1
|
Zhou S, Wu T, Li X, Wang S, Hu B. Identification of candidate genes controlling cold tolerance at the early seedling stage from Dongxiang wild rice by QTL mapping, BSA-Seq and RNA-Seq. BMC PLANT BIOLOGY 2024; 24:649. [PMID: 38977989 PMCID: PMC11232298 DOI: 10.1186/s12870-024-05369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The cold tolerance of rice is closely related to its production and geographic distribution. The identification of cold tolerance-related genes is of important significance for developing cold-tolerant rice. Dongxiang wild rice (Oryza rufipogon Griff.) (DXWR) is well-adapted to the cold climate of northernmost-latitude habitats ever found in the world, and is one of the most valuable rice germplasms for cold tolerance improvement. RESULTS Transcriptome analysis revealed genes differentially expressed between Xieqingzao B (XB; a cold sensitive variety) and 19H19 (derived from an interspecific cross between DXWR and XB) in the room temperature (RT), low temperature (LT), and recovery treatments. The results demonstrated that chloroplast genes might be involved in the regulation of cold tolerance in rice. A high-resolution SNP genetic map was constructed using 120 BC5F2 lines derived from a cross between 19H19 and XB based on the genotyping-by-sequencing (GBS) technique. Two quantitative trait loci (QTLs) for cold tolerance at the early seedling stage (CTS), qCTS12 and qCTS8, were detected. Moreover, a total of 112 candidate genes associated with cold tolerance were identified based on bulked segregant analysis sequencing (BSA-seq). These candidate genes were divided into eight functional categories, and the expression trend of candidate genes related to 'oxidation-reduction process' and 'response to stress' differed between XB and 19H19 in the RT, LT and recovery treatments. Among these candidate genes, the expression level of LOC_Os12g18729 in 19H19 (related to 'response to stress') decreased in the LT treatment but restored and enhanced during the recovery treatment whereas the expression level of LOC_Os12g18729 in XB declined during recovery treatment. Additionally, XB contained a 42-bp deletion in the third exon of LOC_Os12g18729, and the genotype of BC5F2 individuals with a survival percentage (SP) lower than 15% was consistent with that of XB. Weighted gene coexpression network analysis (WGCNA) and modular regulatory network learning with per gene information (MERLIN) algorithm revealed a gene interaction/coexpression network regulating cold tolerance in rice. In the network, differentially expressed genes (DEGs) related to 'oxidation-reduction process', 'response to stress' and 'protein phosphorylation' interacted with LOC_Os12g18729. Moreover, the knockout mutant of LOC_Os12g18729 decreased cold tolerance in early rice seedling stage signifcantly compared with that of wild type. CONCLUSIONS In general, study of the genetic basis of cold tolerance of rice is important for the development of cold-tolerant rice varieties. In the present study, QTL mapping, BSA-seq and RNA-seq were integrated to identify two CTS QTLs qCTS8 and qCTS12. Furthermore, qRT-PCR, genotype sequencing and knockout analysis indicated that LOC_Os12g18729 could be the candidate gene of qCTS12. These results are expected to further exploration of the genetic mechanism of CTS in rice and improve cold tolerance of cultivated rice by introducing the cold tolerant genes from DXWR through marker-assisted selection.
Collapse
Affiliation(s)
- Shiqi Zhou
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Qingyunpu District, Nanchang, 330000, China
| | - Ting Wu
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Qingyunpu District, Nanchang, 330000, China
| | - Xia Li
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Qingyunpu District, Nanchang, 330000, China
| | - Shilin Wang
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Qingyunpu District, Nanchang, 330000, China
| | - Biaolin Hu
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, No. 602 Nanlian Road, Qingyunpu District, Nanchang, 330000, China.
| |
Collapse
|
2
|
Wei M, Yan Q, Huang D, Ma Z, Chen S, Yin X, Liu C, Qin Y, Zhou X, Wu Z, Lu Y, Yan L, Qin G, Zhang Y. Integration of molecular breeding and multi-resistance screening for developing a promising restorer line Guihui5501 with heavy grain, good grain quality, and endurance to biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1390603. [PMID: 38911983 PMCID: PMC11190317 DOI: 10.3389/fpls.2024.1390603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
Rice, a critical staple on a global scale, faces escalating challenges in yield preservation due to the rising prevalence of abiotic and biotic stressors, exacerbated by frequent climatic fluctuations in recent years. Moreover, the scorching climate prevalent in the rice-growing regions of South China poses obstacles to the cultivation of good-quality, heavy-grain varieties. Addressing this dilemma requires the development of resilient varieties capable of withstanding multiple stress factors. To achieve this objective, our study employed the broad-spectrum blast-resistant line Digu, the brown planthopper (BPH)-resistant line ASD7, and the heavy-grain backbone restorer lines Fuhui838 (FH838) and Shuhui527 (SH527) as parental materials for hybridization and multiple crossings. The incorporation of molecular markers facilitated the rapid pyramiding of six target genes (Pi5, Pita, Pid2, Pid3, Bph2, and Wxb ). Through a comprehensive evaluation encompassing blast resistance, BPH resistance, cold tolerance, grain appearance, and quality, alongside agronomic trait selection, a promising restorer line, Guihui5501 (GH5501), was successfully developed. It demonstrated broad-spectrum resistance to blast, exhibiting a resistance frequency of 77.33% against 75 artificially inoculated isolates, moderate resistance to BPH (3.78 grade), strong cold tolerance during the seedling stage (1.80 grade), and characteristics of heavy grains (1,000-grain weight reaching 35.64 g) with good grain quality. The primary rice quality parameters for GH5501, with the exception of alkali spreading value, either met or exceeded the second-grade national standard for premium edible rice varieties, signifying a significant advancement in the production of good-quality heavy-grain varieties in the southern rice-growing regions. Utilizing GH5501, a hybrid combination named Nayou5501, characterized by high yield, good quality, and resistance to multiple stresses, was bred and received approval as a rice variety in Guangxi in 2021. Furthermore, genomic analysis with gene chips revealed that GH5501 possessed an additional 20 exceptional alleles, such as NRT1.1B for efficient nitrogen utilization, SKC1 for salt tolerance, and STV11 for resistance to rice stripe virus. Consequently, the restorer line GH5501 could serve as a valuable resource for the subsequent breeding of high-yielding, good-quality, and stress-tolerant hybrid rice varieties.
Collapse
Affiliation(s)
- Minyi Wei
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding/State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Nanning, China
| | - Qun Yan
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Dahui Huang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding/State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Nanning, China
| | - Zengfeng Ma
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding/State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Nanning, China
| | - Shen Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | | | - Chi Liu
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding/State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Nanning, China
| | - Yuanyuan Qin
- Agricultural Science and Technology Information Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiaolong Zhou
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding/State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Nanning, China
| | - Zishuai Wu
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding/State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Nanning, China
| | - Yingping Lu
- Liuzhou Branch, Guangxi Academy of Agricultural Sciences, Liuzhou Research Center of Agricultural Sciences, Liuzhou, China
| | - Liuhui Yan
- Liuzhou Branch, Guangxi Academy of Agricultural Sciences, Liuzhou Research Center of Agricultural Sciences, Liuzhou, China
| | - Gang Qin
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding/State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Nanning, China
| | - Yuexiong Zhang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding/State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Nanning, China
| |
Collapse
|
3
|
Liu D, Luo S, Li Z, Liang G, Guo Y, Xu Y, Chong K. COG3 confers the chilling tolerance to mediate OsFtsH2-D1 module in rice. THE NEW PHYTOLOGIST 2024; 241:2143-2157. [PMID: 38173177 DOI: 10.1111/nph.19514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
The chilling stress induced by the global climate change harms rice production, especially at seedling and booting stage, which feed half the population of the world. Although there are key quantitative trait locus genes identified in the individual stage, few genes have been reported and functioned at both stages. Utilizing chromosome segment substitution lines (CSSLs) and a combination of map-based cloning and phenotypes of the mutants and overexpression lines, we identified the major gene Chilling-tolerance in Geng/japonica rice 3 (COG3) of q chilling-tolerance at the booting and seedling stage 11 (qCTBS11) conferred chilling tolerance at both seedling and booting stages. COG3 was significantly upregulated in Nipponbare under chilling treatment compared with its expression in 93-11. The loss-of-function mutants cog3 showed a reduced chilling tolerance. On the contrary, overexpression enhanced chilling tolerance. Genome evolution and genetic analysis suggested that COG3 may have undergone strong selection in temperate japonica during domestication. COG3, a putative calmodulin-binding protein, physically interacted with OsFtsH2 at chloroplast. In cog3-1, OsFtsH2-mediated D1 degradation was impaired under chilling treatment compared with wild-type. Our results suggest that COG3 is necessary for maintaining OsFtsH2 protease activity to regulate chilling tolerance at the booting and seedling stage.
Collapse
Affiliation(s)
- Dongfeng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shengtao Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhitao Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guohua Liang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Baruah AR, Bannai H, Meija Y, Kimura A, Ueno H, Koide Y, Kishima Y, Palta J, Kasuga J, Yamamoto MP, Onishi K. Genetics of chilling response at early growth stage in rice: a recessive gene for tolerance and importance of acclimation. AOB PLANTS 2023; 15:plad075. [PMID: 38028749 PMCID: PMC10676198 DOI: 10.1093/aobpla/plad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Low-temperature adaptation in rice is mediated by the ability of a genotype to tolerate chilling temperatures. A genetic locus on chromosome 11 was analysed for chilling tolerance at the plumule stage in rice. The tolerant allele of A58, a japonica landrace in Japan, was inherited as a recessive gene (ctp-1A58), whereas the susceptible alleles from wild rice (Ctp-1W107) and modern variety (Ctp-1HY) were the dominant genes. Another recessive tolerant allele (ctp-1Silewah) was found in a tropical japonica variety (Silewah). Fine-mapping revealed that a candidate gene for the ctp-1 locus encoded a protein similar to the nucleotide-binding domain and leucine-rich repeat (NLR) protein, in which frameshift mutation by a 73 bp-deletion might confer chilling tolerance in ctp-1A58. Analysis of near-isogenic lines demonstrated that ctp-1A58 imparted tolerance effects only at severe chilling temperatures of 0.5 °C and 2 °C, both at plumule and seedling stages. Chilling acclimation treatments at a wide range of temperatures (8 °C-16 °C) for 72 h concealed the susceptible phenotype of Ctp-1W107 and Ctp-1HY. Furthermore, short-term acclimation treatment of 12 h at 8 °C was enough to be fully acclimated. These results suggest that the NLR gene induces a susceptible response upon exposure to severe chilling stress, however, another interacting gene(s) for acclimation response could suppress the maladaptive phenotype caused by the Ctp-1 allele. This study provides new insights for the adaptation and breeding of rice in a low-temperature environment.
Collapse
Affiliation(s)
- Akhil Ranjan Baruah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Hiroaki Bannai
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yan Meija
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Ayumi Kimura
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Haruka Ueno
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Jiwan Palta
- Department of Horticulture, University of Wisconsin-Madison, 490 Moore Hall, 1575 Linden Drive, Madison, WI 53706, USA
| | - Jun Kasuga
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Masayuki P Yamamoto
- Faculty of Science, Academic Assembly, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Kazumitsu Onishi
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
5
|
Yang J, Miao J, Li N, Zhou Z, Dai K, Ji F, Yang M, Tan C, Liu J, Wang H, Tang W. Genetic dissection of cold tolerance at the budding stage of rice in an indica-japonica recombination inbred line population. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108086. [PMID: 37890228 DOI: 10.1016/j.plaphy.2023.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Rice is highly cold-sensitive, and thus, the promotion of cold resistance in buds is essential. In this study, we conducted a mapping analysis to identify quantitative trait loci (QTLs) associated with cold tolerance in buds. The analysis was performed using a recombinant inbred line (RIL) population consisting of 192 lines derived from the cold-tolerant strain 02428 and the cold-sensitive strain YZX. Seven additive loci on chromosomes 1, 4, 5, and 6 were identified, of which loci 3 and 7 were found in two crop seasons, indicating stability. Three epistatic interactions, one present over two seasons, were found. Loci 3 and 7 pyramided with two main-effect QTLs observed to control the rate of low-temperature germination in our previous study. Two materials with good cold resistance at the germination and bud stages were obtained, namely, G93 and G146. Transcriptome sequencing analysis of the two parent buds after cold treatment found that genes expressed differentially between the two parents were related to photosynthesis, energy metabolism, and reactive oxygen scavenging. Five candidate genes, namely, Os01g0385400, Os01g0388000, Os06g0287700, Os06g0289200, and Os06g0291100, were selected in the two stable intervals based on gene expression profiles and annotations. These genetic loci exhibit strong potential as targets for breeding cold tolerance in buds and require additional investigation. In conclusion, this work provides valuable genetic resources that can be utilized to improve the cold tolerance of rice.
Collapse
Affiliation(s)
- Jing Yang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Jiahao Miao
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Nan Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Zixian Zhou
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Kunyan Dai
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Faru Ji
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Min Yang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Chen Tan
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China
| | - Jing Liu
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China.
| | - Hongyang Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China.
| | - Wei Tang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
6
|
Gu S, Zhang Z, Li J, Sun J, Cui Z, Li F, Zhuang J, Chen W, Su C, Wu L, Wang X, Guo Z, Xu H, Zhao M, Ma D, Chen W. Natural variation in OsSEC13 HOMOLOG 1 modulates redox homeostasis to confer cold tolerance in rice. PLANT PHYSIOLOGY 2023; 193:2180-2196. [PMID: 37471276 DOI: 10.1093/plphys/kiad420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 07/22/2023]
Abstract
Rice (Oryza sativa L.) is a cold-sensitive species that often faces cold stress, which adversely affects yield productivity and quality. However, the genetic basis for low-temperature adaptation in rice remains unclear. Here, we demonstrate that 2 functional polymorphisms in O. sativa SEC13 Homolog 1 (OsSEH1), encoding a WD40-repeat nucleoporin, between the 2 subspecies O. sativa japonica and O. sativa indica rice, may have facilitated cold adaptation in japonica rice. We show that OsSEH1 of the japonica variety expressed in OsSEH1MSD plants (transgenic line overexpressing the OsSEH1 allele from Mangshuidao [MSD], cold-tolerant landrace) has a higher affinity for O. sativa metallothionein 2b (OsMT2b) than that of OsSEH1 of indica. This high affinity of OsSEH1MSD for OsMT2b results in inhibition of OsMT2b degradation, with decreased accumulation of reactive oxygen species and increased cold tolerance. Transcriptome analysis indicates that OsSEH1 positively regulates the expression of the genes encoding dehydration-responsive element-binding transcription factors, i.e. OsDREB1 genes, and induces the expression of multiple cold-regulated genes to enhance cold tolerance. Our findings highlight a breeding resource for improving cold tolerance in rice.
Collapse
Affiliation(s)
- Shuang Gu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhe Zhang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Strube Research GmbH & Co. KG, Söllingen 38387, Germany
| | - Jian Sun
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhibo Cui
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Jia Zhuang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanchun Chen
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Chang Su
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Lian Wu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoliang Wang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhifu Guo
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Hai Xu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Minghui Zhao
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | | | - Wenfu Chen
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
7
|
Pan YH, Nong BX, Chen L, Yang XH, Xia XZ, Zhang ZQ, Qing DJ, Gao J, Huang CC, Li DT, Deng GF. QTL mapping and identification of candidate genes for cold tolerance at the germination stage in wild rice. Genes Genomics 2023; 45:867-885. [PMID: 37209287 DOI: 10.1007/s13258-023-01394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/01/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Cold damage stress significantly affects rice growth (germination and seedling) and causes serious losses in yield in temperate and high-altitude areas around the globe. OBJECTIVE This study aimed to explore the cold tolerance (CT) locus of rice and create new cold-tolerant germplasm. We constructed a chromosome segment substitution line (CSSL) with strong CT and fine mapped quantitative trait loci (QTLs) associated with CT by performing the whole-genome resequencing of CSSL with phenotypes under cold treatment. METHODS A chromosome CSSL, including 271 lines from a cross between the cold-tolerant wild rice Y11 (Oryza rufipogon Griff.) and the cold-sensitive rice variety GH998, was developed to map QTLs conferring CT at the germination stage. The whole-genome resequencing was performed on CSSL for mapping QTLs of associated with CT at the germination stage. RESULTS A high-density linkage map of the CSSLs was developed using the whole-genome resequencing of 1484 bins. The QTL analysis using 615,466 single-nucleotide polymorphisms (SNPs) led to the identification of 2 QTLs related to germination rate at low-temperature on chromosome 8 (qCTG-8) and chromosome 11 (qCTG-11). The qCTG-8 and qCTG-11 explained 14.55% and 14.31% of the total phenotypic variation, respectively. We narrowed down qCTG-8 and qCTG-11 to 195.5 and 78.83-kb regions, respectively. The expression patterns of important candidate genes in different tissues, and of RNA-sequencing (RNA-seq) in CSSLs, were identified based on gene sequences in qCTG-8 and qCTG-11 cold-induced expression analysis. LOC_Os08g01120 and LOC_Os08g01390 were identified as candidate genes in qCTG-8, and LOC_Os11g32880 was identified as a candidate gene in qCTG-11. CONCLUSIONS This study demonstrated a general method that could be used to identify useful loci and genes in wild rice and aid in the future cloning of candidate genes of qCTG-8 and qCTG-11. The CSSLs with strong CT were supported for breeding cold-tolerant rice varieties.
Collapse
Affiliation(s)
- Ying-Hua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Bao-Xuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Lei Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xing-Hai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xiu-Zhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zong-Qiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Dong-Jin Qing
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Ju Gao
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Cheng-Cui Huang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Dan-Ting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Guo-Fu Deng
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| |
Collapse
|
8
|
Mao F, Xie H, Shi Y, Jiang S, Wang S, Wu Y. The Global Changes of N6-methyldeoxyadenosine in Response to Low Temperature in Arabidopsis thaliana and Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2373. [PMID: 37375998 DOI: 10.3390/plants12122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
N6-methyldeoxyadenosine (6mA) is a recently discovered DNA modification involved in regulating plant adaptation to abiotic stresses. However, the mechanisms and changes of 6mA under cold stress in plants are not yet fully understood. Here, we conducted a genome-wide analysis of 6mA and observed that 6mA peaks were predominantly present within the gene body regions under both normal and cold conditions. In addition, the global level of 6mA increased both in Arabidopsis and rice after the cold treatment. The genes that exhibited an up-methylation showed enrichment in various biological processes, whereas there was no significant enrichment observed among the down-methylated genes. The association analysis revealed a positive correlation between the 6mA level and the gene expression level. Joint analysis of the 6mA methylome and transcriptome of Arabidopsis and rice unraveled that fluctuations in 6mA levels caused by cold exposure were not correlated to changes in transcript levels. Furthermore, we discovered that orthologous genes modified by 6mA showed high expression levels; however, only a minor amount of differentially 6mA-methylated orthologous genes were shared between Arabidopsis and rice under low-temperature conditions. In conclusion, our study provides information on the role of 6mA in response to cold stress and reveals its potential for regulating the expression of stress-related genes.
Collapse
Affiliation(s)
- Fei Mao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hairong Xie
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yucheng Shi
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Shasha Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Yan W, Yuan S, Zu Y, Chang Z, Li Y, Chen Z, Xie G, Chen L, Lu C, Deng XW, Yang C, Xu C, Tang X. Ornithine δ-aminotransferase OsOAT is critical for male fertility and cold tolerance during rice plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1301-1318. [PMID: 36932862 DOI: 10.1111/tpj.16194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/11/2023] [Indexed: 06/17/2023]
Abstract
Cold stress is a major factor limiting the production and geographical distribution of rice (Oryza sativa) varieties. However, the molecular mechanisms underlying cold tolerance remain to be elucidated. Here, we report that ornithine δ-aminotransferase (OsOAT) contributes to cold tolerance during the vegetative and reproductive development of rice. osoat mutant was identified as a temperature-sensitive male sterile mutant with deformed floral organs and seedlings sensitive to cold stress. Comparative transcriptome analysis showed that OsOAT mutation and cold treatment of the wild-type plant led to similar changes in the global gene expression profiles in anthers. OsOAT genes in indica rice Huanghuazhan (HHZ) and japonica rice Wuyungeng (WYG) are different in gene structure and response to cold. OsOAT is cold-inducible in WYG but cold-irresponsive in HHZ. Further studies showed that indica varieties carry both WYG-type and HHZ-type OsOAT, whereas japonica varieties mostly carry WYG-type OsOAT. Cultivars carrying HHZ-type OsOAT are mainly distributed in low-latitude regions, whereas varieties carrying WYG-type OsOAT are distributed in both low- and high-latitude regions. Moreover, indica varieties carrying WYG-type OsOAT generally have higher seed-setting rates than those carrying HHZ-type OsOAT under cold stress at reproductive stage, highlighting the favorable selection for WYG-type OsOAT during domestication and breeding to cope with low temperatures.
Collapse
Affiliation(s)
- Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuting Yuan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Yazhou Zu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Gang Xie
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Changqing Lu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Xing Wang Deng
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| |
Collapse
|
10
|
Tu W, Li J, Dong J, Wu J, Wang H, Zuo Y, Cai X, Song B. Molecular Marker-Assisted Selection for Frost Tolerance in a Diallel Population of Potato. Cells 2023; 12:cells12091226. [PMID: 37174626 PMCID: PMC10177059 DOI: 10.3390/cells12091226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
A multi-parental population is an innovative tool for mapping large numbers of loci and genetic modifications, particularly where they have been used for breeding and pre-breeding in crops. Frost injury is an environmental stress factor that greatly affects the growth, development, production efficiency, and geographical distribution of crops. No reported study has focused on genetic mapping and molecular marker development using diallel populations of potatoes. In this study, 23 successful cross combinations, obtained by a half diallel cross among 16 parents, including eight frost-tolerant advanced breeding lines and eight cultivars, were used to map the genetic loci for frost tolerance and to create a molecular marker-assisted selection (MAS) system. Three candidate regions related to frost tolerance on chromosomes II, V, and IX were mapped by bulked segregant analysis (BSA). Furthermore, six SNP markers associated with frost tolerance from candidate regions were developed and validated. Above all, a MAS system for the frost tolerance screening of early breeding offspring was established. This study highlights the practical advantages of applying diallel populations to broaden and improve frost-tolerant germplasm resources.
Collapse
Affiliation(s)
- Wei Tu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Jingcai Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Jianke Dong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghai Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Haibo Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Yingtao Zuo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingkui Cai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Feng J, Li Z, Luo W, Liang G, Xu Y, Chong K. COG2 negatively regulates chilling tolerance through cell wall components altered in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:19. [PMID: 36680595 DOI: 10.1007/s00122-023-04261-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Chilling-tolerant QTL gene COG2 encoded an extensin and repressed chilling tolerance by affecting the compositions of cell wall. Rice as a major crop is susceptible to chilling stress. Chilling tolerance is a complex trait controlled by multiple quantitative trait loci (QTLs). Here, we identify a QTL gene, COG2, that negatively regulates cold tolerance at seedling stage in rice. COG2 overexpression transgenic plants are sensitive to cold, whereas knockout transgenic lines enhance chilling tolerance. Natural variation analysis shows that Hap1 is a specific haplotype in japonica/Geng rice and correlates with chilling tolerance. The SNP1 in COG2 promoter is a specific divergency and leads to the difference in the expression level of COG2 between japonica/Geng and indica/Xian cultivars. COG2 encodes a cell wall-localized extensin and affects the compositions of cell wall, including pectin and cellulose, to defense the chilling stress. The results extend the understanding of the adaptation to the environment and provide an editing target for molecular design breeding of cold tolerance in rice.
Collapse
Affiliation(s)
- Jinglei Feng
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhitao Li
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Luo
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yunyuan Xu
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
12
|
Khatab AA, Li J, Hu L, Yang J, Fan C, Wang L, Xie G. Global identification of quantitative trait loci and candidate genes for cold stress and chilling acclimation in rice through GWAS and RNA-seq. PLANTA 2022; 256:82. [PMID: 36103054 DOI: 10.1007/s00425-022-03995-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Associated analysis of GWAS with RNA-seq had detected candidate genes responsible for cold stress and chilling acclimation in rice. Haplotypes of two candidate genes and geographic distribution were analyzed. To explore new candidate genes and genetic resources for cold tolerance improvement in rice, genome-wide association study (GWAS) mapping experiments with 351 rice core germplasms was performed for three traits (survival rate, shoot length and chlorophyll content) under three temperature conditions (normal temperature, cold stress and chilling acclimation), yielding a total of 134 QTLs, of which 54, 59 and 21 QTLs were responsible for normal temperature, cold stress and chilling acclimation conditions, respectively. Integrated analysis of significant SNPs in 134 QTLs further identified 116 QTLs for three temperature treatments, 53, 43 and 18 QTLs responsible for normal temperature, cold stress and chilling acclimation, respectively, and 2 QTLs were responsible for both cold stress and chilling acclimation. Matching differentially expressed genes from RNA-seq to 43 and 18 QTLs for cold stress and chilling acclimation, we identified 69 and 44 trait-associated candidate genes, respectively, to be classified into six and five groups, particularly involved in metabolisms, reactive oxygen species scavenging and hormone signaling. Interestingly, two candidate genes LOC_Os01g04814, encoding a vacuolar protein sorting-associating protein 4B, and LOC_Os01g48440, encoding glycosyltransferase family 43 protein, showed the highest expression levels under chilling acclimation. Haplotype analysis revealed that both genes had a distinctive differentiation with subpopulation. Haplotypes of both genes with more japonica accessions have higher latitude distribution and higher chilling tolerance than the chilling sensitive indica accessions. These findings reveal the new insight into the molecular mechanism and candidate genes for cold stress and chilling acclimation in rice.
Collapse
Affiliation(s)
- Ahmed Adel Khatab
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Chuchuan Fan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingqiang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China.
| | - Guosheng Xie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Combination of Genomics, Transcriptomics Identifies Candidate Loci Related to Cold Tolerance in Dongxiang Wild Rice. PLANTS 2022; 11:plants11182329. [PMID: 36145730 PMCID: PMC9506393 DOI: 10.3390/plants11182329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Rice, a cold-sensitive crop, is a staple food for more than 50% of the world’s population. Low temperature severely compromises the growth of rice and challenges China’s food safety. Dongxiang wild rice (DXWR) is the most northerly common wild rice in China and has strong cold tolerance, but the genetic basis of its cold tolerance is still unclear. Here, we report quantitative trait loci (QTLs) analysis for seedling cold tolerance (SCT) using a high-density single nucleotide polymorphism linkage map in the backcross recombinant inbred lines that were derived from a cross of DXWR, and an indica cultivar, GZX49. A total of 10 putative QTLs were identified for SCT under 4 °C cold treatment, each explaining 2.0–6.8% of the phenotypic variation in this population. Furthermore, transcriptome sequencing of DXWR seedlings before and after cold treatment was performed, and 898 and 3413 differentially expressed genes (DEGs) relative to 0 h in cold-tolerant for 4 h and 12 h were identified, respectively. Gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) analysis were performed on these DEGs. Using transcriptome data and genetic linkage analysis, combined with qRT-PCR, sequence comparison, and bioinformatics, LOC_Os08g04840 was putatively identified as a candidate gene for the major effect locus qSCT8. These findings provided insights into the genetic basis of SCT for the improvement of cold stress potential in rice breeding programs.
Collapse
|
14
|
Lou Q, Guo H, Li J, Han S, Khan NU, Gu Y, Zhao W, Zhang Z, Zhang H, Li Z, Li J. Cold-adaptive evolution at the reproductive stage in Geng/japonica subspecies reveals the role of OsMAPK3 and OsLEA9. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1032-1051. [PMID: 35706359 DOI: 10.1111/tpj.15870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Cold stress at the reproductive stage severely affects the production and geographic distribution of rice. The Geng/japonica subpopulation gradually developed stronger cold adaptation than the Xian/indica subpopulation during the long-term domestication of cultivated rice. However, the evolutionary path and natural alleles underlying the cold adaptability of intra-Geng subspecies remain largely unknown. Here, we identified MITOGEN-ACTIVATED PROTEIN KINASE 3 (OsMAPK3) and LATE EMBRYOGENESIS ABUNDANT PROTEIN 9 (OsLEA9) as two important regulators for the cold adaptation of Geng subspecies from a combination of transcriptome analysis and genome-wide association study. Transgenic validation showed that OsMAPK3 and OsLEA9 confer cold tolerance at the reproductive stage. Selection and evolution analysis suggested that the Geng version of OsMAPK3 (OsMAPK3Geng ) directly evolved from Chinese Oryza rufipogon III and was largely retained in high-latitude and high-altitude regions with low temperatures during domestication. Later, the functional nucleotide polymorphism (FNP-776) in the Kunmingxiaobaigu and Lijiangxiaoheigu version of the OsLEA9 (OsLEA9KL ) promoter originated from novel variation of intra-Geng was selected and predominantly retained in temperate Geng to improve the adaptation of Geng together with OsMAPK3Geng to colder climatic conditions in high-latitude areas. Breeding potential analysis suggested that pyramiding of OsMAPK3Geng and OsLEA9KL enhanced the cold tolerance of Geng and promotes the expansion of cultivated rice to colder regions. This study not only highlights the evolutionary path taken by the cold-adaptive differentiation of intra-Geng, but also provides new genetic resources for rice molecular breeding in low-temperature areas.
Collapse
Affiliation(s)
- Qijin Lou
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Haifeng Guo
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jin Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shichen Han
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Najeeb Ullah Khan
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yunsong Gu
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Weitong Zhao
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhanying Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
15
|
Liu H, Yang L, Xu S, Lyu MJ, Wang J, Wang H, Zheng H, Xin W, Liu J, Zou D. OsWRKY115 on qCT7 links to cold tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2353-2367. [PMID: 35622122 DOI: 10.1007/s00122-022-04117-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
qCT7, a novel QTL for increasing seedling cold tolerance in rice, was fine-mapped to a 70.9-kb region on chromosome 7, and key OsWRKY115 was identified in transgenic plants. Cold stress caused by underground cold-water irrigation seriously limits rice productivity. We systemically measured the cold-responsive traits of 2,570 F2 individuals derived from two widely cultivated rice cultivars, Kong-Yu-131 and Dong-Nong-422, to identify the major genomic regions associated with cold tolerance. A novel major QTL, qCT7, was mapped on chromosome 7 associated with the cold tolerance and survival, using whole-genome re-sequencing with bulked segregant analysis. Local QTL linkage analysis with F2 and fine mapping with recombinant plant revealed a 70.9-kb core region on qCT7 encoding 13 protein-coding genes. Only the LOC_Os07g27670 expression level encoding the OsWRKY115 transcription factor on the locus was specifically induced by cold stress in the cold-tolerant cultivar. Moreover, haplotype analysis and the KASP8 marker indicated that OsWRKY115 was significantly associated with cold tolerance. Overexpression and knockout of OsWRKY115 significantly affected cold tolerance in seedlings. Our experiments identified OsWRKY115 as a novel regulatory gene associated with cold response in rice, and the Kong-Yu-131 allele with specific cold-induced expression may be an important molecular variant.
Collapse
Affiliation(s)
- Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Shanbin Xu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Ming-Jie Lyu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
16
|
Zeng Z, Zhang S, Li W, Chen B, Li W. Gene-coexpression network analysis identifies specific modules and hub genes related to cold stress in rice. BMC Genomics 2022; 23:251. [PMID: 35365095 PMCID: PMC8974213 DOI: 10.1186/s12864-022-08438-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background When plants are subjected to cold stress, they undergo a series of molecular and physiological changes to protect themselves from injury. Indica cultivars can usually withstand only mild cold stress in a relatively short period. Hormone-mediated defence response plays an important role in cold stress. Weighted gene co-expression network analysis (WGCNA) is a very useful tool for studying the correlation between genes, identifying modules with high phenotype correlation, and identifying Hub genes in different modules. Many studies have elucidated the molecular mechanisms of cold tolerance in different plants, but little information about the recovery process after cold stress is available. Results To understand the molecular mechanism of cold tolerance in rice, we performed comprehensive transcriptome analyses during cold treatment and recovery stage in two cultivars of near-isogenic lines (9311 and DC907). Twelve transcriptomes in two rice cultivars were determined. A total of 2509 new genes were predicted by fragment splicing and assembly, and 7506 differentially expressed genes were identified by pairwise comparison. A total of 26 modules were obtained by expression-network analysis, 12 of which were highly correlated with cold stress or recovery treatment. We further identified candidate Hub genes associated with specific modules and analysed their regulatory relationships based on coexpression data. Results showed that various plant-hormone regulatory genes acted together to protect plants from physiological damage under short-term low-temperature stress. We speculated that this may be common in rice. Under long-term cold stress, rice improved the tolerance to low-temperature stress by promoting autophagy, sugar synthesis, and metabolism. Conclusion Through WGCNA analysis at the transcriptome level, we provided a potential regulatory mechanism for the cold stress and recovery of rice cultivars and identified candidate central genes. Our findings provided an important reference for the future cultivation of rice strains with good tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08438-3.
Collapse
Affiliation(s)
- Zhichi Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Sichen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wenyan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China. .,College of Agriculture, Guangxi University, Nanning, China.
| | - Wenlan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China. .,College of Life Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
17
|
Qing D, Deng G, Pan Y, Gao L, Liang H, Zhou W, Chen W, Li J, Huang J, Gao J, Lu C, Wu H, Liu K, Dai G. ITRAQ-based quantitative proteomic analysis of japonica rice seedling during cold stress. BREEDING SCIENCE 2022; 72:150-168. [PMID: 36275934 PMCID: PMC9522529 DOI: 10.1270/jsbbs.21081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/11/2021] [Indexed: 06/16/2023]
Abstract
Low temperature is one of the important environmental factors that affect rice growth and yield. To better understand the japonica rice responses to cold stress, isobaric tags for a relative and absolute quantification (iTRAQ) labeling-based quantitative proteomics approach was used to detected changes in protein levels. Two-week-old seedlings of the cold tolerant rice variety Kongyu131 were treated at 8°C for 24, 48 and 72 h, then the total proteins were extracted from tissues and used for quantitative proteomics analysis. A total of 5082 proteins were detected for quantitative analysis, of which 289 proteins were significantly regulated, consisting of 169 uniquely up-regulated proteins and 125 uniquely down-regulated proteins in cold stress groups relative to the control group. Functional analysis revealed that most of the regulated proteins are involved in photosynthesis, metabolic pathway, biosynthesis of secondary metabolites and carbon metabolism. Western blot analysis showed that protein regulation was consistent with the iTRAQ data. The corresponding genes of 25 regulated proteins were used for quantitative real time PCR analysis, and the results showed that the mRNA level was not always parallel to the corresponding protein level. The importance of our study is that it provides new insights into cold stress responses in rice with respect to proteomics and provides candidate genes for cold-tolerance rice breeding.
Collapse
Affiliation(s)
- Dongjin Qing
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Lijun Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Haifu Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiyong Zhou
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Jingcheng Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Juan Huang
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Ju Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Chunju Lu
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Hao Wu
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Kaiqiang Liu
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| |
Collapse
|
18
|
Li J, Zhang Z, Chong K, Xu Y. Chilling tolerance in rice: Past and present. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153576. [PMID: 34875419 DOI: 10.1016/j.jplph.2021.153576] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Rice is generally sensitive to chilling stress, which seriously affects growth and yield. Since early in the last century, considerable efforts have been made to understand the physiological and molecular mechanisms underlying the response to chilling stress and improve rice chilling tolerance. Here, we review the research trends and advances in this field. The phenotypic and biochemical changes caused by cold stress and the physiological explanations are briefly summarized. Using published data from the past 20 years, we reviewed the past progress and important techniques in the identification of quantitative trait loci (QTL), novel genes, and cellular pathways involved in rice chilling tolerance. The advent of novel technologies has significantly advanced studies of cold tolerance, and the characterization of QTLs, key genes, and molecular modules have sped up molecular design breeding for cold tolerance in rice varieties. In addition to gene function studies based on overexpression or artificially generated mutants, elucidating natural allelic variation in specific backgrounds is emerging as a novel approach for the study of cold tolerance in rice, and the superior alleles identified using this approach can directly facilitate breeding.
Collapse
Affiliation(s)
- Junhua Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Zeyong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
19
|
Rajkumar MS, Garg R, Jain M. Genome-wide discovery of DNA polymorphisms via resequencing of chickpea cultivars with contrasting response to drought stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13611. [PMID: 34957568 DOI: 10.1111/ppl.13611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Drought stress limits plant growth, resulting in a significant yield loss in chickpea. The diversification in genome sequence and selective sweep of allele(s) in different genotypes of a crop plant may play an important role in the determination of agronomic traits, including drought stress response. We investigated, via whole genome resequencing, the DNA polymorphisms between two sets of chickpea genotypes with contrasting drought stress responses (3 drought-sensitive vs. 6 drought-tolerant). In total, 36,406 single nucleotide polymorphisms (SNPs) and 3407 insertions or deletions (InDels) differentiating drought-sensitive and drought-tolerant chickpea genotypes were identified. Interestingly, most (91%) of these DNA polymorphisms were located in chromosomes 1 and 4. The genes harboring DNA polymorphisms in their promoter and/or coding regions and exhibiting differential expression under control and/or drought stress conditions between/within the drought-sensitive and tolerant genotypes were found implicated in the stress response. Furthermore, we identified DNA polymorphisms within the cis-regulatory motifs in the promoter region of abiotic stress-related and QTL-associated genes, which might contribute to the differential expression of the candidate drought-responsive genes. In addition, we revealed the effect of nonsynonymous SNPs on mutational sensitivity and stability of the encoded proteins. Taken together, we identified DNA polymorphisms having relevance in drought stress response and revealed candidate genes to engineer drought tolerance in chickpea.
Collapse
Affiliation(s)
- Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
20
|
Ali MK, Sun ZH, Yang XM, Pu XY, Duan CL, Li X, Wang LX, Yang JZ, Zeng YW. NILs of Cold Tolerant Japonica Cultivar Exhibited New QTLs for Mineral Elements in Rice. Front Genet 2021; 12:789645. [PMID: 34868277 PMCID: PMC8637755 DOI: 10.3389/fgene.2021.789645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Chilling stress at booting stage can cause floret deterioration and sterility by limiting the supply of food chain and the accumulation of essential mineral elements resulting in reduction of yield and grain quality attributes in rice. Genomic selection of chilling tolerant rice with reference to the accumulation of mineral elements will have great potential to cope with malnutrition and food security in times of climate change. Therefore, a study was conducted to explore the genomic determinants of cold tolerance and mineral elements content in near-isogenic lines (NILs) of japonica rice subjected to chilling stress at flowering stage. Detailed morphological analysis followed by quantitative analysis of 17 mineral elements revealed that the content of phosphorus (P, 3,253 mg/kg) and potassium (K, 2,485 mg/kg) were highest while strontium (Sr, 0.26 mg/kg) and boron (B, 0.34 mg/kg) were lowest among the mineral elements. The correlation analysis revealed extremely positive correlation of phosphorus (P) and copper (Cu) with most of the cold tolerance traits. Among all the effective ear and the second leaf length correlation was significant with half of the mineral elements. As a result of comparative analysis, some QTLs (qBRCC-1, qBRCIC-2, qBRZC-6, qBRCHC-6, qBRMC-6, qBRCIC-6a, qBRCIC-6b, qBRCHC-6, and qBRMC-6) identified for calcium (Ca), zinc (Zn), chromium (Cr) and magnesium (Mg) on chromosome number 1, 2, and 6 while, a novel QTL (qBCPC-1) was identified on chromosome number 1 for P element only. These findings provided bases for the identification of candidate genes involved in mineral accumulation and cold tolerance in rice at booting stage.
Collapse
Affiliation(s)
- Muhammad Kazim Ali
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| | - Zheng-Hai Sun
- School of Horticulture and Gardening, Southwest Forestry University, Kunming, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Xiao-Meng Yang
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiao-Ying Pu
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Cheng-Li Duan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Xia Li
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lu-Xiang Wang
- Institute of Quality Standards and Testing Technology, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jia-Zhen Yang
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ya-Wen Zeng
- Biotechnology and Germplasm Resource Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
21
|
Li C, Liu J, Bian J, Jin T, Zou B, Liu S, Zhang X, Wang P, Tan J, Wu G, Chen Q, Wang Y, Zhong Q, Huang S, Yang M, Huang T, He H, Bian J. Identification of cold tolerance QTLs at the bud burst stage in 211 rice landraces by GWAS. BMC PLANT BIOLOGY 2021; 21:542. [PMID: 34800993 PMCID: PMC8605578 DOI: 10.1186/s12870-021-03317-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rice is a crop that is very sensitive to low temperature, and its morphological development and production are greatly affected by low temperature. Therefore, understanding the genetic basis of cold tolerance in rice is of great significance for mining favorable genes and cultivating excellent rice varieties. However, there have been limited studies focusing on cold tolerance at the bud burst stage; therefore, considerable attention should be given to the genetic basis of cold tolerance at this stage. RESULTS In this study, a natural population consisting of 211 rice landraces collected from 15 provinces in China and other countries was used for the first time to evaluate cold tolerance at the bud burst stage. Population structure analysis showed that this population was divided into two groups and was rich in genetic diversity. Our evaluation results confirmed that japonica rice was more tolerant to cold at the bud burst stage than indica rice. A genome-wide association study (GWAS) was performed with the phenotypic data of 211 rice landraces and a 36,727 SNP dataset under a mixed linear model. Twelve QTLs (P < 0.0001) were identified for the seedling survival rate (SR) after treatment at 4 °C, in which there were five QTLs (qSR2-2, qSR3-1, qSR3-2, qSR3-3 and qSR9) that were colocalized with those from previous studies and seven QTLs (qSR2-1, qSR3-4, qSR3-5, qSR3-6, qSR3-7, qSR4 and qSR7) that were reported for the first time. Among these QTLs, qSR9, harboring the most significant SNP, explained the most phenotypic variation. Through bioinformatics analysis, five genes (LOC_Os09g12440, LOC_Os09g12470, LOC_Os09g12520, LOC_Os09g12580 and LOC_Os09g12720) were identified as candidates for qSR9. CONCLUSION This natural population consisting of 211 rice landraces combined with high-density SNPs will serve as a better choice for identifying rice QTLs/genes in the future, and the detected QTLs associated with cold tolerance at the bud burst stage in rice will be conducive to further mining favorable genes and breeding rice varieties under cold stress.
Collapse
Affiliation(s)
- Caijing Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Jindong Liu
- Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000 Guangdong Province China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325 Shandong Province China
| | - Tao Jin
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Baoli Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Shilei Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Xiangyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Peng Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Jingai Tan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Guangliang Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Qin Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Yanning Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Qi Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Mengmeng Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Tao Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang, 330045 Jiangxi Province China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Nanchang, 330045 Jiangxi Province China
| |
Collapse
|
22
|
Kumar N, Chhokar RS, Meena RP, Kharub AS, Gill SC, Tripathi SC, Gupta OP, Mangrauthia SK, Sundaram RM, Sawant CP, Gupta A, Naorem A, Kumar M, Singh GP. Challenges and opportunities in productivity and sustainability of rice cultivation system: a critical review in Indian perspective. CEREAL RESEARCH COMMUNICATIONS 2021; 50:573-601. [PMID: 34642509 PMCID: PMC8498983 DOI: 10.1007/s42976-021-00214-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/22/2021] [Indexed: 06/12/2023]
Abstract
Abstract Rice-wheat cropping system, intensively followed in Indo-Gangetic plains (IGP), played a prominent role in fulfilling the food grains demand of the increasing population of South Asia. In northern Indian plains, some practices such as intensive rice cultivation with traditional method for long-term have been associated with severe deterioration of natural resources, declining factor productivity, multiple nutrients deficiencies, depleting groundwater, labour scarcity and higher cost of cultivation, putting the agricultural sustainability in question. Varietal development, soil and water management, and adoption of resource conservation technologies in rice cultivation are the key interventions areas to address these challenges. The cultivation of lesser water requiring crops, replacing rice in light-textured soil and rainfed condition, should be encouraged through policy interventions. Direct seeding of short duration, high-yielding and stress tolerant rice varieties with water conservation technologies can be a successful approach to improve the input use efficiency in rice cultivation under medium-heavy-textured soils. Moreover, integrated approach of suitable cultivars for conservation agriculture, mechanized transplanting on zero-tilled/unpuddled field and need-based application of water, fertilizer and chemicals might be a successful approach for sustainable rice production system in the current scenario. In this review study, various challenges in productivity and sustainability of rice cultivation system and possible alternatives and solutions to overcome such challenges are discussed in details. Graphic abstract
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - R. S. Chhokar
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - R. P. Meena
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - A. S. Kharub
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - S. C. Gill
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - S. C. Tripathi
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - O. P. Gupta
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - S. K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - R. M. Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - C. P. Sawant
- ICAR- Central Institute of Agricultural Engineering, Bhopal, Madhya Pradesh 462038 India
| | - Ajita Gupta
- ICAR- Central Institute of Agricultural Engineering, Bhopal, Madhya Pradesh 462038 India
| | - Anandkumar Naorem
- ICAR- Central Arid Zone Research Institute, Regional Research Station-Kukma, Bhuj, Gujarat 370105 India
| | - Manoj Kumar
-
Indian Institute of Soil and Water Conservation, Regional Centre, Chandigarh, 160019 India
| | - G. P. Singh
- ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| |
Collapse
|
23
|
Yang L, Wang J, Han Z, Lei L, Liu HL, Zheng H, Xin W, Zou D. Combining QTL-seq and linkage mapping to fine map a candidate gene in qCTS6 for cold tolerance at the seedling stage in rice. BMC PLANT BIOLOGY 2021; 21:278. [PMID: 34147069 PMCID: PMC8214256 DOI: 10.1186/s12870-021-03076-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/27/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND Cold stress caused by low temperatures is an important factor restricting rice production. Identification of cold-tolerance genes that can stably express in cold environments is crucial for molecular rice breeding. RESULTS In this study, we employed high-throughput quantitative trait locus sequencing (QTL-seq) analyses in a 460-individual F2:3 mapping population to identify major QTL genomic regions governing cold tolerance at the seedling stage in rice. A novel major QTL (qCTS6) controlling the survival rate (SR) under low-temperature conditions of 9°C/10 days was mapped on the 2.60-Mb interval on chromosome 6. Twenty-seven single-nucleotide polymorphism (SNP) markers were designed for the qCST6 region based on re-sequencing data, and local QTL mapping was conducted using traditional linkage analysis. Eventually, we mapped qCTS6 to a 96.6-kb region containing 13 annotated genes, of which seven predicted genes contained 13 non-synonymous SNP loci. Quantitative reverse transcription PCR analysis revealed that only Os06g0719500, an OsbZIP54 transcription factor, was strongly induced by cold stress. Haplotype analysis confirmed that +376 bp (T>A) in the OsbZIP54 coding region played a key role in regulating cold tolerance in rice. CONCLUSION We identified OsbZIP54 as a novel regulatory gene associated with rice cold-responsive traits, with its Dongfu-104 allele showing specific cold-induction expression serving as an important molecular variation for rice improvement. This result is expected to further exploration of the genetic mechanism of rice cold tolerance at the seedling stage and improve cold tolerance in rice varieties by marker-assisted selection.
Collapse
Affiliation(s)
- Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Zhenghong Han
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Lei
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hua Long Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
24
|
Wang Z, Cheng D, Fan C, Zhang C, Zhang C, Liu Z. Cell Type-Specific Differentiation Between Indica and Japonica Rice Root Tip Responses to Different Environments Based on Single-Cell RNA Sequencing. Front Genet 2021; 12:659500. [PMID: 34079581 PMCID: PMC8166412 DOI: 10.3389/fgene.2021.659500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: As Oryza sativa ssp. indica and Oryza sativa ssp. japonica are the two major subspecies of Asian cultivated rice, the adaptative evolution of these varieties in divergent environments is an important topic in both theoretical and practical studies. However, the cell type-specific differentiation between indica and japonica rice varieties in response to divergent habitat environments, which facilitates an understanding of the genetic basis underlying differentiation and environmental adaptation between rice subspecies at the cellular level, is little known. Methods: We analyzed a published single-cell RNA sequencing dataset to explore the differentially expressed genes between indica and japonica rice varieties in each cell type. To estimate the relationship between cell type-specific differentiation and environmental adaptation, we focused on genes in the WRKY, NAC, and BZIP transcription factor families, which are closely related to abiotic stress responses. In addition, we integrated five bulk RNA sequencing datasets obtained under conditions of abiotic stress, including cold, drought and salinity, in this study. Furthermore, we analyzed quiescent center cells in rice root tips based on orthologous markers in Arabidopsis. Results: We found differentially expressed genes between indica and japonica rice varieties with cell type-specific patterns, which were enriched in the pathways related to root development and stress reposes. Some of these genes were members of the WRKY, NAC, and BZIP transcription factor families and were differentially expressed under cold, drought or salinity stress. In addition, LOC_Os01g16810, LOC_Os01g18670, LOC_Os04g52960, and LOC_Os08g09350 may be potential markers of quiescent center cells in rice root tips. Conclusion: These results identified cell type-specific differentially expressed genes between indica-japonica rice varieties that were related to various environmental stresses and provided putative markers of quiescent center cells. This study provides new clues for understanding the development and physiology of plants during the process of adaptative divergence, in addition to identifying potential target genes for the improvement of stress tolerance in rice breeding applications.
Collapse
Affiliation(s)
- Zhe Wang
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China.,Department of Cardiac Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Daofu Cheng
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Chengang Fan
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Cong Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Chao Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zhongmin Liu
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China.,Department of Cardiac Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Bai LWD, Liu J, Dai LF, Deng QW, Chen YL, Xie JK, Luo XD. Identification and characterisation of cold stress-related proteins in Oryza rufipogon at the seedling stage using label-free quantitative proteomic analysis. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:542-555. [PMID: 33487217 DOI: 10.1071/fp20046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
In this study, label-free quantitative proteomics were used to study cold stress-related proteins in Dongxiang wild rice (Oryza rufipogon Griff., DWR) and cold sensitive cultivated rice 'Xieqingzao B'(Oryza sativa L. ssp. indica cv., XB). The results demonstrated the presence of 101 and 216 differentially expressed proteins (DEPs) were detected in DWR and XB, respectively, after cold stress. Bioinformatics analysis showed that DWR and XB differed significantly in their ability to scavenge reactive oxygen species (ROS) and regulate energy metabolism. Of the 101 DEPs of DWR, 46 DEPs related to differential expressed genes were also detected by transcriptome analysis. And 13 out of 101 DEPs were located in previous cold related quantitative trait loci (QTL). Quantitative real-time PCR analysis indicated that protein expression and transcription patterns were not similar in XB and DWR. Protein-protein interaction (PPI) network was constituted using the DEPs of DWR and XB, and the following three centre proteins were identified: Q8H3I3, Q9LDN2, and Q2QXR8. Next, we selected a centre protein and two of the 37 DEPs with high levels of differential expression (fold change ≥ 2) were used for cloning and prokaryotic expression. We found that Q5Z9Q8 could significantly improve the cold tolerance of Escherichia coli.
Collapse
Affiliation(s)
- Li-Wei-Dan Bai
- College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China
| | - Jian Liu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China
| | - Liang-Fang Dai
- College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China
| | - Qian-Wen Deng
- College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China
| | - Ya-Ling Chen
- College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China
| | - Jian-Kun Xie
- College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China; and Corresponding authors. ;
| | - Xiang-Dong Luo
- College of Life Science, Jiangxi Normal University, Nanchang 330022, PR China; and Corresponding authors. ;
| |
Collapse
|
26
|
Yang L, Lei L, Li P, Wang J, Wang C, Yang F, Chen J, Liu H, Zheng H, Xin W, Zou D. Identification of Candidate Genes Conferring Cold Tolerance to Rice ( Oryza sativa L.) at the Bud-Bursting Stage Using Bulk Segregant Analysis Sequencing and Linkage Mapping. FRONTIERS IN PLANT SCIENCE 2021; 12:647239. [PMID: 33790929 PMCID: PMC8006307 DOI: 10.3389/fpls.2021.647239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 05/29/2023]
Abstract
Low-temperature tolerance during the bud-bursting stage is an important characteristic of direct-seeded rice. The identification of cold-tolerance quantitative trait loci (QTL) in species that can stably tolerate cold environments is crucial for the molecular breeding of rice with such traits. In our study, high-throughput QTL-sequencing analyses were performed in a 460-individual F2 : 3 mapping population to identify the major QTL genomic regions governing cold tolerance at the bud-bursting (CTBB) stage in rice. A novel major QTL, qCTBB9, which controls seed survival rate (SR) under low-temperature conditions of 5°C/9 days, was mapped on the 5.40-Mb interval on chromosome 9. Twenty-six non-synonymous single-nucleotide polymorphism (nSNP) markers were designed for the qCTBB9 region based on re-sequencing data and local QTL mapping conducted using traditional linkage analysis. We mapped qCTBB9 to a 483.87-kb region containing 58 annotated genes, among which six predicted genes contained nine nSNP loci. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed that only Os09g0444200 was strongly induced by cold stress. Haplotype analysis further confirmed that the SNP 1,654,225 bp in the Os09g0444200 coding region plays a key role in regulating the cold tolerance of rice. These results suggest that Os09g0444200 is a potential candidate for qCTBB9. Our results are of great significance to explore the genetic mechanism of rice CTBB and to improve the cold tolerance of rice varieties by marker-assisted selection.
Collapse
|
27
|
Yolcu S, Alavilli H, Lee BH. Natural Genetic Resources from Diverse Plants to Improve Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:ijms21228567. [PMID: 33202909 PMCID: PMC7697984 DOI: 10.3390/ijms21228567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The current agricultural system is biased for the yield increase at the cost of biodiversity. However, due to the loss of precious genetic diversity during domestication and artificial selection, modern cultivars have lost the adaptability to cope with unfavorable environments. There are many reports on variations such as single nucleotide polymorphisms (SNPs) and indels in the stress-tolerant gene alleles that are associated with higher stress tolerance in wild progenitors, natural accessions, and extremophiles in comparison with domesticated crops or model plants. Therefore, to gain a better understanding of stress-tolerant traits in naturally stress-resistant plants, more comparative studies between the modern crops/model plants and crop progenitors/natural accessions/extremophiles are required. In this review, we discussed and summarized recent progress on natural variations associated with enhanced abiotic stress tolerance in various plants. By applying the recent biotechniques such as the CRISPR/Cas9 gene editing tool, natural genetic resources (i.e., stress-tolerant gene alleles) from diverse plants could be introduced to the modern crop in a non-genetically modified way to improve stress-tolerant traits.
Collapse
Affiliation(s)
- Seher Yolcu
- Department of Life Science, Sogang University, Seoul 04107, Korea;
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea;
| | - Byeong-ha Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea;
- Correspondence:
| |
Collapse
|
28
|
Lu X, Zhou Y, Fan F, Peng J, Zhang J. Coordination of light, circadian clock with temperature: The potential mechanisms regulating chilling tolerance in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:737-760. [PMID: 31243851 DOI: 10.1111/jipb.12852] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Rice (Oryza sativa L.) is a major staple food crop for over half of the world's population. As a crop species originated from the subtropics, rice production is hampered by chilling stress. The genetic mechanisms of rice responses to chilling stress have attracted much attention, focusing on chilling-related gene mining and functional analyses. Plants have evolved sophisticated regulatory systems to respond to chilling stress in coordination with light signaling pathway and internal circadian clock. However, in rice, information about light-signaling pathways and circadian clock regulation and their roles in chilling tolerance remains elusive. Further investigation into the regulatory network of chilling tolerance in rice is needed, as knowledge of the interaction between temperature, light, and circadian clock dynamics is limited. Here, based on phenotypic analysis of transgenic and mutant rice lines, we delineate the relevant genes with important regulatory roles in chilling tolerance. In addition, we discuss the potential coordination mechanism among temperature, light, and circadian clock in regulating chilling response and tolerance of rice, and provide perspectives for the ongoing chilling signaling network research in rice.
Collapse
Affiliation(s)
- Xuedan Lu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Zhou
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Fan Fan
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - JunHua Peng
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410128, China
| | - Jian Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410128, China
| |
Collapse
|
29
|
Zhao J, Wang S, Qin J, Sun C, Liu F. The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:756-769. [PMID: 31469486 PMCID: PMC7004919 DOI: 10.1111/pbi.13243] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/03/2019] [Accepted: 08/15/2019] [Indexed: 05/11/2023]
Abstract
Nonspecific lipid transfer proteins (nsLTPs) play critical roles in plant development and response to abiotic stresses. Here, we found that a rice lipid transfer protein, OsLTPL159, was associated with cold tolerance at the early seedling stage. Overexpression of an OsLTPL159IL112 allele from the cold-tolerant introgression line IL112 in either the japonica variety Zhonghua17 (ZH17) or the indica variety Teqing background dramatically enhanced cold tolerance. In addition, down-regulation of the expression of OsLTPL159 in the japonica variety ZH17 by RNA interference (RNAi) significantly decreased cold tolerance. Further transcriptomic, physiological and histological analysis showed that the OsLTPL159IL112 allele likely enhanced the cold tolerance of rice at the early seedling stage by decreasing the toxic effect of reactive oxygen species, enhancing cellulose deposition in the cell wall and promoting osmolyte accumulation, thereby maintaining the integrity of the chloroplasts. Notably, overexpression of another allele, OsLTPL159GC2 , from the recipient parent Guichao 2 (GC2), an indica variety, did not improve cold tolerance, indicating that the variations in the OsLTPL159 coding region of GC2 might disrupt its function for cold tolerance. Further sequence comparison found that all 22 japonica varieties surveyed had an OsLTPL159 haplotype identical to IL112 and were more cold-tolerant than the surveyed indica varieties, implying that the variations in OsLTPL159 might be associated with differential cold tolerance of japonica and indica rice. Therefore, our findings suggest that the OsLTPL159 allele of japonica rice could be used to improve cold tolerance of indica rice through a molecular breeding strategy.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Shanshan Wang
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jingjing Qin
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and BiochemistryNational Center for Evaluation of Agricultural Wild Plants (Rice)MOE Laboratory of Crop Heterosis and UtilizationBeijing Key Laboratory of Crop Genetic ImprovementDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
30
|
Thapa R, Tabien RE, Thomson MJ, Septiningsih EM. Genome-Wide Association Mapping to Identify Genetic Loci for Cold Tolerance and Cold Recovery During Germination in Rice. Front Genet 2020; 11:22. [PMID: 32153631 PMCID: PMC7047875 DOI: 10.3389/fgene.2020.00022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Low temperature significantly affects rice growth and yield. Temperatures lower than 15°C are generally detrimental for germination and uniform seedling stand. To investigate the genetic architecture underlying cold tolerance during germination in rice, we conducted a genome-wide association study using a novel diversity panel of 257 rice accessions from around the world and the 7K SNP marker array. Phenotyping was conducted in controlled growth chambers under dark conditions at 13°C. The rice accessions were measured for low-temperature germinability, germination index, coleoptile length under cold stress, plumule length at 4-day recovery, and plumule length recovery rate. A total of 51 QTLs were identified at p < 0.001 and 17 QTLs were identified using an FDR < 0.05 across the different chilling indices with the whole panel of accessions. At the threshold of p < 0.001, a total of 20 QTLs were identified in the subset of japonica accessions, while 9 QTLs were identified in the subset of indica accessions. Considering the recurring SNPs and linked SNPs across different chilling indices, we identified 31 distinct QTL regions in the whole panel, 13 QTL regions in the japonica subset, and 7 distinct QTL regions in the indica subset. Among these QTL regions, three regions were common between the whole panel and japonica, three regions were common between the whole panel and indica, and one region was common between indica and japonica. A subset of QTL regions was potentially colocalized with previously identified genes and QTLs, including 10 from the japonica subset, 4 from the indica subset, and 6 from the whole panel. On the other hand, a total of 21 potentially novel QTL regions from the whole panel, 10 from the japonica subset, and 1 from the indica subset were identified. The results of our study provide useful information on the genetic architecture underlying cold tolerance during germination in rice, which in turn can be used for further molecular study and crop improvement for low-temperature stressed environments.
Collapse
Affiliation(s)
- Ranjita Thapa
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | | | - Michael J Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Endang M Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
31
|
Jiang S, Yang C, Xu Q, Wang L, Yang X, Song X, Wang J, Zhang X, Li B, Li H, Li Z, Li W. Genetic Dissection of Germinability under Low Temperature by Building a Resequencing Linkage Map in japonica Rice. Int J Mol Sci 2020; 21:ijms21041284. [PMID: 32074988 PMCID: PMC7072905 DOI: 10.3390/ijms21041284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Among all cereals, rice is highly sensitive to cold stress, especially at the germination stage, which adversely impacts its germination ability, seed vigor, crop stand establishment, and, ultimately, grain yield. The dissection of novel quantitative trait loci (QTLs) or genes conferring a low-temperature germination (LTG) ability can significantly accelerate cold-tolerant rice breeding to ensure the wide application of rice cultivation through the direct seeding method. In this study, we identified 11 QTLs for LTG using 144 recombinant inbred lines (RILs) derived from a cross between a cold-tolerant variety, Lijiangxintuanheigu (LTH), and a cold-sensitive variety, Shennong265 (SN265). By resequencing two parents and RIL lines, a high-density bin map, including 2,828 bin markers, was constructed using 123,859 single-nucleotide polymorphisms (SNPs) between two parents. The total genetic distance corresponding to all 12 chromosome linkage maps was 2,840.12 cm. Adjacent markers were marked by an average genetic distance of 1.01 cm, corresponding to a 128.80 kb physical distance. Eight and three QTL alleles had positive effects inherited from LTH and SN265, respectively. Moreover, a pleiotropic QTL was identified for a higher number of erected panicles and a higher grain number on Chr-9 near the previously cloned DEP1 gene. Among the LTG QTLs, qLTG3 and qLTG7b were also located at relatively small genetic intervals that define two known LTG genes, qLTG3-1 and OsSAP16. Sequencing comparisons between the two parents demonstrated that LTH possesses qLTG3-1 and OsSAP16 genes, and SN-265 owns the DEP1 gene. These comparison results strengthen the accuracy and mapping resolution power of the bin map and population. Later, fine mapping was done for qLTG6 at 45.80 kb through four key homozygous recombinant lines derived from a population with 1569 segregating plants. Finally, LOC_Os06g01320 was identified as the most possible candidate gene for qLTG6, which contains a missense mutation and a 32-bp deletion/insertion at the promoter between the two parents. LTH was observed to have lower expression levels in comparison with SN265 and was commonly detected at low temperatures. In conclusion, these results strengthen our understanding of the impacts of cold temperature stress on seed vigor and germination abilities and help improve the mechanisms of rice breeding programs to breed cold-tolerant varieties.
Collapse
Affiliation(s)
- Shukun Jiang
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China; (L.W.); (X.Y.); (X.Z.); (B.L.)
- Correspondence: (S.J.); (Z.L.); (W.L.)
| | - Chao Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (C.Y.); (X.S.)
| | - Quan Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang 110866, China; (Q.X.); (J.W.)
| | - Lizhi Wang
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China; (L.W.); (X.Y.); (X.Z.); (B.L.)
| | - Xianli Yang
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China; (L.W.); (X.Y.); (X.Z.); (B.L.)
| | - Xianwei Song
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (C.Y.); (X.S.)
| | - Jiayu Wang
- Rice Research Institute of Shenyang Agricultural University, Shenyang 110866, China; (Q.X.); (J.W.)
| | - Xijuan Zhang
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China; (L.W.); (X.Y.); (X.Z.); (B.L.)
| | - Bo Li
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China; (L.W.); (X.Y.); (X.Z.); (B.L.)
| | - Hongyu Li
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163000, China;
| | - Zhugang Li
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China; (L.W.); (X.Y.); (X.Z.); (B.L.)
- Correspondence: (S.J.); (Z.L.); (W.L.)
| | - Wenhua Li
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China; (L.W.); (X.Y.); (X.Z.); (B.L.)
- Correspondence: (S.J.); (Z.L.); (W.L.)
| |
Collapse
|
32
|
Najeeb S, Ali J, Mahender A, Pang Y, Zilhas J, Murugaiyan V, Vemireddy LR, Li Z. Identification of main-effect quantitative trait loci (QTLs) for low-temperature stress tolerance germination- and early seedling vigor-related traits in rice ( Oryza sativa L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2020; 40:10. [PMID: 31975784 PMCID: PMC6944268 DOI: 10.1007/s11032-019-1090-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/12/2019] [Indexed: 05/09/2023]
Abstract
An attempt was made in the current study to identify the main-effect and co-localized quantitative trait loci (QTLs) for germination and early seedling growth traits under low-temperature stress (LTS) conditions in rice. The plant material used in this study was an early backcross population of 230 introgression lines (ILs) in BCIF7 generation derived from the Weed Tolerant Rice-1 (WTR-1) (as the recipient) and Haoannong (HNG) (as the donor). Genetic analyses of LTS tolerance revealed a total of 27 main-effect quantitative trait loci (M-QTLs) mapped on 12 chromosomes. These QTLs explained more than 10% of phenotypic variance (PV), and average PV of 12.71% while employing 704 high-quality SNP markers. Of these 27 QTLs distributed on 12 chromosomes, 11 were associated with low-temperature germination (LTG), nine with low-temperature germination stress index (LTGS), five with root length stress index (RLSI), and two with biomass stress index (BMSI) QTLs, shoot length stress index (SLSI) and root length stress index (RLSI), seven with seed vigor index (SVI), and single QTL with root length (RL). Among them, five significant major QTLs (qLTG(I) 1 , qLTGS(I) 1-2 , qLTG(I) 5 , qLTGS(I) 5 , and qLTG(I) 7 ) mapped on chromosomes 1, 5, and 7 were associated with LTG and LTGS traits and the PV explained ranged from 16 to 23.3%. The genomic regions of these QTLs were co-localized with two to six QTLs. Most of the QTLs were growth stage-specific and found to harbor QTLs governing multiple traits. Eight chromosomes had more than four QTLs and were clustered together and designated as promising LTS tolerance QTLs (qLTTs), as qLTT 1 , qLTT 2 , qLTT 3 , qLTT 5 , qLTT 6 , qLTT 8 , qLTT 9 , and qLTT 11 . A total of 16 putative candidate genes were identified in the major M-QTLs and co-localized QTL regions distributed on different chromosomes. Overall, these significant genomic regions of M-QTLs are responsible for multiple traits and this suggested that these could serve as the best predictors of LTS tolerance at germination and early seedling growth stages. Furthermore, it is necessary to fine-map these regions and to find functional markers for marker-assisted selection in rice breeding programs for cold tolerance.
Collapse
Affiliation(s)
- S. Najeeb
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Science & Technology (SKAUST), Khudwani, Kashmir 190025 India
| | - J. Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - A. Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - Y.L. Pang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018 People’s Republic of China
| | - J. Zilhas
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - V. Murugaiyan
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
- Plant Nutrition, Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, 53012 Bonn, Germany
| | - Lakshminarayana R. Vemireddy
- Department of Genetics and Plant Breeding, Sri Venkateswara Agricultural College, Acharya NG Ranga Agricultural University, Tirupati, Andhra Pradesh 517502 India
| | - Z. Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 People’s Republic of China
| |
Collapse
|
33
|
Development and utilization of an InDel marker linked to the fertility restorer genes of CMS-D8 and CMS-D2 in cotton. Mol Biol Rep 2020; 47:1275-1282. [PMID: 31894465 DOI: 10.1007/s11033-019-05240-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023]
Abstract
The cytoplasmic male sterility (CMS) system is a useful tool for commercial hybrid cotton seed production. Two main CMS systems, CMS-D8 and CMS-D2, have been recognized with Rf2 and Rf1 as the restorer genes, respectively. The development of molecular markers tightly linked with restorer genes can facilitate the breeding of restorer lines. In this study, the InDel-1892 marker was developed to distinguish Rf2 and Rf1 simultaneously. Sequence alignment implied that CMS-D8-Rf2 has a 32 bp insertion and that CMS-D2-Rf1 has a 186 bp insertion at the InDel-1892 locus. The codominant marker was co-segregated with Rf1 and Rf2. Hence, this marker can be used for tracing Rf1 and Rf2 simultaneously and identifying the allele status at the restorer gene locus. The results of this study will facilitate efficient marker-assisted selection for restorer lines and hybrids of CMS systems.
Collapse
|
34
|
Biswal AK, Mangrauthia SK, Reddy MR, Yugandhar P. CRISPR mediated genome engineering to develop climate smart rice: Challenges and opportunities. Semin Cell Dev Biol 2019; 96:100-106. [DOI: 10.1016/j.semcdb.2019.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022]
|
35
|
Chemical and Transcriptomic Analysis of Cuticle Lipids under Cold Stress in Thellungiella salsuginea. Int J Mol Sci 2019; 20:ijms20184519. [PMID: 31547275 PMCID: PMC6770325 DOI: 10.3390/ijms20184519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 11/17/2022] Open
Abstract
Plant cuticle lipids form outer protective layers to resist environmental stresses; however, the relationship between cuticle properties and cold tolerance is unclear. Here, the extremophyte Thellungiella salsuginea was stressed under cold conditions (4 °C) and the cuticle of rosette leaves was examined in terms of epicuticular wax crystal morphology, chemical composition, and cuticle-associated gene expression. The results show that cold induced formation of distinct lamellas within the cuticle ultrastructure. Cold stress caused 14.58% and 12.04% increases in the amount of total waxes and cutin monomer per unit of leaf area, respectively, probably associated with the increase in total fatty acids. The transcriptomic analysis was performed on rosette leaves of Thellungiella exposed to cold for 24 h. We analyzed the expression of 72 genes putatively involved in cuticle lipid metabolism, some of which were validated by qRT-PCR (quantitative reverse transcription PCR) after both 24 h and one week of cold exposure. Most cuticle-associated genes exhibited higher expression levels under cold conditions, and some key genes increased more dramatically over the one week than after just 24 h, which could be associated with increased amounts of some cuticle components. These results demonstrate that the cuticle provides some aspects of cold adaptation in T. salsuginea.
Collapse
|
36
|
Fujino K, Hirayama Y, Kaji R. Marker-assisted selection in rice breeding programs in Hokkaido. BREEDING SCIENCE 2019; 69:383-392. [PMID: 31598070 PMCID: PMC6776137 DOI: 10.1270/jsbbs.19062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/06/2019] [Indexed: 05/27/2023]
Abstract
Rice breeding programs in Hokkaido over the past 100 years have dramatically increased productivity and improved the eating quality of rice. Commercial varieties with high yield and good eating quality, such as Kirara 397, Hoshinoyume, and Nanatsuboshi, have been continuously registered since 1990. Furthermore, varieties with better eating quality using Wx1-1, which reduces amylose content to improve the taste of sticky rice, such as Oborozuki and Yumepirika, were registered in 2006 and 2008, respectively. However, to the best of our knowledge the genomic changes associated with these improvements have not been determined. Better understanding of the relationships between DNA sequences and agricultural traits could facilitate rice breeding programs in Hokkaido. Marker-assisted selection (MAS), which can select the plants with chromosomal regions tagged with DNA markers for desirable traits, is an advanced technology to manage genetic improvements. Here, we summarize the current states of MAS in rice breeding programs in Hokkaido before huge data sets of genome sequences using next-generation sequencing technology come into practical use in rice breeding programs.
Collapse
Affiliation(s)
- Kenji Fujino
- Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
| | - Yuji Hirayama
- Kamikawa Agricultural Experiment Station, Local Independent Administrative Agency Hokkaido Research Organization,
Pippu, Hokkaido 078-0397,
Japan
| | - Ryota Kaji
- Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
| |
Collapse
|
37
|
Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proc Natl Acad Sci U S A 2019; 116:3494-3501. [PMID: 30808744 DOI: 10.1073/pnas.1819769116] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rice (Oryza sativa L.) is a chilling-sensitive staple crop that originated in subtropical regions of Asia. Introduction of the chilling tolerance trait enables the expansion of rice cultivation to temperate regions. Here we report the cloning and characterization of HAN1, a quantitative trait locus (QTL) that confers chilling tolerance on temperate japonica rice. HAN1 encodes an oxidase that catalyzes the conversion of biologically active jasmonoyl-L-isoleucine (JA-Ile) to the inactive form 12-hydroxy-JA-Ile (12OH-JA-Ile) and fine-tunes the JA-mediated chilling response. Natural variants in HAN1 diverged between indica and japonica rice during domestication. A specific allele from temperate japonica rice, which gained a putative MYB cis-element in the promoter of HAN1 during the divergence of the two japonica ecotypes, enhances the chilling tolerance of temperate japonica rice and allows it to adapt to a temperate climate. The results of this study extend our understanding of the northward expansion of rice cultivation and provide a target gene for the improvement of chilling tolerance in rice.
Collapse
|
38
|
Liu X, Lan J, Huang Y, Cao P, Zhou C, Ren Y, He N, Liu S, Tian Y, Nguyen T, Jiang L, Wan J. WSL5, a pentatricopeptide repeat protein, is essential for chloroplast biogenesis in rice under cold stress. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3949-3961. [PMID: 29893948 PMCID: PMC6054151 DOI: 10.1093/jxb/ery214] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/18/2018] [Indexed: 05/18/2023]
Abstract
Chloroplasts play an essential role in plant growth and development, and cold conditions affect chloroplast development. Although many genes or regulators involved in chloroplast biogenesis and development have been isolated and characterized, many other components affecting chloroplast biogenesis under cold conditions have not been characterized. Here, we report the functional characterization of a white stripe leaf 5 (wsl5) mutant in rice. The mutant develops white-striped leaves during early leaf development and is albinic when planted under cold stress. Genetic and molecular analysis revealed that WSL5 encodes a novel chloroplast-targeted pentatricopeptide repeat protein. RNA sequencing analysis showed that expression of nuclear-encoded photosynthetic genes in the mutant was significantly repressed, and expression of many chloroplast-encoded genes was also significantly changed. Notably, the wsl5 mutation causes defects in editing of rpl2 and atpA, and splicing of rpl2 and rps12. wsl5 was impaired in chloroplast ribosome biogenesis under cold stress. We propose that the WSL5 allele is required for normal chloroplast development in maintaining retrograde signaling from plastids to the nucleus under cold stress.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Jie Lan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yunshuai Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Penghui Cao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yaken Ren
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Niqing He
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Thanhliem Nguyen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Wang J, Wang J, Wang X, Li R, Chen B. Proteomic response of hybrid wild rice to cold stress at the seedling stage. PLoS One 2018; 13:e0198675. [PMID: 29879216 PMCID: PMC5991693 DOI: 10.1371/journal.pone.0198675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022] Open
Abstract
Low temperature at the seedling stage is a major damaging factor for rice production in southern China. To better understand the cold response of cultivated and wild rice, cold-sensitive cultivar 93–11 (Oryza sativa L. ssp. Indica) and cold-resistant hybrid wild rice DC907 with a 93–11 genetic background were used for a quantitative proteomic analysis with tandem mass tags (TMT) in parallel. Rice seedlings grown for four weeks at a normal temperature (25°C) were treated at 8–10°C for 24, 72 and 120 h. The number of differentially expressed proteins increased gradually over time in the cold-exposed rice in comparison with the untreated rice. A total of 366 unique proteins involved in ATP synthesis, photosystem, reactive oxygen species, stress response, cell growth and integrity were identified as responding to cold stress in DC907. While both DC907 and 93–11 underwent similar alterations in proteomic profiles in response to cold stress, DC907 responded in a prompter manner in terms of expressing cold-responding proteins, maintained a higher level of photosynthesis to power the cells, and possessed a stable and higher level of DIR proteins to prevent the plant from obtaining irreversible cell structure damage. The observations made in this study may lay a new foundation for further investigation of cold sensitivity or tolerance mechanisms in rice.
Collapse
Affiliation(s)
- Jinzi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xin Wang
- College of Agriculture, Guangxi University, Nanning, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
- * E-mail: (BC); (RL)
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
- * E-mail: (BC); (RL)
| |
Collapse
|
40
|
Zhang M, Ye J, Xu Q, Feng Y, Yuan X, Yu H, Wang Y, Wei X, Yang Y. Genome-wide association study of cold tolerance of Chinese indica rice varieties at the bud burst stage. PLANT CELL REPORTS 2018; 37:529-539. [PMID: 29322237 DOI: 10.1007/s00299-017-2247-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/28/2017] [Indexed: 05/14/2023]
Abstract
A region containing three genes on chromosome 1 of indica rice was associated with cold tolerance at the bud burst stage; these results may be useful for breeding cold-tolerant lines. Low temperature at the bud burst stage is one of the major abiotic stresses limiting rice growth, especially in regions where rice seeds are sown directly. In this study, we investigated cold tolerance of rice at the bud burst stage and conducted a genome-wide association study (GWAS) based on the 5K rice array of 249 indica rice varieties widely distributed in China. We improved the method to assess cold tolerance at the bud burst stage in indica rice, and used severity of damage (SD) and seed survival rate (SR) as the cold-tolerant indices. Population structure analysis demonstrated that the Chinese indica panel was divided into three subgroups. In total, 47 significant single-nucleotide polymorphism (SNP) loci associated with SD and SR, were detected by association mapping based on mixed linear model. Because some loci overlapped between SD and SR, the loci contained 13 genome intervals and most of them have been reported previously. A major QTL for cold tolerance on chromosome 1 at the position of 31.6 Mb, explaining 13.2% of phenotypic variation, was selected for further analysis. Through LD decay, GO enrichment, RNA-seq data, and gene expression pattern analyses, we identified three genes (LOC_Os01g55510, LOC_Os01g55350 and LOC_Os01g55560) that were differentially expressed between cold-tolerant and cold-sensitive varieties, suggesting they may be candidate genes for cold tolerance. Together, our results provide a new method to assess cold tolerance in indica rice, and establish the foundation for isolating genes related to cold tolerance that could be used in rice breeding.
Collapse
Affiliation(s)
- Mengchen Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jing Ye
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qun Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yue Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaoping Yuan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hanyong Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiping Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xinghua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| | - Yaolong Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| |
Collapse
|
41
|
Dziwornu AK, Shrestha A, Matthus E, Ali B, Wu LB, Frei M. Responses of contrasting rice genotypes to excess manganese and their implications for lignin synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:252-259. [PMID: 29257997 DOI: 10.1016/j.plaphy.2017.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 05/10/2023]
Abstract
Manganese (Mn) toxicity is frequently encountered in crops grown on soils with low pH or low redox potential, and harmful to plant development and growth. This study aimed at exploring adaptive mechanisms to Mn toxicity in rice, and investigated the effects of Mn toxicity on shoot lignification. Sixteen rice genotypes were grown in hydroponic solutions and exposed to normal (0.5 mg dm-3) or toxic (5 mg dm-3) Mn concentrations for three weeks. Morphological responses to Mn toxicity included a significant reduction in shoot length and the formation of visible symptoms scored as leaf damage index (LDI). Based on shoot Mn concentrations in the Mn toxic treatment, genotypes were classified as Mn includers and excluders. Across different genotypes, shoot Mn concentrations were significantly negatively correlated with relative shoot length and positively correlated with LDI. Consequently, the most tolerant genotypes in terms of morphology were all excluders, while the most sensitive genotypes were includers. The sensitive genotypes were also more responsive to manganese in terms of lipid peroxidation than tolerant genotypes. Shoots of rice plants grown in the high Mn treatment showed a higher level of lignification measured as thioglycolic acid lignin (TGAL), especially among Mn includers. TGAL was positively correlated with shoot Mn concentration and the levels of phenolics. In contrast, peroxidase activity was not responsive to the Mn treatment and was not significantly correlated with shoot lignification. In conclusion, exclusion is a dominant tolerance mechanism to Mn toxicity in rice. Further, Mn stimulated lignin biosynthesis in rice, especially in genotypes that were unable to exclude Mn.
Collapse
Affiliation(s)
- Ambrose Kwaku Dziwornu
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany
| | - Asis Shrestha
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany; Institute of Crop Sciences and Resource Conservation (INRES), Plant Breeding, University of Bonn, Germany
| | - Elsa Matthus
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany; Department of Plant Sciences, University of Cambridge, UK
| | - Basharat Ali
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany
| | - Lin-Bo Wu
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany
| | - Michael Frei
- Institute of Crop Sciences and Resource Conservation (INRES), Plant Nutrition, University of Bonn, Germany.
| |
Collapse
|
42
|
Schläppi MR, Jackson AK, Eizenga GC, Wang A, Chu C, Shi Y, Shimoyama N, Boykin DL. Assessment of Five Chilling Tolerance Traits and GWAS Mapping in Rice Using the USDA Mini-Core Collection. FRONTIERS IN PLANT SCIENCE 2017; 8:957. [PMID: 28642772 PMCID: PMC5463297 DOI: 10.3389/fpls.2017.00957] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/22/2017] [Indexed: 05/21/2023]
Abstract
Rice (Oryza sativa L.) is often exposed to cool temperatures during spring planting in temperate climates. A better understanding of genetic pathways regulating chilling tolerance will enable breeders to develop varieties with improved tolerance during germination and young seedling stages. To dissect chilling tolerance, five assays were developed; one assay for the germination stage, one assay for the germination and seedling stage, and three for the seedling stage. Based on these assays, five chilling tolerance indices were calculated and assessed using 202 O. sativa accessions from the Rice Mini-Core (RMC) collection. Significant differences between RMC accessions made the five indices suitable for genome-wide association study (GWAS) based quantitative trait loci (QTL) mapping. For young seedling stage indices, japonica and indica subspecies clustered into chilling tolerant and chilling sensitive accessions, respectively, while both subspecies had similar low temperature germinability distributions. Indica subspecies were shown to have chilling acclimation potential. GWAS mapping uncovered 48 QTL at 39 chromosome regions distributed across all 12 rice chromosomes. Interestingly, there was no overlap between the germination and seedling stage QTL. Also, 18 QTL and 32 QTL were in regions discovered in previously reported bi-parental and GWAS based QTL mapping studies, respectively. Two novel low temperature seedling survivability (LTSS)-QTL, qLTSS3-4 and qLTSS4-1, were not in a previously reported QTL region. QTL with strong effect alleles identified in this study will be useful for marker assisted breeding efforts to improve chilling tolerance in rice cultivars and enhance gene discovery for chilling tolerance.
Collapse
Affiliation(s)
- Michael R. Schläppi
- Department of Biological Sciences, Marquette University, MilwaukeeWI, United States
- *Correspondence: Michael R. Schläppi,
| | - Aaron K. Jackson
- Dale Bumpers National Rice Research Center, United States Department of Agriculture – Agricultural Research Service, StuttgartAR, United States
| | - Georgia C. Eizenga
- Dale Bumpers National Rice Research Center, United States Department of Agriculture – Agricultural Research Service, StuttgartAR, United States
| | - Aiju Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Yao Shi
- Department of Biological Sciences, Marquette University, MilwaukeeWI, United States
| | - Naoki Shimoyama
- Department of Biological Sciences, Marquette University, MilwaukeeWI, United States
| | - Debbie L. Boykin
- United States Department of Agriculture – Agricultural Research Service, StonevilleMS, United States
| |
Collapse
|