1
|
Pan C, Zhang M, Chen J, Lu H, Zhao X, Chen X, Wang L, Guo P, Liu S. miR397 regulates cadmium stress response by coordinating lignin polymerization in the root exodermis in Kandelia obovata. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134313. [PMID: 38669927 DOI: 10.1016/j.jhazmat.2024.134313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Secondary lignification of the root exodermis of Kandelia obovata is crucial for its response to adversity such as high salinity and anaerobic environment, and this lignification is also effective in blocking cadmium transport to the roots. However, how the differences in lignification of root exodermis at different developmental stages respond to Cd stress and its regulatory mechanisms have not been revealed. In this study, after analyzing the root structure and cell wall thickness using a Phenom scanning electron microscope as well as measuring cadmium content in the root cell wall, we found that the exodermis of young and mature roots of K. obovata responded to Cd stress through the polymerization of different lignin monomers, forming two different mechanisms: chelation and blocking. Through small RNA sequencing, RLM-5'-RACE and dual luciferase transient expression system, we found that miR397 targets and regulates KoLAC4/17/7 expression. The expression of KoLAC4/17 promoted the accumulation of guaiacyl lignin during lignification and enhanced the binding of cadmium to the cell wall. Meanwhile, KoLAC7 expression promotes the accumulation of syringyl lignin during lignification, which enhances the obstruction of cadmium and improves the tolerance to cadmium. These findings enhance our understanding of the molecular mechanisms underlying the differential lignification of the root exodermis of K. obovata in response to cadmium stress, and provide scientific guidance for the conservation of mangrove forests under heavy metal pollution.
Collapse
Affiliation(s)
- Chenglang Pan
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China.
| | - Mingxiong Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Xuemei Zhao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Xiaofeng Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Lu Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China
| | - Pingping Guo
- Fujian Minjiang River Estuary Wetland National Nature Reserve Administrative Office, Fuzhou 350001, China
| | - Shuyu Liu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Zhu Y, Li L. Wood of trees: Cellular structure, molecular formation, and genetic engineering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:443-467. [PMID: 38032010 DOI: 10.1111/jipb.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
Wood is an invaluable asset to human society due to its renewable nature, making it suitable for both sustainable energy production and material manufacturing. Additionally, wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants. Nevertheless, with the expansion of the global population and ongoing industrialization, forest coverage has been substantially decreased, resulting in significant challenges for wood production and supply. Wood production practices have changed away from natural forests toward plantation forests. Thus, understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality, fast-growing plantation trees. Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many. Tremendous studies have been carried out in recent years on the molecular, genetic, and cell-biological mechanisms of wood formation, and considerable progress and findings have been achieved. These studies and findings indicate enormous possibilities and prospects for tree improvement. This review will outline and assess the cellular and molecular mechanisms of wood formation, as well as studies on genetically improving forest trees, and address future development prospects.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
3
|
Ahlawat YK, Biswal AK, Harun S, Harman-Ware AE, Doeppke C, Sharma N, Joshi CP, Hankoua BB. Heterologous expression of Arabidopsis laccase2, laccase4 and peroxidase52 driven under developing xylem specific promoter DX15 improves saccharification in populus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:5. [PMID: 38218877 PMCID: PMC10787383 DOI: 10.1186/s13068-023-02452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Secondary cell wall holds considerable potential as it has gained immense momentum to replace the lignocellulosic feedstock into fuels. Lignin one of the components of secondary cell wall tightly holds the polysaccharides thereby enhancing the recalcitrance and complexity in the biomass. Laccases (LAC) and peroxidases (PRX) are the major phenyl-oxidases playing key functions during the polymerization of monolignols into lignin. Yet, the functions of laccase and peroxidases gene families remained largely unknown. Hence, the objective of this conducted study is to understand the role of specific LAC and PRX in Populus wood formation and to further investigate how the altered Lac and Prx expression affects biomass recalcitrance and plant growth. This study of heterologous expression of Arabidopsis Lac and Prx genes was conducted in poplar to avoid any otherwise occurring co-suppression mechanism during the homologous overexpression of highly expressed native genes. In the pursuit of optimizing lignocellulosic biomass for biofuel production, the present study focuses on harnessing the enzymatic potential of Arabidopsis thaliana Laccase2, Laccase4, and Peroxidase52 through heterologous expression. RESULTS We overexpressed selected Arabidopsis laccase2 (AtLac2), laccase4 (AtLac4), and peroxidase52 (AtPrx52) genes, based on their high transcript expression respective to the differentiating xylem tissues in the stem, in hybrid poplar (cv. 717) expressed under the developing xylem tissue-specific promoter, DX15 characterized the transgenic populus for the investigation of growth phenotypes and recalcitrance efficiency. Bioinformatics analyses conducted on AtLac2 and AtLac4 and AtPrx52, revealed the evolutionary relationship between the laccase gene and peroxidase gene homologs, respectively. Transgenic poplar plant lines overexpressing the AtLac2 gene (AtLac2-OE) showed an increase in plant height without a change in biomass yield as compared to the controls; whereas, AtLac4-OE and AtPrx52-OE transgenic lines did not show any such observable growth phenotypes compared to their respective controls. The changes in the levels of lignin content and S/G ratios in the transgenic poplar resulted in a significant increase in the saccharification efficiency as compared to the control plants. CONCLUSIONS Overall, saccharification efficiency was increased by 35-50%, 21-42%, and 8-39% in AtLac2-OE, AtLac4-OE, and AtPrx52-OE transgenic poplar lines, respectively, as compared to their controls. Moreover, the bioengineered plants maintained normal growth and development, underscoring the feasibility of this approach for biomass improvement without compromising overall plant fitness. This study also sheds light on the potential of exploiting regulatory elements of DX15 to drive targeted expression of lignin-modifying enzymes, thereby providing a promising avenue for tailoring biomass for improved biofuel production. These findings contribute to the growing body of knowledge in synthetic biology and plant biotechnology, offering a sustainable solution to address the challenges associated with lignocellulosic biomass recalcitrance.
Collapse
Affiliation(s)
- Yogesh K Ahlawat
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Ajaya K Biswal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA30602, USA
| | - Sarahani Harun
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Crissa Doeppke
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Nisha Sharma
- Microbiology Section, Department of Basic Science, Dr. Y.S Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Chandrashekhar P Joshi
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Bertrand B Hankoua
- Human Ecology Department, College of Agriculture, Science, and Technology (CAST), Food Science and Biotechnology Program, 1200 N. DuPont Highway, Dover, DE, 19901, USA.
| |
Collapse
|
4
|
Mishra A, Mishra TK, Nanda S, Mohanty MK, Dash M. A comprehensive review on genetic modification of plant cell wall for improved saccharification efficiency. Mol Biol Rep 2023; 50:10509-10524. [PMID: 37921982 DOI: 10.1007/s11033-023-08886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
The focus is now on harnessing energy from green sources through sustainable technology to minimize environmental pollution. Several crop residues including rice and wheat straw are having enormous potential to be used as lignocellulosic source material for bioenergy production. The lignocellulosic feedstock is primarily composed of cellulose, hemicellulose, and lignin cell wall polymers. The hemicellulose and lignin polymers induce crosslinks in the cell wall, by firmly associating with cellulose microfibrils, and thereby, denying considerable access of cellulose to cellulase enzymes. This issue has been addressed by various researchers through downregulating several genes associated in monolignol biosynthesis in Arabidopsis, Poplar, Rice and Switchgrass to increase ethanol recovery. Similarly, xylan biosynthetic genes are also targeted to genetically culminate its accumulation in the secondary cell walls. Regulation of cellulose synthases (CesA) proves to be an effective tool in addressing the negative impact of these two factors. Modification in the expression of cellulose synthase aids in reducing cellulose crystallinity as well as polymerisation degree which in turn increases ethanol recovery. The engineered bioenergy crops and various fungal strains with state of art biomass processing techniques presents the most recent integrative biotechnology model for cost effective green fuels generation along with production of key value-added products with minuscule disturbances in the environment. Plant breeding strategies utilizing the existing variability for biomass traits will be key in developing dual purpose varieties. For this purpose, reorientation of conventional breeding techniques for incorporating useful biomass traits will be effective.
Collapse
Affiliation(s)
- Abinash Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Tapas Kumar Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Spandan Nanda
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Mahendra Kumar Mohanty
- College of Agriculture Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Yao T, Yuan G, Lu H, Liu Y, Zhang J, Tuskan GA, Muchero W, Chen JG, Yang X. CRISPR/Cas9-based gene activation and base editing in Populus. HORTICULTURE RESEARCH 2023; 10:uhad085. [PMID: 37323227 PMCID: PMC10266945 DOI: 10.1093/hr/uhad085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
The genus Populus has long been used for environmental, agroforestry and industrial applications worldwide. Today Populus is also recognized as a desirable crop for biofuel production and a model tree for physiological and ecological research. As such, various modern biotechnologies, including CRISPR/Cas9-based techniques, have been actively applied to Populus for genetic and genomic improvements for traits such as increased growth rate and tailored lignin composition. However, CRISPR/Cas9 has been primarily used as the active Cas9 form to create knockouts in the hybrid poplar clone "717-1B4" (P. tremula x P. alba clone INRA 717-1B4). Alternative CRISPR/Cas9-based technologies, e.g. those involving modified Cas9 for gene activation and base editing, have not been evaluated in most Populus species for their efficacy. Here we employed a deactivated Cas9 (dCas9)-based CRISPR activation (CRISPRa) technique to fine-tune the expression of two target genes, TPX2 and LecRLK-G which play important roles in plant growth and defense response, in hybrid poplar clone "717-1B4" and poplar clone "WV94" (P. deltoides "WV94"), respectively. We observed that CRISPRa resulted in 1.2-fold to 7.0-fold increase in target gene expression through transient expression in protoplasts and Agrobacterium-mediated stable transformation, demonstrating the effectiveness of dCas9-based CRISPRa system in Populus. In addition, we applied Cas9 nickase (nCas9)-based cytosine base editor (CBE) to precisely introduce premature stop codons via C-to-T conversion, with an efficiency of 13%-14%, in the target gene PLATZ which encodes a transcription factor involved in plant fungal pathogen response in hybrid poplar clone "717-1B4". Overall, we showcase the successful application of CRISPR/Cas-based technologies in gene expression regulation and precise gene engineering in two Populus species, facilitating the adoption of emerging genome editing tools in woody species.
Collapse
Affiliation(s)
- Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Academic Education, Central Community College –Hastings; Hastings; NE 68901, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University; Hangzhou 311300, China
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
6
|
Qin R, Hu Y, Chen H, Du Q, Yang J, Li WX. MicroRNA408 negatively regulates salt tolerance by affecting secondary cell wall development in maize. PLANT PHYSIOLOGY 2023; 192:1569-1583. [PMID: 36864608 PMCID: PMC10231460 DOI: 10.1093/plphys/kiad135] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/09/2023] [Indexed: 06/01/2023]
Abstract
Although microRNA408 (miR408) is a highly conserved miRNA, the miR408 response to salt stress differs among plant species. Here, we show that miR408 transcripts are strongly repressed by salt stress and methyl viologen treatment in maize (Zea mays). Application of N, N1-dimethylthiourea partly relieved the NaCl-induced down-regulation of miR408. Transgenic maize overexpressing MIR408b is hypersensitive to salt stress. Overexpression of MIR408b enhanced the rate of net Na+ efflux, caused Na+ to locate in the inter-cellular space, reduced lignin accumulation, and reduced the number of cells in vascular bundles under salt stress. We further demonstrated that miR408 targets ZmLACCASE9 (ZmLAC9). Knockout of MIR408a or MIR408b or overexpression of ZmLAC9 increased the accumulation of lignin, thickened the walls of pavement cells, and improved salt tolerance of maize. Transcriptome profiles of the wild-type and MIR408b-overexpressing transgenic maize with or without salt stress indicated that miR408 negatively regulates the expression of cell wall biogenesis genes under salt conditions. These results indicate that miR408 negatively regulates salt tolerance by regulating secondary cell wall development in maize.
Collapse
Affiliation(s)
- Ruidong Qin
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yumei Hu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Chen
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan Yang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Liao B, Wang C, Li X, Man Y, Ruan H, Zhao Y. Genome-wide analysis of the Populus trichocarpa laccase gene family and functional identification of PtrLAC23. FRONTIERS IN PLANT SCIENCE 2023; 13:1063813. [PMID: 36733583 PMCID: PMC9887407 DOI: 10.3389/fpls.2022.1063813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Biofuel is a kind of sustainable, renewable and environment friendly energy. Lignocellulose from the stems of woody plants is the main raw material for "second generation biofuels". Lignin content limits fermentation yield and is therefore a major obstacle in biofuel production. Plant laccase plays an important role in the final step of lignin formation, which provides a new strategy for us to obtain ideal biofuels by regulating the expression of laccase genes to directly gain the desired lignin content or change the composition of lignin. METHODS Multiple sequence alignment and phylogenetic analysis were used to classify PtrLAC genes; sequence features of PtrLACs were revealed by gene structure and motif composition analysis; gene duplication, interspecific collinearity and Ka/Ks analysis were conducted to identify ancient PtrLACs; expression levels of PtrLAC genes were measured by RNA-Seq data and qRT-PCR; domain analysis combine with cis-acting elements prediction together showed the potential function of PtrLACs. Furthermore, Alphafold2 was used to simulate laccase 3D structures, proLAC23::LAC23-eGFP transgenic Populus stem transects were applied to fluorescence observation. RESULTS A comprehensive analysis of the P. trichocarpa laccase gene (PtLAC) family was performed. Some ancient PtrLAC genes such as PtrLAC25, PtrLAC19 and PtrLAC41 were identified. Gene structure and distribution of conserved motifs clearly showed sequence characteristics of each PtrLAC. Combining published RNA-Seq data and qRT-PCR analysis, we revealed the expression pattern of PtrLAC gene family. Prediction results of cis-acting elements show that PtrLAC gene regulation was closely related to light. Through above analyses, we selected 5 laccases and used Alphafold2 to simulate protein 3D structures, results showed that PtrLAC23 may be closely related to the lignification. Fluorescence observation of proLAC23::LAC23-eGFP transgenic Populus stem transects and qRT-PCR results confirmed our hypothesis again. DISCUSSION In this study, we fully analyzed the Populus trichocarpa laccase gene family and identified key laccase genes related to lignification. These findings not only provide new insights into the characteristics and functions of Populus laccase, but also give a new understanding of the broad prospects of plant laccase in lignocellulosic biofuel production.
Collapse
Affiliation(s)
- Boyang Liao
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chencan Wang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Xiaoxu Li
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Yi Man
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Hang Ruan
- School of Cyber Science and Technology, Beihang University, Beijing, China
| | - Yuanyuan Zhao
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Xylem Transcriptome Analysis in Contrasting Wood Phenotypes of Eucalyptus urophylla × tereticornis Hybrids. FORESTS 2022. [DOI: 10.3390/f13071102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An investigation of the effects of two important post-transcriptional regulatory mechanisms, gene transcription and alternative splicing (AS), on the wood formation of Eucalyptusurophylla × tereticornis, an economic tree species widely planted in southern China, was carried out. We performed RNA-seq on E. urophylla × tereticornis hybrids with highly contrasting wood basic density (BD), cellulose content (CC), hemicellulose content (HC), and lignin content (LC). Signals of strong differentially expressed genes (DEGs) and differentially spliced genes (DSGs) were detected in all four groups of wood properties, suggesting that gene transcription and selective splicing may have important regulatory roles in wood properties. We found that there was little overlap between DEGs and DSGs in groups of the same trait. Furthermore, the key DEGs and DSGs that were detected simultaneously in the four groups tended to be enriched in different Gene Ontology terms, Kyoto Encyclopedia of Genes and Genomes pathways, and transcription factors. These results implied that regulation of gene transcription and AS is controlled by independent regulatory systems in wood formation. Lastly, we detected transcript levels of known wood biosynthetic genes and found that 79 genes encoding mainly enzymes or proteins such as UGT, LAC, CAD, and CESA may be involved in the positive or negative regulation of wood properties. This study reveals potential molecular mechanisms that may regulate wood formation and will contribute to the genetic improvement of Eucalyptus.
Collapse
|
9
|
Wan F, Zhang L, Tan M, Wang X, Wang GL, Qi M, Liu B, Gao J, Pan Y, Wang Y. Genome-wide identification and characterization of laccase family members in eggplant ( Solanum melongena L.). PeerJ 2022; 10:e12922. [PMID: 35223206 PMCID: PMC8868016 DOI: 10.7717/peerj.12922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
Laccase, as a copper-containing polyphenol oxidase, primarily functions in the process of lignin, anthocyanin biosynthesis, and various abiotic/biotic stresses. In this study, forty-eight laccase members were identified in the eggplant genome. Only forty-two laccase genes from eggplant (SmLACs) were anchored unevenly in 12 chromosomes, the other six SmLACs were mapped on unanchored scaffolds. Phylogenetic analysis indicated that only twenty-five SmLACs were divided into six different groups on the basis of groups reported in Arabidopsis. Gene structure analysis revealed that the number of exons ranged from one to 13. Motif analysis revealed that SmLACs included six conserved motifs. In aspects of gene duplication analysis, twenty-one SmLACs were collinear with LAC genes from Arabidopsis, tomato or rice. Cis-regulatory elements analysis indicated many SmLACs may be involved in eggplant morphogenesis, flavonoid biosynthesis, diverse stresses and growth/development processes. Expression analysis further confirmed that a few SmLACs may function in vegetative and reproductive organs at different developmental stages and also in response to one or multiple stresses. This study would help to further understand and enrich the physiological function of the SmLAC gene family in eggplant, and may provide high-quality genetic resources for eggplant genetics and breeding.
Collapse
Affiliation(s)
- Faxiang Wan
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Linqing Zhang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Mengying Tan
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Xiaohua Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Guang-Long Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Mengru Qi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Bingxin Liu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Jun Gao
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, The People’s Republic of China
| | - Yu Pan
- College of Horticulture and Landscape Architechture, Southwest University, Chongqing, The People’s Republic of China
| | - Yongqing Wang
- The Institute of Vegetable and Flower Research, Chongqing Academy of Agricultural Science, Chongqing, The People’s Republic of China
| |
Collapse
|
10
|
Genome-Wide Comprehensive Analysis of PtLACs: Prediction and Verification of the Functional Divergence of Tandem-Duplicated Genes. FORESTS 2022. [DOI: 10.3390/f13020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Laccases (EC 1.10.3.2) have been widely considered to participate in the metabolic processes of lignin synthesis, osmotic stress response, and flavonoid oxidation in higher plants. The research into Populus trichocarpa laccase focused on the synthesis of lignin in the past few years. In this study, for the first time, a comprehensive analysis of 53 laccase copies in the P. trichocarpa genome was conducted. Positive selection analysis using the branch-site model indicated that LAC genes in terrestrial plants have undergone selective pressure for adaptive evolution. On the basis of the phylogenetic relationship, we reconstructed the evolutionary process of terrestrial plant laccase and found that this gene family began to expand during the evolution of angiosperms. Tandem duplication is the main form of expansion of the PtLAC gene family. The analysis of the sequence characteristics, gene structure, expression pattern, and gene synonymous mutation rate of PtLACs provided a theoretical basis for the functional divergence of tandem duplicated genes. The synonymous mutation rate was used to quantify the divergence time of 11 tandem duplicated gene clusters. Cluster 2, with the earliest divergence time and lower share of sequence similarity, and cluster 5, with the latest divergence time and higher share of similarity, were selected in this study to explore the functional divergence of tandem-duplicated gene clusters. Tobacco subcellular localization and Arabidopsis transgenes verified the functional differentiation of PtLAC genes in cluster 2 and the functional non-differentiation of PtLAC genes in cluster 5. The results of this study provide a reference for the functional differentiation of tandem-duplicated PtLAC.
Collapse
|
11
|
Brugnari T, Braga DM, Dos Santos CSA, Torres BHC, Modkovski TA, Haminiuk CWI, Maciel GM. Laccases as green and versatile biocatalysts: from lab to enzyme market-an overview. BIORESOUR BIOPROCESS 2021; 8:131. [PMID: 38650295 PMCID: PMC10991308 DOI: 10.1186/s40643-021-00484-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Laccases are multi-copper oxidase enzymes that catalyze the oxidation of different compounds (phenolics and non-phenolics). The scientific literature on laccases is quite extensive, including many basic and applied research about the structure, functions, mechanism of action and a variety of biotechnological applications of these versatile enzymes. Laccases can be used in various industries/sectors, from the environmental field to the cosmetics industry, including food processing and the textile industry (dyes biodegradation and synthesis). Known as eco-friendly or green enzymes, the application of laccases in biocatalytic processes represents a promising sustainable alternative to conventional methods. Due to the advantages granted by enzyme immobilization, publications on immobilized laccases increased substantially in recent years. Many patents related to the use of laccases are available, however, the real industrial or environmental use of laccases is still challenged by cost-benefit, especially concerning the feasibility of producing this enzyme on a large scale. Although this is a compelling point and the enzyme market is heated, articles on the production and application of laccases usually neglect the economic assessment of the processes. In this review, we present a description of laccases structure and mechanisms of action including the different sources (fungi, bacteria, and plants) for laccases production and tools for laccases evolution and prediction of potential substrates. In addition, we both compare approaches for scaling-up processes with an emphasis on cost reduction and productivity and critically review several immobilization methods for laccases. Following the critical view on production and immobilization, we provide a set of applications for free and immobilized laccases based on articles published within the last five years and patents which may guide future strategies for laccase use and commercialization.
Collapse
Affiliation(s)
- Tatiane Brugnari
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil.
| | - Dayane Moreira Braga
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Camila Souza Almeida Dos Santos
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Bruno Henrique Czelusniak Torres
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Tatiani Andressa Modkovski
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Charles Windson Isidoro Haminiuk
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Giselle Maria Maciel
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| |
Collapse
|
12
|
Christie N, Mannapperuma C, Ployet R, van der Merwe K, Mähler N, Delhomme N, Naidoo S, Mizrachi E, Street NR, Myburg AA. qtlXplorer: an online systems genetics browser in the Eucalyptus Genome Integrative Explorer (EucGenIE). BMC Bioinformatics 2021; 22:595. [PMID: 34911434 PMCID: PMC8672637 DOI: 10.1186/s12859-021-04514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Affordable high-throughput DNA and RNA sequencing technologies are allowing genomic analysis of plant and animal populations and as a result empowering new systems genetics approaches to study complex traits. The availability of intuitive tools to browse and analyze the resulting large-scale genetic and genomic datasets remain a significant challenge. Furthermore, these integrative genomics approaches require innovative methods to dissect the flow and interconnectedness of biological information underlying complex trait variation. The Plant Genome Integrative Explorer (PlantGenIE.org) is a multi-species database and domain that houses online tools for model and woody plant species including Eucalyptus. Since the Eucalyptus Genome Integrative Explorer (EucGenIE) is integrated within PlantGenIE, it shares genome and expression analysis tools previously implemented within the various subdomains (ConGenIE, PopGenIE and AtGenIE). Despite the success in setting up integrative genomics databases, online tools for systems genetics modelling and high-resolution dissection of complex trait variation in plant populations have been lacking. RESULTS We have developed qtlXplorer ( https://eucgenie.org/QTLXplorer ) for visualizing and exploring systems genetics data from genome-wide association studies including quantitative trait loci (QTLs) and expression-based QTL (eQTL) associations. This module allows users to, for example, find co-located QTLs and eQTLs using an interactive version of Circos, or explore underlying genes using JBrowse. It provides users with a means to build systems genetics models and generate hypotheses from large-scale population genomics data. We also substantially upgraded the EucGenIE resource and show how it enables users to combine genomics and systems genetics approaches to discover candidate genes involved in biotic stress responses and wood formation by focusing on two multigene families, laccases and peroxidases. CONCLUSIONS qtlXplorer adds a new dimension, population genomics, to the EucGenIE and PlantGenIE environment. The resource will be of interest to researchers and molecular breeders working in Eucalyptus and other woody plant species. It provides an example of how systems genetics data can be integrated with functional genetics data to provide biological insight and formulate hypotheses. Importantly, integration within PlantGenIE enables novel comparative genomics analyses to be performed from population-scale data.
Collapse
Affiliation(s)
- Nanette Christie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa.
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 907 81, Umeå, Sweden
| | - Raphael Ployet
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Karen van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Niklas Mähler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 907 81, Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 907 81, Umeå, Sweden.
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
13
|
Liu Y, Cao S, Liu X, Li Y, Wang B, Sun Y, Zhang C, Guo X, Li H, Lu H. PtrLAC16 plays a key role in catalyzing lignin polymerization in the xylem cell wall of Populus. Int J Biol Macromol 2021; 188:983-992. [PMID: 34403677 DOI: 10.1016/j.ijbiomac.2021.08.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Plant laccases have been proposed to participate in lignin biosynthesis. However, there is no direct evidence that individual laccases in Populus can polymerize lignin monomers and alter cell wall structure. Here, a Populus laccase, PtrLAC16, was expressed and purified in a eukaryotic system. Enzymatic analysis of PtrLAC16 showed that it could polymerize lignin monomers in vitro. PtrLAC16 preferred sinapyl alcohol, and this preference is associated with an altered S/G ratio in transgenic Populus lines. PtrLAC16 was localized exclusively in the cell walls of stem vascular tissue, and a reduction in PtrLAC16 expression led to a significant decrease in lignin content and altered cell wall structure. There was a direct correlation between the inhibition of PtrLAC16 expression and structural changes in the stem cell wall of Populus. This study provides direct evidence that PtrLAC16 plays a key role in the polymerization of lignin monomers, especially for sinapyl lignin, and affects the formation of xylem cell walls in Populus.
Collapse
Affiliation(s)
- Yadi Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shan Cao
- School of Management, Qingdao Agricultural University, Shandong 266109, China
| | - Xiatong Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ying Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Bing Wang
- Guizhou Academy of Tobacco Science, Molecular Genetics Key Laboratory of China Tobacco, Guiyang 550081, China
| | - Yu Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Chong Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaorui Guo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
14
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
15
|
Tang Y, Qu Z, Lei J, He R, Adelson DL, Zhu Y, Yang Z, Wang D. The long noncoding RNA FRILAIR regulates strawberry fruit ripening by functioning as a noncanonical target mimic. PLoS Genet 2021; 17:e1009461. [PMID: 33739974 PMCID: PMC8011760 DOI: 10.1371/journal.pgen.1009461] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/31/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators in plant development, but few of them have been functionally characterized in fruit ripening. Here, we have identified 25,613 lncRNAs from strawberry ripening fruits based on RNA-seq data from poly(A)-depleted libraries and rRNA-depleted libraries, most of which exhibited distinct temporal expression patterns. A novel lncRNA, FRILAIR harbours the miR397 binding site that is highly conserved in diverse strawberry species. FRILAIR overexpression promoted fruit maturation in the Falandi strawberry, which was consistent with the finding from knocking down miR397, which can guide the mRNA cleavage of both FRILAIR and LAC11a (encoding a putative laccase-11-like protein). Moreover, LAC11a mRNA levels were increased in both FRILAIR overexpressing and miR397 knockdown fruits, and accelerated fruit maturation was also found in LAC11a overexpressing fruits. Overall, our study demonstrates that FRILAIR can act as a noncanonical target mimic of miR397 to modulate the expression of LAC11a in the strawberry fruit ripening process.
Collapse
Affiliation(s)
- Yajun Tang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhipeng Qu
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, China
| | - David L. Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, China
| | - Zhenbiao Yang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Qin S, Fan C, Li X, Li Y, Hu J, Li C, Luo K. LACCASE14 is required for the deposition of guaiacyl lignin and affects cell wall digestibility in poplar. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:197. [PMID: 33292432 PMCID: PMC7713150 DOI: 10.1186/s13068-020-01843-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/25/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND The recalcitrance of lignocellulosic biomass provided technical and economic challenges in the current biomass conversion processes. Lignin is considered as a crucial recalcitrance component in biomass utilization. An in-depth understanding of lignin biosynthesis can provide clues to overcoming the recalcitrance. Laccases are believed to play a role in the oxidation of lignin monomers, leading to the formation of higher-order lignin. In plants, functions of only a few laccases have been evaluated, so little is known about the effect of laccases on cell wall structure and biomass saccharification. RESULTS In this study, we screened a gain-of-function mutant with a significant increase in lignin content from Arabidopsis mutant lines overexpressing a full-length poplar cDNA library. Further analysis confirmed that a Chinese white poplar (Populus tomentosa) laccase gene PtoLAC14 was inserted into the mutant, and PtoLAC14 could functionally complement the Arabidopsis lac4 mutant. Overexpression of PtoLAC14 promoted the lignification of poplar and reduced the proportion of syringyl/guaiacyl. In contrast, the CRISPR/Cas9-generated mutation of PtLAC14 results in increased the syringyl/guaiacyl ratios, which led to integrated enhancement on biomass enzymatic saccharification. Notably, the recombinant PtoLAC14 protein showed higher oxidized efficiency to coniferyl alcohol (precursor of guaiacyl unit) in vitro. CONCLUSIONS This study shows that PtoLAC14 plays an important role in the oxidation of guaiacyl deposition on cell wall. The reduced recalcitrance of the PtoLAC14-KO lines suggests that PtoLAC14 is an elite target for cell wall engineering, and genetic manipulation of this gene will facilitate the utilization of lignocellulose.
Collapse
Affiliation(s)
- Shifei Qin
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, 400716 Chongqing China
| | - Chunfen Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, 400716 Chongqing China
| | - Xiaohong Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, 400716 Chongqing China
| | - Yi Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, 400716 Chongqing China
| | - Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, 400716 Chongqing China
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, 400716 Chongqing China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, No. 2, Tiansheng Road, Beibei, 400716 Chongqing China
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715 China
| |
Collapse
|
17
|
Wang X, Zhuo C, Xiao X, Wang X, Docampo-Palacios M, Chen F, Dixon RA. Substrate Specificity of LACCASE8 Facilitates Polymerization of Caffeyl Alcohol for C-Lignin Biosynthesis in the Seed Coat of Cleome hassleriana. THE PLANT CELL 2020; 32:3825-3845. [PMID: 33037146 PMCID: PMC7721330 DOI: 10.1105/tpc.20.00598] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 05/02/2023]
Abstract
Catechyl lignin (C-lignin) is a linear homopolymer of caffeyl alcohol found in the seed coats of diverse plant species. Its properties make it a natural source of carbon fibers and high-value chemicals, but the mechanism of in planta polymerization of caffeyl alcohol remains unclear. In the ornamental plant Cleome hassleriana, lignin biosynthesis in the seed coat switches from guaiacyl lignin to C-lignin at ∼12 d after pollination. Here we found that the transcript profile of the laccase gene ChLAC8 parallels the accumulation of C-lignin during seed coat development. Recombinant ChLAC8 oxidizes caffeyl and sinapyl alcohols, generating their corresponding dimers or trimers in vitro, but cannot oxidize coniferyl alcohol. We propose a basis for this substrate preference based on molecular modeling/docking experiments. Suppression of ChLAC8 expression led to significantly reduced C-lignin content in the seed coats of transgenic Cleome plants. Feeding of 13C-caffeyl alcohol to the Arabidopsis (Arabidopsis thaliana) caffeic acid o-methyltransferase mutant resulted in no incorporation of 13C into C-lignin, but expressing ChLAC8 in this genetic background led to appearance of C-lignin with >40% label incorporation. These results indicate that ChLAC8 is required for C-lignin polymerization and determines lignin composition when caffeyl alcohol is available.
Collapse
Affiliation(s)
- Xin Wang
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chunliu Zhuo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Xirong Xiao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Xiaoqiang Wang
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Maite Docampo-Palacios
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Fang Chen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
18
|
Genome-wide DNA methylation analysis of paulownia with phytoplasma infection. Gene X 2020; 755:144905. [DOI: 10.1016/j.gene.2020.144905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/18/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022] Open
|
19
|
Fang H, Wright T, Jinn JR, Guo W, Zhang N, Wang X, Wang YJ, Xu J. Engineering hydroxyproline-O-glycosylated biopolymers to reconstruct the plant cell wall for improved biomass processability. Biotechnol Bioeng 2020; 117:945-958. [PMID: 31930479 DOI: 10.1002/bit.27266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
Reconstructing the chemical and structural characteristics of the plant cell wall represents a promising solution to overcoming lignocellulosic biomass recalcitrance to biochemical deconstruction. This study aims to leverage hydroxyproline (Hyp)-O-glycosylation, a process unique to plant cell wall glycoproteins, as an innovative technology for de novo design and engineering in planta of Hyp-O-glycosylated biopolymers (HypGP) that facilitate plant cell wall reconstruction. HypGP consisting of 18 tandem repeats of "Ser-Hyp-Hyp-Hyp-Hyp" motif or (SP4)18 was designed and engineered into tobacco plants as a fusion peptide with either a reporter protein enhanced green fluorescence protein or the catalytic domain of a thermophilic E1 endoglucanase (E1cd) from Acidothermus cellulolyticus. The engineered (SP4)18 module was extensively Hyp-O-glycosylated with arabino-oligosaccharides, which facilitated the deposition of the fused protein/enzyme in the cell wall matrix and improved the accumulation of the protein/enzyme in planta by 1.5-11-fold. The enzyme activity of the recombinant E1cd was not affected by the fused (SP4)18 module, showing an optimal temperature of 80°C and optimal pH between 5 and 8. The plant biomass engineered with the (SP4)18 -tagged protein/enzyme increased the biomass saccharification efficiency by up to 3.5-fold without having adverse impact on the plant growth.
Collapse
Affiliation(s)
- Hong Fang
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas
- College of Agriculture, Arkansas State University, Jonesboro, Arkansas
| | - Tristen Wright
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas
| | - Jia-Rong Jinn
- Department of Food Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Wenzheng Guo
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas
| | - Ningning Zhang
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas
| | - Xiaoting Wang
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas
| | - Ya-Jane Wang
- Department of Food Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas
- College of Agriculture, Arkansas State University, Jonesboro, Arkansas
| |
Collapse
|
20
|
Zhang J, Xie M, Li M, Ding J, Pu Y, Bryan AC, Rottmann W, Winkeler KA, Collins CM, Singan V, Lindquist EA, Jawdy SS, Gunter LE, Engle NL, Yang X, Barry K, Tschaplinski TJ, Schmutz J, Tuskan GA, Muchero W, Chen J. Overexpression of a Prefoldin β subunit gene reduces biomass recalcitrance in the bioenergy crop Populus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:859-871. [PMID: 31498543 PMCID: PMC7004918 DOI: 10.1111/pbi.13254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 05/06/2023]
Abstract
Prefoldin (PFD) is a group II chaperonin that is ubiquitously present in the eukaryotic kingdom. Six subunits (PFD1-6) form a jellyfish-like heterohexameric PFD complex and function in protein folding and cytoskeleton organization. However, little is known about its function in plant cell wall-related processes. Here, we report the functional characterization of a PFD gene from Populus deltoides, designated as PdPFD2.2. There are two copies of PFD2 in Populus, and PdPFD2.2 was ubiquitously expressed with high transcript abundance in the cambial region. PdPFD2.2 can physically interact with DELLA protein RGA1_8g, and its subcellular localization is affected by the interaction. In P. deltoides transgenic plants overexpressing PdPFD2.2, the lignin syringyl/guaiacyl ratio was increased, but cellulose content and crystallinity index were unchanged. In addition, the total released sugar (glucose and xylose) amounts were increased by 7.6% and 6.1%, respectively, in two transgenic lines. Transcriptomic and metabolomic analyses revealed that secondary metabolic pathways, including lignin and flavonoid biosynthesis, were affected by overexpressing PdPFD2.2. A total of eight hub transcription factors (TFs) were identified based on TF binding sites of differentially expressed genes in Populus transgenic plants overexpressing PdPFD2.2. In addition, several known cell wall-related TFs, such as MYB3, MYB4, MYB7, TT8 and XND1, were affected by overexpression of PdPFD2.2. These results suggest that overexpression of PdPFD2.2 can reduce biomass recalcitrance and PdPFD2.2 is a promising target for genetic engineering to improve feedstock characteristics to enhance biofuel conversion and reduce the cost of lignocellulosic biofuel production.
Collapse
Affiliation(s)
- Jin Zhang
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Meng Xie
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Mi Li
- Chemical & Biomolecular EngineeringUniversity of TennesseeKnoxvilleTNUSA
| | - Jinhua Ding
- Chemical & Biomolecular EngineeringUniversity of TennesseeKnoxvilleTNUSA
- College of TextilesDonghua UniversityShanghaiChina
| | - Yunqiao Pu
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | | | | | | | | | - Vasanth Singan
- U.S. Department of Energy Joint Genome InstituteWalnut CreekCAUSA
| | | | - Sara S. Jawdy
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Lee E. Gunter
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Nancy L. Engle
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Xiaohan Yang
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome InstituteWalnut CreekCAUSA
| | - Timothy J. Tschaplinski
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome InstituteWalnut CreekCAUSA
- HudsonAlpha Institute for BiotechnologyHuntsvilleALUSA
| | - Gerald A. Tuskan
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Wellington Muchero
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jin‐Gui Chen
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
21
|
Mnich E, Bjarnholt N, Eudes A, Harholt J, Holland C, Jørgensen B, Larsen FH, Liu M, Manat R, Meyer AS, Mikkelsen JD, Motawia MS, Muschiol J, Møller BL, Møller SR, Perzon A, Petersen BL, Ravn JL, Ulvskov P. Phenolic cross-links: building and de-constructing the plant cell wall. Nat Prod Rep 2020; 37:919-961. [PMID: 31971193 DOI: 10.1039/c9np00028c] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Covering: Up to 2019Phenolic cross-links and phenolic inter-unit linkages result from the oxidative coupling of two hydroxycinnamates or two molecules of tyrosine. Free dimers of hydroxycinnamates, lignans, play important roles in plant defence. Cross-linking of bound phenolics in the plant cell wall affects cell expansion, wall strength, digestibility, degradability, and pathogen resistance. Cross-links mediated by phenolic substituents are particularly important as they confer strength to the wall via the formation of new covalent bonds, and by excluding water from it. Four biopolymer classes are known to be involved in the formation of phenolic cross-links: lignins, extensins, glucuronoarabinoxylans, and side-chains of rhamnogalacturonan-I. Lignins and extensins are ubiquitous in streptophytes whereas aromatic substituents on xylan and pectic side-chains are commonly assumed to be particular features of Poales sensu lato and core Caryophyllales, respectively. Cross-linking of phenolic moieties proceeds via radical formation, is catalyzed by peroxidases and laccases, and involves monolignols, tyrosine in extensins, and ferulate esters on xylan and pectin. Ferulate substituents, on xylan in particular, are thought to be nucleation points for lignin polymerization and are, therefore, of paramount importance to wall architecture in grasses and for the development of technology for wall disassembly, e.g. for the use of grass biomass for production of 2nd generation biofuels. This review summarizes current knowledge on the intra- and extracellular acylation of polysaccharides, and inter- and intra-molecular cross-linking of different constituents. Enzyme mediated lignan in vitro synthesis for pharmaceutical uses are covered as are industrial exploitation of mutant and transgenic approaches to control cell wall cross-linking.
Collapse
Affiliation(s)
- Ewelina Mnich
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Simões MS, Carvalho GG, Ferreira SS, Hernandes-Lopes J, de Setta N, Cesarino I. Genome-wide characterization of the laccase gene family in Setaria viridis reveals members potentially involved in lignification. PLANTA 2020; 251:46. [PMID: 31915928 DOI: 10.1007/s00425-020-03337-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/02/2020] [Indexed: 05/23/2023]
Abstract
Five laccase genes are potentially involved in developmental lignification in the model C4 grass Setaria viridis and their different tissue specificities suggest subfunctionalization events. Plant laccases are copper-containing glycoproteins involved in monolignol oxidation and, therefore, their activity is essential for lignin polymerization. Although these enzymes belong to large multigene families with highly redundant members, not all of them are thought to be involved in lignin metabolism. Here, we report on the genome-wide characterization of the laccase gene family in the model C4 grass Setaria viridis and further identification of the members potentially involved in monolignol oxidation. A total of 52 genes encoding laccases (SvLAC1 to SvLAC52) were found in the genome of S. viridis, and phylogenetic analyses showed that these genes were heterogeneously distributed among the characteristic six subclades of the family and are under relaxed selective constraints. The observed expansion in the total number of genes in this species was mainly caused by tandem duplications within subclade V, which accounts for 68% of the whole family. Comparative phylogenetic analyses showed that the expansion of subclade V is specifically observed for the Paniceae tribe within the Panicoideae subfamily in grasses. Five SvLAC genes (SvLAC9, SvLAC13, SvLAC15, SvLAC50, and SvLAC52) fulfilled the criteria established to identify lignin-related candidates: (1) phylogenetic proximity to previously characterized lignin-related laccases from other species, (2) similar expression pattern to that observed for lignin biosynthetic genes in the S. viridis elongating internode, and (3) high expression in S. viridis tissues undergoing active lignification. In addition, in situ hybridization experiments not only confirmed that these selected SvLAC genes were expressed in lignifying cells, but also that their expression showed different tissue specificities, suggesting subfunctionalization events within the family. These five laccase genes are strong candidates to be involved in lignin polymerization in S. viridis and might be good targets for lignin bioengineering strategies.
Collapse
Affiliation(s)
- Marcella Siqueira Simões
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil
| | - Gabriel Garon Carvalho
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil
| | - Sávio Siqueira Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil
| | - José Hernandes-Lopes
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil
| | - Nathalia de Setta
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC, São Bernardo do Campo, São Paulo, 09606-070, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, 05508-090, Brazil.
| |
Collapse
|
23
|
He F, Machemer-Noonan K, Golfier P, Unda F, Dechert J, Zhang W, Hoffmann N, Samuels L, Mansfield SD, Rausch T, Wolf S. The in vivo impact of MsLAC1, a Miscanthus laccase isoform, on lignification and lignin composition contrasts with its in vitro substrate preference. BMC PLANT BIOLOGY 2019; 19:552. [PMID: 31830911 PMCID: PMC6909574 DOI: 10.1186/s12870-019-2174-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/28/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Understanding lignin biosynthesis and composition is of central importance for sustainable bioenergy and biomaterials production. Species of the genus Miscanthus have emerged as promising bioenergy crop due to their rapid growth and modest nutrient requirements. However, lignin polymerization in Miscanthus is poorly understood. It was previously shown that plant laccases are phenol oxidases that have multiple functions in plant, one of which is the polymerization of monolignols. Herein, we link a newly discovered Miscanthus laccase, MsLAC1, to cell wall lignification. Characterization of recombinant MsLAC1 and Arabidopsis transgenic plants expressing MsLAC1 were carried out to understand the function of MsLAC1 both in vitro and in vivo. RESULTS Using a comprehensive suite of molecular, biochemical and histochemical analyses, we show that MsLAC1 localizes to cell walls and identify Miscanthus transcription factors capable of regulating MsLAC1 expression. In addition, MsLAC1 complements the Arabidopsis lac4-2 lac17 mutant and recombinant MsLAC1 is able to oxidize monolignol in vitro. Transgenic Arabidopsis plants over-expressing MsLAC1 show higher G-lignin content, although recombinant MsLAC1 seemed to prefer sinapyl alcohol as substrate. CONCLUSIONS In summary, our results suggest that MsLAC1 is regulated by secondary cell wall MYB transcription factors and is involved in lignification of xylem fibers. This report identifies MsLAC1 as a promising breeding target in Miscanthus for biofuel and biomaterial applications.
Collapse
Affiliation(s)
- Feng He
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Katja Machemer-Noonan
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Philippe Golfier
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Faride Unda
- Department of Wood Science, University of British Columbia, Vancouver, Canada
| | - Johanna Dechert
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Wan Zhang
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Natalie Hoffmann
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, Canada
| | - Thomas Rausch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
24
|
Identification and Characterization of New Laccase Biocatalysts from Pseudomonas Species Suitable for Degradation of Synthetic Textile Dyes. Catalysts 2019. [DOI: 10.3390/catal9070629] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Laccases are multicopper-oxidases with variety of biotechnological applications. While predominantly used, fungal laccases have limitations such as narrow pH and temperature range and their production via heterologous protein expression is more complex due to posttranslational modifications. In comparison, bacterial enzymes, including laccases, usually possess higher thermal and pH stability, and are more suitable for expression and genetic manipulations in bacterial expression hosts. Therefore, the aim of this study was to identify, recombinantly express, and characterize novel laccases from Pseudomonas spp. A combination of approaches including DNA sequence analysis, N-terminal protein sequencing, and genome sequencing data analysis for laccase amplification, cloning, and overexpression have been used. Four active recombinant laccases were obtained, one each from P. putida KT2440 and P. putida CA-3, and two from P. putida F6. The new laccases exhibited broad temperature and pH range and high thermal stability, as well as the potential to degrade selection of synthetic textile dyes. The best performing laccase was CopA from P. putida F6 which degraded five out of seven tested dyes, including Amido Black 10B, Brom Cresol Purple, Evans Blue, Reactive Black 5, and Remazol Brilliant Blue. This work highlighted species of Pseudomonas genus as still being good sources of biocatalytically relevant enzymes.
Collapse
|
25
|
Myburg AA, Hussey SG, Wang JP, Street NR, Mizrachi E. Systems and Synthetic Biology of Forest Trees: A Bioengineering Paradigm for Woody Biomass Feedstocks. FRONTIERS IN PLANT SCIENCE 2019; 10:775. [PMID: 31281326 PMCID: PMC6597874 DOI: 10.3389/fpls.2019.00775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/28/2019] [Indexed: 05/07/2023]
Abstract
Fast-growing forest plantations are sustainable feedstocks of plant biomass that can serve as alternatives to fossil carbon resources for materials, chemicals, and energy. Their ability to efficiently harvest light energy and carbon from the atmosphere and sequester this into metabolic precursors for lignocellulosic biopolymers and a wide range of plant specialized metabolites make them excellent biochemical production platforms and living biorefineries. Their large sizes have facilitated multi-omics analyses and systems modeling of key biological processes such as lignin biosynthesis in trees. High-throughput 'omics' approaches have also been applied in segregating tree populations where genetic variation creates abundant genetic perturbations of system components allowing construction of systems genetics models linking genes and pathways to complex trait variation. With this information in hand, it is now possible to start using synthetic biology and genome editing techniques in a bioengineering approach based on a deeper understanding and rational design of biological parts, devices, and integrated systems. However, the complexity of the biology and interacting components will require investment in big data informatics, machine learning, and intuitive visualization to fully explore multi-dimensional patterns and identify emergent properties of biological systems. Predictive systems models could be tested rapidly through high-throughput synthetic biology approaches and multigene editing. Such a bioengineering paradigm, together with accelerated genomic breeding, will be crucial for the development of a new generation of woody biorefinery crops.
Collapse
Affiliation(s)
- Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, South Africa
| | - Steven G. Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, South Africa
| | - Jack P. Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Nathaniel R. Street
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, South Africa
| |
Collapse
|
26
|
Peng X, Liu H, Chen P, Tang F, Hu Y, Wang F, Pi Z, Zhao M, Chen N, Chen H, Zhang X, Yan X, Liu M, Fu X, Zhao G, Yao P, Wang L, Dai H, Li X, Xiong W, Xu W, Zheng H, Yu H, Shen S. A Chromosome-Scale Genome Assembly of Paper Mulberry (Broussonetia papyrifera) Provides New Insights into Its Forage and Papermaking Usage. MOLECULAR PLANT 2019; 12:661-677. [PMID: 30822525 DOI: 10.1016/j.molp.2019.01.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 05/21/2023]
Abstract
Paper mulberry (Broussonetia papyrifera) is a well-known woody tree historically used for Cai Lun papermaking, one of the four great inventions of ancient China. More recently, Paper mulberry has also been used as forage to address the shortage of feedstuff because of its digestible crude fiber and high protein contents. In this study, we obtained a chromosome-scale genome assembly for Paper mulberry using integrated approaches, including Illumina and PacBio sequencing platform as well as Hi-C, optical, and genetic maps. The assembled Paper mulberry genome consists of 386.83 Mb, which is close to the estimated size, and 99.25% (383.93 Mb) of the assembly was assigned to 13 pseudochromosomes. Comparative genomic analysis revealed the expansion and contraction in the flavonoid and lignin biosynthetic gene families, respectively, accounting for the enhanced flavonoid and decreased lignin biosynthesis in Paper mulberry. Moreover, the increased ratio of syringyl-lignin to guaiacyl-lignin in Paper mulberry underscores its suitability for use in medicine, forage, papermaking, and barkcloth making. We also identified the root-associated microbiota of Paper mulberry and found that Pseudomonas and Rhizobia were enriched in its roots and may provide the source of nitrogen for its stems and leaves via symbiotic nitrogen fixation. Collectively, these results suggest that Paper mulberry might have undergone adaptive evolution and recruited nitrogen-fixing microbes to promote growth by enhancing flavonoid production and altering lignin monomer composition. Our study provides significant insights into genetic basis of the usefulness of Paper mulberry in papermaking and barkcloth making, and as forage. These insights will facilitate further domestication and selection as well as industrial utilization of Paper mulberry worldwide.
Collapse
Affiliation(s)
- Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Hui Liu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Peilin Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Feng Tang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Yanmin Hu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Fenfen Wang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Zhi Pi
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Meiling Zhao
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Naizhi Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Hui Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Xueqing Yan
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Xiaojun Fu
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Guofeng Zhao
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Pu Yao
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Lili Wang
- Biomarker Technologies Corporation, Beijing 101300, China
| | - He Dai
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Xuming Li
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Wei Xiong
- Quick Green Bio-Tec Co., Ltd., Dalian 116600, China
| | - Wencai Xu
- Beijing Jonathan Science and Technology Development Co., Ltd., Beijing 101314, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, Beijing 101300, China.
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; ChuangGou Science & Technology Co. Ltd., Beijing 100049, China.
| |
Collapse
|
27
|
Xie H, Engle NL, Venketachalam S, Yoo CG, Barros J, Lecoultre M, Howard N, Li G, Sun L, Srivastava AC, Pattathil S, Pu Y, Hahn MG, Ragauskas AJ, Nelson RS, Dixon RA, Tschaplinski TJ, Blancaflor EB, Tang Y. Combining loss of function of FOLYLPOLYGLUTAMATE SYNTHETASE1 and CAFFEOYL- COA 3- O- METHYLTRANSFERASE1 for lignin reduction and improved saccharification efficiency in Arabidopsis thaliana. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:108. [PMID: 31073332 PMCID: PMC6498598 DOI: 10.1186/s13068-019-1446-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/20/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Downregulation of genes involved in lignin biosynthesis and related biochemical pathways has been used as a strategy to improve biofuel production. Plant C1 metabolism provides the methyl units used for the methylation reactions carried out by two methyltransferases in the lignin biosynthetic pathway: caffeic acid 3-O-methyltransferase (COMT) and caffeoyl-CoA 3-O-methyltransferase (CCoAOMT). Mutations in these genes resulted in lower lignin levels and altered lignin compositions. Reduced lignin levels can also be achieved by mutations in the C1 pathway gene, folylpolyglutamate synthetase1 (FPGS1), in both monocotyledons and dicotyledons, indicating a link between the C1 and lignin biosynthetic pathways. To test if lignin content can be further reduced by combining genetic mutations in C1 metabolism and the lignin biosynthetic pathway, fpgs1ccoaomt1 double mutants were generated and functionally characterized. RESULTS Double fpgs1ccoaomt1 mutants had lower thioacidolysis lignin monomer yield and acetyl bromide lignin content than the ccoaomt1 or fpgs1 mutants and the plants themselves displayed no obvious long-term negative growth phenotypes. Moreover, extracts from the double mutants had dramatically improved enzymatic polysaccharide hydrolysis efficiencies than the single mutants: 15.1% and 20.7% higher than ccoaomt1 and fpgs1, respectively. The reduced lignin and improved sugar release of fpgs1ccoaomt1 was coupled with changes in cell-wall composition, metabolite profiles, and changes in expression of genes involved in cell-wall and lignin biosynthesis. CONCLUSION Our observations demonstrate that additional reduction in lignin content and improved sugar release can be achieved by simultaneous downregulation of a gene in the C1 (FPGS1) and lignin biosynthetic (CCOAOMT) pathways. These improvements in sugar accessibility were achieved without introducing unwanted long-term plant growth and developmental defects.
Collapse
Affiliation(s)
- Hongli Xie
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Nancy L. Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Sivasankari Venketachalam
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Chang Geun Yoo
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Jaime Barros
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Mitch Lecoultre
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Nikki Howard
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Guifen Li
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
| | - Liang Sun
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
| | - Avinash C. Srivastava
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Yunqiao Pu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Arthur J. Ragauskas
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Richard S. Nelson
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
- The Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Elison B. Blancaflor
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| | - Yuhong Tang
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN 37831 USA
| |
Collapse
|
28
|
Mewalal R, Yin H, Hu R, Jawdy S, Vion P, Tuskan GA, Le Tacon F, Labbé JL, Yang X. Identification of Populus Small RNAs Responsive to Mutualistic Interactions With Mycorrhizal Fungi, Laccaria bicolor and Rhizophagus irregularis. Front Microbiol 2019; 10:515. [PMID: 30936859 PMCID: PMC6431645 DOI: 10.3389/fmicb.2019.00515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 02/28/2019] [Indexed: 12/02/2022] Open
Abstract
Ecto- and endo-mycorrhizal colonization of Populus roots have a positive impact on the overall tree health and growth. A complete molecular understanding of these interactions will have important implications for increasing agricultural or forestry sustainability using plant:microbe-based strategies. These beneficial associations entail extensive morphological changes orchestrated by the genetic reprogramming in both organisms. In this study, we performed a comparative analysis of two Populus species (Populus deltoides and P. trichocarpa) that were colonized by either an arbuscular mycorrhizal fungus (AmF), Rhizophagus irregularis or an ectomycorrhizal fungus (EmF), Laccaria bicolor, to describe the small RNA (sRNA) landscape including small open reading frames (sORFs) and micro RNAs (miRNAs) involved in these mutualistic interactions. We identified differential expression of sRNAs that were, to a large extent, (1) within the genomic regions lacking annotated genes in the Populus genome and (2) distinct for each fungal interaction. These sRNAs may be a source of novel sORFs within a genome, and in this regard, we identified potential sORFs encoded by the sRNAs. We predicted a higher number of differentially-expressed miRNAs in P. trichocarpa (4 times more) than in P. deltoides (conserved and novel). In addition, 44 miRNAs were common in P. trichocarpa between the EmF and AmF treatments, and only 4 miRNAs were common in P. deltoides between the treatments. Root colonization by either fungus was more effective in P. trichocarpa than in P. deltoides, thus the relatively few differentially-expressed miRNAs predicted in P. deltoides might reflect the extent of the symbiosis. Finally, we predicted several genes targets for the plant miRNAs identified here, including potential fungal gene targets. Our findings shed light on additional molecular tiers with a role in Populus-fungal mutualistic associations and provides a set of potential molecular targets for future enhancement.
Collapse
Affiliation(s)
- Ritesh Mewalal
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - Rongbin Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Patrice Vion
- INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, VandIJuvre-lès-Nancy, France
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - François Le Tacon
- INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, VandIJuvre-lès-Nancy, France
| | - Jessy L. Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
29
|
Xu X, Zhou Y, Wang B, Ding L, Wang Y, Luo L, Zhang Y, Kong W. Genome-wide identification and characterization of laccase gene family in Citrus sinensis. Gene 2019; 689:114-123. [DOI: 10.1016/j.gene.2018.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/26/2018] [Accepted: 12/12/2018] [Indexed: 11/16/2022]
|
30
|
Müller BSF, de Almeida Filho JE, Lima BM, Garcia CC, Missiaggia A, Aguiar AM, Takahashi E, Kirst M, Gezan SA, Silva-Junior OB, Neves LG, Grattapaglia D. Independent and Joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3373 individuals across four breeding populations. THE NEW PHYTOLOGIST 2019; 221:818-833. [PMID: 30252143 DOI: 10.1111/nph.15449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/13/2018] [Indexed: 05/18/2023]
Abstract
Genome-wide association studies (GWAS) in plants typically suffer from limited statistical power. An alternative to the logistical and cost challenge of increasing sample sizes is to gain power by meta-analysis using information from independent studies. We carried out GWAS for growth traits with six single-marker models and regional heritability mapping (RHM) in four Eucalyptus breeding populations independently and by Joint-GWAS, using gene and segment-based models, with data for 3373 individuals genotyped with a communal EUChip60KSNP platform. While single-single nucleotide polymorphism (SNP) GWAS hardly detected significant associations at high-stringency in each population, gene-based Joint-GWAS revealed nine genes significantly associated with tree height. Associations detected using single-SNP GWAS, RHM and Joint-GWAS set-based models explained on average 3-20% of the phenotypic variance. Whole-genome regression, conversely, captured 64-89% of the pedigree-based heritability in all populations. Several associations independently detected for the same SNPs in different populations provided unprecedented GWAS validation results in forest trees. Rare and common associations were discovered in eight genes involved in cell wall biosynthesis and lignification. With the increasing adoption of genomic prediction of complex phenotypes using shared SNPs and much larger tree breeding populations, Joint-GWAS approaches should provide increasing power to pinpoint discrete associations potentially useful toward tree breeding and molecular applications.
Collapse
Affiliation(s)
- Bárbara S F Müller
- Molecular Biology Program, Cell Biology Department, Biological Sciences Institute, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
- EMBRAPA Genetic Resources and Biotechnology - EPqB, Brasília, DF, 70770-910, Brazil
| | - Janeo E de Almeida Filho
- Plant Breeding Laboratory, State University of North Fluminense "Darcy Ribeiro", Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Bruno M Lima
- FIBRIA S.A. Technology Center, Jacareí, SP, 12340-010, Brazil
| | - Carla C Garcia
- International Paper of Brazil, Rodovia SP 340 KM 171, Mogi Guaçu, SP, 13840-970, Brazil
| | | | | | - Elizabete Takahashi
- Celulose Nipo-Brasileira (CENIBRA) S.A., Belo Oriente, MG, 35196-000, Brazil
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - Salvador A Gezan
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - Orzenil B Silva-Junior
- EMBRAPA Genetic Resources and Biotechnology - EPqB, Brasília, DF, 70770-910, Brazil
- Genomic Sciences and Biotechnology Program, SGAN, Catholic University of Brasília, 916 modulo B, Brasília, DF, 70790-160, Brazil
| | | | - Dario Grattapaglia
- Molecular Biology Program, Cell Biology Department, Biological Sciences Institute, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
- EMBRAPA Genetic Resources and Biotechnology - EPqB, Brasília, DF, 70770-910, Brazil
- Genomic Sciences and Biotechnology Program, SGAN, Catholic University of Brasília, 916 modulo B, Brasília, DF, 70790-160, Brazil
| |
Collapse
|
31
|
Wang Q, Ding L, Zhu C. Characterization of laccase from a novel isolated white-rot fungi Trametes sp. MA-X01 and its potential application in dye decolorization. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1517028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Qian Wang
- Department of Biotechnology, College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Lei Ding
- Department of Biotechnology, College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, Anhui, PR China
| | - Changwei Zhu
- Department of Biotechnology, College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, Anhui, PR China
| |
Collapse
|
32
|
Lignin polymerization: how do plants manage the chemistry so well? Curr Opin Biotechnol 2018; 56:75-81. [PMID: 30359808 DOI: 10.1016/j.copbio.2018.10.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/05/2018] [Accepted: 10/03/2018] [Indexed: 11/22/2022]
Abstract
The final step of lignin biosynthesis is the polymerization of monolignols in apoplastic cell wall domains. In this process, monolignols secreted by lignifying cells, or occasionally neighboring non-lignifying and/or other lignifying cells, are activated by cell-wall-localized oxidation systems, such as laccase/O2 and/or peroxidase/H2O2, for combinatorial radical coupling to make the final lignin polymers. Plants can precisely control when, where, and which types of lignin polymers are assembled at tissue and cellular levels, but do not control the polymers' exact chemical structures per se. Recent studies have begun to identify specific laccase and peroxidase proteins responsible for lignin polymerization in specific cell types and during different developmental stages. The coordination of polymerization machinery localization and monolignol supply is likely critical for the spatio-temporal patterning of lignin polymerization. Further advancement in this research area will continue to increase our capacity to manipulate lignin content/structure in biomass to meet our own biotechnological purposes.
Collapse
|
33
|
Guan ZB, Luo Q, Wang HR, Chen Y, Liao XR. Bacterial laccases: promising biological green tools for industrial applications. Cell Mol Life Sci 2018; 75:3569-3592. [PMID: 30046841 PMCID: PMC11105425 DOI: 10.1007/s00018-018-2883-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/30/2018] [Accepted: 07/19/2018] [Indexed: 11/26/2022]
Abstract
Multicopper oxidases (MCOs) are a pervasive family of enzymes that oxidize a wide range of phenolic and nonphenolic aromatic substrates, concomitantly with the reduction of dioxygen to water. MCOs are usually divided into two functional classes: metalloxidases and laccases. Given their broad substrate specificity and eco-friendliness (molecular oxygen from air as is used as the final electron acceptor and they only release water as byproduct), laccases are regarded as promising biological green tools for an array of applications. Among these laccases, those of bacterial origin have attracted research attention because of their notable advantages, including broad substrate spectrum, wide pH range, high thermostability, and tolerance to alkaline environments. This review aims to summarize the significant research efforts on the properties, mechanisms and structures, laccase-mediator systems, genetic engineering, immobilization, and biotechnological applications of the bacteria-source laccases and laccase-like enzymes, which principally include Bacillus laccases, actinomycetic laccases and some other species of bacterial laccases. In addition, these enzymes may offer tremendous potential for environmental and industrial applications.
Collapse
Affiliation(s)
- Zheng-Bing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Quan Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hao-Ran Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yu Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiang-Ru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
34
|
Sun Q, Liu X, Yang J, Liu W, Du Q, Wang H, Fu C, Li WX. MicroRNA528 Affects Lodging Resistance of Maize by Regulating Lignin Biosynthesis under Nitrogen-Luxury Conditions. MOLECULAR PLANT 2018; 11:806-814. [PMID: 29597009 DOI: 10.1016/j.molp.2018.03.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/25/2018] [Accepted: 03/18/2018] [Indexed: 05/21/2023]
Abstract
Lodging under nitrogen (N)-luxury conditions substantially reduces crop yield and seed quality. However, the molecular mechanisms of plant lodging resistance remain largely unclear, especially in maize. We report here that the expression of ZmmiR528, a monocot-specific microRNA, is induced by N luxury but reduced by N deficiency. We show by the thioacidolysis and acetyl bromide analysis that N luxury significantly reduces the generation of H, G, and S monomers of the lignin as well as its total content in maize shoots. We further demonstrate that ZmLACCASE3 (ZmLAC3) and ZmLACCASE5 (ZmLAC5), which encode the copper-containing laccases, are the targets of ZmmiR528. In situ hybridization showed that ZmmiR528 is mainly expressed in maize vascular tissues. Knockdown of ZmmiR528 or overexpression of ZmLAC3 significantly increased the lignin content and rind penetrometer resistance of maize stems. In contrast, transgenic maize plants overexpressing ZmmiR528 had reduced lignin content and rind penetrometer resistance and were prone to lodging under N-luxury conditions. RNA-sequencing analysis revealed that ZmPAL7 and ZmPAL8 are upregulated in transgenic maize lines downregulating ZmmiR528. Under N-luxury conditions, the expression levels of ZmPALs were much higher in ZmmiR528-knockdown lines than in the wild type and transgenic maize lines overexpressing ZmmiR528. Taken together, these results indicate that, by regulating the expression of ZmLAC3 and ZmLAC5, ZmmiR528 affects maize lodging resistance under N-luxury conditions.
Collapse
Affiliation(s)
- Qing Sun
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaogang Liu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan Yang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenwen Liu
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Engineering Research Center of Biomass Resources and Environment and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongqiu Wang
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Engineering Research Center of Biomass Resources and Environment and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
35
|
Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nat Biotechnol 2018; 36:249-257. [DOI: 10.1038/nbt.4067] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/02/2018] [Indexed: 01/17/2023]
|
36
|
Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A. Reciprocal Interactions between Cadmium-Induced Cell Wall Responses and Oxidative Stress in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1867. [PMID: 29163592 PMCID: PMC5671638 DOI: 10.3389/fpls.2017.01867] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/12/2017] [Indexed: 05/18/2023]
Abstract
Cadmium (Cd) pollution renders many soils across the world unsuited or unsafe for food- or feed-orientated agriculture. The main mechanism of Cd phytotoxicity is the induction of oxidative stress, amongst others through the depletion of glutathione. Oxidative stress can damage lipids, proteins, and nucleic acids, leading to growth inhibition or even cell death. The plant cell has a variety of tools to defend itself against Cd stress. First and foremost, cell walls might prevent Cd from entering and damaging the protoplast. Both the primary and secondary cell wall have an array of defensive mechanisms that can be adapted to cope with Cd. Pectin, which contains most of the negative charges within the primary cell wall, can sequester Cd very effectively. In the secondary cell wall, lignification can serve to immobilize Cd and create a tougher barrier for entry. Changes in cell wall composition are, however, dependent on nutrients and conversely might affect their uptake. Additionally, the role of ascorbate (AsA) as most important apoplastic antioxidant is of considerable interest, due to the fact that oxidative stress is a major mechanism underlying Cd toxicity, and that AsA biosynthesis shares several links with cell wall construction. In this review, modifications of the plant cell wall in response to Cd exposure are discussed. Focus lies on pectin in the primary cell wall, lignification in the secondary cell wall and the importance of AsA in the apoplast. Regarding lignification, we attempt to answer the question whether increased lignification is merely a consequence of Cd toxicity, or rather an elicited defense response. We propose a model for lignification as defense response, with a central role for hydrogen peroxide as substrate and signaling molecule.
Collapse
Affiliation(s)
| | | | | | | | | | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
37
|
Comparative morphology and transcriptome analysis reveals distinct functions of the primary and secondary laticifer cells in the rubber tree. Sci Rep 2017; 7:3126. [PMID: 28600566 PMCID: PMC5466658 DOI: 10.1038/s41598-017-03083-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/24/2017] [Indexed: 12/27/2022] Open
Abstract
Laticifers are highly specialized cells that synthesize and store natural rubber. Rubber trees (Hevea brasiliensis Muell. Arg.) contain both primary and secondary laticifers. Morphological and functional differences between the two types of laticifers are largely unknown, but such information is important for breeding and cultivation practices. Morphological comparison using paraffin sections revealed only distribution differences: the primary laticifers were distributed randomly, while the secondary laticifers were distributed in concentric rings. Using isolated laticifer networks, the primary laticifers were shown to develop via intrusive "budding" and formed necklace-like morphology, while the secondary laticifers developed straight and smooth cell walls. Comparative transcriptome analysis indicated that genes involved in cell wall modification, such as pectin esterase, lignin metabolic enzymes, and expansins, were highly up-regulated in the primary laticifers and correspond to its necklace-like morphology. Genes involved in defense against biotic stresses and rubber biosynthesis were highly up-regulated in the primary laticifers, whereas genes involved in abiotic stresses and dormancy were up-regulated in the secondary laticifers, suggesting that the primary laticifers are more adequately prepared to defend against biotic stresses, while the secondary laticifers are more adequately prepared to defend against abiotic stresses. Therefore, the two types of laticifers are morphologically and functionally distinct.
Collapse
|
38
|
Dumitrache A, Natzke J, Rodriguez M, Yee KL, Thompson OA, Poovaiah CR, Shen H, Mazarei M, Baxter HL, Fu C, Wang Z, Biswal AK, Li G, Srivastava AC, Tang Y, Stewart CN, Dixon RA, Nelson RS, Mohnen D, Mielenz J, Brown SD, Davison BH. Transgenic switchgrass (Panicum virgatum L.) targeted for reduced recalcitrance to bioconversion: a 2-year comparative analysis of field-grown lines modified for target gene or genetic element expression. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:688-697. [PMID: 27862852 PMCID: PMC5425389 DOI: 10.1111/pbi.12666] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/27/2016] [Accepted: 11/16/2016] [Indexed: 05/17/2023]
Abstract
Transgenic Panicum virgatum L. silencing (KD) or overexpressing (OE) specific genes or a small RNA (GAUT4-KD, miRNA156-OE, MYB4-OE, COMT-KD and FPGS-KD) was grown in the field and aerial tissue analysed for biofuel production traits. Clones representing independent transgenic lines were established and senesced tissue was sampled after year 1 and 2 growth cycles. Biomass was analysed for wall sugars, recalcitrance to enzymatic digestibility and biofuel production using separate hydrolysis and fermentation. No correlation was found between plant carbohydrate content and biofuel production pointing to overriding structural and compositional elements that influence recalcitrance. Biomass yields were greater for all lines in the second year as plants establish in the field and standard amounts of biomass analysed from each line had more glucan, xylan and less ethanol (g/g basis) in the second- versus the first-year samples, pointing to a broad increase in tissue recalcitrance after regrowth from the perennial root. However, biomass from second-year growth of transgenics targeted for wall modification, GAUT4-KD, MYB4-OE, COMT-KD and FPGS-KD, had increased carbohydrate and ethanol yields (up to 12% and 21%, respectively) compared with control samples. The parental plant lines were found to have a significant impact on recalcitrance which can be exploited in future strategies. This summarizes progress towards generating next-generation bio-feedstocks with improved properties for microbial and enzymatic deconstruction, while providing a comprehensive quantitative analysis for the bioconversion of multiple plant lines in five transgenic strategies.
Collapse
|
39
|
Biotechnology for bioenergy dedicated trees: meeting future energy demands. ACTA ACUST UNITED AC 2017; 73:15-32. [DOI: 10.1515/znc-2016-0185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/26/2017] [Indexed: 11/15/2022]
Abstract
Abstract
With the increase in human demands for energy, purpose-grown woody crops could be part of the global renewable energy solution, especially in geographical regions where plantation forestry is feasible and economically important. In addition, efficient utilization of woody feedstocks would engage in mitigating greenhouse gas emissions, decreasing the challenge of food and energy security, and resolving the conflict between land use for food or biofuel production. This review compiles existing knowledge on biotechnological and genomics-aided improvements of biomass performance of purpose-grown poplar, willow, eucalyptus and pine species, and their relative hybrids, for efficient and sustainable bioenergy applications. This includes advancements in tree in vitro regeneration, and stable expression or modification of selected genes encoding desirable traits, which enhanced growth and yield, wood properties, site adaptability, and biotic and abiotic stress tolerance. Genetic modifications used to alter lignin/cellulose/hemicelluloses ratio and lignin composition, towards effective lignocellulosic feedstock conversion into cellulosic ethanol, are also examined. Biotech-trees still need to pass challengeable regulatory authorities’ processes, including biosafety and risk assessment analyses prior to their commercialization release. Hence, strategies developed to contain transgenes, or to mitigate potential transgene flow risks, are discussed.
Collapse
|
40
|
Yang Y, Yoo CG, Winkeler KA, Collins CM, Hinchee MAW, Jawdy SS, Gunter LE, Engle NL, Pu Y, Yang X, Tschaplinski TJ, Ragauskas AJ, Tuskan GA, Chen JG. Overexpression of a Domain of Unknown Function 231-containing protein increases O-xylan acetylation and cellulose biosynthesis in Populus. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:311. [PMID: 29299061 PMCID: PMC5744390 DOI: 10.1186/s13068-017-0998-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/14/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Domain of Unknown Function 231-containing proteins (DUF231) are plant specific and their function is largely unknown. Studies in the model plants Arabidopsis and rice suggested that some DUF231 proteins act in the process of O-acetyl substitution of hemicellulose and esterification of pectin. However, little is known about the function of DUF231 proteins in woody plant species. RESULTS This study provides evidence supporting that one member of DUF231 family proteins in the woody perennial plant Populus deltoides (genotype WV94), PdDUF231A, has a role in the acetylation of xylan and affects cellulose biosynthesis. A total of 52 DUF231-containing proteins were identified in the Populus genome. In P. deltoides transgenic lines overexpressing PdDUF231A (OXPdDUF231A), glucose and cellulose contents were increased. Consistent with these results, the transcript levels of cellulose biosynthesis-related genes were increased in the OXPdDUF231A transgenic lines. Furthermore, the relative content of total acetylated xylan was increased in the OXPdDUF231A transgenic lines. Enzymatic saccharification assays revealed that the rate of glucose release increased in OXPdDUF231A transgenic lines. Plant biomass productivity was also increased in OXPdDUF231A transgenic lines. CONCLUSIONS These results suggest that PdDUF231A affects cellulose biosynthesis and plays a role in the acetylation of xylan. PdDUF231A is a promising target for genetic modification for biofuel production because biomass productivity and compositional quality can be simultaneously improved through overexpression.
Collapse
Affiliation(s)
- Yongil Yang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Chang Geun Yoo
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | | | | | | | - Sara S. Jawdy
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Lee E. Gunter
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Nancy L. Engle
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Yunqiao Pu
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Xiaohan Yang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Timothy J. Tschaplinski
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Arthur J. Ragauskas
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
- Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Knoxville, TN 37996 USA
| | - Gerald A. Tuskan
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Jin-Gui Chen
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
41
|
Yu Y, Li QF, Zhang JP, Zhang F, Zhou YF, Feng YZ, Chen YQ, Zhang YC. Laccase-13 Regulates Seed Setting Rate by Affecting Hydrogen Peroxide Dynamics and Mitochondrial Integrity in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1324. [PMID: 28798768 PMCID: PMC5526905 DOI: 10.3389/fpls.2017.01324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/14/2017] [Indexed: 05/03/2023]
Abstract
Seed setting rate is one of the most important components of rice grain yield. To date, only several genes regulating setting rate have been identified in plant. In this study, we showed that laccase-13 (OsLAC13), a member of laccase family genes which are known for their roles in modulating phenylpropanoid pathway and secondary lignification in cell wall, exerts a regulatory function in rice seed setting rate. OsLAC13 expressed in anthers and promotes hydrogen peroxide production both in vitro and in the filaments and anther connectives. Knock-out of OsLAC13 showed significantly increased seed setting rate, while overexpression of this gene exhibited induced mitochondrial damage and suppressed sugar transportation in anthers, which in turn affected seed setting rate. OsLAC13 also induced H2O2 production and mitochondrial damage in the root tip cells which caused the lethal phenotype. We also showed that high abundant of OsmiR397, the suppressor of OsLAC13 mRNA, increased the seed setting rate of rice plants, and restrains H2O2 accumulation in roots during oxidative stress. Our results suggested a novel regulatory role of OsLAC13 gene in regulating seed setting rate by affecting H2O2 dynamics and mitochondrial integrity in rice.
Collapse
|
42
|
Tan HT, Corbin KR, Fincher GB. Emerging Technologies for the Production of Renewable Liquid Transport Fuels from Biomass Sources Enriched in Plant Cell Walls. FRONTIERS IN PLANT SCIENCE 2016; 7:1854. [PMID: 28018390 PMCID: PMC5161040 DOI: 10.3389/fpls.2016.01854] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/24/2016] [Indexed: 05/15/2023]
Abstract
Plant cell walls are composed predominantly of cellulose, a range of non-cellulosic polysaccharides and lignin. The walls account for a large proportion not only of crop residues such as wheat straw and sugarcane bagasse, but also of residues of the timber industry and specialist grasses and other plants being grown specifically for biofuel production. The polysaccharide components of plant cell walls have long been recognized as an extraordinarily large source of fermentable sugars that might be used for the production of bioethanol and other renewable liquid transport fuels. Estimates place annual plant cellulose production from captured light energy in the order of hundreds of billions of tons. Lignin is synthesized in the same order of magnitude and, as a very large polymer of phenylpropanoid residues, lignin is also an abundant, high energy macromolecule. However, one of the major functions of these cell wall constituents in plants is to provide the extreme tensile and compressive strengths that enable plants to resist the forces of gravity and a broad range of other mechanical forces. Over millions of years these wall constituents have evolved under natural selection to generate extremely tough and resilient biomaterials. The rapid degradation of these tough cell wall composites to fermentable sugars is therefore a difficult task and has significantly slowed the development of a viable lignocellulose-based biofuels industry. However, good progress has been made in overcoming this so-called recalcitrance of lignocellulosic feedstocks for the biofuels industry, through modifications to the lignocellulose itself, innovative pre-treatments of the biomass, improved enzymes and the development of superior yeasts and other microorganisms for the fermentation process. Nevertheless, it has been argued that bioethanol might not be the best or only biofuel that can be generated from lignocellulosic biomass sources and that hydrocarbons with intrinsically higher energy densities might be produced using emerging and continuous flow systems that are capable of converting a broad range of plant and other biomasses to bio-oils through so-called 'agnostic' technologies such as hydrothermal liquefaction. Continued attention to regulatory frameworks and ongoing government support will be required for the next phase of development of internationally viable biofuels industries.
Collapse
Affiliation(s)
- Hwei-Ting Tan
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, BrisbaneQLD, Australia
| | - Kendall R. Corbin
- Centre for Marine Bioproducts Development, School of Medicine, Flinders University, Bedford ParkSA, Australia
| | - Geoffrey B. Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Glen OsmondSA, Australia
- *Correspondence: Geoffrey B. Fincher,
| |
Collapse
|