1
|
Durá-Travé T, Gallinas-Victoriano F. Dental caries in children and vitamin D deficiency: a narrative review. Eur J Pediatr 2024; 183:523-528. [PMID: 37966493 PMCID: PMC10912272 DOI: 10.1007/s00431-023-05331-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Dental caries represents one of the most prevalent health problems in childhood. Numerous studies have assessed that vitamin D deficiency is highly related to dental caries in primary and permanent teeth in children. The aim of this study is to elaborate a narrative review about proposed mechanisms by which vitamin D deficiency interacts with dental caries process in children. Vitamin D deficiency during pregnancy may cause intrauterine enamel defects, and through childhood is accompanied by insufficient activity of antibacterial peptides, decreased saliva secretion, and a low level of calcium in saliva. Conclusion: In conclusion, vitamin D deficiency would increase the risk of caries in the primary and/or permanent dentition. Relationship between vitamin D deficiency and dental caries is evident enough for vitamin D deficiency to be considered as a risk factor for dental caries in children. Optimal levels of vitamin D throughout pregnancy and childhood may be considered an additional preventive measure for dental caries in the primary and permanent dentition.
Collapse
Affiliation(s)
- Teodoro Durá-Travé
- Department of Pediatrics, School of Medicine, University of Navarra, Avenue Irunlarrea, 1, 31008, Pamplona, Spain.
- Navarrabiomed (Biomedical Research Center), Pamplona, Spain.
| | - Fidel Gallinas-Victoriano
- Navarrabiomed (Biomedical Research Center), Pamplona, Spain
- Department of Pediatrics, Navarra Hospital Universitary, Pamplona, Spain
| |
Collapse
|
2
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Seminario AL, Kemoli A, Fuentes W, Wang Y, Rajanbabu P, Wamalwa D, Benki-Nugent S, John-Stewart G, Slyker JA. The effect of antiretroviral therapy initiation on vitamin D levels and four oral diseases among Kenyan children and adolescents living with HIV. PLoS One 2022; 17:e0275663. [PMID: 36227876 PMCID: PMC9560522 DOI: 10.1371/journal.pone.0275663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES The impact of antiretroviral treatment (ART) on the occurrence of oral diseases among children and adolescents living with HIV (CALHIV) is poorly understood. The aim of this study was to determine the effect of ART timing on vitamin D levels and the prevalence of four oral diseases (dry mouth, dental caries, enamel hypoplasia, and non-herpes oral ulcer) among Kenyan CALHIV from two pediatric HIV cohorts. METHODS This nested cross-sectional study was conducted at the Kenyatta National Hospital, Nairobi, Kenya. CALHIV, 51 with early-ART initiated at <12 months of age and 27 with late-ART initiated between 18 months-12 years of age, were included. Demographics, HIV diagnosis, baseline CD4 and HIV RNA viral load data were extracted from the primary study databases. Community Oral Health Officers performed oral health examinations following standardized training. RESULTS Among 78 CALHIV in the study, median age at the time of the oral examination was 11.4 years old and median ART duration at the time of oral examination was 11 years (IQR: 10.1, 13.4). Mean serum vitamin D level was significantly higher among the early-ART group than the late-ART group (29.5 versus 22.4 ng/mL, p = 0.0002). Children who received early-ART had a 70% reduction in risk of inadequate vitamin D level (<20 ng/mL), compared to those who received late-ART (p = 0.02). Although both groups had similar prevalence of oral diseases overall (early-ART 82.4%; late-ART 85.2%; p = 0.2), there was a trend for higher prevalence of dry mouth (p = 0.1) and dental caries (p = 0.1) in the early versus late ART groups. The prevalence of the four oral diseases was not associated with vitamin D levels (p = 0.583). CONCLUSIONS After >10 years of ART, CALHIV with early-ART initiation had higher serum vitamin D levels compared to the late-ART group. The four oral diseases were not significantly associated with timing of ART initiation or serum vitamin D concentrations in this cohort. There was a trend for higher prevalence of dry mouth and dental caries in the early-ART group, probably as side-effects of ART.
Collapse
Affiliation(s)
- Ana Lucia Seminario
- Department of Pediatric Dentistry, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Arthur Kemoli
- Department of Pediatric Dentistry & Orthodontics, University of Nairobi, Nairobi, Kenya
| | - Walter Fuentes
- Petaluma Health Center, University of California San Francisco, Petaluma, California, United States of America
| | - Yan Wang
- Division of Infectious Diseases, Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Poojashree Rajanbabu
- University of Washington Timothy A. DeRouen Center for Global Oral Health, Seattle, Washington, United States of America
| | - Dalton Wamalwa
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Sarah Benki-Nugent
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Grace John-Stewart
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics and Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Jennifer A. Slyker
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Tokajuk J, Deptuła P, Piktel E, Daniluk T, Chmielewska S, Wollny T, Wolak P, Fiedoruk K, Bucki R. Cathelicidin LL-37 in Health and Diseases of the Oral Cavity. Biomedicines 2022; 10:1086. [PMID: 35625823 PMCID: PMC9138798 DOI: 10.3390/biomedicines10051086] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
The mechanisms for maintaining oral cavity homeostasis are subject to the constant influence of many environmental factors, including various chemicals and microorganisms. Most of them act directly on the oral mucosa, which is the mechanical and immune barrier of the oral cavity, and such interaction might lead to the development of various oral pathologies and systemic diseases. Two important players in maintaining oral health or developing oral pathology are the oral microbiota and various immune molecules that are involved in controlling its quantitative and qualitative composition. The LL-37 peptide is an important molecule that upon release from human cathelicidin (hCAP-18) can directly perform antimicrobial action after insertion into surface structures of microorganisms and immunomodulatory function as an agonist of different cell membrane receptors. Oral LL-37 expression is an important factor in oral homeostasis that maintains the physiological microbiota but is also involved in the development of oral dysbiosis, infectious diseases (including viral, bacterial, and fungal infections), autoimmune diseases, and oral carcinomas. This peptide has also been proposed as a marker of inflammation severity and treatment outcome.
Collapse
Affiliation(s)
- Joanna Tokajuk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
- Dentistry and Medicine Tokajuk, Zelazna 9/7, 15-297 Bialystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222 Białystok, Poland;
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Sylwia Chmielewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland;
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland; (J.T.); (P.D.); (T.D.); (S.C.); (K.F.)
| |
Collapse
|
5
|
Faheem S, Maqsood S, Hasan A, Imtiaz F, Shaikh F, Farooqui WA. Associations of early childhood caries with salivary beta defensin-3 and childhood anemia: a case-control study. BMC Oral Health 2021; 21:445. [PMID: 34521396 PMCID: PMC8442316 DOI: 10.1186/s12903-021-01810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background Human beta defensin-3 (HβD-3) is an antimicrobial peptide present in saliva that protects tooth surfaces from microbial attack. These peptides are part of innate immunity so levels may be affected by different systemic diseases like anemia. Therefore, anemia may predispose an affected child to an increased risk of dental caries. The objectives of this study were to determine the association of early childhood caries (ECC) with HβD-3 levels and observe the association of HβD-3 levels with childhood anemia. Methods A total of 80 children admitted in a pediatric medical ward, age 48–71 months, of either sex were included in the study. The included children were categorized as cases (children with ECC n = 40) and controls (children without ECC n = 40). Children were further segregated into the anemic and non-anemic sub-groups based on the hospital record of hemoglobin level. The salivary concentration of HβD-3 was measured by Enzyme-Linked Immuno-sorbent assay (ELISA). IBM SPSS version 20 software was used for statistical analysis. Two sample t-test and one-way ANOVA were used to compare mean values while spearman was used for correlations at p < 0.05. Results The mean Salivary HβD-3 level in cases (8.87 ± 4.30) was significantly higher (p = 0.042) as compared to controls (7.23 ± 2.57). Salivary HβD-3 level in patients with caries and without anemia was highest (10.80 ± 4.50) whereas salivary HβD-3 level in the presence of caries and anemia was lowest (6.94 ± 3.13) amongst all groups. This difference was statistically significant (p = 0.001). Salivary HβD-3 level was found to be moderately correlated with cases (p = 0.002). An inverse correlation was found between salivary HβD-3 level and anemia (r = -0.479, p = 0.002). Conclusion Anemia may affect the innate immunity of children, and may result in a decreased level of salivary HβD3, thus increasing vulnerability to decay.
Collapse
Affiliation(s)
- Sanam Faheem
- Department of Oral Biology, Dow Dental College, Dow University of Health Sciences, Karachi, Pakistan.
| | - Shahida Maqsood
- Department of Oral Biology, Dow Dental College, Dow University of Health Sciences, Karachi, Pakistan
| | - Arshad Hasan
- Department of Operative Dentistry, Dow Dental College, Dow University of Health Sciences, Karachi, Pakistan
| | - Fouzia Imtiaz
- Department of Biochemistry Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Faheem Shaikh
- London Dental Clinics & Dental Implants, 41-C Badar Commercial Street 10, Phase 5, Badar Commercial DHA, Karachi, Pakistan
| | - Waqas Ahmed Farooqui
- Department of Research, School of Public Health, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
6
|
Floden AM, Sohrabi M, Nookala S, Cao JJ, Combs CK. Salivary Aβ Secretion and Altered Oral Microbiome in Mouse Models of AD. Curr Alzheimer Res 2021; 17:1133-1144. [PMID: 33463464 PMCID: PMC8122496 DOI: 10.2174/1567205018666210119151952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/24/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Beta amyloid (Aβ) peptide containing plaque aggregations in the brain are a hallmark of Alzheimer's Disease (AD). However, Aβ is produced by cell types outside of the brain suggesting that the peptide may serve a broad physiologic purpose. OBJECTIVE Based upon our prior work documenting expression of amyloid β precursor protein (APP) in intestinal epithelium we hypothesized that salivary epithelium might also express APP and be a source of Aβ. METHODS To begin testing this idea, we compared human age-matched control and AD salivary glands to C57BL/6 wild type, AppNL-G-F , and APP/PS1 mice. RESULTS Both male and female AD, AppNL-G-F , and APP/PS1 glands demonstrated robust APP and Aβ immunoreactivity. Female AppNL-G-F mice had significantly higher levels of pilocarpine stimulated Aβ 1-42 compared to both wild type and APP/PS1 mice. No differences in male salivary Aβ levels were detected. No significant differences in total pilocarpine stimulated saliva volumes were observed in any group. Both male and female AppNL-G-F but not APP/PS1 mice demonstrated significant differences in oral microbiome phylum and genus abundance compared to wild type mice. Male, but not female, APP/PS1 and AppNL-G-F mice had significantly thinner molar enamel compared to their wild type counterparts. CONCLUSION These data support the idea that oral microbiome changes exist during AD in addition to changes in salivary Aβ and oral health.
Collapse
Affiliation(s)
- Angela M Floden
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, United States
| | - Mona Sohrabi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, United States
| | - Suba Nookala
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, United States
| | - Jay J Cao
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, United States
| | - Colin K Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037, United States
| |
Collapse
|
7
|
Lu J, Francis J, Doster RS, Haley KP, Craft KM, Moore RE, Chambers SA, Aronoff DM, Osteen K, Damo SM, Manning S, Townsend SD, Gaddy JA. Lactoferrin: A Critical Mediator of Both Host Immune Response and Antimicrobial Activity in Response to Streptococcal Infections. ACS Infect Dis 2020; 6:1615-1623. [PMID: 32329605 DOI: 10.1021/acsinfecdis.0c00050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Streptococcal species are Gram-positive bacteria responsible for a variety of disease outcomes including pneumonia, meningitis, endocarditis, erysipelas, necrotizing fasciitis, periodontitis, skin and soft tissue infections, chorioamnionitis, premature rupture of membranes, preterm birth, and neonatal sepsis. In response to streptococcal infections, the host innate immune system deploys a repertoire of antimicrobial and immune modulating molecules. One important molecule that is produced in response to streptococcal infections is lactoferrin. Lactoferrin has antimicrobial properties including the ability to bind iron with high affinity and sequester this important nutrient from an invading pathogen. Additionally, lactoferrin has the capacity to alter the host inflammatory response and contribute to disease outcome. This Review presents the most recent published work that studies the interaction between the host innate immune protein lactoferrin and the invading pathogen, Streptococcus.
Collapse
Affiliation(s)
- Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jamisha Francis
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Ryan S. Doster
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Kathryn P. Haley
- Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan 49401, United States
| | - Kelly M. Craft
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Rebecca E. Moore
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Schuyler A. Chambers
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - David M. Aronoff
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Kevin Osteen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee 37212, United States
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Steven M. Damo
- Department of Chemistry, Fisk University, Nashville, Tennessee 37208, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Shannon Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee 37212, United States
| |
Collapse
|
8
|
Wang K, Zhou X, Li W, Zhang L. Human salivary proteins and their peptidomimetics: Values of function, early diagnosis, and therapeutic potential in combating dental caries. Arch Oral Biol 2018; 99:31-42. [PMID: 30599395 DOI: 10.1016/j.archoralbio.2018.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/21/2018] [Accepted: 12/22/2018] [Indexed: 02/05/2023]
Abstract
Saliva contains a large number of proteins that play various crucial roles to maintain the oral health and tooth integrity. This oral fluid is proposed to be one of the most important host factors, serving as a special medium for monitoring aspects of microorganisms, diet and host susceptibility involved in the caries process. Extensive salivary proteomic and peptidomic studies have resulted in considerable advances in the field of biomarkers discovery for dental caries. These salivary biomarkers may be exploited for the prediction, diagnosis, prognosis and treatment of dental caries, many of which could also provide the potential templates for bioactive peptides used for the biomimetic management of dental caries, rather than repairing caries lesions with artificial materials. A comprehensive understanding of the biological function of salivary proteins as well as their derived biomimetic peptides with promising potential against dental caries has been long awaited. This review overviewed a collection of current literature and addressed the majority of different functions of salivary proteins and peptides with their potential as functional biomarkers for caries risk assessment and clinical prospects for the anti-caries application.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Piekoszewska-Ziętek P, Turska-Szybka A, Olczak-Kowalczyk D. Salivary proteins and peptides in the aetiology of caries in children: Systematic literature review. Oral Dis 2018; 25:1048-1056. [PMID: 30091198 DOI: 10.1111/odi.12953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/28/2018] [Accepted: 08/03/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND To assess the relationship of chosen salivary proteins and peptides levels with the occurrence of caries in children. METHODS PubMed, MEDLINE and EMBASE databases from 2000 to 2018 were researched for original observational studies published in English. The risk of bias and quality of the included papers were assessed regarding the guidelines by Fowkes and Fulton. RESULTS Twenty-two studies were included in the review, from which the issue of glycoproteins (including immunoglobulins), AMPs and salivary enzymes was discussed. The research involved primary dentition (13 papers), as well as mixed (7) and permanent dentition (5). Caries assessment included visual inspection, dmft/s and DMFT/S indexed; quantity of Streptococcus mutans and Lactobacillus spp. bacteria; and caries risk assessment. DISCUSSION The results of studies regarding the connection between salivary peptides and proteins and caries development in children are promising; however, further investigations should be undertaken. The majority of studies included are case-control and cross-sectional; however, it is necessary to conduct more cohort studies with adequate follow-up prior to considering this as markers for caries risk assessment.
Collapse
Affiliation(s)
| | - Anna Turska-Szybka
- Department of Paediatric Dentistry, Medical University of Warsaw, Warszawa, Poland
| | | |
Collapse
|
10
|
Preshaw PM, Henne K, Taylor JJ, Valentine RA, Conrads G. Age-related changes in immune function (immune senescence) in caries and periodontal diseases: a systematic review. J Clin Periodontol 2018; 44 Suppl 18:S153-S177. [PMID: 28266110 DOI: 10.1111/jcpe.12675] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2016] [Indexed: 12/17/2022]
Abstract
AIM To systematically review the evidence regarding immune senescence in the pathogenesis of periodontitis and dental caries. METHODS A systematic search of electronic databases utilizing medical subject headings (MeSH terms) supplemented by screening of review articles and other relevant texts was undertaken. RESULTS Seventy-three articles were included (43 for periodontitis, 30 for caries). Study results were found to be generally heterogeneous. Regarding periodontitis, human studies suggest evidence for altered neutrophil function and increased production of pro-inflammatory mediators (e.g. interleukin-1β, interleukin-6 and prostaglandin E2 ) in older compared to younger subjects, and animal experiments suggest increased expression of genes that contribute to a pro-inflammatory state in older compared to younger animals. Regarding dental caries, research relating to changes in immune functioning and the impact of ageing is in its infancy. A small number of studies have reported components of innate and adaptive immunity that affect the composition of saliva and dental biofilms with possible impacts on caries progression. CONCLUSION There is evidence that immune functioning related to periodontitis and (less investigated) dental caries alters with increasing age. In both conditions, age-associated mechanistic changes in immune functioning are complex and incompletely understood and it is not clear how these relate to disease susceptibility.
Collapse
Affiliation(s)
- Philip M Preshaw
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Karsten Henne
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Aachen, Germany
| | - John J Taylor
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ruth A Valentine
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK.,Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
11
|
Contribution of Streptococcus Mutans Virulence Factors and Saliva Agglutinating Capacity to Caries Susceptibility in Children: A Preliminary Study. J Clin Pediatr Dent 2018; 42:188-194. [PMID: 29698142 DOI: 10.17796/1053-4628-42.3.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Many factors contribute to caries development in humans, such as diet, host factors - including different saliva components - and the presence of acidogenic bacteria in the dental biofilm, particularly Streptococcus mutans (S. mutans). Despite the influence of S. mutans in caries, this bacterium is also prevalent among healthy individuals, suggesting the contribution of genetic variation on the cariogenic potential. Based on this hypothesis, the present work investigated the influence of S. mutans virulence factors and saliva agglutinating capacity on caries susceptibility in children. STUDY DESIGN Saliva samples of 24 children from low income families (13 caries-free and 11 caries-active individuals) were collected and tested for their ability to agglutinate S. mutans. The bacteria were isolated from these samples and analyzed for the presence of the gene coding for mutacin IV (mut IV). Biofilm formation and acid tolerance were also investigated in both groups (caries-free and caries-active). RESULTS Saliva samples from caries-free children showed an increased capacity to agglutinate S. mutans (p=0.006). Also, bacteria isolated from the caries-free group formed less biofilm when compared to the caries-active group (p=0.04). The presence of mut IV gene did not differ between bacteria isolated from caries-free and caries-active individuals, nor did the ability to tolerate an acidic environment, which was the same for the two groups. CONCLUSIONS Altogether, the results suggest that the adhesive properties of S. mutans and the agglutinating capacity of the saliva samples correlated with the presence of caries lesions in children.
Collapse
|
12
|
Makthal N, Do H, VanderWal AR, Olsen RJ, Musser JM, Kumaraswami M. Signaling by a Conserved Quorum Sensing Pathway Contributes to Growth Ex Vivo and Oropharyngeal Colonization of Human Pathogen Group A Streptococcus. Infect Immun 2018; 86:e00169-18. [PMID: 29531135 PMCID: PMC5913841 DOI: 10.1128/iai.00169-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 02/06/2023] Open
Abstract
Bacterial virulence factor production is a highly coordinated process. The temporal pattern of bacterial gene expression varies in different host anatomic sites to overcome niche-specific challenges. The human pathogen group A streptococcus (GAS) produces a potent secreted protease, SpeB, that is crucial for pathogenesis. Recently, we discovered that a quorum sensing pathway comprised of a leaderless short peptide, SpeB-inducing peptide (SIP), and a cytosolic global regulator, RopB, controls speB expression in concert with bacterial population density. The SIP signaling pathway is active in vivo and contributes significantly to GAS invasive infections. In the current study, we investigated the role of the SIP signaling pathway in GAS-host interactions during oropharyngeal colonization. The SIP signaling pathway is functional during growth ex vivo in human saliva. SIP-mediated speB expression plays a crucial role in GAS colonization of the mouse oropharynx. GAS employs a distinct pattern of SpeB production during growth ex vivo in saliva that includes a transient burst of speB expression during early stages of growth coupled with sustained levels of secreted SpeB protein. SpeB production aids GAS survival by degrading LL37, an abundant human antimicrobial peptide. We found that SIP signaling occurs during growth in human blood ex vivo. Moreover, the SIP signaling pathway is critical for GAS survival in blood. SIP-dependent speB regulation is functional in strains of diverse emm types, indicating that SIP signaling is a conserved virulence regulatory mechanism. Our discoveries have implications for future translational studies.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Arica R VanderWal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
13
|
Combined analysis of the salivary microbiome and host defence peptides predicts dental disease. Sci Rep 2018; 8:1484. [PMID: 29367728 PMCID: PMC5784018 DOI: 10.1038/s41598-018-20085-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/02/2018] [Indexed: 12/27/2022] Open
Abstract
Understanding the triad of host response, microbiome and disease status is potentially informative for disease prediction, prevention, early intervention and treatment. Using longitudinal assessment of saliva and disease status, we demonstrated that partial least squares modelling of microbial, immunological and clinical measures, grouped children according to future dental disease status. Saliva was collected and dental health assessed in 33 children aged 4 years, and again 1-year later. The composition of the salivary microbiome was assessed and host defence peptides in saliva were quantified. Principal component analysis of the salivary microbiome indicated that children clustered by age and not disease status. Similarly, changes in salivary host defence peptides occurred with age and not in response to, or preceding dental caries. Partial least squares modelling of microbial, immunological and clinical baseline measures clustered children according to future dental disease status. These data demonstrate that isolated evaluation of the salivary microbiome or host response failed to predict dental disease. In contrast, combined assessment of both host response together with the microbiome revealed clusters of health and disease. This type of approach is potentially relevant to myriad diseases that are modified by host–microbiome interactions.
Collapse
|
14
|
Gyll J, Ridell K, Öhlund I, Karlsland Åkeson P, Johansson I, Lif Holgerson P. Vitamin D status and dental caries in healthy Swedish children. Nutr J 2018; 17:11. [PMID: 29338758 PMCID: PMC5771062 DOI: 10.1186/s12937-018-0318-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/04/2018] [Indexed: 01/21/2023] Open
Affiliation(s)
- Johanna Gyll
- Department of Odontology, Section of Paediatric Dentistry, Faculty of Medicine, Umeå University, 90185, Umeå, Sweden
| | - Karin Ridell
- Department of Paediatric Dentistry, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Inger Öhlund
- Department of Clinical Sciences/Section of Paediatric Medicine, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Pia Karlsland Åkeson
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Malmö, Sweden
| | - Ingegerd Johansson
- Department of Odontology/Section of Cariology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Pernilla Lif Holgerson
- Department of Odontology, Section of Paediatric Dentistry, Faculty of Medicine, Umeå University, 90185, Umeå, Sweden.
| |
Collapse
|
15
|
Laputková G, Schwartzová V, Bánovčin J, Alexovič M, Sabo J. Salivary Protein Roles in Oral Health and as Predictors of Caries Risk. Open Life Sci 2018; 13:174-200. [PMID: 33817083 PMCID: PMC7874700 DOI: 10.1515/biol-2018-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
This work describes the current state of research on the potential relationship between protein content in human saliva and dental caries, which remains among the most common oral diseases and causes irreversible damage in the oral cavity. An understanding the whole saliva proteome in the oral cavity could serve as a prerequisite to obtaining insight into the etiology of tooth decay at early stages. To date, however, there is no comprehensive evidence showing that salivary proteins could serve as potential indicators for the early diagnosis of the risk factors causing dental caries. Therefore, proteomics indicates the promising direction of future investigations of such factors, including diagnosis and thus prevention in dental therapy.
Collapse
Affiliation(s)
- Galina Laputková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Vladimíra Schwartzová
- 1st Department of Stomatology, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Juraj Bánovčin
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik in Košice, Rastislavova 43, Košice, 041 90, Slovakia
| | - Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| |
Collapse
|
16
|
Hemadi AS, Huang R, Zhou Y, Zou J. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int J Oral Sci 2017; 9:e1. [PMID: 29125139 PMCID: PMC5775330 DOI: 10.1038/ijos.2017.35] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 02/05/2023] Open
Abstract
Early childhood caries (ECC) is a term used to describe dental caries in children aged 6 years or younger. Oral streptococci, such as Streptococcus mutans and Streptococcus sorbrinus, are considered to be the main etiological agents of tooth decay in children. Other bacteria, such as Prevotella spp. and Lactobacillus spp., and fungus, that is, Candida albicans, are related to the development and progression of ECC. Biomolecules in saliva, mainly proteins, affect the survival of oral microorganisms by multiple innate defensive mechanisms, thus modulating the oral microflora. Therefore, the protein composition of saliva can be a sensitive indicator for dental health. Resistance or susceptibility to caries may be significantly correlated with alterations in salivary protein components. Some oral microorganisms and saliva proteins may serve as useful biomarkers in predicting the risk and prognosis of caries. Current research has generated abundant information that contributes to a better understanding of the roles of microorganisms and salivary proteins in ECC occurrence and prevention. This review summarizes the microorganisms that cause caries and tooth-protective salivary proteins with their potential as functional biomarkers for ECC risk assessment. The identification of biomarkers for children at high risk of ECC is not only critical for early diagnosis but also important for preventing and treating the disease.
Collapse
Affiliation(s)
- Abdullah S Hemadi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruijie Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Aida KL, de Paula Ramos S, Seixas GF, Bozza A, Couto de Almeida RS, Dezan Garbelini CC. Influence of a preschool preventive dental programme on caries prevalence, oral care and secretory immunity to Streptococcus mutans
in young adults. Int J Dent Hyg 2017; 16:249-256. [DOI: 10.1111/idh.12311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2017] [Indexed: 11/27/2022]
Affiliation(s)
- KL Aida
- Department of Oral Medicine and Odontopediatric; Health Sciences Center; Universidade Estadual de Londrina; Londrina Brazil
| | - S de Paula Ramos
- Department of Histology; Center of Biological Sciences; Universidade Estadual de Londrina; Londrina Brazil
| | - GF Seixas
- Department of Oral Medicine and Odontopediatric; Health Sciences Center; Universidade Estadual de Londrina; Londrina Brazil
| | - A Bozza
- Department of Microbiology; Center of Biological Sciences; Universidade Estadual de Londrina; Londrina Brazil
| | - RS Couto de Almeida
- Department of Microbiology; Center of Biological Sciences; Universidade Estadual de Londrina; Londrina Brazil
| | - CC Dezan Garbelini
- Department of Oral Medicine and Odontopediatric; Health Sciences Center; Universidade Estadual de Londrina; Londrina Brazil
| |
Collapse
|
18
|
Georgountzou A, Papadopoulos NG. Postnatal Innate Immune Development: From Birth to Adulthood. Front Immunol 2017; 8:957. [PMID: 28848557 PMCID: PMC5554489 DOI: 10.3389/fimmu.2017.00957] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed.
Collapse
Affiliation(s)
- Anastasia Georgountzou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Inflammation and Respiratory Medicine, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
19
|
Colombo NH, Ribas LFF, Pereira JA, Kreling PF, Kressirer CA, Tanner ACR, Duque C. Antimicrobial peptides in saliva of children with severe early childhood caries. Arch Oral Biol 2016; 69:40-6. [PMID: 27232359 DOI: 10.1016/j.archoralbio.2016.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/25/2016] [Accepted: 05/08/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Controversies exist regarding the relationship between the concentrations of antimicrobial peptides (AMPs) and presence of dental caries in children. Thus, the aim of this study was to examine levels of AMPs in saliva of caries-free (CF), early childhood caries (ECC) and severe early childhood caries (S-ECC) children to determine if the levels of these salivary peptides individually or in combinations were related to caries severity and mutans streptococci levels. DESIGN 36 to 60 month-old children were selected to participate in this study. Children were grouped into CF group (n=29), ECC group (n=25) and S-ECC group (n=29). Saliva was collected from children for microbiological analysis by culture. Salivary concentrations of cathelicidin LL-37, human β-defensin 2 (hBD-2), human β-defensin 3 (hBD-3) and histatin-5 (HTN-5) were determined by ELISA. RESULTS Salivary concentrations of AMPs did not differ among CF, ECC and S-ECC groups. Data showed positive correlations between mutans streptococci levels and salivary hBD-2 or HTN-5. Positive correlations were found between hBD-2, hBD-3, LL-37 and HTN-5. Combinations among AMPs, mainly LL-37, were positively associated with caries levels. CONCLUSIONS Salivary concentrations of AMPs individually were not associated with the severity of early childhood caries. The stimulus of caries appears to trigger a biological response, however, with a combination of these peptides.
Collapse
Affiliation(s)
- Natália H Colombo
- UNESP - Univ. Estadual Paulista, Department of Pediatric Dentistry and Public Health, Araçatuba Dental School, Rua José Bonifácio, 1193, Araçatuba, SP CEP 16015050, Brazil
| | - Laís F F Ribas
- UNESP - Univ. Estadual Paulista, Department of Pediatric Dentistry and Public Health, Araçatuba Dental School, Rua José Bonifácio, 1193, Araçatuba, SP CEP 16015050, Brazil
| | - Jesse A Pereira
- UNESP - Univ. Estadual Paulista, Department of Pediatric Dentistry and Public Health, Araçatuba Dental School, Rua José Bonifácio, 1193, Araçatuba, SP CEP 16015050, Brazil
| | - Paula F Kreling
- UNESP - Univ. Estadual Paulista, Department of Pediatric Dentistry and Public Health, Araçatuba Dental School, Rua José Bonifácio, 1193, Araçatuba, SP CEP 16015050, Brazil
| | | | - Anne C R Tanner
- The Forsyth Institute, Department of Microbiology, Cambridge, MA, USA; Harvard University, Harvard School of Dental Medicine, Boston, MA, USA
| | - Cristiane Duque
- UNESP - Univ. Estadual Paulista, Department of Pediatric Dentistry and Public Health, Araçatuba Dental School, Rua José Bonifácio, 1193, Araçatuba, SP CEP 16015050, Brazil.
| |
Collapse
|
20
|
Relationship between the IgA antibody response against Streptococcus mutans GbpB and severity of dental caries in childhood. Arch Oral Biol 2016; 67:22-7. [PMID: 27019137 DOI: 10.1016/j.archoralbio.2016.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/15/2016] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Explore the associations between the severity of dental caries in childhood, mutans streptococci (MS) levels and IgA antibody response against Streptococcus mutans GbpB. Moreover, other caries-related etiological factors were also investigated. DESIGN 36-60 month-old children were grouped into Caries-Free (CF, n=19), Early Childhood Caries (ECC, n=17) and Severe Early Childhood Caries (S-ECC, n=21). Data from socio-economic-cultural status, oral hygiene habits and dietary patterns were obtained from a questionnaire and a food-frequency diary filled out by parents. Saliva was collected from children for microbiological analysis and detection of salivary IgA antibody reactive with S. mutans GbpB in western blot. RESULTS S-ECC children had reduced family income compared to those with ECC and CF. There was difference between CF and caries groups (ECC and S-ECC) in MS counts. Positive correlations between salivary IgA antibody response against GbpB and MS counts were found when the entire population was evaluated. When children with high MS counts were compared, S-ECC group showed significantly lower IgA antibody levels to GbpB compared to CF group. This finding was not observed for the ECC group. CONCLUSIONS This study suggests that children with S-ECC have reduced salivary IgA immune responses to S. mutans GbpB, potentially compromising their ability to modify MS infection and its cariogenic potential. Furthermore, a reduced family income and high levels of MS were also associated with S-ECC.
Collapse
|
21
|
Helicobacter pylori Resists the Antimicrobial Activity of Calprotectin via Lipid A Modification and Associated Biofilm Formation. mBio 2015; 6:e01349-15. [PMID: 26646009 PMCID: PMC4669380 DOI: 10.1128/mbio.01349-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori is one of several pathogens that persist within the host despite a robust immune response. H. pylori elicits a proinflammatory response from host epithelia, resulting in the recruitment of immune cells which manifests as gastritis. Relatively little is known about how H. pylori survives antimicrobials, including calprotectin (CP), which is present during the inflammatory response. The data presented here suggest that one way H. pylori survives the nutrient sequestration by CP is through alteration of its outer membrane. CP-treated H. pylori demonstrates increased bacterial fitness in response to further coculture with CP. Moreover, CP-treated H. pylori cultures form biofilms and demonstrate decreased cell surface hydrophobicity. In response to CP, the H. pylori Lpx lipid A biosynthetic enzymes are not fully functional. The lipid A molecules observed in H. pylori cultures treated with CP indicate that the LpxF, LpxL, and LpxR enzyme functions are perturbed. Transcriptional analysis of lpxF, lpxL, and lpxR indicates that metal restriction by CP does not control this pathway through transcriptional regulation. Analyses of H. pylori lpx mutants reveal that loss of LpxF and LpxL results in increased fitness, similar to what is observed in the presence of CP; moreover, these mutants have significantly increased biofilm formation and reduced cell surface hydrophobicity. Taken together, these results demonstrate a novel mechanism of H. pylori resistance to the antimicrobial activity of CP via lipid A modification strategies and resulting biofilm formation. Helicobacter pylori evades recognition of the host’s immune system by modifying the lipid A component of lipopolysaccharide. These results demonstrate for the first time that the lipid A modification pathway is influenced by the host’s nutritional immune response. H. pylori’s exposure to the host Mn- and Zn-binding protein calprotectin perturbs the function of 3 enzymes involved in the lipid A modification pathway. Moreover, CP treatment of H. pylori, or mutants with an altered lipid A, exhibit increased bacterial fitness and increased biofilm formation. This suggests that H. pylori modifies its cell surface structure to survive under the stress imposed by the host immune response. These results provide new insights into the molecular mechanisms that influence the biofilm lifestyle and how endotoxin modification, which renders H. pylori resistant to cationic antimicrobial peptides, can be inactivated in response to sequestration of nutrient metals.
Collapse
|
22
|
O’Donnell LE, Robertson D, Nile CJ, Cross LJ, Riggio M, Sherriff A, Bradshaw D, Lambert M, Malcolm J, Buijs MJ, Zaura E, Crielaard W, Brandt BW, Ramage G. The Oral Microbiome of Denture Wearers Is Influenced by Levels of Natural Dentition. PLoS One 2015; 10:e0137717. [PMID: 26368937 PMCID: PMC4569385 DOI: 10.1371/journal.pone.0137717] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/21/2015] [Indexed: 01/29/2023] Open
Abstract
Objectives The composition of dental plaque has been well defined, whereas currently there is limited understanding of the composition of denture plaque and how it directly influences denture related stomatitis (DS). The aims of this study were to compare the microbiomes of denture wearers, and to understand the implications of these towards inter-kingdom and host-pathogen interactions within the oral cavity. Methods Swab samples were obtained from 123 participants wearing either a complete or partial denture; the bacterial composition of each sample was determined using bar-coded illumina MiSeq sequencing of the bacterial hypervariable V4 region of 16S rDNA. Sequencing data processing was undertaken using QIIME, clustered in Operational Taxonomic Units (OTUs) and assigned to taxonomy. The dentures were sonicated to remove the microbial flora residing on the prosthesis, sonicate was then cultured using diagnostic colorex Candida media. Samples of unstimulated saliva were obtained and antimicrobial peptides (AMP) levels were measured by ELISA. Results We have shown that dental and denture plaques are significantly distinct both in composition and diversity and that the oral microbiome composition of a denture wearer is variable and is influenced by the location within the mouth. Dentures and mucosa were predominantly made up of Bacilli and Actinobacteria. Moreover, the presence of natural teeth has a significant impact on the overall microbial composition, when compared to the fully edentulous. Furthermore, increasing levels of Candida spp. positively correlate with Lactobacillus spp. AMPs were quantified, though showed no specific correlations. Conclusions This is the first study to provide a detailed understanding of the oral microbiome of denture wearers and has provided evidence that DS development is more complex than simply a candidal infection. Both fungal and bacterial kingdoms clearly play a role in defining the progression of DS, though we were unable to show a defined role for AMPs.
Collapse
Affiliation(s)
- Lindsay E. O’Donnell
- Glasgow Dental School, School of Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Douglas Robertson
- Glasgow Dental School, School of Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Christopher J. Nile
- Glasgow Dental School, School of Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Laura J. Cross
- Glasgow Dental School, School of Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Marcello Riggio
- Glasgow Dental School, School of Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Andrea Sherriff
- Glasgow Dental School, School of Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - David Bradshaw
- GlaxoSmithKline, St Georges Avenue, Weybridge, Surrey, United Kingdom
| | - Margaret Lambert
- GlaxoSmithKline, St Georges Avenue, Weybridge, Surrey, United Kingdom
| | - Jennifer Malcolm
- Glasgow Dental School, School of Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
| | - Mark J. Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Gordon Ramage
- Glasgow Dental School, School of Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 378 Sauchiehall Street, Glasgow, G2 3JZ, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Potempa J, Lamont RJ. Introduction to 'gums and joints' special issue. Introduction. Mol Oral Microbiol 2015; 29:245-7. [PMID: 25394214 DOI: 10.1111/omi.12084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | | |
Collapse
|