1
|
Ye X, Qin K, Fernie AR, Zhang Y. Prospects for synthetic biology in 21 st Century agriculture. J Genet Genomics 2024:S1673-8527(24)00369-2. [PMID: 39742963 DOI: 10.1016/j.jgg.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Plant synthetic biology has emerged as a transformative field in agriculture, offering innovative solutions to enhance food security, provide resilience to climate change, and transition to sustainable farming practices. By integrating advanced genetic tools, computational modeling, and systems biology, researchers can precisely modify plant genomes to enhance traits such as yield, stress tolerance, and nutrient use efficiency. The ability to design plants with specific characteristics tailored to diverse environmental conditions and agricultural needs holds great potential to address global food security challenges. Here we highlight recent advancements and applications of plant synthetic biology in agriculture, focusing on key areas such as photosynthetic efficiency, nitrogen fixation, drought tolerance, pathogen resistance, nutrient use efficiency, biofortification, climate resilience, microbiology engineering, synthetic plant genomes, and the integration of artificial intelligence (AI) with synthetic biology. These innovations aim to maximize resource use efficiency, reduce reliance on external inputs, and mitigate environmental impacts associated with conventional agricultural practices. Despite challenges related to regulatory approval and public acceptance, the integration of synthetic biology in agriculture holds immense promise for creating more resilient and sustainable agricultural systems, contributing to global food security and environmental sustainability. Rigorous multi-field testing of these approaches will undoubtedly be required to ensure reproducibility.
Collapse
Affiliation(s)
- Xingyan Ye
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kezhen Qin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Youjun Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Patel M, Islam S, Glick BR, Vimal SR, Bhor SA, Bernardi M, Johora FT, Patel A, de Los Santos Villalobos S. Elaborating the multifarious role of PGPB for sustainable food security under changing climate conditions. Microbiol Res 2024; 289:127895. [PMID: 39276501 DOI: 10.1016/j.micres.2024.127895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
Changing climate creates a challenge to agricultural sustainability and food security by changing patterns of parameters like increased UV radiation, rising temperature, altered precipitation patterns, and higher occurrence of extreme weather incidents. Plants are vulnerable to different abiotic stresses such as waterlogging, salinity, heat, cold, and drought in their natural environments. The prevailing agricultural management practices play a major role in the alteration of the Earth's climate by causing biodiversity loss, soil degradation through chemical and physical degradation, and pollution of water bodies. The extreme usage of pesticides and fertilizers leads to climate change by releasing greenhouse gases (GHGs) and depositing toxic substances in the soil. At present, there is an urgent need to address these abiotic stresses to achieve sustainable growth in agricultural production and fulfill the rising global food demand. Several types of bacteria that are linked with plants can increase plant resistance to stress and lessen the negative effects of environmental challenges. This review aims to explore the environmentally friendly capabilities and prospects of multi-trait plant growth-promoting bacteria (PGPB) in the alleviation of detrimental impacts of harsh environmental conditions on plants.
Collapse
Affiliation(s)
- Margi Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India.
| | - Shaikhul Islam
- Plant Pathology Division, Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur 5200, Bangladesh.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Shobhit Raj Vimal
- Department of Botany, University of Allahabad, Prayagraj 211002, India.
| | - Sachin Ashok Bhor
- Laboratory of Plant Molecular Biology and Virology, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan.
| | - Matteo Bernardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, via Vetoio, Coppito 67100, Italy.
| | - Fatema Tuj Johora
- Lincoln University, Department of Sustainable Agriculture, 1570 Baltimore Pike, PA 19352, USA.
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India.
| | | |
Collapse
|
3
|
Yang L, Li S, Ahmed W, Jiang T, Mei F, Hu X, Liu W, Abbas FM, Xue R, Peng X, Zhao Z. Exploring the Relationship Between Biochar Pore Structure and Microbial Community Composition in Promoting Tobacco Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:2952. [PMID: 39519871 PMCID: PMC11548322 DOI: 10.3390/plants13212952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The potential benefits of biochar, a carbon-rich substance derived from biomass, for enhancing agricultural yield and soil health have drawn increasing interest. Nevertheless, owing to the lack of specialized studies, the role of its poly-spatial structure in the success of fostering plant growth remains unclear. This study aimed to assess the effects of various biochar pore shapes on tobacco growth and the underlying microbiological processes. Three pyrolysis temperatures (250 °C, 400 °C, and 550 °C) were used to produce biochar from tobacco stems, resulting in different pore structures (T3 > T2 > T1). We then used BET-specific surface area (BET), t.Plot micropore specific surface area (t.Plot), mesopore specific surface area (MSSA), specific pore volume (SPV), average pore size (AP), and mesopore pore volume (MPV) measurements to evaluate the effects of these biochars on tobacco growth and biomass accumulation, and microbial analyses were performed to investigate the underlying mechanisms. When applied to plants, biochar increased their growth compared to untreated controls. The most notable improvement in tobacco growth was observed in the biochar produced at 400 °C (T3), which possessed the largest and most advantageous pore structure among all treatments. Further studies demonstrated that biochars with greater specific surface areas (BET, t.Plot, and MSSA) positively altered the abundance of key microbial taxa (e.g., Stenotrophobacter, Ensifer, Claroideoglomus) and community composition, thereby encouraging plant development and biomass accumulation. Conversely, greater pore volumes (SPV, AP, and MPV) inhibited microbial activity and significantly affected growth and biomass accumulation. Structural equation modeling further demonstrated that the pore structure of biochar greatly affected plant growth by changing the relative abundance and community composition of soil microbes. Maximizing the benefits of biochar in stimulating plant growth and improving soil microbial communities depends on optimizing the material's pore structure, particularly by increasing the specific surface area. These findings will help expand the use of biochar in sustainable agriculture.
Collapse
Affiliation(s)
- Linyuan Yang
- Yunnan Agricultural University, Kunming 650201, China
- Yunnan Academy of Agricultural Sciences, Institute of Tropical and Subtropical Cash Crops, Baoshan 678000, China
| | - Shichen Li
- Yunnan Agricultural University, Kunming 650201, China
| | - Waqar Ahmed
- Yunnan Agricultural University, Kunming 650201, China
| | - Tao Jiang
- Yunnan Agricultural University, Kunming 650201, China
| | - Fupeng Mei
- Yunnan Agricultural University, Kunming 650201, China
| | - Xiaodong Hu
- Yunnan Agricultural University, Kunming 650201, China
| | - Wubo Liu
- Yunnan Agricultural University, Kunming 650201, China
| | - Fatima M. Abbas
- Department of Biology, Faculty of Sciences and Arts, King Khalid University, Dahran Al-Janoub 61421, Saudi Arabia
| | - Rujun Xue
- Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoci Peng
- Yunnan Agricultural University, Kunming 650201, China
| | | |
Collapse
|
4
|
Niron H, Vienne A, Frings P, Poetra R, Vicca S. Exploring the synergy of enhanced weathering and Bacillus subtilis: A promising strategy for sustainable agriculture. GLOBAL CHANGE BIOLOGY 2024; 30:e17511. [PMID: 39295254 DOI: 10.1111/gcb.17511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
Climate change is one of the most urgent environmental challenges that humanity faces. In addition to the reduction of greenhouse gas emissions, safe and robust carbon dioxide removal (CDR) technologies that capture atmospheric CO2 and ensure long-term sequestration are required. Among CDR technologies, enhanced silicate weathering (ESW) has been suggested as a promising option. While ESW has been demonstrated to depend strongly on pH, water, and temperature, recent studies suggest that biota may accelerate mineral weathering rates. Bacillus subtilis is a plant growth-promoting rhizobacterium that can facilitate weathering to obtain mineral nutrients. It is a promising agricultural biofertilizer, as it helps plants acquire nutrients and protects them from environmental stresses. Given that croplands are optimal implementation fields for ESW, any synergy between ESW and B. subtilis can hold great potential for further practice. B. subtilis was reported to enhance weathering under laboratory conditions, but there is a lack of data for soil applications. In a soil-mesocosm experiment, we examined the effect of B. subtilis on basalt weathering. B. subtilis-basalt interaction stimulated basalt weathering and increased soil extractable Fe. The combined application displayed higher CDR potential compared to basalt-only application (3.7 vs. 2.3 tons CO2 ha-1) taking solid and liquid cation pools into account. However, the cumulative CO2 efflux decreased by approximately 2 tons CO2 ha-1 with basalt-only treatment, while the combined application did not affect the CO2 efflux. We found limited mobilization of cations to the liquid phase as most were retained in the soil. Additionally, we found substantial mobilization of basalt-originated Mg, Fe, and Al to oxide- and organic-bound soil fractions. We, therefore, conclude that basalt addition showed relatively low inorganic CDR potential but a high capacity for SOM stabilization. The outcomes indicated the importance of weathering rate-GHG emission integration and the high potential of SOM stabilization in ESW studies.
Collapse
Affiliation(s)
- Harun Niron
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Arthur Vienne
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Patrick Frings
- GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Reinaldy Poetra
- Institute for Geology, Centre for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany
| | - Sara Vicca
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Dasila K, Pandey A, Sharma A, Samant SS, Singh M. Endophytic fungi from Himalayan silver birch as potential source of plant growth enhancement and secondary metabolite production. Braz J Microbiol 2024; 55:557-570. [PMID: 38265571 PMCID: PMC10920537 DOI: 10.1007/s42770-024-01259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024] Open
Abstract
Mountain biodiversity is under unparalleled pressure due to climate change, necessitating in-depth research on high-altitude plant's microbial associations which are crucial for plant survival under stress conditions. Realizing that high-altitude tree line species of Himalaya are completely unexplored with respect to the microbial association, the present study aimed to elucidate plant growth promoting and secondary metabolite producing potential of culturable endophytic fungi of Himalayan silver birch (Betula utilis D. Don). ITS region sequencing revealed that the fungal isolates belong to Penicillium species, Pezicula radicicola, and Paraconiothyrium archidendri. These endophytes were psychrotolerant in nature with the potential to produce extracellular lytic activities. The endophytes showed plant growth promoting (PGP) traits like phosphorus solubilization and production of siderophore, indole acetic acid (IAA), and ACC deaminase. The fungal extracts also exhibited antagonistic potential against bacterial pathogens. Furthermore, the fungal extracts were found to be a potential source of bioactive compounds including the host-specific compound-betulin. Inoculation with fungal suspension improved seed germination and biomass of soybean and maize crops under net house conditions. In vitro PGP traits of the endophytes, supported by net house experiments, indicated that fungal association may support the growth and survival of the host in extreme cold conditions.
Collapse
Affiliation(s)
- Khashti Dasila
- Center for Environmental Assessment and Climate Change, G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263643, Uttarakhand, India
| | - Anita Pandey
- Center for Environmental Assessment and Climate Change, G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263643, Uttarakhand, India.
- Department of Biotechnology, Graphic Era (Deemed to Be University), Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India.
| | - Avinash Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, 41107, Maharashtra, India
- School of Agriculture, Graphic Era Hill University, Dehradun, 248002, India
| | - Sher S Samant
- Himalayan Forest Research Institute, Conifer Campus, Panthaghati, Shimla, 171013, Himachal Pradesh, India
| | - Mithilesh Singh
- Center for Environmental Assessment and Climate Change, G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263643, Uttarakhand, India.
| |
Collapse
|
6
|
Boo A, Toth T, Yu Q, Pfotenhauer A, Fields BD, Lenaghan SC, Stewart CN, Voigt CA. Synthetic microbe-to-plant communication channels. Nat Commun 2024; 15:1817. [PMID: 38418817 PMCID: PMC10901793 DOI: 10.1038/s41467-024-45897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Plants and microbes communicate to collaborate to stop pests, scavenge nutrients, and react to environmental change. Microbiota consisting of thousands of species interact with each other and plants using a large chemical language that is interpreted by complex regulatory networks. In this work, we develop modular interkingdom communication channels, enabling bacteria to convey environmental stimuli to plants. We introduce a "sender device" in Pseudomonas putida and Klebsiella pneumoniae, that produces the small molecule p-coumaroyl-homoserine lactone (pC-HSL) when the output of a sensor or circuit turns on. This molecule triggers a "receiver device" in the plant to activate gene expression. We validate this system in Arabidopsis thaliana and Solanum tuberosum (potato) grown hydroponically and in soil, demonstrating its modularity by swapping bacteria that process different stimuli, including IPTG, aTc and arsenic. Programmable communication channels between bacteria and plants will enable microbial sentinels to transmit information to crops and provide the building blocks for designing artificial consortia.
Collapse
Affiliation(s)
- Alice Boo
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tyler Toth
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Qiguo Yu
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexander Pfotenhauer
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Brandon D Fields
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - C Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Christopher A Voigt
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Zhu S, Xie J, Yang J, Hou X, He L, Zhang Z. Seed-Borne Bacterial Diversity of Fescue ( Festuca ovina L.) and Properties Study. Microorganisms 2024; 12:329. [PMID: 38399732 PMCID: PMC10892014 DOI: 10.3390/microorganisms12020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Rich endophytic bacterial communities exist in fescue (Festuca ovina L.) and play an important role in fescue growth, cold tolerance, drought tolerance and antibiotic tolerance. To screen for probiotics carried by fescue seeds, seven varieties were collected from three different regions of China for isolation by the milled seed method and analyzed for diversity and motility, biofilm and antibiotic resistance. A total of 91 bacterial isolates were obtained, and based on morphological characteristics, 36 representative dominant strains were selected for 16S rDNA sequencing analysis. The results showed that the 36 bacterial strains belonged to four phyla and nine genera. The Firmicutes was the dominant phylum, and Bacillus, Paenibacillus and Pseudomonas were the dominant genera. Most of the strains had motility (80%) and were biofilm-forming (91.7%). In this study, 15 strains were capable of Indole-3-acetic acid (IAA) production, 24 strains were capable of nitrogen fixation, and some strains possessed amylase and protease activities, suggesting their potential for growth promotion. Determination of the minimum inhibitory concentration (MIC) against the bacteria showed that the strains were not resistant to tetracycline and oxytetracycline. Pantoea (QY6, LH4, MS2) and Curtobacterium (YY4) showed resistance to five antibiotics (ampicillin, kanamycin, erythromycin, sulfadiazine and rifampicin). Using Pearson correlation analysis, a significant correlation was found between motility and biofilm, and between biofilm and sulfadiazine. In this study, we screened two strains of Pantoea (QY6, LH4) with excellent growth-promoting ability as well as broad-spectrum antibiotic resistance. which provided new perspectives for subsequent studies on the strong ecological adaptations of fescue, and mycorrhizal resources for endophytic bacteria and plant interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenfen Zhang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (S.Z.); (J.X.); (J.Y.); (X.H.); (L.H.)
| |
Collapse
|
8
|
Afridi MS, Kumar A, Javed MA, Dubey A, de Medeiros FHV, Santoyo G. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiol Res 2024; 279:127564. [PMID: 38071833 DOI: 10.1016/j.micres.2023.127564] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
A wide range of abiotic and biotic stresses adversely affect plant's growth and production. Under stress, one of the main responses of plants is the modulation of exudates excreted in the rhizosphere, which consequently leads to alterations in the resident microbiota. Thus, the exudates discharged into the rhizospheric environment play a preponderant role in the association and formation of plant-microbe interactions. In this review, we aimed to provide a synthesis of the latest and most pertinent literature on the diverse biochemical and structural compositions of plant root exudates. Also, this work investigates into their multifaceted role in microbial nutrition and intricate signaling processes within the rhizosphere, which includes quorum-sensing molecules. Specifically, it explores the contributions of low molecular weight compounds, such as carbohydrates, phenolics, organic acids, amino acids, and secondary metabolites, as well as the significance of high molecular weight compounds, including proteins and polysaccharides. It also discusses the state-of-the-art omics strategies that unveil the vital role of root exudates in plant-microbiome interactions, including defense against pathogens like nematodes and fungi. We propose multiple challenges and perspectives, including exploiting plant root exudates for host-mediated microbiome engineering. In this discourse, root exudates and their derived interactions with the rhizospheric microbiota should receive greater attention due to their positive influence on plant health and stress mitigation.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil.
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mexico.
| |
Collapse
|
9
|
Srikamwang C, onsa NE, Sunanta P, Sangta J, Chanway CP, Thanakkasaranee S, Sommano SR. Role of Microbial Volatile Organic Compounds in Promoting Plant Growth and Disease Resistance in Horticultural Production. PLANT SIGNALING & BEHAVIOR 2023; 18:2227440. [PMID: 37366146 PMCID: PMC10730190 DOI: 10.1080/15592324.2023.2227440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Microbial volatile organic compounds (MVOCs) are a diverse group of volatile organic compounds that microorganisms may produce and release into the environment. These compounds have both positive and negative effects on plants, as they have been shown to be effective at mitigating stresses and functioning as immune stimulants. Furthermore, MVOCs modulate plant growth and systemic plant resistance, while also serving as attractants or repellents for insects and other stressors that pose threats to plants. Considering the economic value of strawberries as one of the most popular and consumed fruits worldwide, harnessing the benefits of MVOCs becomes particularly significant. MVOCs offer cost-effective and efficient solutions for disease control and pest management in horticultural production, as they can be utilized at low concentrations. This paper provides a comprehensive review of the current knowledge on microorganisms that contribute to the production of beneficial volatile organic compounds for enhancing disease resistance in fruit products, with a specific emphasis on broad horticultural production. The review also identifies research gaps and highlights the functions of MVOCs in horticulture, along with the different types of MVOCs that impact plant disease resistance in strawberry production. By offering a novel perspective on the application and utilization of volatile organic compounds in sustainable horticulture, this review presents an innovative approach to maximizing the efficiency of horticultural production through the use of natural products.
Collapse
Affiliation(s)
- Chonlada Srikamwang
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttacha Eva onsa
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Science, Chiang Mai University, Chiang Mai, Thailand
| | - Piyachat Sunanta
- Department of Plant and Soil Science, Chiang Mai University, Chiang Mai, Thailand
- Postharvest Technology Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Sangta
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Christopher P. Chanway
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, Canada
| | - Sarinthip Thanakkasaranee
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Yadav AN, Islam T. Editorial: Insights in microbe and virus interactions with plants: 2022. Front Microbiol 2023; 14:1327245. [PMID: 38107867 PMCID: PMC10722398 DOI: 10.3389/fmicb.2023.1327245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Affiliation(s)
- Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, India
- Department of Biotechnology, Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN Putra Nilai, Nilai, Negeri Sembilan, Malaysia
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
11
|
Ayaz M, Li CH, Ali Q, Zhao W, Chi YK, Shafiq M, Ali F, Yu XY, Yu Q, Zhao JT, Yu JW, Qi RD, Huang WK. Bacterial and Fungal Biocontrol Agents for Plant Disease Protection: Journey from Lab to Field, Current Status, Challenges, and Global Perspectives. Molecules 2023; 28:6735. [PMID: 37764510 PMCID: PMC10537577 DOI: 10.3390/molecules28186735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Plants are constantly exposed to various phytopathogens such as fungi, Oomycetes, nematodes, bacteria, and viruses. These pathogens can significantly reduce the productivity of important crops worldwide, with annual crop yield losses ranging from 20% to 40% caused by various pathogenic diseases. While the use of chemical pesticides has been effective at controlling multiple diseases in major crops, excessive use of synthetic chemicals has detrimental effects on the environment and human health, which discourages pesticide application in the agriculture sector. As a result, researchers worldwide have shifted their focus towards alternative eco-friendly strategies to prevent plant diseases. Biocontrol of phytopathogens is a less toxic and safer method that reduces the severity of various crop diseases. A variety of biological control agents (BCAs) are available for use, but further research is needed to identify potential microbes and their natural products with a broad-spectrum antagonistic activity to control crop diseases. This review aims to highlight the importance of biocontrol strategies for managing crop diseases. Furthermore, the role of beneficial microbes in controlling plant diseases and the current status of their biocontrol mechanisms will be summarized. The review will also cover the challenges and the need for the future development of biocontrol methods to ensure efficient crop disease management for sustainable agriculture.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China; (M.A.); (W.Z.); (Y.-K.C.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Cai-Hong Li
- Cotton Sciences Research Institute of Hunan, Changde 415101, China;
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wei Zhao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China; (M.A.); (W.Z.); (Y.-K.C.)
| | - Yuan-Kai Chi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China; (M.A.); (W.Z.); (Y.-K.C.)
| | - Muhammad Shafiq
- Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou 515063, China;
| | - Farman Ali
- Department of Entomology, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Xi-Yue Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Qing Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Jing-Tian Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Jing-Wen Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Ren-De Qi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China; (M.A.); (W.Z.); (Y.-K.C.)
| | - Wen-Kun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| |
Collapse
|
12
|
Chinta YD, Araki H. Cover Crop Amendments and Lettuce Plant Growth Stages Alter Rhizobacterial Properties and Roles in Plant Performance. MICROBIAL ECOLOGY 2023; 86:446-459. [PMID: 35925231 DOI: 10.1007/s00248-022-02090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Lettuce plants respond differently to cover crop amendments by altering their biomass and nitrogen uptake (Nup) at different plant growth stages. Nonetheless, plant-microbe interactions involved in the alterations are scarcely studied. This study elucidated how the properties of the soil microbial community inhabiting the rhizosphere associated with lettuce (Lactuca sativa L. var. crispa "Red fire") change during plant growth stages. Lettuce plants were cultivated in control soil and soil with rye, hairy vetch (HV), and rye plus HV (rye + HV) cover crop amendments. Rhizosphere soil samples were collected at the mid-growth and mature stages of plant development. DNA was extracted from the soil, and the 16S rRNA region was amplified using polymerase chain reaction to analyze bacterial genes and community structures and functions. Cover crop amendments and plant growth stages increased or decreased the relative abundances of bacterial taxa at the genus level. Plant maturity decreased 16S rRNA gene expression and the number of bacterial operational taxonomic units in all treatments. The unique, core, and shared taxa with low relative abundances may be associated with improved lettuce Nup and lettuce shoot and root biomass at each plant growth stage under different cover crop amendments based on multivariate analysis between plant indicators and bacterial genera groups. This study revealed the importance of bacterial groups with low relative abundance in plant-microbe interactions; such bacteria may promote the cover crop application for high lettuce productivity.
Collapse
Affiliation(s)
- Yufita Dwi Chinta
- Biosphere Science Division, Agro-Ecosystem Course, Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo, Hokkaido, 060-0810, Japan.
- Field Science Center for Northern Biosphere, Hokkaido University, North 11 West 10, Sapporo, Hokkaido, 060-0811, Japan.
| | - Hajime Araki
- Field Science Center for Northern Biosphere, Hokkaido University, North 11 West 10, Sapporo, Hokkaido, 060-0811, Japan
- Niigata Agro-Food University, Faculty of Food Industry, Hiranedai 2416, Tainai, Niigata, Prefecture 959-2702, Japan
| |
Collapse
|
13
|
Nadarajah K, Abdul Rahman NSN. The Microbial Connection to Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:2307. [PMID: 37375932 DOI: 10.3390/plants12122307] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Microorganisms are an important element in modeling sustainable agriculture. Their role in soil fertility and health is crucial in maintaining plants' growth, development, and yield. Further, microorganisms impact agriculture negatively through disease and emerging diseases. Deciphering the extensive functionality and structural diversity within the plant-soil microbiome is necessary to effectively deploy these organisms in sustainable agriculture. Although both the plant and soil microbiome have been studied over the decades, the efficiency of translating the laboratory and greenhouse findings to the field is largely dependent on the ability of the inoculants or beneficial microorganisms to colonize the soil and maintain stability in the ecosystem. Further, the plant and its environment are two variables that influence the plant and soil microbiome's diversity and structure. Thus, in recent years, researchers have looked into microbiome engineering that would enable them to modify the microbial communities in order to increase the efficiency and effectiveness of the inoculants. The engineering of environments is believed to support resistance to biotic and abiotic stressors, plant fitness, and productivity. Population characterization is crucial in microbiome manipulation, as well as in the identification of potential biofertilizers and biocontrol agents. Next-generation sequencing approaches that identify both culturable and non-culturable microbes associated with the soil and plant microbiome have expanded our knowledge in this area. Additionally, genome editing and multidisciplinary omics methods have provided scientists with a framework to engineer dependable and sustainable microbial communities that support high yield, disease resistance, nutrient cycling, and management of stressors. In this review, we present an overview of the role of beneficial microbes in sustainable agriculture, microbiome engineering, translation of this technology to the field, and the main approaches used by laboratories worldwide to study the plant-soil microbiome. These initiatives are important to the advancement of green technologies in agriculture.
Collapse
Affiliation(s)
- Kalaivani Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Sciences and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nur Sabrina Natasha Abdul Rahman
- Department of Biological Sciences and Biotechnology, Faculty of Sciences and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
14
|
Kim A, Sevanto S, Moore ER, Lubbers N. Latent Dirichlet Allocation modeling of environmental microbiomes. PLoS Comput Biol 2023; 19:e1011075. [PMID: 37289841 PMCID: PMC10249879 DOI: 10.1371/journal.pcbi.1011075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/05/2023] [Indexed: 06/10/2023] Open
Abstract
Interactions between stressed organisms and their microbiome environments may provide new routes for understanding and controlling biological systems. However, microbiomes are a form of high-dimensional data, with thousands of taxa present in any given sample, which makes untangling the interaction between an organism and its microbial environment a challenge. Here we apply Latent Dirichlet Allocation (LDA), a technique for language modeling, which decomposes the microbial communities into a set of topics (non-mutually-exclusive sub-communities) that compactly represent the distribution of full communities. LDA provides a lens into the microbiome at broad and fine-grained taxonomic levels, which we show on two datasets. In the first dataset, from the literature, we show how LDA topics succinctly recapitulate many results from a previous study on diseased coral species. We then apply LDA to a new dataset of maize soil microbiomes under drought, and find a large number of significant associations between the microbiome topics and plant traits as well as associations between the microbiome and the experimental factors, e.g. watering level. This yields new information on the plant-microbial interactions in maize and shows that LDA technique is useful for studying the coupling between microbiomes and stressed organisms.
Collapse
Affiliation(s)
- Anastasiia Kim
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Sanna Sevanto
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Eric R. Moore
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Nicholas Lubbers
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|
15
|
Giri K, Mishra G, Chandra Suyal D, Kumar N, Doley B, Das N, Baruah RC, Bhattacharyya R, Bora N. Performance evaluation of native plant growth-promoting rhizobacteria for paddy yield enhancement in the jhum fields of Mokokchung, Nagaland, North East India. Heliyon 2023; 9:e14588. [PMID: 36950636 PMCID: PMC10025965 DOI: 10.1016/j.heliyon.2023.e14588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
The present study was carried out to evaluate the performance of native plant growth-promoting rhizobacteria (PGPR) on jhum paddy yield enhancement in Nagaland, Northeast India. Three indigenous PGPR isolates (Bacillus cereus MKGB, Pseudomonas fluorescens MKGPf, and Azospirillum oryzae MKGAz) were tested in the soil microcosm and jhum fields of Longkhum and Ungma villages in Mokokchung, Nagaland. The maximum 78.44% seed germination, 165 cm plant height, 30 leaves, 5 tillers, and 5 panicles per plant were recorded in the PGPR consortium inoculated pot soil. Similarly, maximum 151 grains per panicle, 21.66 g grain yield per plant, and 33.50 g of straw biomass were recorded in the same treatment. The observations from the field trials revealed a maximum of 4.67 t ha-1 paddy yield in the Longkhum village jhum field inoculated with the PGPR consortium which was significantly different from the control (T1) at a p value of ≤0.05%. Similarly 4.74 t ha-1 paddy yield was obtained from the PGPR consortium applied jhum plots in Ungma village. The PGPR consortium was found more effective and promising than the single culture inoculation in paddy yield enhancement. The study suggests the application of tested PGPR consortium in jhum fields for soil health and crop productivity improvement and achieving agricultural sustainability as well as social prosperity in the rural areas of North East India.
Collapse
Affiliation(s)
- Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
- Centre of Excellence on Sustainable Land Management, Indian Council of Forestry Research and Education, Dehradun, 248 006, India
- Corresponding author. Rain Forest Research Institute, Jorhat, 785 010, India.
| | - Gaurav Mishra
- Rain Forest Research Institute, Jorhat, 785 010, India
- Centre of Excellence on Sustainable Land Management, Indian Council of Forestry Research and Education, Dehradun, 248 006, India
| | - Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib Sirmour, 173 101, India
| | - Narendra Kumar
- Doon (P.G) Colleges of Agriculture and Allied Sciences, Dehradun, 248 197, India
| | | | - Niren Das
- Rain Forest Research Institute, Jorhat, 785 010, India
| | | | | | | |
Collapse
|
16
|
Bowerman AF, Byrt CS, Roy SJ, Whitney SM, Mortimer JC, Ankeny RA, Gilliham M, Zhang D, Millar AA, Rebetzke GJ, Pogson BJ. Potential abiotic stress targets for modern genetic manipulation. THE PLANT CELL 2023; 35:139-161. [PMID: 36377770 PMCID: PMC9806601 DOI: 10.1093/plcell/koac327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/03/2022] [Indexed: 05/06/2023]
Abstract
Research into crop yield and resilience has underpinned global food security, evident in yields tripling in the past 5 decades. The challenges that global agriculture now faces are not just to feed 10+ billion people within a generation, but to do so under a harsher, more variable, and less predictable climate, and in many cases with less water, more expensive inputs, and declining soil quality. The challenges of climate change are not simply to breed for a "hotter drier climate," but to enable resilience to floods and droughts and frosts and heat waves, possibly even within a single growing season. How well we prepare for the coming decades of climate variability will depend on our ability to modify current practices, innovate with novel breeding methods, and communicate and work with farming communities to ensure viability and profitability. Here we define how future climates will impact farming systems and growing seasons, thereby identifying the traits and practices needed and including exemplars being implemented and developed. Critically, this review will also consider societal perspectives and public engagement about emerging technologies for climate resilience, with participatory approaches presented as the best approach.
Collapse
Affiliation(s)
- Andrew F Bowerman
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Caitlin S Byrt
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stuart John Roy
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Spencer M Whitney
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jenny C Mortimer
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Rachel A Ankeny
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Humanities, University of Adelaide, North Terrace, South Australia, Australia
| | - Matthew Gilliham
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Dabing Zhang
- ARC Training Centre for Accelerated Future Crops Development, University of Adelaide, South Australia, Australia
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Anthony A Millar
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Greg J Rebetzke
- CSIRO Agriculture & Food, Canberra, Australian Capital Territory, Australia
| | - Barry J Pogson
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
17
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Swapnil P, Marwal A, Zehra A. Advantageous features of plant growth-promoting microorganisms to improve plant growth in difficult conditions. PLANT-MICROBE INTERACTION - RECENT ADVANCES IN MOLECULAR AND BIOCHEMICAL APPROACHES 2023:279-296. [DOI: 10.1016/b978-0-323-91876-3.00019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
18
|
Younginger BS, Stewart NU, Balkan MA, Ballhorn DJ. Stable coexistence or competitive exclusion? Fern endophytes demonstrate rapid turnover favouring a dominant fungus. Mol Ecol 2023; 32:244-257. [PMID: 36218009 DOI: 10.1111/mec.16732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Fungal endophytes are critical members of the plant microbiome, but their community dynamics throughout an entire growing season are underexplored. Additionally, most fungal endophyte research has centred on seed-reproducing hosts, while spore-reproducing plants also host endophytes and may be colonized by unique community members. In order to examine annual fungal endophyte community dynamics in a spore-reproducing host, we explored endophytes in a single population of ferns, Polystichum munitum, in the Pacific Northwest. Through metabarcoding, we characterized the community assembly and temporal turnover of foliar endophytes throughout a growing season. From these results, we selected endophytes with outsized representations in sequence data and performed in vitro competition assays. Finally, we inoculated sterile fern gametophytes with dominant fungi observed in the field and determined their effects on host performance. Sequencing demonstrated that ferns were colonized by a diverse community of fungal endophytes in newly emerged tissue, but diversity decreased throughout the season leading to the preponderance of a single fungus in later sampling months. This previously undescribed endophyte appears to abundantly colonize the host to the detriment of other microfungi. Competition assays on a variety of media types failed to demonstrate that the dominant fungus was competitive against other fungi isolated from the same hosts, and inoculation onto sterile fern gametophytes did not alter growth compared to sterile controls, suggesting its effects are not antagonistic. The presence of this endophyte in the fern population probably demonstrates a case of repeated colonization driving competitive exclusion of other fungal community members.
Collapse
Affiliation(s)
| | - Nathan U Stewart
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Mehmet A Balkan
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Daniel J Ballhorn
- Department of Biology, Portland State University, Portland, Oregon, USA
| |
Collapse
|
19
|
Fadiji AE, Orozco-Mosqueda MDC, Santos-Villalobos SDL, Santoyo G, Babalola OO. Recent Developments in the Application of Plant Growth-Promoting Drought Adaptive Rhizobacteria for Drought Mitigation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223090. [PMID: 36432820 PMCID: PMC9698351 DOI: 10.3390/plants11223090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 05/21/2023]
Abstract
Drought intensity that has increased as a result of human activity and global warming poses a serious danger to agricultural output. The demand for ecologically friendly solutions to ensure the security of the world's food supply has increased as a result. Plant growth-promoting rhizobacteria (PGPR) treatment may be advantageous in this situation. PGPR guarantees the survival of the plant during a drought through a variety of processes including osmotic adjustments, improved phytohormone synthesis, and antioxidant activity, among others and these mechanisms also promote the plant's development. In addition, new developments in omics technology have improved our understanding of PGPR, which makes it easier to investigate the genes involved in colonizing plant tissue. Therefore, this review addresses the mechanisms of PGPR in drought stress resistance to summarize the most current omics-based and molecular methodologies for exploring the function of drought-responsive genes. The study discusses a detailed mechanistic approach, PGPR-based bioinoculant design, and a potential roadmap for enhancing their efficacy in combating drought stress.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | | | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Correspondence: ; Tel.: +27-18-389-2568
| |
Collapse
|
20
|
Hao Z, Wang Y, Guo X, De J. Deciphering the core seed endo-bacteriome of the highland barley in Tibet plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:1041504. [PMID: 36388601 PMCID: PMC9650301 DOI: 10.3389/fpls.2022.1041504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Highland barley (Hordeum vulgare var. nudum (L.) Hook.f., qingke) has unique physical and chemical properties and good potential for industrial applications. As the only crop that can be grown at high altitudes of 4200-4500 m, qingke is well adapted to extreme habitats at high altitudes. In this study, we analysed the seed bacterial community of 58 genotypes of qingke grown in different regions of Tibet, including qingke landraces, modern cultivars, and winter barley varieties, and characterised endophytic bacterial communities in seeds from different sources and the core endo-bacteriome of qingke. This study aim to provide a reference for the application of seed endophytes as biological inoculants for sustainable agricultural production and for considering microbe-plant interactions in breeding strategies. A total of 174 qingke seed samples from five main agricultural regions in Tibet were collected and subjected to investigation of endophytic endo-bacteriome using high-throughput sequencing and bioinformatics approaches. The phyla of endophytic bacteria in qingke seeds from different sources were similar; however, the relative proportions of each phylum were different. Different environmental conditions, growth strategies, and modern breeding processes have significantly changed the community structure of endophytic bacteria in seeds, among which the growth strategy has a greater impact on the diversity of endophytic bacteria in seeds. Seeds from different sources have conserved beneficial core endo-bacteriome. The core endo-bacteriome of qingke seeds dominated by Enterobacteriaceae may maintain qingke growth by promoting plant growth and assisting plants in resisting pests and diseases. This study reveals the core endo-bacteriome of qingke seeds and provides a basis for exploiting the endophytic endo-bacteriome of qingke seeds.
Collapse
Affiliation(s)
| | | | | | - Ji De
- *Correspondence: Xiaofang Guo, ; Ji De,
| |
Collapse
|
21
|
Diwan D, Rashid MM, Vaishnav A. Current understanding of plant-microbe interaction through the lenses of multi-omics approaches and their benefits in sustainable agriculture. Microbiol Res 2022; 265:127180. [PMID: 36126490 DOI: 10.1016/j.micres.2022.127180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
The success of sustainable agricultural practices has now become heavily dependent on the interactions between crop plants and their associated microbiome. Continuous advancement in high throughput sequencing platforms, omics-based approaches, and gene editing technologies has remarkably accelerated this area of research. It has enabled us to characterize the interactions of plants with associated microbial communities more comprehensively and accurately. Furthermore, the genomic and post-genomic era has significantly refined our perspective toward the complex mechanisms involved in those interactions, opening new avenues for efficiently deploying the knowledge in developing sustainable agricultural practices. This review focuses on our fundamental understanding of plant-microbe interactions and the contribution of existing multi-omics approaches, including those under active development and their tremendous success in unraveling different aspects of the complex network between plant hosts and microbes. In addition, we have also discussed the importance of sustainable and eco-friendly agriculture and the associated outstanding challenges ahead.
Collapse
Affiliation(s)
- Deepti Diwan
- Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Md Mahtab Rashid
- Department of Plant Pathology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar 813210, India; Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh 281121, India; Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland; Plant-Soil Interaction Group, Agroscope (Reckenholz), Reckenholzstrasse 191, Zürich 8046, Switzerland
| |
Collapse
|
22
|
Pang B, Yin D, Zhai Y, He A, Qiu L, Liu Q, Ma N, Shen H, Jia Q, Liang Z, Wang D. Diversity of endophytic fungal community in Huperzia serrata from different ecological areas and their correlation with Hup A content. BMC Microbiol 2022; 22:191. [PMID: 35931950 PMCID: PMC9354316 DOI: 10.1186/s12866-022-02605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Huperzine A (Hup A) has attracted considerable attention as an effective therapeutic candidate drug used to treat Alzheimer’s disease. Whereas, the production of Hup A from wild plants faced a major challenge, which is the wild Huperzia Serrata harbor a low Hup A content, has a long-life cycle, and has a small yield. At present, several reports showed that Hup A is produced by various endophytic fungal strains isolated from H. serrata, thereby providing an alternative method to produce the compound and reduce the consumption of this rare and endangered plant. However, till now, very few comprehensive studies are available on the biological diversity and structural composition of endophytic fungi and the effects of endophytic fungi on the Hup A accumulation in H. serrata. Results In this research, the composition and diversity of fungal communities in H. serrata were deciphered based on high-throughput sequencing technology of fungal internal transcribed spacer regions2 (ITS2). The correlation between endophytic fungal community and Hup A content was also investigated. Results revealed that the richness and the diversity of endophytic fungi in H. serrata was various according to different tissues and different ecological areas. The endophytic fungal communities of H. serrata exhibit species-specific, ecological-specific, and tissue-specific characteristics. There are 6 genera (Ascomycota_unclassified, Cyphellophora, Fungi_unclassified, Sporobolomyces, and Trichomeriaceae_unclassified) were significantly positively correlated with Hup A content in all two areas, whereas, there are 6 genera (Auricularia, Cladophialophora, Cryptococcus, Mortierella, and Mycena) were significantly negatively correlated with Hup A content of in all two areas. Conclusions This study indicated a different composition and diverse endophytic fungal communities in H. serrata from different organs and ecological areas. The current study will provide the realistic basis and theoretical significance for understanding the biological diversity and structural composition of endophytic fungal communities in H. serrata, as well as providing novel insights into the interaction between endophytic fungi and Hup A content.
Collapse
Affiliation(s)
- Bo Pang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Dengpan Yin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Yufeng Zhai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Anguo He
- Administration of Zhejiang Dapanshan National Nature Reserve, Pan'an, Zhejiang, 322300, China
| | - Linlin Qiu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Qiao Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Nan Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Hongjun Shen
- Ningbo Delai Medicinal Material Planting Co, Zhejiang, 315444, Ltd Ningbo, China
| | - Qiaojun Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Dekai Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
23
|
Itkina DL, Suleimanova AD, Sharipova MR. Isolation, Purification, and Identification of the Secretion Compound Pantoea brenneri AS3 with Fungicidal Activity. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s000368382204007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Plant genetic effects on microbial hubs impact host fitness in repeated field trials. Proc Natl Acad Sci U S A 2022; 119:e2201285119. [PMID: 35867817 PMCID: PMC9335298 DOI: 10.1073/pnas.2201285119] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent demonstrations of a genetic basis for variation among hosts in the microbiome leave unresolved the question of how commonly host genetic effects influence individual microbes, and whether these effects impact host fitness. We used replicated field studies in the north and south of Sweden to map host genetic effects in microbial community networks using genome-wide association mapping. By focusing on consistent effects across sites, we found effects of genetic variation on important microbial hubs that contributed to plant fitness in a manner robust to the environment. Our results suggest that ongoing efforts to harness host genotype effects on the microbiome for agricultural purposes can be successful and highlight the value of explicitly considering abiotic variation in those efforts. Although complex interactions between hosts and microbial associates are increasingly well documented, we still know little about how and why hosts shape microbial communities in nature. In addition, host genetic effects on microbial communities vary widely depending on the environment, obscuring conclusions about which microbes are impacted and which plant functions are important. We characterized the leaf microbiota of 200 Arabidopsis thaliana genotypes in eight field experiments and detected consistent host effects on specific, broadly distributed microbial species (operational taxonomic unit [OTUs]). Host genetic effects disproportionately influenced central ecological hubs, with heritability of particular OTUs declining with their distance from the nearest hub within the microbial network. These host effects could reflect either OTUs preferentially associating with specific genotypes or differential microbial success within them. Host genetics associated with microbial hubs explained over 10% of the variation in lifetime seed production among host genotypes across sites and years. We successfully cultured one of these microbial hubs and demonstrated its growth-promoting effects on plants in sterile conditions. Finally, genome-wide association mapping identified many putatively causal genes with small effects on the relative abundance of microbial hubs across sites and years, and these genes were enriched for those involved in the synthesis of specialized metabolites, auxins, and the immune system. Using untargeted metabolomics, we corroborate the consistent association between variation in specialized metabolites and microbial hubs across field sites. Together, our results reveal that host genetic variation impacts the microbial communities in consistent ways across environments and that these effects contribute to fitness variation among host genotypes.
Collapse
|
25
|
The endophyte Stenotrophomonas maltophilia EPS modulates endogenous antioxidant defense in safflower (Carthamus tinctorius L.) under cadmium stress. Arch Microbiol 2022; 204:431. [PMID: 35759053 PMCID: PMC9237008 DOI: 10.1007/s00203-022-03049-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Cadmium (Cd) pollution in agricultural soils induces oxidative stress in plants that in turn is the foremost limiting factor for agricultural productivity. In past few decades, plant-metal-microbe interaction is of great interest as an emerging environmentally friendly technology that can be exploited to alleviate metal stress in plants. Considering these, in the present study an endophytic bacterium strain EPS has been isolated from the roots of common bean. The present strain was identified as Stenotrophomonas maltophilia based on 16S rRNA gene sequence. The strain showed Cd tolerance and Cd-adsorption potentials. The inoculation of strain EPS in safflower seeds significantly enhanced the antioxidant defense of plants under Cd-stress conditions through increasing the levels of antioxidant molecules like phenolics, flavonoids and carotenoids as well as improving the activities of the antioxidative enzymes including guaiacol peroxidase (POX), ascorbate peroxidase (APX) and superoxide dismutase (SOD). The output of this study is that strain EPS inoculation mitigates Cd-induced oxidative stress and consequently it may be beneficial, especially in Cd-contaminated crop fields.
Collapse
|
26
|
Abstract
The findings on the strategies employed by endophytic microbes have provided salient information to the researchers on the need to maximally explore them as bio-input in agricultural biotechnology. Biotic and abiotic factors are known to influence microbial recruitments from external plant environments into plant tissues. Endophytic microbes exhibit mutualism or antagonism association with host plants. The beneficial types contribute to plant growth and soil health, directly or indirectly. Strategies to enhance the use of endophytic microbes are desirable in modern agriculture, such that these microbes can be applied individually or combined as bioinoculants with bioprospecting in crop breeding systems. Scant information is available on the strategies for shaping the endophytic microbiome; hence, the need to unravel microbial strategies for yield enhancement and pathogen suppressiveness have become imperative. Therefore, this review focuses on the endophytic microbiome, mechanisms, factors influencing endophyte recruitment, and strategies for possible exploration as bioinoculants.
Collapse
|
27
|
Hagh-Doust N, Färkkilä SM, Hosseyni Moghaddam MS, Tedersoo L. Symbiotic fungi as biotechnological tools: Methodological challenges and relative benefits in agriculture and forestry. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Gupta A, Singh UB, Sahu PK, Paul S, Kumar A, Malviya D, Singh S, Kuppusamy P, Singh P, Paul D, Rai JP, Singh HV, Manna MC, Crusberg TC, Kumar A, Saxena AK. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053141. [PMID: 35270832 DOI: 10.3390/ijerph190531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 05/28/2023]
Abstract
Agriculture is a multifarious interface between plants and associated microorganisms. In contemporary agriculture, emphasis is being given to environmentally friendly approaches, particularly in developing countries, to enhance sustainability of the system with the least negative effects on produce quality and quantity. Modern agricultural practices such as extensive tillage, the use of harmful agrochemicals, mono-cropping, etc. have been found to influence soil microbial community structure and soil sustainability. On the other hand, the question of feeding the ever-growing global population while ensuring system sustainability largely remains unanswered. Agriculturally important microorganisms are envisaged to play important roles in various measures to raise a healthy and remunerative crop, including integrated nutrient management, as well as disease and pest management to cut down agrochemicals without compromising the agricultural production. These beneficial microorganisms seem to have every potential to provide an alternative opportunity to overcome the ill effects of various components of traditional agriculture being practiced by and large. Despite an increased awareness of the importance of organically produced food, farmers in developing countries still tend to apply inorganic chemical fertilizers and toxic chemical pesticides beyond the recommended doses. Nutrient uptake enhancement, biocontrol of pests and diseases using microbial inoculants may replace/reduce agrochemicals in agricultural production system. The present review aims to examine and discuss the shift in microbial population structure due to current agricultural practices and focuses on the development of a sustainable agricultural system employing the tremendous untapped potential of the microbial world.
Collapse
Affiliation(s)
- Amrita Gupta
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Pramod K Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Surinder Paul
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Adarsh Kumar
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Pandiyan Kuppusamy
- ICAR-Central Institute for Research on Cotton Technology, Ginning Training Centre, Nagpur 440023, India
| | - Prakash Singh
- Department of Plant Breeding and Genetics, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon 802136, India
| | - Diby Paul
- Pilgram Marpeck School of Science, Technology, Engineering and Mathematics, Truett McConnel University, 100 Alumni Dr., Cleveland, GA 30528, USA
| | - Jai P Rai
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Harsh V Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Madhab C Manna
- Soil Biology Division, ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal 462038, India
| | - Theodore C Crusberg
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Arun Kumar
- Department of Agronomy, Bihar Agricultural University, Sabour, Bhagalpur 813210, India
| | - Anil K Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| |
Collapse
|
29
|
Gupta A, Singh UB, Sahu PK, Paul S, Kumar A, Malviya D, Singh S, Kuppusamy P, Singh P, Paul D, Rai JP, Singh HV, Manna MC, Crusberg TC, Kumar A, Saxena AK. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3141. [PMID: 35270832 PMCID: PMC8910389 DOI: 10.3390/ijerph19053141] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/01/2022]
Abstract
Agriculture is a multifarious interface between plants and associated microorganisms. In contemporary agriculture, emphasis is being given to environmentally friendly approaches, particularly in developing countries, to enhance sustainability of the system with the least negative effects on produce quality and quantity. Modern agricultural practices such as extensive tillage, the use of harmful agrochemicals, mono-cropping, etc. have been found to influence soil microbial community structure and soil sustainability. On the other hand, the question of feeding the ever-growing global population while ensuring system sustainability largely remains unanswered. Agriculturally important microorganisms are envisaged to play important roles in various measures to raise a healthy and remunerative crop, including integrated nutrient management, as well as disease and pest management to cut down agrochemicals without compromising the agricultural production. These beneficial microorganisms seem to have every potential to provide an alternative opportunity to overcome the ill effects of various components of traditional agriculture being practiced by and large. Despite an increased awareness of the importance of organically produced food, farmers in developing countries still tend to apply inorganic chemical fertilizers and toxic chemical pesticides beyond the recommended doses. Nutrient uptake enhancement, biocontrol of pests and diseases using microbial inoculants may replace/reduce agrochemicals in agricultural production system. The present review aims to examine and discuss the shift in microbial population structure due to current agricultural practices and focuses on the development of a sustainable agricultural system employing the tremendous untapped potential of the microbial world.
Collapse
Affiliation(s)
- Amrita Gupta
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Pramod K. Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Surinder Paul
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Adarsh Kumar
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Pandiyan Kuppusamy
- ICAR-Central Institute for Research on Cotton Technology, Ginning Training Centre, Nagpur 440023, India;
| | - Prakash Singh
- Department of Plant Breeding and Genetics, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon 802136, India;
| | - Diby Paul
- Pilgram Marpeck School of Science, Technology, Engineering and Mathematics, Truett McConnel University, 100 Alumni Dr., Cleveland, GA 30528, USA;
| | - Jai P. Rai
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Harsh V. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Madhab C. Manna
- Soil Biology Division, ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal 462038, India;
| | - Theodore C. Crusberg
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA;
| | - Arun Kumar
- Department of Agronomy, Bihar Agricultural University, Sabour, Bhagalpur 813210, India;
| | - Anil K. Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| |
Collapse
|
30
|
Taylor L, Gutierrez S, McCormick SP, Bakker MG, Proctor RH, Teresi J, Kurtzman B, Hao G, Vaughan MM. Use of the volatile trichodiene to reduce Fusarium head blight and trichothecene contamination in wheat. Microb Biotechnol 2022; 15:513-527. [PMID: 33528888 PMCID: PMC8867995 DOI: 10.1111/1751-7915.13742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022] Open
Abstract
Fusarium graminearum is the primary cause of Fusarium head blight (FHB), one of the most economically important diseases of wheat worldwide. FHB reduces yield and contaminates grain with the trichothecene mycotoxin deoxynivalenol (DON), which poses a risk to plant, human and animal health. The first committed step in trichothecene biosynthesis is formation of trichodiene (TD). The volatile nature of TD suggests that it could be a useful intra or interspecies signalling molecule, but little is known about the potential signalling role of TD during F. graminearum-wheat interactions. Previous work using a transgenic Trichoderma harzianum strain engineered to emit TD (Th + TRI5) indicated that TD can function as a signal that can modulate pathogen virulence and host plant resistance. Herein, we demonstrate that Th + TRI5 has enhanced biocontrol activity against F. graminearum and reduced DON contamination by 66% and 70% in a moderately resistant and a susceptible cultivar, respectively. While Th + TRI5 volatiles significantly influenced the expression of the pathogenesis-related 1 (PR1) gene, the effect was dependent on cultivar. Th + TRI5 volatiles strongly reduced DON production in F. graminearum plate cultures and downregulated the expression of TRI genes. Finally, we confirm that TD fumigation reduced DON accumulation in a detached wheat head assay.
Collapse
Affiliation(s)
- Laurie Taylor
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Santiago Gutierrez
- Molecular Biology DepartmentUniversity of LeonCampus de Ponferrada, Avda. Astorga s/n 24400PonferradaSpain
| | - Susan P. McCormick
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Matthew G. Bakker
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
- Present address:
Department of MicrobiologyUniversity of Manitoba45 Chancellor’s CircleWinnipegMBR3T 2N2Canada
| | - Robert H. Proctor
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Jennifer Teresi
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Ben Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Guixia Hao
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Martha M. Vaughan
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| |
Collapse
|
31
|
Ribeiro VP, Gomes EA, de Sousa SM, de Paula Lana UG, Coelho AM, Marriel IE, de Oliveira-Paiva CA. Co-inoculation with tropical strains of Azospirillum and Bacillus is more efficient than single inoculation for improving plant growth and nutrient uptake in maize. Arch Microbiol 2022; 204:143. [PMID: 35044594 DOI: 10.1007/s00203-022-02759-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
Usage of Bacillus and Azospirillum as new eco-friendly microbial consortium inoculants is a promising strategy to increase plant growth and crop yield by improving nutrient availability in agricultural sustainable systems. In this study, we designed a multispecies inoculum containing B. thuringiensis (strain B116), B. subtillis (strain B2084) and Azospirillum sp. (strains A1626 and A2142) to investigate their individual or co-inoculated ability to solubilize and mineralize phosphate, produce indole acetic acid (IAA) and their effect on maize growth promotion in hydroponics and in a non-sterile soil. All strains showed significant IAA production, P mineralization (sodium phytate) and Ca-P, Fe-P (tricalcium phosphate and iron phosphate, respectively) solubilization. In hydroponics, co-inoculation with A1626 x A2142, B2084 x A2142, B2084 x A1626 resulted in higher root total length, total surface area, and surface area of roots with diameter between 0 and 1 mm than other treatments with single inoculant, except B2084. In a greenhouse experiment, maize inoculated with the two Azospirillum strains exhibited enhanced shoot dry weight, shoot P and K content, root dry weight, root N and K content and acid and alkaline phosphatase activities than the other treatments. There was a significant correlation between soil P and P shoot, alkaline phosphatase and P shoot and between acid phosphatase and root dry weight. It may be concluded that co-inoculations are most effective than single inoculants strains, mainly between two selected Azospirillum strains. Thus, they could have synergistic interactions during maize growth, and be useful in the formulation of new inoculants to improve the tropical cropping systems sustainability.
Collapse
Affiliation(s)
| | | | - Sylvia Morais de Sousa
- Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
- Embrapa Milho E Sorgo, Sete Lagoas, MG, 35701-970, Brazil
- Centro Universitário De Sete Lagoas, Sete Lagoas, MG, Brazil
| | - Ubiraci Gomes de Paula Lana
- Embrapa Milho E Sorgo, Sete Lagoas, MG, 35701-970, Brazil
- Centro Universitário De Sete Lagoas, Sete Lagoas, MG, Brazil
| | | | - Ivanildo Evódio Marriel
- Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil.
- Embrapa Milho E Sorgo, Sete Lagoas, MG, 35701-970, Brazil.
- Centro Universitário De Sete Lagoas, Sete Lagoas, MG, Brazil.
| | | |
Collapse
|
32
|
Fadiji AE, Babalola OO, Santoyo G, Perazzolli M. The Potential Role of Microbial Biostimulants in the Amelioration of Climate Change-Associated Abiotic Stresses on Crops. Front Microbiol 2022; 12:829099. [PMID: 35095828 PMCID: PMC8795815 DOI: 10.3389/fmicb.2021.829099] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023] Open
Abstract
Crop plants are more often exposed to abiotic stresses in the current age of fast-evolving climate change. This includes exposure to extreme and unpredictable changes in climatic conditions, phytosanitary hazards, and cultivation conditions, which results in drastic losses in worldwide agricultural productions. Plants coexist with microbial symbionts, some of which play key roles in the ecosystem and plant processes. The application of microbial biostimulants, which take advantage of symbiotic relationships, is a long-term strategy for improving plant productivity and performance, even in the face of climate change-associated stresses. Beneficial filamentous fungi, yeasts, and bacteria are examples of microbial biostimulants, which can boost the growth, yield, nutrition and stress tolerance in plants. This paper highlights recent information about the role of microbial biostimulants and their potential application in mitigating the abiotic stresses occurring on crop plants due to climate change. A critical evaluation for their efficient use under diverse climatic conditions is also made. Currently, accessible products generally improve cultural conditions, but their action mechanisms are mostly unknown, and their benefits are frequently inconsistent. Thus, further studies that could lead to the more precisely targeted products are discussed.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all’Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
33
|
Harnessing phytomicrobiome signals for phytopathogenic stress management. J Biosci 2022. [DOI: 10.1007/s12038-021-00240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Li B, Wang Y, Hu T, Qiu D, Francis F, Wang S, Wang S. Root-Associated Microbiota Response to Ecological Factors: Role of Soil Acidity in Enhancing Citrus Tolerance to Huanglongbing. FRONTIERS IN PLANT SCIENCE 2022; 13:937414. [PMID: 35909738 PMCID: PMC9335078 DOI: 10.3389/fpls.2022.937414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 05/14/2023]
Abstract
The citrus orchards in southern China are widely threatened by low soil pH and Huanglongbing (HLB) prevalence. Notably, the lime application has been used to optimize soil pH, which is propitious to maintain root health and enhance HLB tolerance of citrus; however, little is known about the interactive effects of soil acidity on the soil properties and root-associated (rhizoplane and endosphere) microbial community of HLB-infected citrus orchard. In this study, the differences in microbial community structures and functions between the acidified and amended soils in the Gannan citrus orchard were investigated, which may represent the response of the host-associated microbiome in diseased roots and rhizoplane to dynamic soil acidity. Our findings demonstrated that the severity of soil acidification and aluminum toxicity was mitigated after soil improvement, accompanied by the increase in root activity and the decrease of HLB pathogen concentration in citrus roots. Additionally, the Illumina sequencing-based community analysis showed that the application of soil amendment enriched functional categories involved in host-microbe interactions and nitrogen and sulfur metabolisms in the HLB-infected citrus rhizoplane; and it also strongly altered root endophytic microbial community diversity and structure, which represented by the enrichment of beneficial microorganisms in diseased roots. These changes in rhizoplane-enriched functional properties and microbial composition may subsequently benefit the plant's health and tolerance to HLB disease. Overall, this study advances our understanding of the important role of root-associated microbiota changes and ecological factors, such as soil acidity, in delaying and alleviating HLB disease.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yanan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Tongle Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Dewen Qiu
- The State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Frédéric Francis
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuangchao Wang
- The State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Shuangchao Wang
| | - Shutong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
- Shutong Wang
| |
Collapse
|
35
|
Bag S, Mondal A, Majumder A, Mondal SK, Banik A. Flavonoid mediated selective cross-talk between plants and beneficial soil microbiome. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1739-1760. [PMID: 35221830 PMCID: PMC8860142 DOI: 10.1007/s11101-022-09806-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/17/2022] [Indexed: 05/14/2023]
Abstract
UNLABELLED Plants generate a wide variety of organic components during their different growth phases. The majority of those compounds have been classified as primary and secondary metabolites. Secondary metabolites are essential in plants' adaptation to new changing environments and in managing several biotic and abiotic stress. It also invests some of its photosynthesized carbon as secondary metabolites to establish a mutual relationship with soil microorganisms in that specific niche. As soil harbors both pathogenic and beneficial microorganisms, it is essential to identify some specific metabolites that can discriminate beneficial and pathogenic ones. Thus, a detailed understanding of metabolite's architectures that interact with beneficial microorganisms could open a new horizon of ecology and agricultural research. Flavonoids are used as classic examples of secondary metabolites in this study to demonstrate recent developments in understanding and realizing how these valuable metabolites can be controlled at different levels. Most of the research was focused on plant flavonoids, which shield the host plant against competitors or predators, as well as having other ecological implications. Thus, in the present review, our goal is to cover a wide range of functional and signalling activities of secondary metabolites especially, flavonoids mediated selective cross-talk between plant and its beneficial soil microbiome. Here, we have summarized recent advances in understanding the interactions between plant species and their rhizosphere microbiomes through root exudates (flavonoids), with a focus on how these exudates facilitate rhizospheric associations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-022-09806-3.
Collapse
Affiliation(s)
- Sagar Bag
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156 India
| | - Anupam Mondal
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156 India
| | - Anusha Majumder
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156 India
| | - Sunil Kanti Mondal
- Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal India
| | - Avishek Banik
- Laboratory of Microbial Interaction, School of Biotechnology, Presidency University, Canal Bank Road, DG Block (Newtown), Action Area 1D, Newtown, Kolkata, West Bengal 700156 India
| |
Collapse
|
36
|
Khalmuratova I, Choi DH, Kim JG, Lee IS. Endophytic Fungi of Salt-Tolerant Plants: Diversity and Ability to Promote Plant Growth. J Microbiol Biotechnol 2021; 31:1526-1532. [PMID: 34528914 PMCID: PMC9705876 DOI: 10.4014/jmb.2106.06007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Suaeda australis, Phragmites australis, Suaeda maritima, Suaeda glauca Bunge, and Limonium tetragonum in the Seocheon salt marsh on the west coast of the Korean Penincula were sampled in order to identify the endophytes inhabiting the roots. A total of 128 endophytic fungal isolates belonging to 31 different genera were identified using the fungal internal transcribed spacer (ITS) regions and the 5.8S ribosomal RNA gene. Fusarium, Paraconiothyrium and Alternaria were the most commonly isolated genera in the plant root samples. Various diversity indicators were used to assess the diversity of the isolated fungi. Pure cultures containing each of the 128 endophytic fungi, respectively, were tested for the plant growth-promoting abilities of the fungus on Waito-C rice germinals. The culture filtrate of the isolate Lt-1-3-3 significantly increased the growth of shoots compared to the shoots treated with the control. Lt-1-3-3 culture filtrate was analyzed and showed the presence of gibberellins (GA1 2.487 ng/ml, GA3 2.592 ng/ml, GA9 3.998, and GA24 6.191 ng/ml). The culture filtrate from the Lt-1-3-3 fungal isolate produced greater amounts of GA9 and GA24 than the wild-type Gibberella fujikuroi, a fungus known to produce large amounts of gibberellins. By the molecular analysis, fungal isolate Lt-1-3-3 was identified as Gibberella intermedia, with 100% similarity.
Collapse
Affiliation(s)
- Irina Khalmuratova
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Doo-Ho Choi
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Guk Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Seon Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea,Corresponding author Phone: +82?53?850?5538 Fax: +82?53?850?5538 E-mail :
| |
Collapse
|
37
|
An integrated host-microbiome response to atrazine exposure mediates toxicity in Drosophila. Commun Biol 2021; 4:1324. [PMID: 34819611 PMCID: PMC8613235 DOI: 10.1038/s42003-021-02847-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/04/2021] [Indexed: 11/10/2022] Open
Abstract
The gut microbiome produces vitamins, nutrients, and neurotransmitters, and helps to modulate the host immune system-and also plays a major role in the metabolism of many exogenous compounds, including drugs and chemical toxicants. However, the extent to which specific microbial species or communities modulate hazard upon exposure to chemicals remains largely opaque. Focusing on the effects of collateral dietary exposure to the widely used herbicide atrazine, we applied integrated omics and phenotypic screening to assess the role of the gut microbiome in modulating host resilience in Drosophila melanogaster. Transcriptional and metabolic responses to these compounds are sex-specific and depend strongly on the presence of the commensal microbiome. Sequencing the genomes of all abundant microbes in the fly gut revealed an enzymatic pathway responsible for atrazine detoxification unique to Acetobacter tropicalis. We find that Acetobacter tropicalis alone, in gnotobiotic animals, is sufficient to rescue increased atrazine toxicity to wild-type, conventionally reared levels. This work points toward the derivation of biotic strategies to improve host resilience to environmental chemical exposures, and illustrates the power of integrative omics to identify pathways responsible for adverse health outcomes.
Collapse
|
38
|
Non-Specific Interactions of Rhizospheric Microbial Communities Support the Establishment of Mimosa acutistipula var. ferrea in an Amazon Rehabilitating Mineland. Processes (Basel) 2021. [DOI: 10.3390/pr9112079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mimosa acutistipula var. ferrea (Fabaceae) is endemic to ferruginous tropical rocky outcrops in the eastern Amazon, also known as canga. Canga are often associated with mining activities and are the target of protection and rehabilitation projects. M. acutistipula stands out in this biodiversity hotspot with high growth rates, even in rehabilitating minelands (RMs). However, little is known about the diversity of soil microorganisms interacting with M. acutistipula in canga and RMs. This study analyzed the rhizosphere-associated bacterial and fungal microbial communities associated with M. acutistipula growing in an RM and a native shrub canga. The fungal phylum Ascomycota was the dominant taxa identified in the rhizosphere of the canga (RA: 98.1) and RM (RA: 93.1). The bacterial phyla Proteobacteria (RA: 54.3) and Acidobacteria (RA: 56.2) were the dominant taxa identified in the rhizosphere in the canga and RM, respectively. Beneficial genera such as Bradyrhizobium, Rhodoplanes, and Paraconiothyrium were identified in the rhizosphere of M. acutistipula in both areas. However, the analyses showed that the fungal and bacterial diversity differed between the rhizosphere of the canga and RM, and that the microbial taxa adapted to the canga (i.e., Rasamsonia, Scytalidium, Roseiarcus, and Rhodomicrobium) were lacking in the RM. This influences the microbe-mediated soil processes, affecting long-term rehabilitation success. The results showed that M. acutistipula established non-specific interactions with soil microorganisms, including beneficial taxa such as nitrogen-fixing bacteria, mycorrhizal fungi, and other beneficial endophytes, well known for their importance in plant adaptation and survival. High levels of microbe association and a plant’s ability to recruit a wide range of soil microorganisms help to explain M. acutistipula’s success in rehabilitating minelands.
Collapse
|
39
|
de Medeiros Azevedo T, Aburjaile FF, Ferreira-Neto JRC, Pandolfi V, Benko-Iseppon AM. The endophytome (plant-associated microbiome): methodological approaches, biological aspects, and biotech applications. World J Microbiol Biotechnol 2021; 37:206. [PMID: 34708327 DOI: 10.1007/s11274-021-03168-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Similar to other organisms, plants establish interactions with a variety of microorganisms in their natural environment. The plant microbiome occupies the host plant's tissues, either internally or on its surfaces, showing interactions that can assist in its growth, development, and adaptation to face environmental stresses. The advance of metagenomics and metatranscriptomics approaches has strongly driven the study and recognition of plant microbiome impacts. Research in this regard provides comprehensive information about the taxonomic and functional aspects of microbial plant communities, contributing to a better understanding of their dynamics. Evidence of the plant microbiome's functional potential has boosted its exploitation to develop more ecological and sustainable agricultural practices that impact human health. Although microbial inoculants' development and use are promising to revolutionize crop production, interdisciplinary studies are needed to identify new candidates and promote effective practical applications. On the other hand, there are challenges in understanding and analyzing complex data generated within a plant microbiome project's scope. This review presents aspects about the complex structuring and assembly of the microbiome in the host plant's tissues, metagenomics, and metatranscriptomics approaches for its understanding, covering descriptions of recent studies concerning metagenomics to characterize the microbiome of non-model plants under different aspects. Studies involving bio-inoculants, isolated from plant microbial communities, capable of assisting in crops' productivity, are also reviewed.
Collapse
Affiliation(s)
- Thamara de Medeiros Azevedo
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Flávia Figueira Aburjaile
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - José Ribamar Costa Ferreira-Neto
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Valesca Pandolfi
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE, CEP: 50670-901, Brazil.
| |
Collapse
|
40
|
Yang X, Hill KA, Austin RS, Tian L. Differential Gene Expression of Brachypodium distachyon Roots Colonized by Gluconacetobacter diazotrophicus and the Role of BdCESA8 in the Colonization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1143-1156. [PMID: 34709058 DOI: 10.1094/mpmi-06-20-0170-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alternatives to synthetic nitrogen fertilizer are needed to reduce the costs of crop production and offset environmental damage. Nitrogen-fixing bacterium Gluconacetobacter diazotrophicus has been proposed as a possible biofertilizer for monocot crop production. However, the colonization of G. diazotrophicus in most monocot crops is limited and deep understanding of the response of host plants to G. diazotrophicus colonization is still lacking. In this study, the molecular response of the monocot plant model Brachypodium distachyon was studied during G. diazotrophicus root colonization. The gene expression profiles of B. distachyon root tissues colonized by G. diazotrophicus were generated via next-generation RNA sequencing, and investigated through gene ontology and metabolic pathway analysis. The RNA sequencing results indicated that Brachypodium is actively involved in G. diazotrophicus colonization via cell wall synthesis. Jasmonic acid, ethylene, gibberellin biosynthesis. nitrogen assimilation, and primary and secondary metabolite pathways are also modulated to accommodate and control the extent of G. diazotrophicus colonization. Cellulose synthesis is significantly downregulated during colonization. The loss of function mutant for Brachypodium cellulose synthase 8 (BdCESA8) showed decreased cellulose content in xylem and increased resistance to G. diazotrophicus colonization. This result suggested that the cellulose synthesis of the secondary cell wall is involved in G. diazotrophicus colonization. The results of this study provide insights for future research in regard to gene manipulation for efficient colonization of nitrogen-fixing bacteria in Brachypodium and monocot crops.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Kathleen A Hill
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Ryan S Austin
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Lining Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| |
Collapse
|
41
|
Nadarajah K, Abdul Rahman NSN. Plant-Microbe Interaction: Aboveground to Belowground, from the Good to the Bad. Int J Mol Sci 2021; 22:ijms221910388. [PMID: 34638728 PMCID: PMC8508622 DOI: 10.3390/ijms221910388] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
Soil health and fertility issues are constantly addressed in the agricultural industry. Through the continuous and prolonged use of chemical heavy agricultural systems, most agricultural lands have been impacted, resulting in plateaued or reduced productivity. As such, to invigorate the agricultural industry, we would have to resort to alternative practices that will restore soil health and fertility. Therefore, in recent decades, studies have been directed towards taking a Magellan voyage of the soil rhizosphere region, to identify the diversity, density, and microbial population structure of the soil, and predict possible ways to restore soil health. Microbes that inhabit this region possess niche functions, such as the stimulation or promotion of plant growth, disease suppression, management of toxicity, and the cycling and utilization of nutrients. Therefore, studies should be conducted to identify microbes or groups of organisms that have assigned niche functions. Based on the above, this article reviews the aboveground and below-ground microbiomes, their roles in plant immunity, physiological functions, and challenges and tools available in studying these organisms. The information collected over the years may contribute toward future applications, and in designing sustainable agriculture.
Collapse
|
42
|
Biofertilizer Activity of Azospirillum sp. B510 on the Rice Productivity in Ghana. Microorganisms 2021; 9:microorganisms9092000. [PMID: 34576895 PMCID: PMC8469361 DOI: 10.3390/microorganisms9092000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Rice production in Ghana has become unsustainable due to the extremely nutrient-poor soils. It is caused by inadequate soil fertility management, including the inefficient application of fertilizers. A practical solution could be the biofertilizers, Azospirillum sp. B510. We performed field trials in Ghana and Japan to compare the effects of B510 colonization on selected Ghanaian rice varieties grown. The B510 inoculation significantly enhanced the rice cultivars’ growth and yield. The phenotypic characteristics observed in rice varieties Exbaika, Ex-Boako, AgraRice, and Amankwatia were mainly short length and high tillering capacity. These features are attributed to the host plant (cv. Nipponbare), from which the strain B510 was isolated. Furthermore, Azospirillum species has been identified as the dominant colonizing bacterium of rice rhizosphere across a diverse range of agroecologies in all major rice-growing regions in Ghana. Our results suggest that the utilization of B510 as a bio-fertilizer presents a promising way to improve rice growth, enhance soil fertility, and sustain rice productivity in Ghana.
Collapse
|
43
|
Trivedi P, Mattupalli C, Eversole K, Leach JE. Enabling sustainable agriculture through understanding and enhancement of microbiomes. THE NEW PHYTOLOGIST 2021; 230:2129-2147. [PMID: 33657660 DOI: 10.1111/nph.17319] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 05/18/2023]
Abstract
Harnessing plant-associated microbiomes offers an invaluable strategy to help agricultural production become more sustainable while also meeting growing demands for food, feed and fiber. A plethora of interconnected interactions among the host, environment and microbes, occurring both above and below ground, drive recognition, recruitment and colonization of plant-associated microbes, resulting in activation of downstream host responses and functionality. Dissecting these complex interactions by integrating multiomic approaches, high-throughput culturing, and computational and synthetic biology advances is providing deeper understanding of the structure and function of native microbial communities. Such insights are paving the way towards development of microbial products as well as microbiomes engineered with synthetic microbial communities capable of delivering agronomic solutions. While there is a growing market for microbial-based solutions to improve crop productivity, challenges with commercialization of these products remain. The continued translation of plant-associated microbiome knowledge into real-world scenarios will require concerted transdisciplinary research, cross-training of a next generation of scientists, and targeted educational efforts to prime growers and the general public for successful adoption of these innovative technologies.
Collapse
Affiliation(s)
- Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Ft Collins, CO, 80523-1177, USA
| | - Chakradhar Mattupalli
- Department of Plant Pathology, Washington State University, Mount Vernon NWREC, 16650 State Route 536, Mount Vernon, WA, 98273, USA
| | - Kellye Eversole
- Eversole Associates, 5207 Wyoming Road, Bethesda, MD, 20816, USA
- International Alliance for Phytobiomes Research, 2841 NE Marywood Ct, Lee's Summit, MO, 64086, USA
| | - Jan E Leach
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Ft Collins, CO, 80523-1177, USA
| |
Collapse
|
44
|
Tian L, Wang E, Lin X, Ji L, Chang J, Chen H, Wang J, Chen D, Tran LSP, Tian C. Wild rice harbors more root endophytic fungi than cultivated rice in the F1 offspring after crossbreeding. BMC Genomics 2021; 22:278. [PMID: 33865333 PMCID: PMC8052703 DOI: 10.1186/s12864-021-07587-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 04/07/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Rice, which serves as a staple food for more than half of the world's population, is grown worldwide. The hybridization of wild and cultivated rice has enabled the incorporation of resistance to varying environmental conditions. Endophytic microbiota are known to be transferred with their host plants. Although some studies have reported on the endophytic microbiota of wild and cultivated rice, the inheritance from wild and cultivated rice accessions in next generations, in terms of endophytic microbiota, has not been examined. RESULTS In the present study, the endophytic microbial community structures of Asian and African wild and cultivated rice species were compared with those of their F1 offspring. High-throughput sequencing data of bacterial 16S rDNA and fungal internal transcribed spacer regions were used to classify the endophytic microbiota of collected samples of rice. Results indicated that when either African or Asian wild rice species were crossed with cultivated rice accessions, the first generation harbored a greater number of root endophytic fungi than the cultivated parent used to make the crosses. Network analysis of the bacterial and fungal operational taxonomic units revealed that Asian and African wild rice species clustered together and exhibited a greater number of significant correlations between fungal taxa than cultivated rice. The core bacterial genus Acidovorax and the core fungal order Pleosporales, and genera Myrothecium and Bullera connected African and Asian wild rice accessions together, and both the wild rice accessions with their F1 offspring. On the other hand, the core bacterial genus Bradyrhizobium and the core fungal genera Dendroclathra linked the African and Asian cultivated rice accessions together. CONCLUSIONS This study has theoretical significance for understanding the effect of breeding on the inheritance of endophytic microbiota of rice and identifying beneficial endophytic bacteria and fungi among wild and cultivated rice species, and their F1 offspring.
Collapse
Affiliation(s)
- Lei Tian
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Enze Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Xiaolong Lin
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Ji
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjing Chang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongping Chen
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Jilin Wang
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Dazhou Chen
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Chunjie Tian
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
- Key Laboratory of Straw Biology and Utilization of the Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
| |
Collapse
|
45
|
Tang TC, Tham E, Liu X, Yehl K, Rovner AJ, Yuk H, de la Fuente-Nunez C, Isaacs FJ, Zhao X, Lu TK. Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nat Chem Biol 2021; 17:724-731. [PMID: 33820990 DOI: 10.1038/s41589-021-00779-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Genetically modified microorganisms (GMMs) can enable a wide range of important applications including environmental sensing and responsive engineered living materials. However, containment of GMMs to prevent environmental escape and satisfy regulatory requirements is a bottleneck for real-world use. While current biochemical strategies restrict unwanted growth of GMMs in the environment, there is a need for deployable physical containment technologies to achieve redundant, multi-layered and robust containment. We developed a hydrogel-based encapsulation system that incorporates a biocompatible multilayer tough shell and an alginate-based core. This deployable physical containment strategy (DEPCOS) allows no detectable GMM escape, bacteria to be protected against environmental insults including antibiotics and low pH, controllable lifespan and easy retrieval of genomically recoded bacteria. To highlight the versatility of DEPCOS, we demonstrated that robustly encapsulated cells can execute useful functions, including performing cell-cell communication with other encapsulated bacteria and sensing heavy metals in water samples from the Charles River.
Collapse
Affiliation(s)
- Tzu-Chieh Tang
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Mediated Matter Group, Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Eléonore Tham
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin Yehl
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Alexis J Rovner
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.,Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Farren J Isaacs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Systems Biology Institute, Yale University, West Haven, CT, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
46
|
Diversity of Endophytic Bacteria in Cardamine hupingshanensis and Potential of Culturable Selenium-Resistant Endophytes to Enhance Seed Germination Under Selenate Stress. Curr Microbiol 2021; 78:2091-2103. [PMID: 33772619 DOI: 10.1007/s00284-021-02444-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
The endophytic bacterial communities of Se hyperaccumulator Cardamine hupingshanensis collected from greenhouse and selenium mining area in Enshi City were investigated by Illumina sequencing technology. In addition, 14 culturable endophytic selenium-resistant strains were isolated and their selenium tolerance and plant growth promotion abilities were studied. The results showed that phylum Proteobacteria predominated in all the plants (> 70%) regardless of their habitats, with most of the OTUs related to Betaproteobacteria, Alphaproteobacteria, and Gammaproteobacteria. Roots harbored many more OTUs and showed higher alpha diversities than the leaves. Both growing environment and specific microflora selection of plants were found to have noticeable effects on endophytic bacterial community structure. The 14 culturable endophytes belonging to 11 bacterial genera were able to resist different levels of selenite and selenate, with their MIC ranges of 10-120 mM and 100-600 mM. Among them, Oceanobacillus and Terribacillus genera were firstly reported for the selenium-tolerant properties of their members. Inoculation experiment revealed that three endophytic strains (CHP07, CHP08, and CHP14) with excellent plant growth-promoting traits were beneficial for growth of Brassica chinensis seeds at germination stage under 0.19 mM selenate stress.
Collapse
|
47
|
Langholtz M, Davison BH, Jager HI, Eaton L, Baskaran LM, Davis M, Brandt CC. Increased nitrogen use efficiency in crop production can provide economic and environmental benefits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143602. [PMID: 33234272 DOI: 10.1016/j.scitotenv.2020.143602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 05/22/2023]
Abstract
Potential economic and environmental benefits of increasing nitrogen-use efficiency (NUE) are widely recognized but scarcely quantified. This study quantifies the effects of increased NUE on 1) the national agricultural economy using a simulation model of US agriculture and 2) regional water quality effects using a biogeochemical model for the Arkansas-White-Red river basin. National economic effects are reported for NUE improvement scenarios of 10%, 20%, 50%, and 100%, whereas regional water quality effects are estimated for a 20% NUE improvement scenario in the Arkansas-White-Red river basin. Simulating a 20% increase in NUE in row crops is shown to reduce N requirements by 1.4 million tonnes y-1 and increase farmer net profits by 1.6% ($743 million) per year by 2026 over the baseline simulation for the same period. For each 10% increase in NUE, annual farm revenues for commodity crops increased over the baseline by approximately $350 million per year by 2026. Changes in crop prices and land-use relative to the baseline were less than 2%. This suggests a net benefit even though fertilizer cost savings can result in increased cultivation of land, i.e., 'Jevon's paradox'. Results from the biogeochemical model of the Arkansas-White-Red river basin suggest that a 20% increase in NUE corresponds to a 5.72% reduction in nitrate loadings to freshwaters, with higher reductions in agricultural watersheds. The value of these reductions was estimated as $43 ha-1, for a total of $15.3 to 136.7 million yr-1 in avoided water treatment costs. After estimating the social value of increased NUE, we conclude with a discussion of potential strategies to increase efficiency and the research needed to achieve this goal. These include perennialization of the agricultural landscape, genetic crop improvement, targeted fertilizer application, and manipulation of the plant-root microbiome.
Collapse
Affiliation(s)
- Matthew Langholtz
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Brian H Davison
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Henriette I Jager
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Laurence Eaton
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Latha M Baskaran
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Maggie Davis
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Craig C Brandt
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
48
|
Kumar M, Kumar A, Sahu KP, Patel A, Reddy B, Sheoran N, Krishnappa C, Rajashekara H, Bhagat S, Rathour R. Deciphering core-microbiome of rice leaf endosphere: Revelation by metagenomic and microbiological analysis of aromatic and non-aromatic genotypes grown in three geographical zones. Microbiol Res 2021; 246:126704. [PMID: 33486428 DOI: 10.1016/j.micres.2021.126704] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/20/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
We have deciphered the leaf endophytic-microbiome of aromatic (cv. Pusa Basmati-1) and non-aromatic (cv. BPT-5204) rice-genotypes grown in the mountain and plateau-zones of India by both metagenomic NGS (mNGS) and conventional microbiological methods. Microbiome analysis by sequencing V3-V4 region of ribosomal gene revealed marginally more bacterial operational taxonomic units (OTU) in the mountain zone at Palampur and Almora than plateau zone at Hazaribagh. Interestingly, the rice leaf endophytic microbiomes in mountain zone were found clustered separately from that of plateau-zone. The Bray-Curtis dissimilarity indices indicated influence of geographical location as compared to genotype per se for shaping rice endophytic microbiome composition. Bacterial phyla, Proteobacteria followed by Bacteroidetes, Firmicutes, and Actinobacteria were found abundant in all three locations. The core-microbiome analysis devulged association of Acidovorax; Acinetobacter; Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium; Aureimonas; Bradyrhizobium; Burkholderia-Caballeronia-Paraburkholderia; Enterobacter; Pantoea; Pseudomonas; Sphingomonas; and Stenotrophomonas with the leaf endosphere. The phyllosphere and spermosphere microbiota appears to have contributed to endophytic microbiota of rice leaf. SparCC network analysis of the endophytic-microbiome showed complex cooperative and competitive intra-microbial interactions among the microbial communities. Microbiological validation of mNGS data further confirmed the presence of core and transient genera such as Acidovorax, Alcaligenes, Bacillus, Chryseobacterium, Comamonas, Curtobacterium, Delftia, Microbacterium, Ochrobactrum, Pantoea, Pseudomonas, Rhizobium, Rhodococcus, Sphingobacterium, Staphylococcus, Stenotrophomonas, and Xanthomonas in the rice genotypes. We isolated, characterized and identified core-endophytic microbial communities of rice leaf for developing microbiome assisted crop management by microbiome reengineering in future.
Collapse
Affiliation(s)
- Mukesh Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aundy Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | | | - Asharani Patel
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bhaskar Reddy
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neelam Sheoran
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Someshwar Bhagat
- ICAR-Central Rainfed Upland Rice Research Station (NRRI), Hazaribagh, Jharkhand, India
| | - Rajeev Rathour
- CSK-Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India
| |
Collapse
|
49
|
Sharma S, Chandra D, Sharma AK. Rhizosphere Plant–Microbe Interactions Under Abiotic Stress. RHIZOSPHERE BIOLOGY: INTERACTIONS BETWEEN MICROBES AND PLANTS 2021. [DOI: 10.1007/978-981-15-6125-2_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Schmidt MP, Mamet SD, Ferrieri RA, Peak D, Siciliano SD. From the Outside in: An Overview of Positron Imaging of Plant and Soil Processes. Mol Imaging 2020; 19:1536012120966405. [PMID: 33119419 PMCID: PMC7605056 DOI: 10.1177/1536012120966405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Positron-emitting nuclides have long been used as imaging agents in medical science to spatially trace processes non-invasively, allowing for real-time molecular imaging using low tracer concentrations. This ability to non-destructively visualize processes in real time also makes positron imaging uniquely suitable for probing various processes in plants and porous environmental media, such as soils and sediments. Here, we provide an overview of historical and current applications of positron imaging in environmental research. We highlight plant physiological research, where positron imaging has been used extensively to image dynamics of macronutrients, signalling molecules, trace elements, and contaminant metals under various conditions and perturbations. We describe how positron imaging is used in porous soils and sediments to visualize transport, flow, and microbial metabolic processes. We also address the interface between positron imaging and other imaging approaches, and present accompanying chemical analysis of labelled compounds for reviewed topics, highlighting the bridge between positron imaging and complementary techniques across scales. Finally, we discuss possible future applications of positron imaging and its potential as a nexus of interdisciplinary biogeochemical research.
Collapse
Affiliation(s)
- Michael P Schmidt
- Department of Soil Science, College of Agriculture and Bioresources, 7235University of Saskatchewan, Saskatoon, Canada
| | - Steven D Mamet
- Department of Soil Science, College of Agriculture and Bioresources, 7235University of Saskatchewan, Saskatoon, Canada
| | - Richard A Ferrieri
- Interdisciplinary Plant Group, Division of Plant Sciences, Department of Chemistry, Missouri Research Reactor Center, 14716University of Missouri, Columbia, MO, USA
| | - Derek Peak
- Department of Soil Science, College of Agriculture and Bioresources, 7235University of Saskatchewan, Saskatoon, Canada
| | - Steven D Siciliano
- Department of Soil Science, College of Agriculture and Bioresources, 7235University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|