1
|
Clark R, Lee SSY, Du R, Wang Y, Kneepkens SCM, Charng J, Huang Y, Hunter ML, Jiang C, Tideman JWL, Melles RB, Klaver CCW, Mackey DA, Williams C, Choquet H, Ohno-Matsui K, Guggenheim JA. A new polygenic score for refractive error improves detection of children at risk of high myopia but not the prediction of those at risk of myopic macular degeneration. EBioMedicine 2023; 91:104551. [PMID: 37055258 PMCID: PMC10203044 DOI: 10.1016/j.ebiom.2023.104551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND High myopia (HM), defined as a spherical equivalent refractive error (SER) ≤ -6.00 diopters (D), is a leading cause of sight impairment, through myopic macular degeneration (MMD). We aimed to derive an improved polygenic score (PGS) for predicting children at risk of HM and to test if a PGS is predictive of MMD after accounting for SER. METHODS The PGS was derived from genome-wide association studies in participants of UK Biobank, CREAM Consortium, and Genetic Epidemiology Research on Adult Health and Aging. MMD severity was quantified by a deep learning algorithm. Prediction of HM was quantified as the area under the receiver operating curve (AUROC). Prediction of severe MMD was assessed by logistic regression. FINDINGS In independent samples of European, African, South Asian and East Asian ancestry, the PGS explained 19% (95% confidence interval 17-21%), 2% (1-3%), 8% (7-10%) and 6% (3-9%) of the variation in SER, respectively. The AUROC for HM in these samples was 0.78 (0.75-0.81), 0.58 (0.53-0.64), 0.71 (0.69-0.74) and 0.67 (0.62-0.72), respectively. The PGS was not associated with the risk of MMD after accounting for SER: OR = 1.07 (0.92-1.24). INTERPRETATION Performance of the PGS approached the level required for clinical utility in Europeans but not in other ancestries. A PGS for refractive error was not predictive of MMD risk once SER was accounted for. FUNDING Supported by the Welsh Government and Fight for Sight (24WG201).
Collapse
Affiliation(s)
- Rosie Clark
- School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Samantha Sze-Yee Lee
- University of Western Australia, Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), Perth, Western Australia, Australia
| | - Ran Du
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 1138510, Japan; Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yining Wang
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 1138510, Japan
| | - Sander C M Kneepkens
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jason Charng
- University of Western Australia, Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), Perth, Western Australia, Australia; Department of Optometry, School of Allied Health, University of Western Australia, Perth, Australia
| | - Yu Huang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Michael L Hunter
- Busselton Health Study Centre, Busselton Population Medical Research Institute, Busselton, Western Australia; School of Population and Global Health, University of Western Australia, Perth, Western Australia
| | - Chen Jiang
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - J Willem L Tideman
- Department of Ophthalmology, Martini Hospital, Groningen, the Netherlands; Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ronald B Melles
- Department of Ophthalmology Kaiser Permanente Northern California, Redwood City, CA, USA
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David A Mackey
- University of Western Australia, Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), Perth, Western Australia, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, East Melbourne, Victoria, Australia; School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| | - Cathy Williams
- Centre for Academic Child Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS81NU, UK
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 1138510, Japan
| | - Jeremy A Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
2
|
Myopia prediction: a systematic review. Eye (Lond) 2022; 36:921-929. [PMID: 34645966 PMCID: PMC9046389 DOI: 10.1038/s41433-021-01805-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022] Open
Abstract
Myopia is a leading cause of visual impairment and has raised significant international concern in recent decades with rapidly increasing prevalence and incidence worldwide. Accurate prediction of future myopia risk could help identify high-risk children for early targeted intervention to delay myopia onset or slow myopia progression. Researchers have built and assessed various myopia prediction models based on different datasets, including baseline refraction or biometric data, lifestyle data, genetic data, and data integration. Here, we summarize all related work published in the past 30 years and provide a comprehensive review of myopia prediction methods, datasets, and performance, which could serve as a useful reference and valuable guideline for future research.
Collapse
|
3
|
Yang J, Ouyang X, Fu H, Hou X, Liu Y, Xie Y, Yu H, Wang G. Advances in biomedical study of the myopia-related signaling pathways and mechanisms. Biomed Pharmacother 2021; 145:112472. [PMID: 34861634 DOI: 10.1016/j.biopha.2021.112472] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
Myopia has become one of the most critical health problems in the world with the increasing time spent indoors and increasing close work. Pathological myopia may have multiple complications, such as myopic macular degeneration, retinal detachment, cataracts, open-angle glaucoma, and severe cases that can cause blindness. Mounting evidence suggests that the cause of myopia can be attributed to the complex interaction of environmental exposure and genetic susceptibility. An increasing number of researchers have focused on the genetic pathogenesis of myopia in recent years. Scleral remodeling and excessive axial elongating induced retina thinning and even retinal detachment are myopia's most important pathological manifestations. The related signaling pathways are indispensable in myopia occurrence and development, such as dopamine, nitric oxide, TGF-β, HIF-1α, etc. We review the current major and recent progress of biomedicine on myopia-related signaling pathways and mechanisms.
Collapse
Affiliation(s)
- Jing Yang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xinli Ouyang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Hong Fu
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Xinyu Hou
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Yan Liu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China
| | - Yongfang Xie
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| | - Haiqun Yu
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang 261031, China.
| | - Guohui Wang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
4
|
Zhao M, Lam AK, Cheong AM. Structural and haemodynamic properties of ocular vasculature in axial myopia. Clin Exp Optom 2021; 105:247-262. [PMID: 34343434 DOI: 10.1080/08164622.2021.1943320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The high prevalence of myopia has become a global concern, especially in East and Southeast Asia. Alarmingly, the prevalence of high myopia is increasing. Mechanical stretching caused by excessive eyeball elongation leads to various anatomical changes in the fundus. This stretching force may also lead to the development of vascular abnormalities, which tend to be subtle and easily overlooked. A healthy ocular vasculature is a prerequisite of adequate oxygen supply for normal retinal functions. This review summarises previous findings on structural and haemodynamic aspects of myopia-related vascular changes.
Collapse
Affiliation(s)
- Mei Zhao
- Centre for Myopia Research, School of Optometry, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Andrew Kc Lam
- Centre for Myopia Research, School of Optometry, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Allen My Cheong
- Centre for Myopia Research, School of Optometry, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
5
|
Morgan IG, Rose KA. Myopia: is the nature‐nurture debate finally over? Clin Exp Optom 2021; 102:3-17. [DOI: 10.1111/cxo.12845] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ian G Morgan
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia,
- State Key Laboratory of Ophthalmology and Division of Preventive Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‐Sen University, Guangzhou, China,
| | - Kathryn A Rose
- Discipline of Orthoptics, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia,
| |
Collapse
|
6
|
Wu J, Zhao Y, Fu Y, Li S, Zhang X. Effects of lumican expression on the apoptosis of scleral fibroblasts: In vivo and in vitro experiments. Exp Ther Med 2021; 21:495. [PMID: 33791004 PMCID: PMC8005674 DOI: 10.3892/etm.2021.9926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
Lumican serves an important role in the maintenance of sclera biomechanical properties. However, whether lumican expression is altered in myopia and the mechanisms of action involved are unknown. In the present study, the expression of lumican in cultured scleral fibroblasts and in the scleral tissue of a rat model of form-deprivation myopia was assessed. It was confirmed that diopter was decreased, whereas axial length was increased in modeled eyes relative to normal control eyes, indicating that the model of myopia was successfully established. These pathologic changes were accompanied by the upregulation of lumican and tissue inhibitor of metalloproteinases (TIMP)-2, as well as the downregulation of matrix metalloproteinase (MMP)-2 and MMP-14. The same trends in TIMP-2, MMP-2 and MMP-14 expression were observed when lumican was overexpressed in cultured scleral fibroblasts. Additionally, cell proliferation decreased whereas apoptosis increased compared with those of control cells. Inhibiting lumican expression had no effect on cell proliferation or apoptosis, but stimulated the expression of MMP-2 and MMP-14 while decreasing that of TIMP-2. The results suggested that lumican overexpression contributed to myopia by promoting apoptosis in scleral fibroblasts via the modulation of TIMP-2, MMP-2 and MMP-14 expression.
Collapse
Affiliation(s)
- Jinsong Wu
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yanzhi Zhao
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yanmei Fu
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shurong Li
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xu Zhang
- The Affiliated Eye Hospital, Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
7
|
Ouyang J, Sun W, Xiao X, Li S, Jia X, Zhou L, Wang P, Zhang Q. CPSF1 mutations are associated with early-onset high myopia and involved in retinal ganglion cell axon projection. Hum Mol Genet 2020; 28:1959-1970. [PMID: 30689892 PMCID: PMC6548346 DOI: 10.1093/hmg/ddz029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/27/2022] Open
Abstract
High myopia is a severe form of nearsightedness, which can result in blindness due to its associated complications. While both genetic and environmental factors can cause high myopia, early-onset high myopia (eoHM), which is defined as high myopia that occurs before school age, is considered to be caused mainly by genetic variations, with minimal environmental involvement. Here we report six rare heterozygous loss-of-function (LoF) variants in CPSF1 that were identified in six of 623 probands with eoHM but none of 2657 probands with other forms of genetic eye diseases; this difference was statistically significant (P = 4.60 × 10−5, Fisher’s exact test). The six variants, which were confirmed by Sanger sequencing, were c.3862_3871dup (p.F1291*), c.2823_2824del (p.V943Lfs*65), c.1858C>T (p.Q620*), c.15C>G (p.Y5*), c.3823G>T (p.D1275Y) and c.4146-2A>G. Five of these six variants were absent in existing databases, including gnomAD, 1000G and EVS. The remaining variant, c.4146-2A>G, was present in gnomAD with a frequency of 1/229918. Clinical data demonstrated eoHM in the six probands with these mutations. Knockdown of cpsf1 by morpholino oligonucleotide (MO) injection in zebrafish eggs resulted in small eye size in 84.38% of the injected larvae, and this phenotype was rescued in 61.39% of the zebrafish eggs when the cpsf1 MO and the cpsf1 mRNA were co-injected. The projection of retinal ganglion cell (RGC) towards the tectum was abnormal in cpsf1 morphants. Thus, we demonstrated that heterozygous LoF mutations in CPSF1 are associated with eoHM and that CPSF1 may play an important role in the development of RGC axon projection.
Collapse
Affiliation(s)
- Jiamin Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| | - Lin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou 510060, China
| |
Collapse
|
8
|
Ghorbani Mojarrad N, Williams C, Guggenheim JA. A genetic risk score and number of myopic parents independently predict myopia. Ophthalmic Physiol Opt 2018; 38:492-502. [PMID: 30182516 DOI: 10.1111/opo.12579] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate whether a genetic risk score (GRS) improved performance of predicting refractive error compared to knowing a child's number of myopic parents (NMP) alone. METHODS This was a retrospective analysis of data from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort study. Refractive error was assessed longitudinally between age 7-15 using non-cycloplegic autorefraction. Genetic variants (n = 149) associated with refractive error from a Consortium for Refractive Error And Myopia (CREAM) genome-wide association study were used to calculate a GRS for each child. Using refractive error at ages 7 and 15 years as the outcome variable, coefficient of determination (R2 ) values were calculated via linear regression models for the predictors: NMP, GRS and a combined model. RESULTS Number of myopic parents was weakly predictive of refractive error in children aged 7 years, R2 = 3.0% (95% CI 1.8-4.1%, p < 0.0001) and aged 15 years, R2 = 4.8% (3.1-6.5%, p < 0.0001). The GRS was also weakly predictive; age 7 years, R2 = 1.1% (0.4-1.9%, p < 0.0001) and 15 years R2 = 2.6% (1.3-3.9%, p < 0.0001). Combining the 2 variables gave larger R2 values at age 7, R2 = 3.7% (2.5-5.0%, p < 0.0001) and 15, R2 = 7.0% (5.0-9.0%, p < 0.0001). The combined model improved performance at both ages (both p < 0.0001). CONCLUSION A GRS improved the ability to detect children at risk of myopia independently of knowing the NMP. We speculate this may be because NMP captures information concerning environmental risk factors for myopia. Nevertheless, further gains are required to make such predictive tests worthwhile in the clinical environment.
Collapse
Affiliation(s)
| | - Cathy Williams
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | |
Collapse
|
9
|
Flitcroft DI, Loughman J, Wildsoet CF, Williams C, Guggenheim JA. Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia. Invest Ophthalmol Vis Sci 2018; 59:338-348. [PMID: 29346494 PMCID: PMC5773233 DOI: 10.1167/iovs.17-22173] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose To test the hypothesis that genes known to cause clinical syndromes featuring myopia also harbor polymorphisms contributing to nonsyndromic refractive errors. Methods Clinical phenotypes and syndromes that have refractive errors as a recognized feature were identified using the Online Mendelian Inheritance in Man (OMIM) database. One hundred fifty-four unique causative genes were identified, of which 119 were specifically linked with myopia and 114 represented syndromic myopia (i.e., myopia and at least one other clinical feature). Myopia was the only refractive error listed for 98 genes and hyperopia and the only refractive error noted for 28 genes, with the remaining 28 genes linked to phenotypes with multiple forms of refractive error. Pathway analysis was carried out to find biological processes overrepresented within these sets of genes. Genetic variants located within 50 kb of the 119 myopia-related genes were evaluated for involvement in refractive error by analysis of summary statistics from genome-wide association studies (GWAS) conducted by the CREAM Consortium and 23andMe, using both single-marker and gene-based tests. Results Pathway analysis identified several biological processes already implicated in refractive error development through prior GWAS analyses and animal studies, including extracellular matrix remodeling, focal adhesion, and axon guidance, supporting the research hypothesis. Novel pathways also implicated in myopia development included mannosylation, glycosylation, lens development, gliogenesis, and Schwann cell differentiation. Hyperopia was found to be linked to a different pattern of biological processes, mostly related to organogenesis. Comparison with GWAS findings further confirmed that syndromic myopia genes were enriched for genetic variants that influence refractive errors in the general population. Gene-based analyses implicated 21 novel candidate myopia genes (ADAMTS18, ADAMTS2, ADAMTSL4, AGK, ALDH18A1, ASXL1, COL4A1, COL9A2, ERBB3, FBN1, GJA1, GNPTG, IFIH1, KIF11, LTBP2, OCA2, POLR3B, POMT1, PTPN11, TFAP2A, ZNF469). Conclusions Common genetic variants within or nearby genes that cause syndromic myopia are enriched for variants that cause nonsyndromic, common myopia. Analysis of syndromic forms of refractive errors can provide new insights into the etiology of myopia and additional potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- D Ian Flitcroft
- Children's University Hospital and University College Dublin, Dublin, Ireland.,College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland
| | - James Loughman
- College of Sciences and Health, Dublin Institute of Technology, Dublin, Ireland
| | - Christine F Wildsoet
- Center for Eye Disease and Development, School of Optometry, University of California-Berkeley, Berkeley, California, United States
| | - Cathy Williams
- Bristol Eye Hospital and Bristol University, Bristol, United Kingdom
| | - Jeremy A Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|