Gd exposure leads to a considerable reduction in sperm motility and alters sperm morfo-kinetic parameters, especially at a concentration of 5.6 mg/L. The results highlight a dose-dependent relationship between Gd exposure and the prevalence of specific malformation types in Mytilus embryos, further providing crucial insights into the potential risks imposed by this rare earth element.
Collapse
Affiliation(s)
- Marisa Spampinato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Angela Travaglione
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Teresa Chianese
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Aldo Mileo
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Vicinale Cupa Cintia 26, 80126, Napoli, Italy
| | - Vincenza De Gregorio
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cintia 4, 80126, Naples, Italy
| |
Collapse
|
5
|
John JS, Christen DR, Flammer KL, Kendall TL, Nazario EC, Richter BP, Gill V, Williams TM. Conservation energetics of beluga whales: using resting and swimming metabolism to understand threats to an endangered population. J Exp Biol 2024; 227:jeb246899. [PMID: 38483264 PMCID: PMC11070638 DOI: 10.1242/jeb.246899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/24/2024] [Indexed: 05/08/2024]
Abstract
The balance between energetic costs and acquisition in free-ranging species is essential for survival, and provides important insights regarding the physiological impact of anthropogenic disturbances on wild animals. For marine mammals such as beluga whales (Delphinapterus leucas), the first step in modeling this bioenergetic balance requires an examination of resting and active metabolic demands. Here, we used open-flow respirometry to measure oxygen consumption during surface rest and submerged swimming by trained beluga whales, and compared these measurements with those of a commonly studied odontocete, the Atlantic bottlenose dolphin (Tursiops truncatus). Both resting metabolic rate (3012±126.0 kJ h-1) and total cost of transport (1.4±0.1 J kg-1 m-1) of beluga whales were consistent with predicted values for moderately sized marine mammals in temperate to cold-water environments, including dolphins measured in the present study. By coupling the rate of oxygen consumption during submerged swimming with locomotor metrics from animal-borne accelerometer tags, we developed predictive relationships for assessing energetic costs from swim speed, stroke rate and partial dynamic acceleration. Combining these energetic data with calculated aerobic dive limits for beluga whales (8.8 min), we found that high-speed responses to disturbance markedly reduce the whale's capacity for prolonged submergence, pushing the cetaceans to costly anaerobic performances that require prolonged recovery periods. Together, these species-specific energetic measurements for beluga whales provide two important metrics, gait-related locomotor costs and aerobic capacity limits, for identifying relative levels of physiological vulnerability to anthropogenic disturbances that have become increasingly pervasive in their Arctic habitats.
Collapse
Affiliation(s)
- Jason S. John
- University of California, Santa Cruz, Department of Ecology and Evolutionary Biology, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | | | | | - Traci L. Kendall
- University of California, Santa Cruz, Department of Ecology and Evolutionary Biology, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Emily C. Nazario
- University of California, Santa Cruz, Department of Ecology and Evolutionary Biology, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Beau P. Richter
- University of California, Santa Cruz, Department of Ecology and Evolutionary Biology, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Verena Gill
- NOAA Fisheries, 222 W. 7th Ave, Anchorage, AK 99501, USA
| | - Terrie M. Williams
- University of California, Santa Cruz, Department of Ecology and Evolutionary Biology, 130 McAllister Way, Santa Cruz, CA 95060, USA
| |
Collapse
|
6
|
Silva MP, Oliveira C, Prieto R, Silva MA, New L, Pérez‐Jorge S. Bioenergetic modelling of a marine top predator's responses to changes in prey structure. Ecol Evol 2024; 14:e11135. [PMID: 38529024 PMCID: PMC10961477 DOI: 10.1002/ece3.11135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Determining how animals allocate energy, and how external factors influence this allocation, is crucial to understand species' life history requirements and response to disturbance. This response is driven in part by individuals' energy balance, prey characteristics, foraging behaviour and energy required for essential functions. We developed a bioenergetic model to estimate minimum foraging success rate (FSR), that is, the lowest possible prey capture rate for individuals to obtain the minimum energy intake needed to meet daily metabolic requirements, for female sperm whale (Physeter macrocephalus). The model was based on whales' theoretical energetic requirements using foraging and prey characteristics from animal-borne tags and stomach contents, respectively. We used this model to simulate two prey structure change scenarios: (1) decrease in mean prey size, thus lower prey energy content and (2) decrease in prey size variability, reducing the variability in prey energy content. We estimate the whales need minimum of ~14% FSR to meet their energetic requirements, and energy intake is more sensitive to energy content changes than a decrease in energy variability. To estimate vulnerability to prey structure changes, we evaluated the compensation level required to meet bioenergetic demands. Considering a minimum 14% FSR, whales would need to increase energy intake by 21% (5-35%) and 49% (27-67%) to compensate for a 15% and 30% decrease in energy content, respectively. For a 30% and 50% decrease in energy variability, whales would need to increase energy intake by 13% (0-23%) and 24% (10-35%) to meet energetic demands, respectively. Our model demonstrates how foraging and prey characteristics can be used to estimate impact of changing prey structure in top predator energetics, which can help inform bottom-up effects on marine ecosystems. We showed the importance of considering different FSR in bioenergetics models, as it can have decisive implications on estimates of energy acquired and affect the conclusions about top predator's vulnerability to possible environmental fluctuations.
Collapse
Affiliation(s)
- Mariana P. Silva
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| | - Cláudia Oliveira
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| | - Rui Prieto
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| | - Mónica A. Silva
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| | - Leslie New
- Department of Mathematics and Computer ScienceUrsinus CollegeCollegevillePennsylvaniaUSA
| | - Sergi Pérez‐Jorge
- Institute of Marine Sciences – OKEANOSUniversity of the AzoresHortaPortugal
- Institute of Marine Research – IMARHortaPortugal
| |
Collapse
|
7
|
Pirotta E, Tyack PL, Durban JW, Fearnbach H, Hamilton PK, Harris CM, Knowlton AR, Kraus SD, Miller CA, Moore MJ, Pettis HM, Photopoulou T, Rolland RM, Schick RS, Thomas L. Decreasing body size is associated with reduced calving probability in critically endangered North Atlantic right whales. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240050. [PMID: 38420631 PMCID: PMC10898963 DOI: 10.1098/rsos.240050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Body size is key to many life-history processes, including reproduction. Across species, climate change and other stressors have caused reductions in the body size to which animals can grow, called asymptotic size, with consequences for demography. A reduction in mean asymptotic length was documented for critically endangered North Atlantic right whales, in parallel with declines in health and vital rates resulting from human activities and environmental changes. Here, we tested whether smaller body size was associated with lower reproductive output, using a state-space model for individual health, survival and reproduction that quantifies the mechanistic links between these processes. Body size (as represented by the cube of length) was strongly associated with a female's calving probability at each reproductive opportunity. This relationship explained 62% of the variation in calving among reproductive females, along with their decreasing health (20%). The effects of decreasing mean body size on reproductive performance are another concerning indication of the worsening prospects for this species and many others affected by environmental change, requiring a focus of conservation and management interventions on improving conditions that affect reproduction as well as reducing mortality.
Collapse
Affiliation(s)
- Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Peter L. Tyack
- School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - John W. Durban
- Southall Environmental Associates, Inc., 9099 Soquel Drive, Aptos, CA 95003, USA
| | - Holly Fearnbach
- SR3, SeaLife Response, Rehabilitation and Research, Des Moines, WA, USA
| | - Philip K. Hamilton
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| | - Catriona M. Harris
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Amy R. Knowlton
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| | - Scott D. Kraus
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| | - Carolyn A. Miller
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Michael J. Moore
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Heather M. Pettis
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| | - Theoni Photopoulou
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | | | - Robert S. Schick
- Southall Environmental Associates, Inc., 9099 Soquel Drive, Aptos, CA 95003, USA
- Marine Geospatial Ecology Lab, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Len Thomas
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| |
Collapse
|
8
|
Vivier F, Wells RS, Hill MC, Yano KM, Bradford AL, Leunissen EM, Pacini A, Booth CG, Rocho‐Levine J, Currie JJ, Patton PT, Bejder L. Quantifying the age structure of free-ranging delphinid populations: Testing the accuracy of Unoccupied Aerial System photogrammetry. Ecol Evol 2023; 13:e10082. [PMID: 37384246 PMCID: PMC10293808 DOI: 10.1002/ece3.10082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/30/2023] Open
Abstract
Understanding the population health status of long-lived and slow-reproducing species is critical for their management. However, it can take decades with traditional monitoring techniques to detect population-level changes in demographic parameters. Early detection of the effects of environmental and anthropogenic stressors on vital rates would aid in forecasting changes in population dynamics and therefore inform management efforts. Changes in vital rates strongly correlate with deviations in population growth, highlighting the need for novel approaches that can provide early warning signs of population decline (e.g., changes in age structure). We tested a novel and frequentist approach, using Unoccupied Aerial System (UAS) photogrammetry, to assess the population age structure of small delphinids. First, we measured the precision and accuracy of UAS photogrammetry in estimating total body length (TL) of trained bottlenose dolphins (Tursiops truncatus). Using a log-transformed linear model, we estimated TL using the blowhole to dorsal fin distance (BHDF) for surfacing animals. To test the performance of UAS photogrammetry to age-classify individuals, we then used length measurements from a 35-year dataset from a free-ranging bottlenose dolphin community to simulate UAS estimates of BHDF and TL. We tested five age classifiers and determined where young individuals (<10 years) were assigned when misclassified. Finally, we tested whether UAS-simulated BHDF only or the associated TL estimates provided better classifications. TL of surfacing dolphins was overestimated by 3.3% ±3.1% based on UAS-estimated BHDF. Our age classifiers performed best in predicting age-class when using broader and fewer (two and three) age-class bins with ~80% and ~72% assignment performance, respectively. Overall, 72.5%-93% of the individuals were correctly classified within 2 years of their actual age-class bin. Similar classification performances were obtained using both proxies. UAS photogrammetry is a non-invasive, inexpensive, and effective method to estimate TL and age-class of free-swimming dolphins. UAS photogrammetry can facilitate the detection of early signs of population changes, which can provide important insights for timely management decisions.
Collapse
Affiliation(s)
- Fabien Vivier
- Marine Mammal Research ProgramHawaiʻi Institute of Marine BiologyUniversity of Hawaiʻi at MānoaMānoaHawaiʻiUSA
| | - Randall S. Wells
- Chicago Zoological Society's Sarasota Dolphin Research Programc/o Mote Marine LaboratorySarasotaFloridaUSA
| | - Marie C. Hill
- Cooperative Institute for Marine and Atmospheric ResearchResearch Corporation of the University of HawaiʻiHonoluluHawaiʻiUSA
- Pacific Islands Fisheries Science CenterNOAA FisheriesHonoluluHawaiʻiUSA
| | - Kymberly M. Yano
- Cooperative Institute for Marine and Atmospheric ResearchResearch Corporation of the University of HawaiʻiHonoluluHawaiʻiUSA
- Pacific Islands Fisheries Science CenterNOAA FisheriesHonoluluHawaiʻiUSA
| | - Amanda L. Bradford
- Pacific Islands Fisheries Science CenterNOAA FisheriesHonoluluHawaiʻiUSA
| | - Eva M. Leunissen
- Department of Marine ScienceUniversity of OtagoDunedinNew Zealand
| | - Aude Pacini
- Marine Mammal Research ProgramHawaiʻi Institute of Marine BiologyUniversity of Hawaiʻi at MānoaMānoaHawaiʻiUSA
| | - Cormac G. Booth
- SMRU ConsultingScottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | | | - Jens J. Currie
- Marine Mammal Research ProgramHawaiʻi Institute of Marine BiologyUniversity of Hawaiʻi at MānoaMānoaHawaiʻiUSA
- Pacific Whale FoundationWailukuHawaiʻiUSA
| | - Philip T. Patton
- Marine Mammal Research ProgramHawaiʻi Institute of Marine BiologyUniversity of Hawaiʻi at MānoaMānoaHawaiʻiUSA
| | - Lars Bejder
- Marine Mammal Research ProgramHawaiʻi Institute of Marine BiologyUniversity of Hawaiʻi at MānoaMānoaHawaiʻiUSA
- ZoophysiologyDepartment of BioscienceAarhus UniversityAarhusDenmark
| |
Collapse
|
9
|
Arehart E, Reimer JR, Adler FR. Strategy maps: Generalised giving-up densities for optimal foraging. Ecol Lett 2023; 26:398-410. [PMID: 36719341 DOI: 10.1111/ele.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 02/01/2023]
Abstract
Finding a common currency for benefits and hazards is a major challenge in optimal foraging theory, often requiring complex computational methods. We present a new analytic approach that builds on the Marginal Value Theorem and giving-up densities while incorporating the nonlinear effect of predation risk. We map the space of all possible environments into strategy regions, each corresponding to a discrete optimal strategy. This provides a generalised quantitative measure of the trade-off between foraging rewards and hazards. This extends a classic optimal diet choice rule-of-thumb to incorporate the hazard of waiting for better resources to appear. We compare the dynamics of optimal decision-making for three foraging life-history strategies: One in which fitness accrues instantly, and two with delays before fitness benefit is accrued. Foragers with delayed-benefit strategies are more sensitive to predation risk than resource quality, as they stand to lose more fitness from a predation event than instant-accrual foragers.
Collapse
Affiliation(s)
- Emerson Arehart
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jody R Reimer
- Department of Mathematics and School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Frederick R Adler
- Department of Mathematics and School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
10
|
Booth CG, Guilpin M, Darias-O’Hara AK, Ransijn JM, Ryder M, Rosen D, Pirotta E, Smout S, McHuron EA, Nabe-Nielsen J, Costa DP. Estimating energetic intake for marine mammal bioenergetic models. CONSERVATION PHYSIOLOGY 2023; 11:coac083. [PMID: 36756464 PMCID: PMC9900471 DOI: 10.1093/conphys/coac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Bioenergetics is the study of how animals achieve energetic balance. Energetic balance results from the energetic expenditure of an individual and the energy they extract from their environment. Ingested energy depends on several extrinsic (e.g prey species, nutritional value and composition, prey density and availability) and intrinsic factors (e.g. foraging effort, success at catching prey, digestive processes and associated energy losses, and digestive capacity). While the focus in bioenergetic modelling is often on the energetic costs an animal incurs, the robust estimation of an individual's energy intake is equally critical for producing meaningful predictions. Here, we review the components and processes that affect energy intake from ingested gross energy to biologically useful net energy (NE). The current state of knowledge of each parameter is reviewed, shedding light on research gaps to advance this field. The review highlighted that the foraging behaviour of many marine mammals is relatively well studied via biologging tags, with estimates of success rate typically assumed for most species. However, actual prey capture success rates are often only assumed, although we note studies that provide approaches for its estimation using current techniques. A comprehensive collation of the nutritional content of marine mammal prey species revealed a robust foundation from which prey quality (comprising prey species, size and energy density) can be assessed, though data remain unavailable for many prey species. Empirical information on various energy losses following ingestion of prey was unbalanced among marine mammal species, with considerably more literature available for pinnipeds. An increased understanding and accurate estimate of each of the components that comprise a species NE intake are an integral part of bioenergetics. Such models provide a key tool to investigate the effects of disturbance on marine mammals at an individual and population level and to support effective conservation and management.
Collapse
Affiliation(s)
- Cormac G Booth
- Corresponding author: SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK.
| | | | - Aimee-Kate Darias-O’Hara
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK
| | - Janneke M Ransijn
- Sea Mammal Research Unit, Scottish Oceans Institute, East Sands, University of St. Andrews, St. Andrews, KY16 8LB, UK
| | - Megan Ryder
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK
| | - Dave Rosen
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall,
Vancouver, BC V6T 1Z4, Canada
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling,
The Observatory, Buchanan
Gardens, University of St. Andrews, St. Andrews,
KY16 9LZ, UK
| | - Sophie Smout
- Sea Mammal Research Unit, Scottish Oceans Institute, East Sands, University of St. Andrews, St. Andrews, KY16 8LB, UK
| | - Elizabeth A McHuron
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, 3737 Brooklyn Ave NE, Seattle, WA, 98105, USA
| | - Jacob Nabe-Nielsen
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Aarhus, DK-4000
Roskilde, Denmark
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, 130
McAlister Way, Santa Cruz, CA, 95064, USA
| |
Collapse
|
11
|
Barlow DR, Klinck H, Ponirakis D, Branch TA, Torres LG. Environmental conditions and marine heatwaves influence blue whale foraging and reproductive effort. Ecol Evol 2023; 13:e9770. [PMID: 36861024 PMCID: PMC9968652 DOI: 10.1002/ece3.9770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 03/01/2023] Open
Abstract
Animal behavior is motivated by the fundamental need to feed and reproduce, and these behaviors can be inferred from spatiotemporal variations in biological signals such as vocalizations. Yet, linking foraging and reproductive effort to environmental drivers can be challenging for wide-ranging predator species. Blue whales are acoustically active marine predators that produce two distinct vocalizations: song and D calls. We examined environmental correlates of these vocalizations using continuous recordings from five hydrophones in the South Taranaki Bight region of Aotearoa New Zealand to investigate call behavior relative to ocean conditions and infer life history patterns. D calls were strongly correlated with oceanographic drivers of upwelling in spring and summer, indicating associations with foraging effort. In contrast, song displayed a highly seasonal pattern with peak intensity in fall, which aligned with the timing of conception inferred from whaling records. Finally, during a marine heatwave, reduced foraging (inferred from D calls) was followed by lower reproductive effort (inferred from song intensity).
Collapse
Affiliation(s)
- Dawn R. Barlow
- Geospatial Ecology of Marine Megafauna Lab, Department of Fisheries, Wildlife, and Conservation Sciences, Marine Mammal InstituteOregon State UniversityNewportOregonUSA
| | - Holger Klinck
- K. Lisa Yang Center for Conservation BioacousticsCornell UniversityIthacaNew YorkUSA
- Department of Fisheries, Wildlife, and Conservation Sciences, Marine Mammal InstituteOregon State UniversityNewportOregonUSA
| | - Dimitri Ponirakis
- K. Lisa Yang Center for Conservation BioacousticsCornell UniversityIthacaNew YorkUSA
| | - Trevor A. Branch
- School of Aquatic and Fisheries SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Leigh G. Torres
- Geospatial Ecology of Marine Megafauna Lab, Department of Fisheries, Wildlife, and Conservation Sciences, Marine Mammal InstituteOregon State UniversityNewportOregonUSA
| |
Collapse
|
12
|
Schwarz L, McHuron E, Mangel M, Gailey G, Sychenko O. Gray whale habitat use and reproductive success during seismic surveys near their feeding grounds: comparing state-dependent life history models and field data. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:733. [PMID: 36255497 PMCID: PMC9579109 DOI: 10.1007/s10661-022-10024-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/05/2022] [Indexed: 05/31/2023]
Abstract
We used a stochastic dynamic programming (SDP) model to quantify the consequences of disturbance on pregnant western gray whales during one foraging season. The SDP model has a firm basis in bioenergetics, but detailed knowledge of minimum reproductive length of females (Lmin) and the relationship between length and reproductive success (Rfit) was lacking. We varied model assumptions to determine their effects on predictions of habitat use, proportion of animals disturbed, reproductive success, and the effects of disturbance. Smaller Lmin values led to higher predicted nearshore habitat use. Changes in Lmin and Rfit had little effect on predictions of the effect of disturbance. Reproductive success increased with increased Lmin and with higher probability of reproductive success by length. Multiple seismic surveys were conducted in 2015 off the northeast coast of Sakhalin Island, with concomitant benthic prey surveys, photo-identification studies, and whale distribution sampling, thus providing a unique opportunity to compare output from SDP models with empirical observations. SDP model predictions of reproductive success and habitat use were similar with and without acoustic disturbance, and SDP predictions of reproductive success and large-scale habitat use were generally similar to values and trends in the data. However, empirical estimates of the proportion of pregnant females nearshore were much higher than SDP model predictions (a large effect, measured by Cohen's d) during the first week, and the SDP model overestimated whale density in the south and underestimated density around the mouth of Piltun Bay. Such differences in nearshore habitat use would not affect SDP predictions of reproductive success or survival under the current seismic air gun disturbance scenario.
Collapse
Affiliation(s)
- Lisa Schwarz
- Institute of Marine Sciences, University of California, Santa Cruz, CA, 95064, USA.
| | - Elizabeth McHuron
- Institute of Marine Sciences, University of California, Santa Cruz, CA, 95064, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
- Ocean, and Ecosystem Studies, Cooperative Institute for Climate, University of Washington, Seattle, WA, 98195, USA
| | - Marc Mangel
- Institute of Marine Sciences, University of California, Santa Cruz, CA, 95064, USA
- Theoretical Ecology Group, Department of Biology, University of Bergen, 9020, Bergen, Norway
- Puget Sound Institute, University of Washington, Tacoma, WA, 98402, USA
| | - Glenn Gailey
- Cetacean EcoSystem Research, Lacey, WA, 98516, USA
| | | |
Collapse
|
13
|
Eastick DL, Griffiths SR, Yen JDL, Robert KA. Size at Birth, Postnatal Growth, and Reproductive Timing in an Australian Microbat. Integr Org Biol 2022; 4:obac030. [PMID: 36060865 PMCID: PMC9436771 DOI: 10.1093/iob/obac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/10/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Reproductive phenology, size at birth, and postnatal growth are important life history traits that reflect parental investment. The ability to document detailed changes in these traits can be a valuable tool in the identification and management of at-risk wildlife populations. We examined reproductive traits in a common, widespread Australian microbat, Chalinolobus gouldii, at two sites over two years and derived growth curves and age estimation equations which will be useful in the study of how intrinsic and extrinsic factors alter parental investment strategies. We found that male and female offspring did not differ significantly in their size at birth or their postnatal growth rates. Bats born in 2018 were smaller at birth but grew at a faster rate than those born in 2017. When date of birth was compared across sites and years, we found bats born in 2018 had a later median birthdate (by 18 days) and births were more widespread than those born in 2017. Cooler and wetter weather during late gestation (Nov) in 2018 may have prolonged gestation and delayed births. With many bats facing threatening processes it is important to study reproductive plasticity in common and widespread “model” species, which may assist in the conservation and management of threatened microbats with similar reproductive traits.
Collapse
Affiliation(s)
- D L Eastick
- School of Agriculture, Biomedicine and Environment, La Trobe University , Melbourne, Victoria 3086
- Centre for Future Landscapes, La Trobe University , Melbourne, Victoria 3086
| | - S R Griffiths
- School of Agriculture, Biomedicine and Environment, La Trobe University , Melbourne, Victoria 3086
- Centre for Future Landscapes, La Trobe University , Melbourne, Victoria 3086
| | - J D L Yen
- Arthur Rylah Institute for Environmental Research, Department of Environment , Land, Water and Planning, Heidelberg, Victoria 3084
| | - K A Robert
- School of Agriculture, Biomedicine and Environment, La Trobe University , Melbourne, Victoria 3086
- Centre for Future Landscapes, La Trobe University , Melbourne, Victoria 3086
| |
Collapse
|
14
|
McHuron EA, Adamczak S, Arnould JPY, Ashe E, Booth C, Bowen WD, Christiansen F, Chudzinska M, Costa DP, Fahlman A, Farmer NA, Fortune SME, Gallagher CA, Keen KA, Madsen PT, McMahon CR, Nabe-Nielsen J, Noren DP, Noren SR, Pirotta E, Rosen DAS, Speakman CN, Villegas-Amtmann S, Williams R. Key questions in marine mammal bioenergetics. CONSERVATION PHYSIOLOGY 2022; 10:coac055. [PMID: 35949259 PMCID: PMC9358695 DOI: 10.1093/conphys/coac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Bioenergetic approaches are increasingly used to understand how marine mammal populations could be affected by a changing and disturbed aquatic environment. There remain considerable gaps in our knowledge of marine mammal bioenergetics, which hinder the application of bioenergetic studies to inform policy decisions. We conducted a priority-setting exercise to identify high-priority unanswered questions in marine mammal bioenergetics, with an emphasis on questions relevant to conservation and management. Electronic communication and a virtual workshop were used to solicit and collate potential research questions from the marine mammal bioenergetic community. From a final list of 39 questions, 11 were identified as 'key' questions because they received votes from at least 50% of survey participants. Key questions included those related to energy intake (prey landscapes, exposure to human activities) and expenditure (field metabolic rate, exposure to human activities, lactation, time-activity budgets), energy allocation priorities, metrics of body condition and relationships with survival and reproductive success and extrapolation of data from one species to another. Existing tools to address key questions include labelled water, animal-borne sensors, mark-resight data from long-term research programs, environmental DNA and unmanned vehicles. Further validation of existing approaches and development of new methodologies are needed to comprehensively address some key questions, particularly for cetaceans. The identification of these key questions can provide a guiding framework to set research priorities, which ultimately may yield more accurate information to inform policies and better conserve marine mammal populations.
Collapse
Affiliation(s)
- Elizabeth A McHuron
- Corresponding author: Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, WA, 98195, USA.
| | - Stephanie Adamczak
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - John P Y Arnould
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Erin Ashe
- Oceans Initiative, Seattle, WA, 98102, USA
| | - Cormac Booth
- SMRU Consulting, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK
| | - W Don Bowen
- Biology Department, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Population Ecology Division, Bedford Institute of Oceanography, Dartmouth, NS B2Y 4A2, Canada
| | - Fredrik Christiansen
- Aarhus Institute of Advanced Studies, 8000 Aarhus C, Denmark
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
- Center for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch, Murdoch University, WA 6150, Australia
| | - Magda Chudzinska
- SMRU Consulting, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 8LB, UK
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews KY16 9XL, UK
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Andreas Fahlman
- Fundación Oceanogràfic de la Comunitat Valenciana, 46005 Valencia, Spain
- Kolmården Wildlife Park, 618 92 Kolmården, Sweden
| | - Nicholas A Farmer
- NOAA/National Marine Fisheries Service, Southeast Regional Office, St. Petersburg, FL, 33701, USA
| | - Sarah M E Fortune
- Department of Oceanography, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cara A Gallagher
- Plant Ecology and Nature Conservation, University of Potsdam, 14476 Potsdam, Germany
| | - Kelly A Keen
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Peter T Madsen
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Clive R McMahon
- IMOS Animal Tagging, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
| | | | - Dawn P Noren
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Shawn R Noren
- Institute of Marine Science, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St. Andrews, St. Andrews KY16 9LZ, UK
| | - David A S Rosen
- Institute for Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1ZA, Canada
| | - Cassie N Speakman
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Stella Villegas-Amtmann
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | | |
Collapse
|
15
|
Barlow DR, Estrada Jorge M, Klinck H, Torres LG. Shaken, not stirred: blue whales show no acoustic response to earthquake events. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220242. [PMID: 35845856 PMCID: PMC9277279 DOI: 10.1098/rsos.220242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Quantifying how animals respond to disturbance events bears relevance for understanding consequences to population health. We investigate whether blue whales respond acoustically to naturally occurring episodic noise by examining calling before and after earthquakes (27 040 calls, 32 earthquakes; 27 January-29 June 2016). Two vocalization types were evaluated: New Zealand blue whale song and downswept vocalizations ('D calls'). Blue whales did not alter the number of D calls, D call received level or song intensity following earthquakes (paired t-tests, p > 0.7 for all). Linear models accounting for earthquake strength and proximity revealed significant relationships between change in calling activity surrounding earthquakes and prior calling activity (D calls: R 2 = 0.277, p < 0.0001; song: R 2 = 0.080, p = 0.028); however, these same relationships were true for 'null' periods without earthquakes (D calls: R 2 = 0.262, p < 0.0001; song: R 2 = 0.149, p = 0.0002), indicating that the pattern is driven by blue whale calling context regardless of earthquake presence. Our findings that blue whales do not respond to episodic natural noise provide context for interpreting documented acoustic responses to anthropogenic noise sources, including shipping traffic and petroleum development, indicating that they potentially evolved tolerance for natural noise sources but not novel noise from anthropogenic origins.
Collapse
Affiliation(s)
- Dawn R. Barlow
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, and Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, Oregon, USA
| | - Mateo Estrada Jorge
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, and Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, Oregon, USA
- Department of Computer Science and Department of Physics, Oregon State University, Corvallis, Oregon, USA
| | - Holger Klinck
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell University, Ithaca, New York, USA
- Marine Mammal Institute, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, Oregon, USA
| | - Leigh G. Torres
- Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, and Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, Oregon, USA
| |
Collapse
|
16
|
Pirotta E, Booth CG, Calambokidis J, Costa DP, Fahlbusch JA, Friedlaender AS, Goldbogen JA, Harwood J, Hazen EL, New L, Santora JA, Watwood SL, Wertman C, Southall BL. From individual responses to population effects: Integrating a decade of multidisciplinary research on blue whales and sonar. Anim Conserv 2022. [DOI: 10.1111/acv.12785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- E. Pirotta
- Centre for Research into Ecological and Environmental Modelling University of St Andrews St Andrews UK
- School of Biological, Earth and Environmental Sciences University College Cork Cork Ireland
- Department of Mathematics and Statistics Washington State University Vancouver WA USA
| | - C. G. Booth
- SMRU Consulting, Scottish Oceans Institute University of St Andrews St Andrews UK
| | | | - D. P. Costa
- Institute of Marine Sciences University of California Santa Cruz CA USA
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| | - J. A. Fahlbusch
- Cascadia Research Collective Olympia WA USA
- Department of Biology, Hopkins Marine Station Stanford University Pacific Grove CA USA
| | - A. S. Friedlaender
- Institute of Marine Sciences University of California Santa Cruz CA USA
- Southall Environmental Associates, Inc. Aptos CA USA
| | - J. A. Goldbogen
- Department of Biology, Hopkins Marine Station Stanford University Pacific Grove CA USA
| | - J. Harwood
- Centre for Research into Ecological and Environmental Modelling University of St Andrews St Andrews UK
- SMRU Consulting, Scottish Oceans Institute University of St Andrews St Andrews UK
| | - E. L. Hazen
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
- Department of Biology, Hopkins Marine Station Stanford University Pacific Grove CA USA
- Southwest Fisheries Science Center Environmental Research Division, National Oceanic and Atmospheric Administration (NOAA) Monterey CA USA
| | - L. New
- Ursinus College Collegeville PA USA
| | - J. A. Santora
- Southwest Fisheries Science Center Fisheries Ecology Division, National Oceanic and Atmospheric Administration (NOAA) Santa Cruz CA USA
- Department of Applied Math University of California Santa Cruz Santa Cruz CA USA
| | - S. L. Watwood
- Ranges, Engineering and Analysis Department Naval Undersea Warfare Center Newport RI USA
| | - C. Wertman
- Ranges, Engineering and Analysis Department Naval Undersea Warfare Center Newport RI USA
| | - B. L. Southall
- Institute of Marine Sciences University of California Santa Cruz CA USA
- Southall Environmental Associates, Inc. Aptos CA USA
| |
Collapse
|
17
|
Christiansen F, Uhart MM, Bejder L, Clapham P, Ivashchenko Y, Tormosov D, Lewin N, Sironi M. Foetal growth, birth size and energetic cost of gestation in southern right whales. J Physiol 2022; 600:2245-2266. [PMID: 35261040 PMCID: PMC9322553 DOI: 10.1113/jp282351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract The cost of reproduction greatly affects a species’ life history strategy. Baleen whales exhibit some of the fastest offspring growth rates in the animal kingdom. We quantified the energetic cost of gestation for southern right whales (Eubalaena australis) by combining whaling catch records of pregnant females with photogrammetry data on southern right whale mothers and calves from two breeding grounds in Argentina and Australia. The relationship between calf birth size and maternal length was determined from repeated measurements of individual females before and after giving birth. Fetal growth was determined from generalized linear models fitted to fetal length data from whaling operations between 1961 and 1967. Fetal length was converted to volume and mass, using the volume‐to‐length relationship of newborn southern right whales calves, and published tissue composition and energy content estimates. Fetal maintenance costs (heat of gestation) and the energy content of the placenta were predicted from published relationships and added to the fetal growth cost to calculate the total cost of gestation. Our findings showed that fetal growth rates and birth size increased linearly with maternal length, with calves being born at ∼35% maternal length. Fetal length increased curvilinearly through gestation, which resulted in an exponential increase in fetal volume and mass. Consequently, the cost of gestation was very low during the first (0.1% of total cost) and second trimester (4.9%), but increased rapidly during the last trimester (95.0%). The heat of gestation incurred the highest cost for pregnant females (73.8%), followed by fetal growth (21.2%) and the placental energy content (5.0%). Key points Baleen whales exhibit some of the fastest fetal growth rates in the animal kingdom. Despite this, the energetic cost of gestation is largely unknown, as well as the influence of maternal body size on fetal growth rates and calf birth sizes. We combined historical whaling records and drone photogrammetry data to determine fetal growth rates and birth sizes in southern right whales (Eubalaena australis), from which we estimated the cost of gestation. Calf birth size, and consequent fetal growth rates, increased positively with maternal body size. The cost of gestation was negligible for southern right whale females during the first two trimesters, but increased rapidly during the last trimester. These results show that late gestation incurs a significant cost for baleen whale females, and needs to be accounted for in bioenergetic models.
Collapse
Affiliation(s)
- Fredrik Christiansen
- Aarhus Institute of Advanced Studies, Høegh-Guldbergs Gade 6B, Aarhus C, 8000, Denmark.,Zoophysiology, Department of Biology, Aarhus University, C.F. Møllers Allé 3, Aarhus C, 8000, Denmark
| | - Marcela M Uhart
- Southern Right Whale Health Monitoring Program, Puerto Madryn, Chubut, 9120, Argentina.,Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California Davis, Davis, California, 95616, USA
| | - Lars Bejder
- Zoophysiology, Department of Biology, Aarhus University, C.F. Møllers Allé 3, Aarhus C, 8000, Denmark.,Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, 96744, USA
| | | | | | - Dmitry Tormosov
- Seastar Scientific Russia, Kaliningrad, Karl Marx St 76, 236022, Russia
| | - Nicolás Lewin
- Instituto de Conservación de Ballenas, Buenos Aires, Argentina
| | - Mariano Sironi
- Southern Right Whale Health Monitoring Program, Puerto Madryn, Chubut, 9120, Argentina.,Instituto de Conservación de Ballenas, Buenos Aires, Argentina.,Diversidad Animal II, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| |
Collapse
|
18
|
Pirotta E. A review of bioenergetic modelling for marine mammal populations. CONSERVATION PHYSIOLOGY 2022; 10:coac036. [PMID: 35754757 PMCID: PMC9215292 DOI: 10.1093/conphys/coac036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/07/2022] [Accepted: 06/15/2022] [Indexed: 05/16/2023]
Abstract
Bioenergetic models describe the processes through which animals acquire energy from resources in the environment and allocate it to different life history functions. They capture some of the fundamental mechanisms regulating individuals, populations and ecosystems and have thus been used in a wide variety of theoretical and applied contexts. Here, I review the development of bioenergetic models for marine mammals and their application to management and conservation. For these long-lived, wide-ranging species, bioenergetic approaches were initially used to assess the energy requirements and prey consumption of individuals and populations. Increasingly, models are developed to describe the dynamics of energy intake and allocation and predict how resulting body reserves, vital rates and population dynamics might change as external conditions vary. The building blocks required to develop such models include estimates of intake rate, maintenance costs, growth patterns, energy storage and the dynamics of gestation and lactation, as well as rules for prioritizing allocation. I describe how these components have been parameterized for marine mammals and highlight critical research gaps. Large variation exists among available analytical approaches, reflecting the large range of life histories, management needs and data availability across studies. Flexibility in modelling strategy has supported tailored applications to specific case studies but has resulted in limited generality. Despite the many empirical and theoretical uncertainties that remain, bioenergetic models can be used to predict individual and population responses to environmental change and other anthropogenic impacts, thus providing powerful tools to inform effective management and conservation.
Collapse
Affiliation(s)
- Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews KY16 9LZ, UK. Tel: (+44) (0)1334 461 842.
| |
Collapse
|
19
|
McHuron EA, Aerts L, Gailey G, Sychenko O, Costa DP, Mangel M, Schwarz LK. Predicting the population consequences of acoustic disturbance, with application to an endangered gray whale population. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02440. [PMID: 34374143 DOI: 10.1002/eap.2440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 06/13/2023]
Abstract
Acoustic disturbance is a growing conservation concern for wildlife populations because it can elicit physiological and behavioral responses that can have cascading impacts on population dynamics. State-dependent behavioral and life history models implemented via Stochastic Dynamic Programming (SDP) provide a natural framework for quantifying biologically meaningful population changes resulting from disturbance by linking environment, physiology, and metrics of fitness. We developed an SDP model using the endangered western gray whale (Eschrichtius robustus) as a case study because they experience acoustic disturbance on their summer foraging grounds. We modeled the behavior and physiological dynamics of pregnant females as they arrived on the feeding grounds and predicted the probability of female and offspring survival, with and without acoustic disturbance and in the presence/absence of high prey availability. Upon arrival in mid-May, pregnant females initially exhibited relatively random behavior before they transitioned to intensive feeding that resulted in continual fat mass gain until departure. This shift in behavior co-occurred with a change in spatial distribution; early in the season, whales were more equally distributed among foraging areas with moderate to high energy availability, whereas by mid-July whales transitioned to predominate use of the location that had the highest energy availability. Exclusion from energy-rich offshore areas led to reproductive failure and in extreme cases, mortality of adult females that had lasting impacts on population dynamics. Simulated disturbances in nearshore foraging areas had little to no impact on female survival or reproductive success at the population level. At the individual level, the impact of disturbance was unequally distributed across females of different lengths, both with respect to the number of times an individual was disturbed and the impact of disturbance on vital rates. Our results highlight the susceptibility of large capital breeders to reductions in prey availability, and indicate that who, where, and when individuals are disturbed are likely to be important considerations when assessing the impacts of acoustic activities. This model provides a framework to inform planned acoustic disturbances and assess the effectiveness of mitigation strategies for large capital breeders.
Collapse
Affiliation(s)
- Elizabeth A McHuron
- Institute of Marine Sciences, University of California, Santa Cruz, California, 95064, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, 95064, USA
| | | | - Glenn Gailey
- Cetacean EcoSystem Research, Lacey, Washington, 98516, USA
| | - Olga Sychenko
- Cetacean EcoSystem Research, Lacey, Washington, 98516, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, 95064, USA
| | - Marc Mangel
- Institute of Marine Sciences, University of California, Santa Cruz, California, 95064, USA
- Theoretical Ecology Group, Department of Biology, University of Bergen, Bergen, 9020, Norway
- Puget Sound Institute, University of Washington, Tacoma, Washington, 98402, USA
| | - Lisa K Schwarz
- Institute of Marine Sciences, University of California, Santa Cruz, California, 95064, USA
| |
Collapse
|
20
|
Мyakushko SA. The phenomenon of the shrinking size of bank vole (Myodes glareolus) in an anthropogenic environment (experience of 50 years of observations). BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fifty years of continuous monitoring of the bank vole population (Myodes glareolus Schreber, 1780) revealed the phenomenon of shrinking body size of individuals, manifesting in significant reduction in their regular size and mass parameters. Field observations were carried out in the Kaniv Nature Reserve (Cherkasy region, Ukraine) during the first half of summer every year. In the forest biotopes of the reserve, this species is dominant in the group of rodents. The research period covered various stages of the existence of the protected ecosystem. Its small area, location ina densely populated region of Ukraine and interaction with neighboring territories which are involved in economic activities have always caused anthropogenic pressure on the protected area. Its nature and intensity determined the changes in the protection regime and the loss of reserve status in 1951–1968. Later, the territory of the reserve experienced increasing technogenic pressure accompanied by radioactive contamination. In this work, to compare their characteristics, four complete cycles of the density dynamics of the bank vole population (from depression to depression) were selected, the duration of which was 4–5 years. The first three cycles correspond to qualitatively different periods in the existence of the ecosystem and the population of the studied species, and the last one corresponds to the relatively current situation. Over the recent 30 years, the size and mass parameters of individuals of bank voles have deсreased, - this phenomenon was called shrinking. The process was also observed to tend towards consistent increase in scale. Differentiated analysis shows that in different sex and functional groups of animals, the decrease in exterior parameters can reach 30.3%. Shrinking is especially notable in the group of adult females that are actively involved in reproduction (compared to the second cycle, considered as the control, the decrease in parameters among these is 33.2%). Juveniles of this sex lost 31.8% of their fatness. Besides, in the population of voles, the proportion of large-size individuals was significantly reduced. The group of animals that overwintered significantly reduced its representation, and its existing representatives had much smaller exterior parameters. The studies found that the shrinking process is stable over time, which does not allow it to be considered a random phenomenon or an artifact of research. This phenomenon has no correlation with the amount or availability of food. It occurs against the background of numerous changes in various aspects of population dynamics, which gives grounds to associate it with anthropogenic changes in the environment. Shrinking is believed to be realized through various mechanisms. Firstly, as a result of mortality, the largest individuals and reproducing females with the greatest energy needs disappear from the population, and secondly, the growth and weight gain of young animals is slower. As a result, decrease in the size and mass parameters of individuals reduces their specific energy needs and allows the population to bring their requirements in correspondance with the capability of the environment to support a certain number of resource consumers. An analogy was drawn with the Dehnel’s phenomenon, described for shrews of the Sorex genus, whose body size and weight decrease is an element of preparation for experiencing adverse winter conditions. Based on similar concepts, the shrinking of its elements can be considered as a specific population strategy to maintain the ecological balance.
Collapse
|
21
|
Keen KA, Beltran RS, Pirotta E, Costa DP. Emerging themes in Population Consequences of Disturbance models. Proc Biol Sci 2021; 288:20210325. [PMID: 34428966 PMCID: PMC8385386 DOI: 10.1098/rspb.2021.0325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
Assessing the non-lethal effects of disturbance from human activities is necessary for wildlife conservation and management. However, linking short-term responses to long-term impacts on individuals and populations is a significant hurdle for evaluating the risks of a proposed activity. The Population Consequences of Disturbance (PCoD) framework conceptually describes how disturbance can lead to changes in population dynamics, and its real-world application has led to a suite of quantitative models that can inform risk assessments. Here, we review PCoD models that forecast the possible consequences of a range of disturbance scenarios for marine mammals. In so doing, we identify common themes and highlight general principles to consider when assessing risk. We find that, when considered holistically, these models provide valuable insights into which contextual factors influence a population's degree of exposure and sensitivity to disturbance. We also discuss model assumptions and limitations, identify data gaps and suggest future research directions to enable PCoD models to better inform risk assessments and conservation and management decisions. The general principles explored can help wildlife managers and practitioners identify and prioritize the populations most vulnerable to disturbance and guide industry in planning activities that avoid or mitigate population-level effects.
Collapse
Affiliation(s)
- Kelly A. Keen
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Roxanne S. Beltran
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, UK
- School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland
| | - Daniel P. Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
- Institute of Marine Sciences, University of California, Santa Cruz, CA, USA
| |
Collapse
|
22
|
Hin V, Harwood J, de Roos AM. Density dependence can obscure nonlethal effects of disturbance on life history of medium-sized cetaceans. PLoS One 2021; 16:e0252677. [PMID: 34081741 PMCID: PMC8174747 DOI: 10.1371/journal.pone.0252677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/20/2021] [Indexed: 11/19/2022] Open
Abstract
Nonlethal disturbance of animals can cause behavioral and physiological changes that affect individual health status and vital rates, with potential consequences at the population level. Predicting these population effects remains a major challenge in ecology and conservation. Monitoring fitness-related traits may improve detection of upcoming population changes, but the extent to which individual traits are reliable indicators of disturbance exposure is not well understood, especially for populations regulated by density dependence. Here we study how density dependence affects a population’s response to disturbance and modifies the disturbance effects on individual health and vital rates. We extend an energy budget model for a medium-sized cetacean (the long-finned pilot whale Globicephala melas) to an individual-based population model in which whales feed on a self-replenishing prey base and disturbance leads to cessation of feeding. In this coupled predator-prey system, the whale population is regulated through prey depletion and the onset of yearly repeating disturbances on the whale population at carrying capacity decreased population density and increased prey availability due to reduced top-down control. In populations faced with multiple days of continuous disturbance each year, female whales that were lactating their first calf experienced increased mortality due to depletion of energy stores. However, increased prey availability led to compensatory effects and resulted in a subsequent improvement of mean female body condition, mean age at first reproduction and higher age-specific reproductive output. These results indicate that prey-mediated density dependence can mask negative effects of disturbance on fitness-related traits and vital rates, a result with implications for the monitoring and management of marine mammal populations.
Collapse
Affiliation(s)
- Vincent Hin
- Department of Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - John Harwood
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, United Kingdom
| | - André M. de Roos
- Department of Theoretical and Computational Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Mortensen LO, Chudzinska ME, Slabbekoorn H, Thomsen F. Agent‐based models to investigate sound impact on marine animals: bridging the gap between effects on individual behaviour and population level consequences. OIKOS 2021. [DOI: 10.1111/oik.08078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Hans Slabbekoorn
- Inst. of Biology Leiden, Leiden Univ. Leiden Zuid‐Holland the Netherlands
| | | |
Collapse
|
24
|
Pirotta E, Booth CG, Cade DE, Calambokidis J, Costa DP, Fahlbusch JA, Friedlaender AS, Goldbogen JA, Harwood J, Hazen EL, New L, Southall BL. Context-dependent variability in the predicted daily energetic costs of disturbance for blue whales. CONSERVATION PHYSIOLOGY 2021; 9:coaa137. [PMID: 33505702 PMCID: PMC7816799 DOI: 10.1093/conphys/coaa137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 05/28/2023]
Abstract
Assessing the long-term consequences of sub-lethal anthropogenic disturbance on wildlife populations requires integrating data on fine-scale individual behavior and physiology into spatially and temporally broader, population-level inference. A typical behavioral response to disturbance is the cessation of foraging, which can be translated into a common metric of energetic cost. However, this necessitates detailed empirical information on baseline movements, activity budgets, feeding rates and energy intake, as well as the probability of an individual responding to the disturbance-inducing stressor within different exposure contexts. Here, we integrated data from blue whales (Balaenoptera musculus) experimentally exposed to military active sonar signals with fine-scale measurements of baseline behavior over multiple days or weeks obtained from accelerometry loggers, telemetry tracking and prey sampling. Specifically, we developed daily simulations of movement, feeding behavior and exposure to localized sonar events of increasing duration and intensity and predicted the effects of this disturbance source on the daily energy intake of an individual. Activity budgets and movements were highly variable in space and time and among individuals, resulting in large variability in predicted energetic intake and costs. In half of our simulations, an individual's energy intake was unaffected by the simulated source. However, some individuals lost their entire daily energy intake under brief or weak exposure scenarios. Given this large variation, population-level models will have to assess the consequences of the entire distribution of energetic costs, rather than only consider single summary statistics. The shape of the exposure-response functions also strongly influenced predictions, reinforcing the need for contextually explicit experiments and improved mechanistic understanding of the processes driving behavioral and physiological responses to disturbance. This study presents a robust approach for integrating different types of empirical information to assess the effects of disturbance at spatio-temporal and ecological scales that are relevant to management and conservation.
Collapse
Affiliation(s)
- Enrico Pirotta
- Department of Mathematics and Statistics, Washington State University, Vancouver, WA 98686, USA
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork T23 N73K, Ireland
| | - Cormac G Booth
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
| | - David E Cade
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
| | | | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
| | - James A Fahlbusch
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
- Cascadia Research Collective, Olympia, WA 98501, USA
| | - Ari S Friedlaender
- Southall Environmental Associates, Inc., Aptos, CA 95003, USA
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
| | - Jeremy A Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - John Harwood
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews KY16 9LZ, UK
| | - Elliott L Hazen
- Southwest Fisheries Science Center, Environmental Research Division, National Oceanic and Atmospheric Administration (NOAA), Monterey, CA 93940, USA
| | - Leslie New
- Department of Mathematics and Statistics, Washington State University, Vancouver, WA 98686, USA
| | - Brandon L Southall
- Southall Environmental Associates, Inc., Aptos, CA 95003, USA
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
25
|
Disentangling the biotic and abiotic drivers of emergent migratory behavior using individual-based models. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Pirotta E, Hin V, Mangel M, New L, Costa DP, de Roos AM, Harwood J. Propensity for Risk in Reproductive Strategy Affects Susceptibility to Anthropogenic Disturbance. Am Nat 2020; 196:E71-E87. [PMID: 32970466 DOI: 10.1086/710150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAnimals initiate, interrupt, or invest resources in reproduction in light of their physiology and the environment. The energetic risks entailed in an individual's reproductive strategy can influence the ability to cope with additional stressors, such as anthropogenic climate change and disturbance. To explore the trade-offs between internal state, external resource availability, and reproduction, we applied state-dependent life-history theory (SDLHT) to a dynamic energy budget (DEB) model for long-finned pilot whales (Globicephala melas). We investigated the reproductive strategies emerging from the interplay between fitness maximization and propensity to take energetic risks, as well as the resulting susceptibility of individual vital rates to disturbance. Without disturbance, facultative reproductive behavior from SDLHT and fixed rules in the DEB model led to comparable individual fitness. However, under disturbance, the reproductive strategies emerging from SDLHT increased vulnerability to energetic risks, resulting in lower fitness than fixed rules. These fragile strategies might therefore be unlikely to evolve in the first place. Heterogeneous resource availability favored more cautious (and thus more robust) strategies, particularly when knowledge of resource variation was accurate. Our results demonstrate that the assumptions regarding the dynamic trade-offs underlying an individual's decision-making can have important consequences for predicting the effects of anthropogenic stressors on wildlife populations.
Collapse
|
27
|
Soudijn FH, van Kooten T, Slabbekoorn H, de Roos AM. Population-level effects of acoustic disturbance in Atlantic cod: a size-structured analysis based on energy budgets. Proc Biol Sci 2020; 287:20200490. [PMID: 32546090 PMCID: PMC7329029 DOI: 10.1098/rspb.2020.0490] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/23/2020] [Indexed: 11/12/2022] Open
Abstract
Anthropogenic underwater noise may negatively affect marine animals. Yet, while fishes are highly sensitive to sounds, effects of acoustic disturbances on fishes have not been extensively studied at the population level. In this study, we use a size-structured model based on energy budgets to analyse potential population-level effects of anthropogenic noise on Atlantic cod (Gadus morhua). Using the model framework, we assess the impact of four possible effect pathways of disturbance on the cod population growth rate. Through increased stress, changes in foraging and movement behaviour, and effects on the auditory system, anthropogenic noise can lead to (i) increased energy expenditure, (ii) reduced food intake, (iii) increased mortality, and (iv) reduced reproductive output. Our results show that population growth rates are particularly sensitive to changes in energy expenditure and food intake because they indirectly affect the age of maturation, survival and fecundity. Sub-lethal effects of sound exposure may thus affect populations of cod and fishes with similar life histories more than lethal effects of sound exposure. Moreover, anthropogenic noise may negatively affect populations when causing persistent increases of energy expenditure or decreases of food intake. Effects of specific acoustic pollutants on energy acquisition and expenditure should therefore be further investigated.
Collapse
Affiliation(s)
- Floor H. Soudijn
- Wageningen Marine Research, Wageningen University & Research, Ijmuiden, The Netherlands
- Institute for Biodiversity and Ecosystem dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Tobias van Kooten
- Wageningen Marine Research, Wageningen University & Research, Ijmuiden, The Netherlands
- Institute for Biodiversity and Ecosystem dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans Slabbekoorn
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - André M. de Roos
- Institute for Biodiversity and Ecosystem dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
28
|
Senner NR, Morbey YE, Sandercock BK. Editorial: Flexibility in the Migration Strategies of Animals. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Irvine LM, Palacios DM, Lagerquist BA, Mate BR. Scales of Blue and Fin Whale Feeding Behavior off California, USA, With Implications for Prey Patchiness. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|