1
|
Hoseini M, Arzani A, Saeidi G, Araniti F. Agro-Physiological and DNA Methylation Responses to Salinity Stress in Wheat ( Triticum aestivum L.), Aegilops cylindrica Host, and Their Introgressed Lines. PLANTS (BASEL, SWITZERLAND) 2024; 13:2673. [PMID: 39409544 PMCID: PMC11479238 DOI: 10.3390/plants13192673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
Bottlenecks, including limited genetic variation and the ongoing loss of genetic diversity, have hindered the development of modern wheat cultivars., making it crucial to use genetic diversity from wild relatives to improve wheat's adaptation to abiotic stress, such as salinity. This study assessed the phenotypic and epigenetic variation of introgressed wheat lines (BC4F2) derived from hybridizing two wheat cultivars with Aegilops cylindrica (AC). This study assessed the phenotypic and epigenetic variation of 156 introgressed wheat lines (BC4F2) derived from hybridization between wheat cultivars "Chinese Spring" (CS) and "Roshan" (R) and Aegilops cylindrica (AC). These lines and their recurrent parents (total of 158) were evaluated under normal and saline field conditions for the agronomic traits and stress tolerance indices. The data were used to select the most tolerant and most sensitive lines. Then, the selected BC4F2 lines and their parents (AC, CS, and R) were subjected to physiological, DNA cytosine methylation, and expression analysis of HKT1;5, NHX1, and SOS1 genes under control and salt stress conditions. Agro-physiological, epigenetic, and gene expression analyses showed the significant effects of salt stress and genetic background, as well as the differential response of the BC4F2 lines to salt stress. The variations in leaf and root K, Na, and K/Na ratios, and leaf Chla, Chlb, Car, and MDA levels, unlike DPPH radical scavenging levels, between salt-tolerant and salt-sensitive BC4F2 lines under saline conditions indicated a substantial distinction in salinity tolerance responses. RT-qPCR indicated higher expression levels of NHX1 and SOS1 genes in the leaf and root tissues of tolerant lines than those of sensitive lines. Global leaf and root DNA methylation analysis revealed the significant effects of salinity on the methylation modifications and confirmed the successful introgression of the salt-tolerance epigenome from Ae. cylindrica into wheat. Exploiting the genetic diversity of wild wheat relatives is a crucial goal for increasing genetic and epigenetic variation to enhance plant adaptation to salt stress.
Collapse
Affiliation(s)
- Mohsen Hoseini
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (M.H.); (G.S.)
| | - Ahmad Arzani
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (M.H.); (G.S.)
| | - Ghodratollah Saeidi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; (M.H.); (G.S.)
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| |
Collapse
|
2
|
Ford T, Aina A, Ellison S, Gordon T, Stansell Z. Utilizing digitized occurrence records of Midwestern feral Cannabis sativa to develop ecological niche models. Ecol Evol 2024; 14:e11325. [PMID: 39005882 PMCID: PMC11239322 DOI: 10.1002/ece3.11325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 07/16/2024] Open
Abstract
Hemp (Cannabis sativa L.) has historically played a vital role in agriculture across the globe. Feral and wild populations have served as genetic resources for breeding, conservation, and adaptation to changing environmental conditions. However, feral populations of Cannabis, specifically in the Midwestern United States, remain poorly understood. This study aims to characterize the abiotic tolerances of these populations, estimate suitable areas, identify regions at risk of abiotic suitability change, and highlight the utility of ecological niche models (ENMs) in germplasm conservation. The Maxent algorithm was used to construct a series of ENMs. Validation metrics and MOP (Mobility-oriented Parity) analysis were used to assess extrapolation risk and model performance. We also projected the final projected under current and future climate scenarios (2021-2040 and 2061-2080) to assess how abiotic suitability changes with time. Climate change scenarios indicated an expansion of suitable habitat, with priority areas for germplasm collection in Indiana, Illinois, Kansas, Missouri, and Nebraska. This study demonstrates the application of ENMs for characterizing feral Cannabis populations and highlights their value in germplasm conservation and breeding efforts. Populations of feral C. sativa in the Midwest are of high interest, and future research should focus on utilizing tools to aid the collection of materials for the characterization of genetic diversity and adaptation to a changing climate.
Collapse
Affiliation(s)
- Tori Ford
- USDA‐Agricultural Research Service, Plant Genetic Resources UnitGenevaNew YorkUSA
| | - Ademola Aina
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Shelby Ellison
- Department of Plant and Agroecosystem SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Tyler Gordon
- USDA‐Agricultural Research Service, Plant Genetic Resources UnitGenevaNew YorkUSA
| | - Zachary Stansell
- USDA‐Agricultural Research Service, Plant Genetic Resources UnitGenevaNew YorkUSA
| |
Collapse
|
3
|
Ozoliņa KA, Jēkabsone A, Andersone-Ozola U, Ievinsh G. Comparison of Growth and Physiological Effects of Soil Moisture Regime on Plantago maritima Plants from Geographically Isolated Sites on the Eastern Coast of the Baltic Sea. PLANTS (BASEL, SWITZERLAND) 2024; 13:633. [PMID: 38475478 DOI: 10.3390/plants13050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The aim of the present study was to evaluate the morphological and physiological responses of P. maritima plants from five geographically isolated sites growing in habitats with different conditions to different substrate moisture levels in controlled conditions. Plants were produced from seed and cultivated in a greenhouse at four relatively constant soil moisture regimes: at 25, 50, and 75% soil water content and in soil flooded 3 cm above the surface (80% F). The two morphological traits that varied most strikingly among P. maritima accessions were the number of flower stalks and the number of leaves. Only plants from two accessions uniformly produced generative structures, and allocation to flowering was suppressed by both low moisture and flooding. Optimum shoot biomass accumulation for all accessions was at 50 and 75% soil moisture. The Performance Index Total was the most sensitive among the measured photosynthesis-related parameters, and it tended to decrease with an increase in soil water content for all P. maritima accessions. The initial hypothesis-that plants from relatively dry habitats will have a higher tolerance against low soil water levels, but plants from relatively wet habitats will have a higher tolerance against waterlogged or flooded soil-was not proven. The existence of three ecotypes of P. maritima within the five accessions from geographically isolated subpopulations on the eastern coast of the Baltic Sea at the level of morphological responses to soil water content can be proposed. P. maritima plants can be characterized as extremely tolerant to soil waterlogging and highly tolerant to soil flooding and low soil water content.
Collapse
Affiliation(s)
- Katrīna Anna Ozoliņa
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia
| | - Astra Jēkabsone
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia
| | - Una Andersone-Ozola
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia
| | - Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia
| |
Collapse
|
4
|
Cha JK, Park H, Choi C, Kwon Y, Lee SM, Oh KW, Ko JM, Kwon SW, Lee JH. Acceleration of wheat breeding: enhancing efficiency and practical application of the speed breeding system. PLANT METHODS 2023; 19:118. [PMID: 37924111 PMCID: PMC10625215 DOI: 10.1186/s13007-023-01083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Crop breeding should be accelerated to address global warming and climate change. Wheat (Triticum aestivum L.) is a major food crop. Speed breeding (SB) and speed vernalization (SV) techniques for spring and winter wheat have recently been established. However, there are few practical examples of these strategies being used economically and efficiently in breeding programs. We aimed to establish and evaluate the performance of a breeder-friendly and energy-saving generation acceleration system by modifying the SV + SB system. RESULTS In this study, a four-generation advancement system for wheat (regardless of its growth habits) was established and evaluated using an energy-efficient extended photoperiod treatment. A glasshouse with a 22-hour photoperiod that used 10 h of natural sunlight and 12 h of LED lights, and minimized temperature control during the winter season, was successful in accelerating generation. Even with one or two field tests, modified speed breeding (mSB) combined with a speed vernalization system (SV + mSB) reduced breeding time by more than half compared to traditional field-based methods. When compared to the existing SV + SB system, the SV + mSB system reduced energy use by 80% to maintain a 22-hour photoperiod. Significant correlations were found between the SV + mSB and field conditions in the number of days to heading (DTH) and culm length (CL). Genetic resources, recombinant inbred lines, and breeding materials that exhibited shorter DTH and CL values under SV + mSB conditions showed the same pattern in the field. CONCLUSIONS The results of our SV + mSB model, as well as its practical application in wheat breeding programs, are expected to help breeders worldwide incorporate generation acceleration systems into their conventional breeding programs.
Collapse
Affiliation(s)
- Jin-Kyung Cha
- Department of Southern Area Crop Science, Rural Development Administration, National Institute of Crop Science, Miryang, 50424, Republic of Korea
| | - Hyeonjin Park
- Department of Southern Area Crop Science, Rural Development Administration, National Institute of Crop Science, Miryang, 50424, Republic of Korea
| | - Changhyun Choi
- Rural Development Administration, National Institute of Crop Science, Wanju, 55365, Republic of Korea
| | - Youngho Kwon
- Department of Southern Area Crop Science, Rural Development Administration, National Institute of Crop Science, Miryang, 50424, Republic of Korea
| | - So-Myeong Lee
- Department of Southern Area Crop Science, Rural Development Administration, National Institute of Crop Science, Miryang, 50424, Republic of Korea
| | - Ki-Won Oh
- Department of Southern Area Crop Science, Rural Development Administration, National Institute of Crop Science, Miryang, 50424, Republic of Korea
| | - Jong-Min Ko
- Rural Development Administration, Jeonju, 54875, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, Pusan National University, Miryang, 60463, Republic of Korea
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, Rural Development Administration, National Institute of Crop Science, Miryang, 50424, Republic of Korea.
| |
Collapse
|
5
|
Gao L, Kantar MB, Moxley D, Ortiz-Barrientos D, Rieseberg LH. Crop adaptation to climate change: An evolutionary perspective. MOLECULAR PLANT 2023; 16:1518-1546. [PMID: 37515323 DOI: 10.1016/j.molp.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The disciplines of evolutionary biology and plant and animal breeding have been intertwined throughout their development, with responses to artificial selection yielding insights into the action of natural selection and evolutionary biology providing statistical and conceptual guidance for modern breeding. Here we offer an evolutionary perspective on a grand challenge of the 21st century: feeding humanity in the face of climate change. We first highlight promising strategies currently under way to adapt crops to current and future climate change. These include methods to match crop varieties with current and predicted environments and to optimize breeding goals, management practices, and crop microbiomes to enhance yield and sustainable production. We also describe the promise of crop wild relatives and recent technological innovations such as speed breeding, genomic selection, and genome editing for improving environmental resilience of existing crop varieties or for developing new crops. Next, we discuss how methods and theory from evolutionary biology can enhance these existing strategies and suggest novel approaches. We focus initially on methods for reconstructing the evolutionary history of crops and their pests and symbionts, because such historical information provides an overall framework for crop-improvement efforts. We then describe how evolutionary approaches can be used to detect and mitigate the accumulation of deleterious mutations in crop genomes, identify alleles and mutations that underlie adaptation (and maladaptation) to agricultural environments, mitigate evolutionary trade-offs, and improve critical proteins. Continuing feedback between the evolution and crop biology communities will ensure optimal design of strategies for adapting crops to climate change.
Collapse
Affiliation(s)
- Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michael B Kantar
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dylan Moxley
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences and Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Krug AS, B. M. Drummond E, Van Tassel DL, Warschefsky EJ. The next era of crop domestication starts now. Proc Natl Acad Sci U S A 2023; 120:e2205769120. [PMID: 36972445 PMCID: PMC10083606 DOI: 10.1073/pnas.2205769120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Current food systems are challenged by relying on a few input-intensive, staple crops. The prioritization of yield and the loss of diversity during the recent history of domestication has created contemporary crops and cropping systems that are ecologically unsustainable, vulnerable to climate change, nutrient poor, and socially inequitable. For decades, scientists have proposed diversity as a solution to address these challenges to global food security. Here, we outline the possibilities for a new era of crop domestication, focused on broadening the palette of crop diversity, that engages and benefits the three elements of domestication: crops, ecosystems, and humans. We explore how the suite of tools and technologies at hand can be applied to renew diversity in existing crops, improve underutilized crops, and domesticate new crops to bolster genetic, agroecosystem, and food system diversity. Implementing the new era of domestication requires that researchers, funders, and policymakers boldly invest in basic and translational research. Humans need more diverse food systems in the Anthropocene-the process of domestication can help build them.
Collapse
Affiliation(s)
| | - Emily B. M. Drummond
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | | | | |
Collapse
|
7
|
Zeibig F, Kilian B, Frei M. The grain quality of wheat wild relatives in the evolutionary context. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4029-4048. [PMID: 34919152 PMCID: PMC9729140 DOI: 10.1007/s00122-021-04013-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/06/2021] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE We evaluated the potential of wheat wild relatives for the improvement in grain quality characteristics including micronutrients (Fe, Zn) and gluten and identified diploid wheats and the timopheevii lineage as the most promising resources. Domestication enabled the advancement of civilization through modification of plants according to human requirements. Continuous selection and cultivation of domesticated plants induced genetic bottlenecks. However, ancient diversity has been conserved in crop wild relatives. Wheat (Triticum aestivum L.; Triticum durum Desf.) is one of the most important staple foods and was among the first domesticated crop species. Its evolutionary diversity includes diploid, tetraploid and hexaploid species from the Triticum and Aegilops taxa and different genomes, generating an AA, BBAA/GGAA and BBAADD/GGAAAmAm genepool, respectively. Breeding and improvement in wheat altered its grain quality. In this review, we identified evolutionary patterns and the potential of wheat wild relatives for quality improvement regarding the micronutrients Iron (Fe) and Zinc (Zn), the gluten storage proteins α-gliadins and high molecular weight glutenin subunits (HMW-GS), and the secondary metabolite phenolics. Generally, the timopheevii lineage has been neglected to date regarding grain quality studies. Thus, the timopheevii lineage should be subject to grain quality research to explore the full diversity of the wheat gene pool.
Collapse
Affiliation(s)
- Frederike Zeibig
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding I, Justus-Liebig-University, 35392, Giessen, Germany
| | | | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding I, Justus-Liebig-University, 35392, Giessen, Germany.
| |
Collapse
|
8
|
Exploring genetic diversity and Population structure of five Aegilops species with inter-primer binding site (iPBS) markers. Mol Biol Rep 2022; 49:8567-8574. [DOI: 10.1007/s11033-022-07689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
|
9
|
Zhao Q, Jin K, Hu W, Qian C, Li J, Zhang W, Lou Q, Chen J. Rapid and visual monitoring of alien sequences using crop wild relatives specific oligo-painting: The case of cucumber chromosome engineering. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111199. [PMID: 35487648 DOI: 10.1016/j.plantsci.2022.111199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Wild species related to domesticated crops (crop wild relatives, or CWRs) represent a high level of genetic diversity that provides a practical gene pool for crop pre-breeding employed to address climate change and food demand challenges globally. Nevertheless, rapid identifying and visual tracking of alien chromosomes and sequences derived from CWRs have been a technical challenge for crop chromosome engineering. Here, a species-specific oligonucleotide (oligo) pool was developed by using the reference genome of Cucumis hystrix (HH, 2n = 2x = 24), a wild species carrying many favorable traits and interspecific compatibility with cultivated cucumber (C. sativus, CC, 2n = 2x = 14). These synthetic double-stranded oligo probes were applied to validate the assembly and characterize the chromosome architectures of C. hystrix, as well as to rapidly identify C. hystrix-chromosomes in diverse C. sativus-hystrix chromosome-engineered germplasms, including interspecific hybrid F1 (HC), synthetic allopolyploids (HHCC, CHC, and HCH) and alien additional lines (CC-H). Moreover, a ∼2Mb of C. hystrix-specific sequences, introduced into cultivated cucumber, were visualized by CWR-specific oligo-painting. These results demonstrate that the CWR-specific oligo-painting technique holds broad applicability for chromosome engineering of numerous crops, as it allows rapid identification of alien chromosomes, reliable detection of homoeologous recombination, and visual tracking of the introgression process. It is promising to achieve directed and high-precision crop pre-breeding combined with other breeding techniques, such as CRISPR/Cas9-mediated chromosome engineering.
Collapse
Affiliation(s)
- Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kailing Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuntao Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Soualiou S, Wang Z, Sun W, de Reffye P, Collins B, Louarn G, Song Y. Functional-Structural Plant Models Mission in Advancing Crop Science: Opportunities and Prospects. FRONTIERS IN PLANT SCIENCE 2021; 12:747142. [PMID: 35003151 PMCID: PMC8733959 DOI: 10.3389/fpls.2021.747142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/22/2021] [Indexed: 06/02/2023]
Abstract
Functional-structural plant models (FSPMs) have been evolving for over 2 decades and their future development, to some extent, depends on the value of potential applications in crop science. To date, stabilizing crop production by identifying valuable traits for novel cultivars adapted to adverse environments is topical in crop science. Thus, this study will examine how FSPMs are able to address new challenges in crop science for sustainable crop production. FSPMs developed to simulate organogenesis, morphogenesis, and physiological activities under various environments and are amenable to downscale to the tissue, cellular, and molecular level or upscale to the whole plant and ecological level. In a modeling framework with independent and interactive modules, advanced algorithms provide morphophysiological details at various scales. FSPMs are shown to be able to: (i) provide crop ideotypes efficiently for optimizing the resource distribution and use for greater productivity and less disease risk, (ii) guide molecular design breeding via linking molecular basis to plant phenotypes as well as enrich crop models with an additional architectural dimension to assist breeding, and (iii) interact with plant phenotyping for molecular breeding in embracing three-dimensional (3D) architectural traits. This study illustrates that FSPMs have great prospects in speeding up precision breeding for specific environments due to the capacity for guiding and integrating ideotypes, phenotyping, molecular design, and linking molecular basis to target phenotypes. Consequently, the promising great applications of FSPMs in crop science will, in turn, accelerate their evolution and vice versa.
Collapse
Affiliation(s)
| | - Zhiwei Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Weiwei Sun
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Philippe de Reffye
- The French Agricultural Research and International Cooperation Organization, Montpellier, France
| | - Brian Collins
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | | | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, China
- Centre for Crop Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Salgotra RK, Thompson M, Chauhan BS. Unravelling the genetic potential of untapped crop wild genetic resources for crop improvement. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01242-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Razzaq A, Wani SH, Saleem F, Yu M, Zhou M, Shabala S. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6123-6139. [PMID: 34114599 DOI: 10.1093/jxb/erab276] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 05/08/2023]
Abstract
To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year-1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, J&K,India
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
| |
Collapse
|
13
|
Fatiukha A, Deblieck M, Klymiuk V, Merchuk-Ovnat L, Peleg Z, Ordon F, Fahima T, Korol A, Saranga Y, Krugman T. Genomic Architecture of Phenotypic Plasticity in Response to Water Stress in Tetraploid Wheat. Int J Mol Sci 2021; 22:ijms22041723. [PMID: 33572141 PMCID: PMC7915520 DOI: 10.3390/ijms22041723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/12/2023] Open
Abstract
Phenotypic plasticity is one of the main mechanisms of adaptation to abiotic stresses via changes in critical developmental stages. Altering flowering phenology is a key evolutionary strategy of plant adaptation to abiotic stresses, to achieve the maximum possible reproduction. The current study is the first to apply the linear regression residuals as drought plasticity scores while considering the variation in flowering phenology and traits under non-stress conditions. We characterized the genomic architecture of 17 complex traits and their drought plasticity scores for quantitative trait loci (QTL) mapping, using a mapping population derived from a cross between durum wheat (Triticum turgidum ssp. durum) and wild emmer wheat (T. turgidum ssp. dicoccoides). We identified 79 QTLs affected observed traits and their plasticity scores, of which 33 reflected plasticity in response to water stress and exhibited epistatic interactions and/or pleiotropy between the observed and plasticity traits. Vrn-B3 (TaTF1) residing within an interval of a major drought-escape QTL was proposed as a candidate gene. The favorable alleles for most of the plasticity QTLs were contributed by wild emmer wheat, demonstrating its high potential for wheat improvement. Our study presents a new approach for the quantification of plant adaptation to various stresses and provides new insights into the genetic basis of wheat complex traits under water-deficit stress.
Collapse
Affiliation(s)
- Andrii Fatiukha
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel; (A.F.); (V.K.); (T.F.); (A.K.)
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Mathieu Deblieck
- Julius Kühn-Institut (JKI) Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, 06484 Quedlinburg, Germany; (M.D.); (F.O.)
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel; (A.F.); (V.K.); (T.F.); (A.K.)
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Lianne Merchuk-Ovnat
- R. H. Smith Institute of Plant Science & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (L.M.-O.); (Z.P.); (Y.S.)
| | - Zvi Peleg
- R. H. Smith Institute of Plant Science & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (L.M.-O.); (Z.P.); (Y.S.)
| | - Frank Ordon
- Julius Kühn-Institut (JKI) Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, 06484 Quedlinburg, Germany; (M.D.); (F.O.)
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel; (A.F.); (V.K.); (T.F.); (A.K.)
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel; (A.F.); (V.K.); (T.F.); (A.K.)
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 3498838, Israel
| | - Yehoshua Saranga
- R. H. Smith Institute of Plant Science & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (L.M.-O.); (Z.P.); (Y.S.)
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel; (A.F.); (V.K.); (T.F.); (A.K.)
- Correspondence: ; Tel.: +972-04-8240783
| |
Collapse
|
14
|
Heck MA, Lüth VM, van Gessel N, Krebs M, Kohl M, Prager A, Joosten H, Decker EL, Reski R. Axenic in vitro cultivation of 19 peat moss (Sphagnum L.) species as a resource for basic biology, biotechnology, and paludiculture. THE NEW PHYTOLOGIST 2021; 229:861-876. [PMID: 32910470 DOI: 10.1111/nph.16922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/27/2020] [Indexed: 05/07/2023]
Abstract
Sphagnum farming can substitute peat with renewable biomass and thus help mitigate climate change. Large volumes of the required founder material can only be supplied sustainably by axenic cultivation in bioreactors. We established axenic in vitro cultures from sporophytes of 19 Sphagnum species collected in Austria, Germany, Latvia, the Netherlands, Russia, and Sweden: S. angustifolium, S. balticum, S. capillifolium, S. centrale, S. compactum, S. cuspidatum, S. fallax, S. fimbriatum, S. fuscum, S. lindbergii, S. medium/divinum, S. palustre, S. papillosum, S. rubellum, S. russowii, S. squarrosum, S. subnitens, S. subfulvum and S. warnstorfii. These species cover five of the six European Sphagnum subgenera; namely, Acutifolia, Cuspidata, Rigida, Sphagnum and Squarrosa. Their growth was measured in suspension cultures, whereas their ploidy was determined by flow cytometry and compared with the genome size of Physcomitrella patens. We identified haploid and diploid Sphagnum species, found that their cells are predominantly arrested in the G1 phase of the cell cycle, and did not find a correlation between plant productivity and ploidy. DNA barcoding was achieved by sequencing introns of the BRK1 genes. With this collection, high-quality founder material for diverse large-scale applications, but also for basic Sphagnum research, is available from the International Moss Stock Center.
Collapse
Affiliation(s)
- Melanie A Heck
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Volker M Lüth
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Matthias Krebs
- Peatland Studies and Palaeoecology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, 17487, Germany
- Greifswald Mire Centre, Greifswald, 17489, Germany
| | - Mira Kohl
- Peatland Studies and Palaeoecology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, 17487, Germany
- Greifswald Mire Centre, Greifswald, 17489, Germany
| | - Anja Prager
- Peatland Studies and Palaeoecology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, 17487, Germany
- Greifswald Mire Centre, Greifswald, 17489, Germany
| | - Hans Joosten
- Peatland Studies and Palaeoecology, Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, 17487, Germany
- Greifswald Mire Centre, Greifswald, 17489, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, 79104, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, 79110, Germany
| |
Collapse
|
15
|
Blanco-Pastor JL, Barre P, Keep T, Ledauphin T, Escobar-Gutiérrez A, Roschanski AM, Willner E, Dehmer KJ, Hegarty M, Muylle H, Veeckman E, Vandepoele K, Ruttink T, Roldán-Ruiz I, Manel S, Sampoux JP. Canonical correlations reveal adaptive loci and phenotypic responses to climate in perennial ryegrass. Mol Ecol Resour 2020; 21:849-870. [PMID: 33098268 DOI: 10.1111/1755-0998.13289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022]
Abstract
Germplasm from perennial ryegrass (Lolium perenne L.) natural populations is useful for breeding because of its adaptation to a wide range of climates. Climate-adaptive genes can be detected from associations between genotype, phenotype and climate but an integrated framework for the analysis of these three sources of information is lacking. We used two approaches to identify adaptive loci in perennial ryegrass and their effect on phenotypic traits. First, we combined Genome-Environment Association (GEA) and GWAS analyses. Then, we implemented a new test based on a Canonical Correlation Analysis (CANCOR) to detect adaptive loci. Furthermore, we improved the previous perennial ryegrass gene set by de novo gene prediction and functional annotation of 39,967 genes. GEA-GWAS revealed eight outlier loci associated with both environmental variables and phenotypic traits. CANCOR retrieved 633 outlier loci associated with two climatic gradients, characterized by cold-dry winter versus mild-wet winter and long rainy season versus long summer, and pointed out traits putatively conferring adaptation at the extremes of these gradients. Our CANCOR test also revealed the presence of both polygenic and oligogenic climatic adaptations. Our gene annotation revealed that 374 of the CANCOR outlier loci were positioned within or close to a gene. Co-association networks of outlier loci revealed a potential utility of CANCOR for investigating the interaction of genes involved in polygenic adaptations. The CANCOR test provides an integrated framework to analyse adaptive genomic diversity and phenotypic responses to environmental selection pressures that could be used to facilitate the adaptation of plant species to climate change.
Collapse
Affiliation(s)
| | - Philippe Barre
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, Lusignan, France
| | - Thomas Keep
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, Lusignan, France
| | | | | | - Anna Maria Roschanski
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Malchow/Poel, Germany
| | - Evelyn Willner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Malchow/Poel, Germany
| | - Klaus J Dehmer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Malchow/Poel, Germany
| | - Matthew Hegarty
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
| | - Hilde Muylle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) - Plant Sciences Unit, Melle, Belgium
| | - Elisabeth Veeckman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) - Plant Sciences Unit, Melle, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Klaas Vandepoele
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) - Plant Sciences Unit, Melle, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) - Plant Sciences Unit, Melle, Belgium
| | - Isabel Roldán-Ruiz
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) - Plant Sciences Unit, Melle, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stéphanie Manel
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Univ Paul Valéry Montpellier, Montpellier, France
| | | |
Collapse
|
16
|
Wilker J, Humphries S, Rosas-Sotomayor JC, Gómez Cerna M, Torkamaneh D, Edwards M, Navabi A, Pauls KP. Genetic Diversity, Nitrogen Fixation, and Water Use Efficiency in a Panel of Honduran Common Bean ( Phaseolus vulgaris L.) Landraces and Modern Genotypes. PLANTS 2020; 9:plants9091238. [PMID: 32961677 PMCID: PMC7569834 DOI: 10.3390/plants9091238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/09/2023]
Abstract
Common bean (Phaseolus vulgaris L.) provides critical nutrition and a livelihood for millions of smallholder farmers worldwide. Beans engage in symbiotic nitrogen fixation (SNF) with Rhizobia. Honduran hillside farmers farm marginal land and utilize few production inputs; therefore, bean varieties with high SNF capacity and environmental resiliency would be of benefit to them. We explored the diversity for SNF, agronomic traits, and water use efficiency (WUE) among 70 Honduran landrace, participatory bred (PPB), and conventionally bred bean varieties (HON panel) and 6 North American check varieties in 3 low-N field trials in Ontario, Canada and Honduras. Genetic diversity was measured with a 6K single nucleotide polymorphism (SNP) array, and phenotyping for agronomic, SNF, and WUE traits was carried out. STRUCTURE analysis revealed two subpopulations with admixture between the subpopulations. Nucleotide diversity was greater in the landraces than the PPB varieties across the genome, and multiple genomic regions were identified where population genetic differentiation between the landraces and PPB varieties was evident. Significant differences were found between varieties and breeding categories for agronomic traits, SNF, and WUE. Landraces had above average SNF capacity, conventional varieties showed higher yields, and PPB varieties performed well for WUE. Varieties with the best SNF capacity could be used in further participatory breeding efforts.
Collapse
Affiliation(s)
- Jennifer Wilker
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
| | - Sally Humphries
- Department of Sociology and Anthropology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Juan Carlos Rosas-Sotomayor
- Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Tegucigalpa 11101, Honduras;
| | - Marvin Gómez Cerna
- Fundación para la Investigación Participativa con Agricultores de Honduras, La Ceiba, Atlántida 561, Honduras;
| | - Davoud Torkamaneh
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
| | - Michelle Edwards
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
| | - Alireza Navabi
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
| | - K. Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 54136)
| |
Collapse
|
17
|
Henry RJ. Innovations in plant genetics adapting agriculture to climate change. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:168-173. [PMID: 31836470 DOI: 10.1016/j.pbi.2019.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 05/25/2023]
Abstract
Developing new genotypes of plants is one of the key options for adaptation of agriculture to climate change. Plants may be required to provide resilience in changed climates or support the migration of agriculture to new regions. Very different genotypes may be required to perform in the modified environments of protected agriculture. Consumers will continue to demand taste, convenience, healthy and safe food and sustainably and ethically produced food, despite the greater challenges of climate in the future. Improving the nutritional value of foods in response to climate change is a significant challenge. Genomic sequences of relevant germplasm and an understanding of the functional role of alleles controlling key traits will be an enabling platform for this innovation.
Collapse
Affiliation(s)
- Robert J Henry
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld 4072 Australia.
| |
Collapse
|
18
|
Fatiukha A, Filler N, Lupo I, Lidzbarsky G, Klymiuk V, Korol AB, Pozniak C, Fahima T, Krugman T. Grain protein content and thousand kernel weight QTLs identified in a durum × wild emmer wheat mapping population tested in five environments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020. [PMID: 31562566 DOI: 10.1101/601773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Genetic dissection of GPC and TKW in tetraploid durum × WEW RIL population, based on high-density SNP genetic map, revealed 12 GPC QTLs and 11 TKW QTLs, with favorable alleles for 11 and 5 QTLs, respectively, derived from WEW. Wild emmer wheat (Triticum turgidum ssp. dicoccoides, WEW) was shown to exhibit high grain protein content (GPC) and therefore possess a great potential for improvement of cultivated wheat nutritional value. Genetic dissection of thousand kernel weight (TKW) and grain protein content (GPC) was performed using a high-density genetic map constructed based on a recombinant inbred line (RIL) population derived from a cross between T. durum var. Svevo and WEW acc. Y12-3. Genotyping of 208 F6 RILs with a 15 K wheat single nucleotide polymorphism (SNP) array yielded 4166 polymorphic SNP markers, of which 1510 were designated as skeleton markers. A total map length of 2169 cM was obtained with an average distance of 1.5 cM between SNPs. A total of 12 GPC QTLs and 11 TKW QTLs were found under five different environments. No significant correlations were found between GPC and TKW across all environments. Four major GPC QTLs with favorable alleles from WEW were found on chromosomes 4BS, 5AS, 6BS and 7BL. The 6BS GPC QTL coincided with the physical position of the NAC transcription factor TtNAM-B1, underlying the cloned QTL, Gpc-B1. Comparisons of the physical intervals of the GPC QTLs described here with the results previously reported in other durum × WEW RIL population led to the discovery of seven novel GPC QTLs. Therefore, our research emphasizes the importance of GPC QTL dissection in diverse WEW accessions as a source of novel alleles for improvement of GPC in cultivated wheat.
Collapse
Affiliation(s)
- Andrii Fatiukha
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Naveh Filler
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Itamar Lupo
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Gabriel Lidzbarsky
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Curtis Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel.
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel.
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel.
| |
Collapse
|
19
|
Fatiukha A, Filler N, Lupo I, Lidzbarsky G, Klymiuk V, Korol AB, Pozniak C, Fahima T, Krugman T. Grain protein content and thousand kernel weight QTLs identified in a durum × wild emmer wheat mapping population tested in five environments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:119-131. [PMID: 31562566 DOI: 10.1007/s00122-019-03444-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/18/2019] [Indexed: 05/14/2023]
Abstract
Genetic dissection of GPC and TKW in tetraploid durum × WEW RIL population, based on high-density SNP genetic map, revealed 12 GPC QTLs and 11 TKW QTLs, with favorable alleles for 11 and 5 QTLs, respectively, derived from WEW. Wild emmer wheat (Triticum turgidum ssp. dicoccoides, WEW) was shown to exhibit high grain protein content (GPC) and therefore possess a great potential for improvement of cultivated wheat nutritional value. Genetic dissection of thousand kernel weight (TKW) and grain protein content (GPC) was performed using a high-density genetic map constructed based on a recombinant inbred line (RIL) population derived from a cross between T. durum var. Svevo and WEW acc. Y12-3. Genotyping of 208 F6 RILs with a 15 K wheat single nucleotide polymorphism (SNP) array yielded 4166 polymorphic SNP markers, of which 1510 were designated as skeleton markers. A total map length of 2169 cM was obtained with an average distance of 1.5 cM between SNPs. A total of 12 GPC QTLs and 11 TKW QTLs were found under five different environments. No significant correlations were found between GPC and TKW across all environments. Four major GPC QTLs with favorable alleles from WEW were found on chromosomes 4BS, 5AS, 6BS and 7BL. The 6BS GPC QTL coincided with the physical position of the NAC transcription factor TtNAM-B1, underlying the cloned QTL, Gpc-B1. Comparisons of the physical intervals of the GPC QTLs described here with the results previously reported in other durum × WEW RIL population led to the discovery of seven novel GPC QTLs. Therefore, our research emphasizes the importance of GPC QTL dissection in diverse WEW accessions as a source of novel alleles for improvement of GPC in cultivated wheat.
Collapse
Affiliation(s)
- Andrii Fatiukha
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Naveh Filler
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Itamar Lupo
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Gabriel Lidzbarsky
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Curtis Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel.
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel.
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel.
| |
Collapse
|
20
|
Comparative transcriptome analysis of pigeonpea, Cajanus cajan (L.) and one of its wild relatives Cajanus platycarpus (Benth.) Maesen. PLoS One 2019; 14:e0218731. [PMID: 31269083 PMCID: PMC6609033 DOI: 10.1371/journal.pone.0218731] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 06/08/2019] [Indexed: 11/19/2022] Open
Abstract
Pigeonpea is a major source of dietary protein to the vegetarian population of the Indian sub-continent. Crop improvement to mitigate biotic and abiotic stresses for realization of its potential yield and bridging yield gap is the need of the hour. Availability of limited genomic resources in the cultivated germplasm, however, is a serious bottleneck towards successful molecular breeding for the development of superior genotypes in pigeonpea. In view of this, improvement of pigeonpea can be attempted through transgenesis or by exploiting genetic resources from its wild relatives. Pigeonpea wild relatives are known to be bestowed with agronomic traits of importance; discovery and deployment of genes from them can provide a lucrative option for crop improvement. Understanding molecular signatures of wild relatives would not only provide information about the mechanism behind desired traits but also enable us to extrapolate the information to cultivated pigeonpea. The present study deals with the characterization of leaf transcriptomes of Cajanus cajan and one of its wild relatives, Cajanus platycarpus. Illumina sequencing revealed 0.11 million transcripts in both the species with an annotation of 0.09 million (82%) transcripts using BLASTX. Comparative transcriptome analyses on the whole, divulged cues about the wild relative being vigilant and agile. Gene ontology and Mapman analysis depicted higher number of transcripts in the wild relative pertaining to signaling, transcription factors and stress responsive genes. Further, networking between the differentially expressed MapMan bins demonstrated conspicuous interactions between different bins through 535 nodes (512 Genes and 23 Pathways) and 1857 edges. The authenticity of RNA-seq analysis was confirmed by qRT-PCR. The information emanating from this study can provide valuable information and resource for future translational research including genome editing to alleviate varied stresses. Further, this learning can be a platform for in-depth investigations to decipher molecular mechanisms for mitigation of various stresses in the wild relative.
Collapse
|
21
|
Ergon Å, Skøt L, Sæther VE, Rognli OA. Allele Frequency Changes Provide Evidence for Selection and Identification of Candidate Loci for Survival in Red Clover ( Trifolium pratense L.). FRONTIERS IN PLANT SCIENCE 2019; 10:718. [PMID: 31244867 PMCID: PMC6580991 DOI: 10.3389/fpls.2019.00718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/15/2019] [Indexed: 06/01/2023]
Abstract
Survivor populations of red clover (Trifolium pratense L.) from plots in a field experiment in southern Norway were genetically characterized using genotyping by sequencing, and compared with the original population and each other. Genetic differentiation between populations was characterized on the basis of allele frequencies of single nucleotide polymorphisms (SNPs), using principal component analysis. SNPs that had been under selection, i.e., SNPs with significantly different allele frequencies in survivor populations relative to the original population, or between survivor populations that had received different treatments, were identified by analysis of F ST values, using BayeScan and a simple and stringent F ST-based test utilizing replicate populations from the field experiment. In addition, we tested the possibility of pooling DNA samples prior to sequencing, and pooling leaf samples prior to DNA extraction and sequencing, followed by allele frequency estimation on the basis of number of variant reads. Overall, survivor populations were more different from each other than from the original population, indicating random changes in allele frequency, selection in response to local variation in conditions between plots in the field experiment, or sampling error. However, some differentiation was observed between plots sown as pure stands or species mixtures, plots sown at different densities, and plots subjected to different harvesting regimes. Allele frequencies could be accurately estimated from pooled DNA, and SNPs under selection could be identified when leaf samples were pooled prior to DNA extraction. However, substantial sampling error required replicate populations and/or a high number of sampled individuals. We identified a number of chromosomal loci that had been under selection in pure stand plots relative to the original sown population, and loci that had been under differential selection in pure stands of red clover vs. red clover grown in species mixtures. These are all candidate loci for establishment success or persistence in red clover.
Collapse
Affiliation(s)
- Åshild Ergon
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Leif Skøt
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Vegard Eriksen Sæther
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Odd Arne Rognli
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
22
|
Genome Size Unaffected by Variation in Morphological Traits, Temperature, and Precipitation in Turnip. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9020253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Genome size (GS) was proposed as proxy for gross phenotypic and environmental changes in plants. GS organismal complexity is an enigma in evolutionary biology. While studies pertaining to intraspecific GS variation are abundant, literatures reporting the adaptive significance of GS are largelymissing. During food shortage, Brassica rapa var. rapa (turnip) is used as food and fodder for sustaining the livelihood of residents in the Qinghai Tibetan Plateau (QTP), which is also known as “the roof of the world”. Thus, climatic extremities make this region a natural environment to test adaptive significance of GS variation in turnip landraces. Therefore, from the QTP and its adjacent regions (the Hengduanshan and the Himalayas), we investigated adaptive evolution of GS in turnip landraces. Tuber diameter of turnip landraces was found to be significantly correlated with most of the environmental factors. GS was also shown not to be associated with morphological traits, temperature, and precipitation. Moreover, principal component analyses based on the whole dataset trisected the landraces into three distinct populations based on landrace usage—Hengduanshan, QTP, and the Himalayas. Nonetheless, our cumulative dataset showed evidence of adaptation of turnip landrace to different environments throughnonassociated genomic and phenomic plasticity.
Collapse
|
23
|
Su T, Wang W, Li P, Zhang B, Li P, Xin X, Sun H, Yu Y, Zhang D, Zhao X, Wen C, Zhou G, Wang Y, Zheng H, Yu S, Zhang F. A Genomic Variation Map Provides Insights into the Genetic Basis of Spring Chinese Cabbage (Brassica rapa ssp. pekinensis) Selection. MOLECULAR PLANT 2018; 11:1360-1376. [PMID: 30217779 DOI: 10.1016/j.molp.2018.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 05/08/2023]
Abstract
Chinese cabbage is the most consumed leafy crop in East Asian countries. However, premature bolting induced by continuous low temperatures severely decreases the yield and quality of the Chinese cabbage, and therefore restricts its planting season and geographic distribution. In the past 40 years, spring Chinese cabbage with strong winterness has been selected to meet the market demand. Here, we report a genome variation map of Chinese cabbage generated from the resequencing data of 194 geographically diverse accessions of three ecotypes. In-depth analyses of the selection sweeps and genome-wide patterns revealed that spring Chinese cabbage was selected from a specific population of autumn Chinese cabbage around the area of Shandong peninsula in northern China. We identified 23 genomic loci that underwent intensive selection, and further demonstrated by gene expression and haplotype analyses that the incorporation of elite alleles of VERNALISATION INSENTIVE 3.1 (BrVIN3.1) and FLOWER LOCUS C 1 (BrFLC1) is a determinant genetic source of variation during selection. Moreover, we showed that the quantitative response of BrVIN3.1 to cold due to the sequence variations in the cis elements of the BrVIN3.1 promoter significantly contributes to bolting-time variation in Chinese cabbage. Collectively, our study provides valuable insights into the genetic basis of spring Chinese cabbage selection and will facilitate the breeding of bolting-resistant varieties by molecular-marker-assisted selection, transgenic or gene editing approaches.
Collapse
Affiliation(s)
- Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, UK; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Bin Zhang
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Pan Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
| | - Honghe Sun
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Gang Zhou
- Biomarker Technologies Corporation, Beijing, China
| | - Yuntong Wang
- Biomarker Technologies Corporation, Beijing, China
| | | | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China.
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China.
| |
Collapse
|
24
|
Henry RJ, Furtado A, Rangan P. Wheat seed transcriptome reveals genes controlling key traits for human preference and crop adaptation. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:231-236. [PMID: 29779965 DOI: 10.1016/j.pbi.2018.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 05/23/2023]
Abstract
Analysis of the transcriptome of the developing wheat grain has associated expression of genes with traits involving production (e.g. yield) and quality (e.g. bread quality). Photosynthesis in the grain may be important in retaining carbon that would be lost in respiration during grain filling and may contribute to yield in the late stages of seed formation under warm and dry environments. A small number of genes have been identified as having been selected by humans to optimize the performance of wheat for foods such as bread. Genes determining flour yield in milling have been discovered. Hardness is explained by variations in expression of pin genes. Knowledge of these genes should dramatically improve the efficiency of breeding better climate adapted wheat genotypes.
Collapse
Affiliation(s)
- Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia
| | - Parimalan Rangan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia; Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi 110012, India
| |
Collapse
|
25
|
Nirmal RC, Furtado A, Rangan P, Henry RJ. Fasciclin-like arabinogalactan protein gene expression is associated with yield of flour in the milling of wheat. Sci Rep 2017; 7:12539. [PMID: 28970511 PMCID: PMC5624953 DOI: 10.1038/s41598-017-12845-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022] Open
Abstract
A large portion of the global wheat crop is milled to produce flour for use in the production of foods such as bread. Pressure to increase food supplies sustainably can be address directly by reducing post-harvest losses during processes such as flour milling. The recovery of flour in the milling of wheat is genetically determined but difficult to assess in wheat breeding due to the requirement for a large sample. Here we report the discovery that human selection for altered expression of putative cell adhesion proteins is associated with wheats that give high yields of flour on milling. Genes encoding fasciclin-like arabinogalactan proteins are expressed at low levels in high milling wheat genotypes at mid grain development. Thirty worldwide wheat genotypes were grouped into good and poor millers based flour yield obtained from laboratory scale milling of mature seeds. Differentially expressed genes were identified by comparing transcript profiles at 14 and 30 days post anthesis obtained from RNA-seq data of all the genotypes. Direct selection for genotypes with appropriate expression of these genes will greatly accelerate wheat breeding and ensure high recoveries of flour from wheat by resulting in grains that break up more easily on milling.
Collapse
Affiliation(s)
- Ravi C Nirmal
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, St Lucia, Qld, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, St Lucia, Qld, Australia
| | - Parimalan Rangan
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, St Lucia, Qld, Australia.
| |
Collapse
|
26
|
Nobre T, Oliveira M, Arnholdt-Schmitt B. Wild Carrot Differentiation in Europe and Selection at DcAOX1 Gene? PLoS One 2016; 11:e0164872. [PMID: 27768735 PMCID: PMC5074564 DOI: 10.1371/journal.pone.0164872] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022] Open
Abstract
By definition, the domestication process leads to an overall reduction of crop genetic diversity. This lead to the current search of genomic regions in wild crop relatives (CWR), an important task for modern carrot breeding. Nowadays massive sequencing possibilities can allow for discovery of novel genetic resources in wild populations, but this quest could be aided by the use of a surrogate gene (to first identify and prioritize novel wild populations for increased sequencing effort). Alternative oxidase (AOX) gene family seems to be linked to all kinds of abiotic and biotic stress reactions in various organisms and thus have the potential to be used in the identification of CWR hotspots of environment-adapted diversity. High variability of DcAOX1 was found in populations of wild carrot sampled across a West-European environmental gradient. Even though no direct relation was found with the analyzed climatic conditions or with physical distance, population differentiation exists and results mainly from the polymorphisms associated with DcAOX1 exon 1 and intron 1. The relatively high number of amino acid changes and the identification of several unusually variable positions (through a likelihood ratio test), suggests that DcAOX1 gene might be under positive selection. However, if positive selection is considered, it only acts on some specific populations (i.e. is in the form of adaptive differences in different population locations) given the observed high genetic diversity. We were able to identify two populations with higher levels of differentiation which are promising as hot spots of specific functional diversity.
Collapse
Affiliation(s)
- Tânia Nobre
- EU Marie Curie Chair, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Évora, Portugal
| | - Manuela Oliveira
- Centro de Investigação em Matemática e Aplicações, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Birgit Arnholdt-Schmitt
- EU Marie Curie Chair, ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Évora, Portugal
| |
Collapse
|
27
|
Rangan P, Furtado A, Henry RJ. New evidence for grain specific C4 photosynthesis in wheat. Sci Rep 2016; 6:31721. [PMID: 27530078 PMCID: PMC4987656 DOI: 10.1038/srep31721] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022] Open
Abstract
The C4 photosynthetic pathway evolved to allow efficient CO2 capture by plants where effective carbon supply may be limiting as in hot or dry environments, explaining the high growth rates of C4 plants such as maize. Important crops such as wheat and rice are C3 plants resulting in efforts to engineer them to use the C4 pathway. Here we show the presence of a C4 photosynthetic pathway in the developing wheat grain that is absent in the leaves. Genes specific for C4 photosynthesis were identified in the wheat genome and found to be preferentially expressed in the photosynthetic pericarp tissue (cross- and tube-cell layers) of the wheat caryopsis. The chloroplasts exhibit dimorphism that corresponds to chloroplasts of mesophyll- and bundle sheath-cells in leaves of classical C4 plants. Breeding to optimize the relative contributions of C3 and C4 photosynthesis may adapt wheat to climate change, contributing to wheat food security.
Collapse
Affiliation(s)
- Parimalan Rangan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane QLD 4072, Australia.,Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi-110012, India
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane QLD 4072, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
28
|
Brozynska M, Furtado A, Henry RJ. Genomics of crop wild relatives: expanding the gene pool for crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1070-85. [PMID: 26311018 DOI: 10.1111/pbi.12454] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/26/2015] [Accepted: 07/16/2015] [Indexed: 05/20/2023]
Abstract
Plant breeders require access to new genetic diversity to satisfy the demands of a growing human population for more food that can be produced in a variable or changing climate and to deliver the high-quality food with nutritional and health benefits demanded by consumers. The close relatives of domesticated plants, crop wild relatives (CWRs), represent a practical gene pool for use by plant breeders. Genomics of CWR generates data that support the use of CWR to expand the genetic diversity of crop plants. Advances in DNA sequencing technology are enabling the efficient sequencing of CWR and their increased use in crop improvement. As the sequencing of genomes of major crop species is completed, attention has shifted to analysis of the wider gene pool of major crops including CWR. A combination of de novo sequencing and resequencing is required to efficiently explore useful genetic variation in CWR. Analysis of the nuclear genome, transcriptome and maternal (chloroplast and mitochondrial) genome of CWR is facilitating their use in crop improvement. Genome analysis results in discovery of useful alleles in CWR and identification of regions of the genome in which diversity has been lost in domestication bottlenecks. Targeting of high priority CWR for sequencing will maximize the contribution of genome sequencing of CWR. Coordination of global efforts to apply genomics has the potential to accelerate access to and conservation of the biodiversity essential to the sustainability of agriculture and food production.
Collapse
Affiliation(s)
- Marta Brozynska
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
29
|
Henry RJ, Rangan P, Furtado A. Functional cereals for production in new and variable climates. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:11-18. [PMID: 26828379 DOI: 10.1016/j.pbi.2015.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Adaptation of cereal crops to variable or changing climates requires that essential quality attributes are maintained to deliver food that will be acceptable to human consumers. Advances in cereal genomics are delivering insights into the molecular basis of nutritional and functional quality traits in cereals and defining new genetic resources. Understanding the influence of the environment on expression of these traits will support the retention of these essential functional properties during climate adaptation. New cereals for use as whole grain or ground to flour for other food products may be based upon the traditional species such as rice and wheat currently used in these food applications but may also include new options exploiting genomics tools to allow accelerated domestication of new species.
Collapse
Affiliation(s)
- Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Parimalan Rangan
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
30
|
Mason AS, Batley J. Creating new interspecific hybrid and polyploid crops. Trends Biotechnol 2015; 33:436-41. [PMID: 26164645 DOI: 10.1016/j.tibtech.2015.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 12/16/2022]
Abstract
Agricultural selection of desirable traits in domesticated plant and animal species mimics natural evolutionary selection for ability of species to survive, thrive, and reproduce in the wild. However, one evolutionary process is currently underutilised for human agricultural purposes: speciation through interspecific hybridisation and polyploid formation. Despite promising successes in creation of new hybrid and or polyploid species in many genera, few geneticists and breeders deliberately take advantage of polyploidy and interspecific hybridisation for crop improvement. We outline the possible benefits as well as potential problems and criticisms with this approach, and address how modern advances in technology and knowledge can help to create new crop species for agriculture.
Collapse
Affiliation(s)
- Annaliese S Mason
- Plant Breeding Department, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Jacqueline Batley
- School of Plant Biology, The University of Western Australia, 35 Stirling Hwy, Crawley 6009, Australia
| |
Collapse
|
31
|
Voss-Fels K, Frisch M, Qian L, Kontowski S, Friedt W, Gottwald S, Snowdon RJ. Subgenomic Diversity Patterns Caused by Directional Selection in Bread Wheat Gene Pools. THE PLANT GENOME 2015; 8:eplantgenome2015.03.0013. [PMID: 33228295 DOI: 10.3835/plantgenome2015.03.0013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/05/2015] [Indexed: 06/11/2023]
Abstract
Genetic diversity represents the fundamental key to breeding success, providing the basis for breeders to select varieties with constantly improving yield performance. On the other hand, strong selection during domestication and breeding have eliminated considerable genetic diversity in the breeding pools of major crops, causing erosion of genetic potential for adaptation to emerging challenges like climate change. High-throughput genomic technologies can address this dilemma by providing detailed knowledge to characterize and replenish genetic diversity in breeding programs. In hexaploid bread wheat (Triticum aestivum L.), the staple food for 35% of the world's population, bottlenecks during allopolyploidisation followed by strong artificial selection have considerably narrowed diversity to the extent that yields in many regions appear to be unexpectedly stagnating. In this study, we used a 90,000 single nucleotide polymorphism (SNP) wheat genotyping array to assay high-frequency, polymorphic SNP markers in 460 accessions representing different phenological diversity groups from Asian, Australian, European, and North American bread wheat breeding materials. Detailed analysis of subgroup diversity at the chromosome and subgenome scale revealed highly distinct patterns of conserved linkage disequilibrium between different gene pools. The data enable identification of genome regions in most need of rejuvenation with novel diversity and provide a high-resolution molecular basis for genomic-assisted introgression of new variation into chromosome segments surrounding directionally selected metaloci conferring important adaptation and quality traits.
Collapse
Affiliation(s)
- Kai Voss-Fels
- Dep. of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig Univ., Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Matthias Frisch
- Institute for Agronomy and Plant Breeding II, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig Univ., Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Lunwen Qian
- Dep. of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig Univ., Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Stefan Kontowski
- W. von Borries-Eckendorf GmbH & Co. KG, Hovedisser Str. 92, 33818, Leopoldshöhe, Germany
| | - Wolfgang Friedt
- Dep. of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig Univ., Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Sven Gottwald
- Dep. of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig Univ., Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Rod J Snowdon
- Dep. of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig Univ., Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|