1
|
Yang G, Li B, Chen K, Du M, Zalán Z, Hegyi F, Kan J. Isolation and evaluation of probiotics from traditional Chinese foods for aflatoxin B 1 detoxification: Geotrichum candidum XG1 (yeast) and mechanistic insights. Food Chem 2024; 452:139541. [PMID: 38718457 DOI: 10.1016/j.foodchem.2024.139541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Identifying aflatoxin-detoxifying probiotics remains a significant challenge in mitigating the risks associated with aflatoxin contamination in crops. Biological detoxification is a popular technique that reduces mycotoxin hazards and garners consumer acceptance. Through multiple rounds of screening and validation tests, Geotrichum candidum XG1 demonstrated the ability to degrade aflatoxin B1 (AFB1) by 99-100%, exceeding the capabilities of mere adsorption mechanisms. Notably, the degradation efficiency was demonstrably influenced by the presence of copper and iron ions in the liquid medium, suggesting a potential role for proteases in the degradation process. Subsequent validation experiments with red pepper revealed an 83% reduction in AFB1 levels following fermentation with G. candidum XG1. Furthermore, mass spectrometry analysis confirmed the disruption of the AFB1 furan ring structure, leading to a subsequent reduction in its toxicity. Collectively, these findings establish G. candidum XG1 as a promising candidate for effective aflatoxin degradation, with potential applications within the food industry.
Collapse
Affiliation(s)
- Gang Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Bin Li
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Kewei Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Zsolt Zalán
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Herman Ottó str. 15, Budapest 1022, Hungary.
| | - Ferenc Hegyi
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Herman Ottó str. 15, Budapest 1022, Hungary.
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Gressel J, Mbogo P, Kanampiu F, Christou P. Maize yields have stagnated in sub-Sahara Africa: a possible transgenic solution to weed, pathogen and insect constraints. PEST MANAGEMENT SCIENCE 2024; 80:4156-4162. [PMID: 38843468 DOI: 10.1002/ps.8224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 08/10/2024]
Abstract
Despite major breeding efforts by various national and international agencies, yields for the ~40 million hectares of maize, the major food crop in sub-Saharan Africa, have stagnated at <2 tons/ha/year for the past decade, one-third the global average. Breeders have succeeded in breeding increased yield with a modicum of tolerance to some single-weed or pathogen stresses. There has been minimal adoption of these varieties because introgressing polygenic yield and tolerance traits into locally adapted material is very challenging. Multiple traits to deal with pests (weeds, pathogens, and insects) are needed for farmer acceptance, because African fields typically encounter multiple pest constraints. Also, maize has no inherent resistance to some of these pest constraints, rendering them intractable to traditional breeding. The proposed solution is to simultaneously engineer multiple traits into one genetic locus. The dominantly inherited multi-pest resistance trait single locus can be bred simply into locally adapted, elite high-yielding material, and would be valuable for farmers, vastly increasing maize yields, and allowing for more than regional maize sufficiency. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan Gressel
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Paul Christou
- University of Lleida & Agrotecnio CERCA Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
3
|
Adegbaju MS, Ajose T, Adegbaju IE, Omosebi T, Ajenifujah-Solebo SO, Falana OY, Shittu OB, Adetunji CO, Akinbo O. Genetic engineering and genome editing technologies as catalyst for Africa's food security: the case of plant biotechnology in Nigeria. Front Genome Ed 2024; 6:1398813. [PMID: 39045572 PMCID: PMC11263695 DOI: 10.3389/fgeed.2024.1398813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/15/2024] [Indexed: 07/25/2024] Open
Abstract
Many African countries are unable to meet the food demands of their growing population and the situation is worsened by climate change and disease outbreaks. This issue of food insecurity may lead to a crisis of epic proportion if effective measures are not in place to make more food available. Thus, deploying biotechnology towards the improvement of existing crop varieties for tolerance or resistance to both biotic and abiotic stresses is crucial to increasing crop production. In order to optimize crop production, several African countries have implemented strategies to make the most of this innovative technology. For example, Nigerian government has implemented the National Biotechnology Policy to facilitate capacity building, research, bioresource development and commercialization of biotechnology products for over two decades. Several government ministries, research centers, universities, and agencies have worked together to implement the policy, resulting in the release of some genetically modified crops to farmers for cultivation and Commercialization, which is a significant accomplishment. However, the transgenic crops were only brought to Nigeria for confined field trials; the manufacturing of the transgenic crops took place outside the country. This may have contributed to the suspicion of pressure groups and embolden proponents of biotechnology as an alien technology. Likewise, this may also be the underlying issue preventing the adoption of biotechnology products in other African countries. It is therefore necessary that African universities develop capacity in various aspects of biotechnology, to continuously train indigenous scientists who can generate innovative ideas tailored towards solving problems that are peculiar to respective country. Therefore, this study intends to establish the role of genetic engineering and genome editing towards the achievement of food security in Africa while using Nigeria as a case study. In our opinion, biotechnology approaches will not only complement conventional breeding methods in the pursuit of crop improvements, but it remains a viable and sustainable means of tackling specific issues hindering optimal crop production. Furthermore, we suggest that financial institutions should offer low-interest loans to new businesses. In order to promote the growth of biotechnology products, especially through the creation of jobs and revenues through molecular farming.
Collapse
Affiliation(s)
- Muyiwa Seyi Adegbaju
- Department of Crop, Soil and Pest Management, Federal University of Technology Akure, Akure, Ondo, Nigeria
| | - Titilayo Ajose
- Fruits and Spices Department, National Horticultural Institute, Ibadan, Oyo, Nigeria
| | | | - Temitayo Omosebi
- Department of Agricultural Technology, Federal College of Forestry, Jos, Nigeria
| | | | - Olaitan Yetunde Falana
- Department of Genetics, Genomic and Bioinformatics, National Biotechnology Research and Development Agency, Abuja, Nigeria
| | - Olufunke Bolatito Shittu
- Department of Microbiology, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Olalekan Akinbo
- African Union Development Agency-NEPAD, Office of Science, Technology and Innovation, Midrand, South Africa
| |
Collapse
|
4
|
Gangurde SS, Korani W, Bajaj P, Wang H, Fountain JC, Agarwal G, Pandey MK, Abbas HK, Chang PK, Holbrook CC, Kemerait RC, Varshney RK, Dutta B, Clevenger JP, Guo B. Aspergillus flavus pangenome (AflaPan) uncovers novel aflatoxin and secondary metabolite associated gene clusters. BMC PLANT BIOLOGY 2024; 24:354. [PMID: 38693487 PMCID: PMC11061970 DOI: 10.1186/s12870-024-04950-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/26/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Aspergillus flavus is an important agricultural and food safety threat due to its production of carcinogenic aflatoxins. It has high level of genetic diversity that is adapted to various environments. Recently, we reported two reference genomes of A. flavus isolates, AF13 (MAT1-2 and highly aflatoxigenic isolate) and NRRL3357 (MAT1-1 and moderate aflatoxin producer). Where, an insertion of 310 kb in AF13 included an aflatoxin producing gene bZIP transcription factor, named atfC. Observations of significant genomic variants between these isolates of contrasting phenotypes prompted an investigation into variation among other agricultural isolates of A. flavus with the goal of discovering novel genes potentially associated with aflatoxin production regulation. Present study was designed with three main objectives: (1) collection of large number of A. flavus isolates from diverse sources including maize plants and field soils; (2) whole genome sequencing of collected isolates and development of a pangenome; and (3) pangenome-wide association study (Pan-GWAS) to identify novel secondary metabolite cluster genes. RESULTS Pangenome analysis of 346 A. flavus isolates identified a total of 17,855 unique orthologous gene clusters, with mere 41% (7,315) core genes and 59% (10,540) accessory genes indicating accumulation of high genomic diversity during domestication. 5,994 orthologous gene clusters in accessory genome not annotated in either the A. flavus AF13 or NRRL3357 reference genomes. Pan-genome wide association analysis of the genomic variations identified 391 significant associated pan-genes associated with aflatoxin production. Interestingly, most of the significantly associated pan-genes (94%; 369 associations) belonged to accessory genome indicating that genome expansion has resulted in the incorporation of new genes associated with aflatoxin and other secondary metabolites. CONCLUSION In summary, this study provides complete pangenome framework for the species of Aspergillus flavus along with associated genes for pathogen survival and aflatoxin production. The large accessory genome indicated large genome diversity in the species A. flavus, however AflaPan is a closed pangenome represents optimum diversity of species A. flavus. Most importantly, the newly identified aflatoxin producing gene clusters will be a new source for seeking aflatoxin mitigation strategies and needs new attention in research.
Collapse
Affiliation(s)
- Sunil S Gangurde
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, 31793, USA
| | - Walid Korani
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Prasad Bajaj
- International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India
| | - Hui Wang
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Jake C Fountain
- Department of Plant Pathology, University of Georgia, Griffin, GA, 30223, USA
| | - Gaurav Agarwal
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Manish K Pandey
- International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India.
| | - Hamed K Abbas
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Perng-Kuang Chang
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, 70124, USA
| | - C Corley Holbrook
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, 31793, USA
| | - Robert C Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Rajeev K Varshney
- WA State Biotechnology Centre, Centre for Crop and Food innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Josh P Clevenger
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, 31793, USA.
| |
Collapse
|
5
|
Li H, Kalunke R, Tetorya M, Czymmek KJ, Shah DM. Modes of action and potential as a peptide-based biofungicide of a plant defensin MtDef4. MOLECULAR PLANT PATHOLOGY 2024; 25:e13458. [PMID: 38619888 PMCID: PMC11018249 DOI: 10.1111/mpp.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
Due to rapidly emerging resistance to single-site fungicides in fungal pathogens of plants, there is a burgeoning need for safe and multisite fungicides. Plant antifungal peptides with multisite modes of action (MoA) have potential as bioinspired fungicides. Medicago truncatula defensin MtDef4 was previously reported to exhibit potent antifungal activity against fungal pathogens. Its MoA involves plasma membrane disruption and binding to intracellular targets. However, specific biochemical processes inhibited by this defensin and causing cell death have not been determined. Here, we show that MtDef4 exhibited potent antifungal activity against Botrytis cinerea. It induced severe plasma membrane and organelle irregularities in the germlings of this pathogen. It bound to fungal ribosomes and inhibited protein translation in vitro. A MtDef4 variant lacking antifungal activity exhibited greatly reduced protein translation inhibitory activity. A cation-tolerant MtDef4 variant was generated that bound to β-glucan of the fungal cell wall with higher affinity than MtDef4. It also conferred a greater reduction in the grey mould disease symptoms than MtDef4 when applied exogenously on Nicotiana benthamiana plants, tomato fruits and rose petals. Our findings revealed inhibition of protein synthesis as a likely target of MtDef4 and the potential of its cation-tolerant variant as a peptide-based fungicide.
Collapse
Affiliation(s)
- Hui Li
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | | | | | - Kirk J. Czymmek
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
- Advanced Bioimaging LaboratoryDonald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Dilip M. Shah
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| |
Collapse
|
6
|
Wang W, Javed T, Shen L, Sun T, Yang B, Zhang S. Establishment of an Efficient Sugarcane Transformation System via Herbicide-Resistant CP4-EPSPS Gene Selection. PLANTS (BASEL, SWITZERLAND) 2024; 13:852. [PMID: 38592870 PMCID: PMC10975096 DOI: 10.3390/plants13060852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Sugarcane (Saccharum spp.), a major cash crop that is an important source of sugar and bioethanol, is strongly influenced by the impacts of biotic and abiotic stresses. The intricate polyploid and aneuploid genome of sugarcane has shown various limits for conventional breeding strategies. Nonetheless, biotechnological engineering currently offers the best chance of introducing commercially significant agronomic features. In this study, an efficient Agrobacterium-mediated transformation system that uses the herbicide-resistant CP4-EPSPS gene as a selection marker was developed. Notably, all of the plants that were identified by PCR as transformants showed significant herbicide resistance. Additionally, this transformation protocol also highlighted: (i) the high yield of transgenic lines from calli (each gram of calli generated six transgenic lines); (ii) improved selection; and (iii) a higher transformation efficiency. This protocol provides a reliable tool for a routine procedure for the generation of resilient sugarcane plants.
Collapse
Affiliation(s)
- Wenzhi Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.W.); (T.J.); (L.S.); (T.S.); (B.Y.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571763, China
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 571763, China
| | - Talha Javed
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.W.); (T.J.); (L.S.); (T.S.); (B.Y.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571763, China
| | - Linbo Shen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.W.); (T.J.); (L.S.); (T.S.); (B.Y.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571763, China
| | - Tingting Sun
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.W.); (T.J.); (L.S.); (T.S.); (B.Y.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571763, China
| | - Benpeng Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.W.); (T.J.); (L.S.); (T.S.); (B.Y.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571763, China
| | - Shuzhen Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.W.); (T.J.); (L.S.); (T.S.); (B.Y.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571763, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 571763, China
| |
Collapse
|
7
|
Arimboor R. Metabolites and degradation pathways of microbial detoxification of aflatoxins: a review. Mycotoxin Res 2024; 40:71-83. [PMID: 38151634 DOI: 10.1007/s12550-023-00515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
The degradation of aflatoxins using nonpathogenic microbes and their enzymes is emerging as a safe and economical alternative to chemical and physical methods for the detoxification of aflatoxins in food and feeds. Many bacteria and fungi have been identified as aflatoxin degraders. This review is focused on the chemical identification of microbial degradation products and their degradation pathways. The microbial degradations of aflatoxins are initiated by oxidation, hydroxylation, reduction, or elimination reactions mostly catalyzed by various enzymes belonging to the classes of laccase, reductases, and peroxidases. The resulting products with lesser chemical stability further undergo various reactions to form low molecular weight products. Studies on the chemical and biological nature of degraded products of aflatoxins are necessary to ensure the safety of the decontamination process. This review indicated the need for an integrated approach including decontamination studies using culture media and food matrices, proper identification and toxicity profiling of degraded products of aflatoxins, and interactions of microbes and the degradation products with food matrices for developing practical and effective microbial detoxification process.
Collapse
Affiliation(s)
- Ranjith Arimboor
- Spices Board Quality Evaluation Laboratory, SIPCOT, Gummidipoondi, Chennai, 601201, India.
| |
Collapse
|
8
|
Prasad K, Yogendra K, Sanivarapu H, Rajasekaran K, Cary JW, Sharma KK, Bhatnagar-Mathur P. Multiplexed Host-Induced Gene Silencing of Aspergillus flavus Genes Confers Aflatoxin Resistance in Groundnut. Toxins (Basel) 2023; 15:toxins15050319. [PMID: 37235354 DOI: 10.3390/toxins15050319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Aflatoxins are immunosuppressive and carcinogenic secondary metabolites, produced by the filamentous ascomycete Aspergillus flavus, that are hazardous to animal and human health. In this study, we show that multiplexed host-induced gene silencing (HIGS) of Aspergillus flavus genes essential for fungal sporulation and aflatoxin production (nsdC, veA, aflR, and aflM) confers enhanced resistance to Aspergillus infection and aflatoxin contamination in groundnut (<20 ppb). Comparative proteomic analysis of contrasting groundnut genotypes (WT and near-isogenic HIGS lines) supported a better understanding of the molecular processes underlying the induced resistance and identified several groundnut metabolites that might play a significant role in resistance to Aspergillus infection and aflatoxin contamination. Fungal differentiation and pathogenicity proteins, including calmodulin, transcriptional activator-HacA, kynurenine 3-monooxygenase 2, VeA, VelC, and several aflatoxin pathway biosynthetic enzymes, were downregulated in Aspergillus infecting the HIGS lines. Additionally, in the resistant HIGS lines, a number of host resistance proteins associated with fatty acid metabolism were strongly induced, including phosphatidylinositol phosphate kinase, lysophosphatidic acyltransferase-5, palmitoyl-monogalactosyldiacylglycerol Δ-7 desaturase, ceramide kinase-related protein, sphingolipid Δ-8 desaturase, and phospholipase-D. Combined, this knowledge can be used for groundnut pre-breeding and breeding programs to provide a safe and secure food supply.
Collapse
Affiliation(s)
- Kalyani Prasad
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Hemalatha Sanivarapu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Kanniah Rajasekaran
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA/ARS), New Orleans, LA 70124, USA
| | - Jeffrey W Cary
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA/ARS), New Orleans, LA 70124, USA
| | - Kiran K Sharma
- Sustainable Agriculture Program, The Energy and Resources Institute (TERI), India Habitat Center, New Delhi 110003, India
| | - Pooja Bhatnagar-Mathur
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco 56237, Mexico
| |
Collapse
|
9
|
Jin G, Liu N, Yu B, Jiang Y, Luo H, Huang L, Zhou X, Yan L, Kang Y, Huai D, Ding Y, Chen Y, Wang X, Jiang H, Lei Y, Shen J, Liao B. Identification and Pyramiding Major QTL Loci for Simultaneously Enhancing Aflatoxin Resistance and Yield Components in Peanut. Genes (Basel) 2023; 14:genes14030625. [PMID: 36980897 PMCID: PMC10048167 DOI: 10.3390/genes14030625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Peanut is susceptible to Aspergillus flavus infection, and the consequent aflatoxin contamination has been recognized as an important risk factor affecting food safety and industry development. Planting peanut varieties with resistance to aflatoxin contamination is regarded as an ideal approach to decrease the risk in food safety, but most of the available resistant varieties have not been extensively used in production because of their low yield potential mostly due to possessing small pods and seeds. Hence, it is highly necessary to integrate resistance to aflatoxin and large seed weight. In this study, an RIL population derived from a cross between Zhonghua 16 with high yield and J 11 with resistance to infection of A. flavus and aflatoxin production, was used to identify quantitative trait locus (QTL) for aflatoxin production (AP) resistance and hundred-seed weight (HSW). From combined analysis using a high-density genetic linkage map constructed, 11 QTLs for AP resistance with 4.61–11.42% phenotypic variation explanation (PVE) and six QTLs for HSW with 3.20–28.48% PVE were identified, including three major QTLs for AP resistance (qAFTA05.1, qAFTB05.2 and qAFTB06.3) and three for HSW (qHSWA05, qHSWA08 and qHSWB06). In addition, qAFTA05.1, qAFTB06.3, qHSWA05, qHSWA08 and qHSWB06 were detected in multiple environments. The aflatoxin contents under artificial inoculation were decreased by 34.77–47.67% in those segregated lines harboring qAFTA05.1, qAFTB05.2 and qAFTB06.3, while the HSWs were increased by 47.56–49.46 g in other lines harboring qHSWA05, qHSWA08 and qHSWB06. Conditional QTL mapping indicated that HSW and percent seed infection index (PSII) had no significant influence on aflatoxin content. Interestingly, the QT 1059 simultaneously harboring alleles of aflatoxin content including qAFTA05.1 and qAFTB05.2, alleles of PSII including qPSIIB03.1, qPSIIB03.2, and qPSIIB10 and alleles of HSW including qHSWA05, qHSWB06, qHSWA08 had better resistance to A. flavus infection and to toxin production and higher yield potential compared with the two parents of the RIL. The above identified major loci for AP resistance and HWS would be helpful for marker-assisted selection in peanut breeding.
Collapse
Affiliation(s)
- Gaorui Jin
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Bolun Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Yifei Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Yanping Kang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Yinbing Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Correspondence:
| |
Collapse
|
10
|
Ortega-Beltran A, Bandyopadhyay R. Aflatoxin biocontrol in practice requires a multidisciplinary, long-term approach. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
One of the most elusive food safety problems is the contamination of staple crops with the highly carcinogenic aflatoxins produced by Aspergillus section Flavi fungi. Governments, farmers, institutions, consumers, and companies demand aflatoxin solutions. Many aflatoxin management technologies exist, but their real-life use and effectiveness is determined by diverse factors. Biocontrol products based on atoxigenic isolates of A. flavus can effectively reduce aflatoxins from field to fork. However, development, testing, and registration of this technology is a laborious process. Further, several barriers prevent the sustainable use of biocontrol products. There are challenges to have the products accepted, to make them available at scale and develop mechanisms for farmers to buy them, to have the products correctly used, to demonstrate their value, and to link farmers to buyers of aflatoxin-safe crops. Developing an effective aflatoxin management technology is the first, major step. The second one, perhaps more complicated and unfortunately seldomly discussed, is to develop mechanisms to have it used at scale, sustainably, and converged with other complementary technologies. Here, challenges and actions to scale the aflatoxin biocontrol technology in several countries in sub-Saharan Africa are described with a view to facilitating aflatoxin management efforts in Africa and beyond.
Collapse
|
11
|
Zhuang Y, Sharif Y, Zeng X, Chen S, Chen H, Zhuang C, Deng Y, Ruan M, Chen S, Weijian Z. Molecular cloning and functional characterization of the promoter of a novel Aspergillus flavus inducible gene ( AhOMT1) from peanut. FRONTIERS IN PLANT SCIENCE 2023; 14:1102181. [PMID: 36844094 PMCID: PMC9947529 DOI: 10.3389/fpls.2023.1102181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Peanut is an important oil and food legume crop grown in more than one hundred countries, but the yield and quality are often impaired by different pathogens and diseases, especially aflatoxins jeopardizing human health and causing global concerns. For better management of aflatoxin contamination, we report the cloning and characterization of a novel A. flavus inducible promoter of the O-methyltransferase gene (AhOMT1) from peanut. The AhOMT1 gene was identified as the highest inducible gene by A. flavus infection through genome-wide microarray analysis and verified by qRT-PCR analysis. AhOMT1 gene was studied in detail, and its promoter, fussed with the GUS gene, was introduced into Arabidopsis to generate homozygous transgenic lines. Expression of GUS gene was studied in transgenic plants under the infection of A. flavus. The analysis of AhOMT1 gene characterized by in silico assay, RNAseq, and qRT-PCR revealed minute expression in different organs and tissues with trace or no response to low temperature, drought, hormones, Ca2+, and bacterial stresses, but highly induced by A. flavus infection. It contains four exons encoding 297 aa predicted to transfer the methyl group of S-adenosyl-L-methionine (SAM). The promoter contains different cis-elements responsible for its expression characteristics. Functional characterization of AhOMT1P in transgenic Arabidopsis plants demonstrated highly inducible behavior only under A. flavus infection. The transgenic plants did not show GUS expression in any tissue(s) without inoculation of A. flavus spores. However, GUS activity increased significantly after inoculation of A. flavus and maintained a high level of expression after 48 hours of infection. These results provided a novel way for future management of peanut aflatoxins contamination through driving resistance genes in A. flavus inducible manner.
Collapse
Affiliation(s)
- Yuhui Zhuang
- Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yasir Sharif
- Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohong Zeng
- Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Suzheng Chen
- Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua Chen
- Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunhong Zhuang
- Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Deng
- Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | | | - Zhuang Weijian
- Center of Legume Plant Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Aflatoxins: Source, Detection, Clinical Features and Prevention. Processes (Basel) 2023. [DOI: 10.3390/pr11010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The most potent mycotoxin, aflatoxins are the secondary metabolite produced by fungi, especially Aspergillus, and have been found to be ubiquitous, contaminating cereals, crops, and even milk and causing major health and economic issues in some countries due to poor storage, substandard management, and lack of awareness. Different aspects of the toxin are reviewed here, including its structural biochemistry, occurrence, factors conducive to its contamination and intoxication and related clinical features, as well as suggested preventive and control strategies and detection methods.
Collapse
|
13
|
Puppala N, Nayak SN, Sanz-Saez A, Chen C, Devi MJ, Nivedita N, Bao Y, He G, Traore SM, Wright DA, Pandey MK, Sharma V. Sustaining yield and nutritional quality of peanuts in harsh environments: Physiological and molecular basis of drought and heat stress tolerance. Front Genet 2023; 14:1121462. [PMID: 36968584 PMCID: PMC10030941 DOI: 10.3389/fgene.2023.1121462] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Climate change is significantly impacting agricultural production worldwide. Peanuts provide food and nutritional security to millions of people across the globe because of its high nutritive values. Drought and heat stress alone or in combination cause substantial yield losses to peanut production. The stress, in addition, adversely impact nutritional quality. Peanuts exposed to drought stress at reproductive stage are prone to aflatoxin contamination, which imposes a restriction on use of peanuts as health food and also adversely impact peanut trade. A comprehensive understanding of the impact of drought and heat stress at physiological and molecular levels may accelerate the development of stress tolerant productive peanut cultivars adapted to a given production system. Significant progress has been achieved towards the characterization of germplasm for drought and heat stress tolerance, unlocking the physiological and molecular basis of stress tolerance, identifying significant marker-trait associations as well major QTLs and candidate genes associated with drought tolerance, which after validation may be deployed to initiate marker-assisted breeding for abiotic stress adaptation in peanut. The proof of concept about the use of transgenic technology to add value to peanuts has been demonstrated. Advances in phenomics and artificial intelligence to accelerate the timely and cost-effective collection of phenotyping data in large germplasm/breeding populations have also been discussed. Greater focus is needed to accelerate research on heat stress tolerance in peanut. A suits of technological innovations are now available in the breeders toolbox to enhance productivity and nutritional quality of peanuts in harsh environments. A holistic breeding approach that considers drought and heat-tolerant traits to simultaneously address both stresses could be a successful strategy to produce climate-resilient peanut genotypes with improved nutritional quality.
Collapse
Affiliation(s)
- Naveen Puppala
- Agricultural Science Center at Clovis, New Mexico State University, Las Cruces, NM, United States
- *Correspondence: Naveen Puppala,
| | - Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Charles Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Mura Jyostna Devi
- USDA-ARS Vegetable Crops Research, Madison, WI, United States
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
| | - Nivedita Nivedita
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, United States
| | - Yin Bao
- Biosystems Engineering Department, Auburn University, Auburn, AL, United States
| | - Guohao He
- Department of Plant and Soil Sciences, Tuskegee University, Tuskegee, AL, United States
| | - Sy M. Traore
- Department of Plant and Soil Sciences, Tuskegee University, Tuskegee, AL, United States
| | - David A. Wright
- Department of Biotechnology, Iowa State University, Ames, IA, United States
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| |
Collapse
|
14
|
Jurick Ii WM. Biotechnology approaches to reduce antimicrobial resistant postharvest pathogens, mycotoxin contamination, and resulting product losses. Curr Opin Biotechnol 2022; 78:102791. [PMID: 36099860 DOI: 10.1016/j.copbio.2022.102791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
Postharvest fungal pathogens of stored fruits, nuts, and vegetables cause food spoilage and some produce mycotoxins that harm human health. These fungi can develop resistance to the chemicals used for their control despite judicious use, rotating different chemistries, and routine resistance monitoring. Once antimicrobial resistance develops, these fungi are difficult to control and persist in the field, packing, and storage environments. Therefore, new tools and approaches for control with reduced emphasis on chemicals and movement toward durable, innovative approaches (e.g. double-stranded RNA, translational metagenomics, and host-induced gene silencing) are warranted. The focus of this review is on formative breakthroughs to combat postharvest pathogens and the mycotoxins they produce via translation of fundamental science using biotechnology tools.
Collapse
|
15
|
Blockchain: An emerging novel technology to upgrade the current fresh fruit supply chain. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Leannec-Rialland V, Atanasova V, Chereau S, Tonk-Rügen M, Cabezas-Cruz A, Richard-Forget F. Use of Defensins to Develop Eco-Friendly Alternatives to Synthetic Fungicides to Control Phytopathogenic Fungi and Their Mycotoxins. J Fungi (Basel) 2022; 8:229. [PMID: 35330231 PMCID: PMC8950385 DOI: 10.3390/jof8030229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/10/2022] Open
Abstract
Crops are threatened by numerous fungal diseases that can adversely affect the availability and quality of agricultural commodities. In addition, some of these fungal phytopathogens have the capacity to produce mycotoxins that pose a serious health threat to humans and livestock. To facilitate the transition towards sustainable environmentally friendly agriculture, there is an urgent need to develop innovative methods allowing a reduced use of synthetic fungicides while guaranteeing optimal yields and the safety of the harvests. Several defensins have been reported to display antifungal and even-despite being under-studied-antimycotoxin activities and could be promising natural molecules for the development of control strategies. This review analyses pioneering and recent work addressing the bioactivity of defensins towards fungal phytopathogens; the details of approximately 100 active defensins and defensin-like peptides occurring in plants, mammals, fungi and invertebrates are listed. Moreover, the multi-faceted mechanism of action employed by defensins, the opportunity to optimize large-scale production procedures such as their solubility, stability and toxicity to plants and mammals are discussed. Overall, the knowledge gathered within the present review strongly supports the bright future held by defensin-based plant protection solutions while pointing out the obstacles that still need to be overcome to translate defensin-based in vitro research findings into commercial products.
Collapse
Affiliation(s)
- Valentin Leannec-Rialland
- Université de Bordeaux, UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France;
| | - Vessela Atanasova
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| | - Sylvain Chereau
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| | - Miray Tonk-Rügen
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany;
- Institute of Nutritional Sciences, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| | - Alejandro Cabezas-Cruz
- Anses, Ecole Nationale Vétérinaire d’Alfort, UMR Parasitic Molecular Biology and Immunology (BIPAR), Laboratoire de Santé Animale, INRAE, 94700 Maison-Alfort, France
| | - Florence Richard-Forget
- UR1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d’Ornon, France; (V.A.); (S.C.)
| |
Collapse
|
17
|
Xie H, Wang X, van der Hooft JJ, Medema MH, Chen ZY, Yue X, Zhang Q, Li P. Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127173. [PMID: 34597924 DOI: 10.1016/j.jhazmat.2021.127173] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Mycotoxins threaten global food safety, public health and cause huge socioeconomic losses. Early detection is an effective preventive strategy, yet efficient biomarkers for early detection of aflatoxigenic Aspergillus species are lacking. Here, we proposed to use untargeted metabolomics and machine learning to mine biomarkers of aflatoxigenic Aspergillus species. We systematically delineated metabolic differences across 568 extensive field sampling A. flavus and performed biomarker analysis. Versicolorin B, 11-hydroxy-O-methylsterigmatocystin et.al metabolites shown a high correlation (from 0.71 to 0.95) with strains aflatoxin-producing capacity. Molecular networking analysis deciphered the connection of aflatoxins and biomarkers as well as potential emerging mycotoxins. We then developed a model using the biomarkers as variables to discern aflatoxigenic Aspergillus species with 97.8% accuracy. A validation dataset and metabolome from other 16 fungal isolates confirmed the robustness and specificity of these biomarkers. We further demonstrated the solution feasibility in agricultural products by early detection of biomarkers, which predicted aflatoxin contamination risk 35-47 days in advance. A developed operable decision rule by the XGBoost algorithm help regulators to intuitively assess the risk prioritization with 87.2% accuracy. Our research provides novel insights into global food safety risk assessment which will be crucial for early prevention and control of mycotoxins.
Collapse
Affiliation(s)
- Huali Xie
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, China; Key laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan, China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430061, China; Bioinformatics Group, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430061, China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430061, China
| | | | - Marnix H Medema
- Bioinformatics Group, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Zhi-Yuan Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Xiaofeng Yue
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430061, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, China; Key laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan, China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430061, China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430061, China; Hubei Hongshan Laboratory, Wuhan, China.
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, China; Key laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan, China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430061, China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430061, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
18
|
Schmidt MA, Mao Y, Opoku J, Mehl HL. Enzymatic degradation is an effective means to reduce aflatoxin contamination in maize. BMC Biotechnol 2021; 21:70. [PMID: 34920704 PMCID: PMC8684248 DOI: 10.1186/s12896-021-00730-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Background Aflatoxins are carcinogenic compounds produced by certain species of Aspergillus fungi. The consumption of crops contaminated with this toxin cause serious detrimental health effects, including death, in both livestock and humans. As a consequence, both the detection and quantification of this toxin in food/feed items is tightly regulated with crops exceeding the allowed limits eliminated from food chains. Globally, this toxin causes massive agricultural and economic losses each year. Results In this paper we investigate the feasibility of using an aflatoxin-degrading enzyme strategy to reduce/eliminate aflatoxin loads in developing maize kernels. We used an endoplasmic reticulum (ER) targeted sub-cellular compartmentalization stabilizing strategy to accumulate an aflatoxin-degrading enzyme isolated from the edible Honey mushroom Armillariella tabescens and expressed it in embryo tissue in developing maize kernels. Three transgenic maize lines that were determined to be expressing the aflatoxin-degrading enzyme both at the RNA and protein level, were challenged with the aflatoxin-producing strain Aspergillus flavus AF13 and shown to accumulate non-detectable levels of aflatoxin at 14-days post-infection and significantly reduced levels of aflatoxin at 30-days post-infection compared to nontransgenic control Aspergillus-challenged samples. Conclusions The expression of an aflatoxin-degrading enzyme in developing maize kernels was shown to be an effective means to control aflatoxin in maize in pre-harvest conditions. This aflatoxin-degradation strategy could play a significant role in the enhancement of both US and global food security and sustainability. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00730-6.
Collapse
Affiliation(s)
- Monica A Schmidt
- BIO5 Institute, University of Arizona, 1657 E. Helen St, Tucson, AZ, 85718, USA.
| | - Yizhou Mao
- BIO5 Institute, University of Arizona, 1657 E. Helen St, Tucson, AZ, 85718, USA
| | - Joseph Opoku
- Arid Land Agricultural Research Center, USDA Agricultural Research Service, 416 W Congress St, Tucson, AZ, 85701, USA
| | - Hillary L Mehl
- Arid Land Agricultural Research Center, USDA Agricultural Research Service, 416 W Congress St, Tucson, AZ, 85701, USA
| |
Collapse
|
19
|
Commey L, Tengey TK, Cobos CJ, Dampanaboina L, Dhillon KK, Pandey MK, Sudini HK, Falalou H, Varshney RK, Burow MD, Mendu V. Peanut Seed Coat Acts as a Physical and Biochemical Barrier against Aspergillus flavus Infection. J Fungi (Basel) 2021; 7:jof7121000. [PMID: 34946983 PMCID: PMC8708384 DOI: 10.3390/jof7121000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 12/29/2022] Open
Abstract
Aflatoxin contamination is a global menace that adversely affects food crops and human health. Peanut seed coat is the outer layer protecting the cotyledon both at pre- and post-harvest stages from biotic and abiotic stresses. The aim of the present study is to investigate the role of seed coat against A. flavus infection. In-vitro seed colonization (IVSC) with and without seed coat showed that the seed coat acts as a physical barrier, and the developmental series of peanut seed coat showed the formation of a robust multilayered protective seed coat. Radial growth bioassay revealed that both insoluble and soluble seed coat extracts from 55-437 line (resistant) showed higher A. flavus inhibition compared to TMV-2 line (susceptible). Further analysis of seed coat biochemicals showed that hydroxycinnamic and hydroxybenzoic acid derivatives are the predominant phenolic compounds, and addition of these compounds to the media inhibited A. flavus growth. Gene expression analysis showed that genes involved in lignin monomer, proanthocyanidin, and flavonoid biosynthesis are highly abundant in 55-437 compared to TMV-2 seed coats. Overall, the present study showed that the seed coat acts as a physical and biochemical barrier against A. flavus infection and its potential use in mitigating the aflatoxin contamination.
Collapse
Affiliation(s)
- Leslie Commey
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
| | - Theophilus K. Tengey
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
- CSIR-Savanna Agricultural Research Institute (SARI), Nyankpala P.O. Box 52, Ghana
| | - Christopher J. Cobos
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
| | - Lavanya Dampanaboina
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (L.D.); (M.D.B.)
| | - Kamalpreet K. Dhillon
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India; (M.K.P.); (H.K.S.); (R.K.V.)
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India; (M.K.P.); (H.K.S.); (R.K.V.)
| | - Hamidou Falalou
- International Crops Research Institute for the Semi-Arid Tropics, Niamey B.P. 873, Niger;
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India; (M.K.P.); (H.K.S.); (R.K.V.)
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA 6150, Australia
| | - Mark D. Burow
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (L.D.); (M.D.B.)
- Texas A&M AgriLife, Lubbock, TX 79401, USA
| | - Venugopal Mendu
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute (FBRI), Texas Tech University, Lubbock, TX 79409, USA; (L.C.); (T.K.T.); (C.J.C.); (K.K.D.)
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
- Correspondence: or ; Tel.: +1-806-834-6327 or +1-406-994-9708
| |
Collapse
|
20
|
Tiwari S, Singh BK, Kishore V, Dubey NK. Boosting modern technologies with emphasis on biological approaches to potentiate prevention and control of aflatoxins: recent advances. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1933534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shikha Tiwari
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Bijendra Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vatsala Kishore
- Department of Pathology, Heritage Institute of Medical Sciences, Varanasi, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
21
|
Pickova D, Ostry V, Toman J, Malir F. Aflatoxins: History, Significant Milestones, Recent Data on Their Toxicity and Ways to Mitigation. Toxins (Basel) 2021; 13:399. [PMID: 34205163 PMCID: PMC8227755 DOI: 10.3390/toxins13060399] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
In the early 1960s the discovery of aflatoxins began when a total of 100,000 turkey poults died by hitherto unknown turkey "X" disease in England. The disease was associated with Brazilian groundnut meal affected by Aspergillus flavus. The toxin was named Aspergillus flavus toxin-aflatoxin. From the point of view of agriculture, aflatoxins show the utmost importance. Until now, a total of 20 aflatoxins have been described, with B1, B2, G1, and G2 aflatoxins being the most significant. Contamination by aflatoxins is a global health problem. Aflatoxins pose acutely toxic, teratogenic, immunosuppressive, carcinogenic, and teratogenic effects. Besides food insecurity and human health, aflatoxins affect humanity at different levels, such as social, economical, and political. Great emphasis is placed on aflatoxin mitigation using biocontrol methods. Thus, this review is focused on aflatoxins in terms of historical development, the principal milestones of aflatoxin research, and recent data on their toxicity and different ways of mitigation.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| |
Collapse
|
22
|
Soni P, Pandey AK, Nayak SN, Pandey MK, Tolani P, Pandey S, Sudini HK, Bajaj P, Fountain JC, Singam P, Guo B, Varshney RK. Global Transcriptome Profiling Identified Transcription Factors, Biological Process, and Associated Pathways for Pre-Harvest Aflatoxin Contamination in Groundnut. J Fungi (Basel) 2021; 7:413. [PMID: 34073230 PMCID: PMC8227191 DOI: 10.3390/jof7060413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/24/2022] Open
Abstract
Pre-harvest aflatoxin contamination (PAC) in groundnut is a serious quality concern globally, and drought stress before harvest further exacerbate its intensity, leading to the deterioration of produce quality. Understanding the host-pathogen interaction and identifying the candidate genes responsible for resistance to PAC will provide insights into the defense mechanism of the groundnut. In this context, about 971.63 million reads have been generated from 16 RNA samples under controlled and Aspergillus flavus infected conditions, from one susceptible and seven resistant genotypes. The RNA-seq analysis identified 45,336 genome-wide transcripts under control and infected conditions. This study identified 57 transcription factor (TF) families with major contributions from 6570 genes coding for bHLH (719), MYB-related (479), NAC (437), FAR1 family protein (320), and a few other families. In the host (groundnut), defense-related genes such as senescence-associated proteins, resveratrol synthase, seed linoleate, pathogenesis-related proteins, peroxidases, glutathione-S-transferases, chalcone synthase, ABA-responsive gene, and chitinases were found to be differentially expressed among resistant genotypes as compared to susceptible genotypes. This study also indicated the vital role of ABA-responsive ABR17, which co-regulates the genes of ABA responsive elements during drought stress, while providing resistance against A. flavus infection. It belongs to the PR-10 class and is also present in several plant-pathogen interactions.
Collapse
Affiliation(s)
- Pooja Soni
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.S.); (M.K.P.); (P.T.); (S.P.); (P.B.)
- Department of Genetics, Osmania University, Hyderabad 500007, India;
| | - Arun K. Pandey
- College of Life Science, China Jiliang University (CJLU), Hangzhou 310018, China;
| | - Spurthi N. Nayak
- Department of Biotechnology, University of Agricultural Sciences, Dharwad 580005, India;
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.S.); (M.K.P.); (P.T.); (S.P.); (P.B.)
| | - Priya Tolani
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.S.); (M.K.P.); (P.T.); (S.P.); (P.B.)
| | - Sarita Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.S.); (M.K.P.); (P.T.); (S.P.); (P.B.)
| | - Hari K. Sudini
- Theme-Integrated Crop Improvement, Research Program-Asia, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
| | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.S.); (M.K.P.); (P.T.); (S.P.); (P.B.)
| | - Jake C. Fountain
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA;
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad 500007, India;
| | - Baozhu Guo
- Crop Genetics and Breeding Research Unit, USDA-ARS, Tifton, GA 31793, USA;
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (P.S.); (M.K.P.); (P.T.); (S.P.); (P.B.)
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
23
|
Anti-fungal activity of lactic acid bacterial isolates against aflatoxigenic fungi inoculated on peanut kernels. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Yadav N, Yadav SS, Chhillar AK, Rana JS. An overview of nanomaterial based biosensors for detection of Aflatoxin B1 toxicity in foods. Food Chem Toxicol 2021; 152:112201. [PMID: 33862122 DOI: 10.1016/j.fct.2021.112201] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most potent mycotoxin contaminating several foods and feeds. It suppresses immunity and consequently increases mutagenicity, carcinogenicity, teratogenicity, hepatotoxicity, embryonic toxicity and increasing morbidity and mortality. Continuous exposure of AFB1 causes liver damage and thus increases the prevalence of cirrhosis and hepatic cancer. This article was planned to provide understanding of AFB1 toxicity and provides future directions for fabrication of cost effective and user-friendly nanomaterials based analytical devices. In the present article various conventional (chromatographic & spectroscopic), modern (PCR & immunoassays) and nanomaterials based biosensing techniques (electrochemical, optical, piezoelectrical and microfluidic) are discussed alongwith their merits and demerits. Nanomaterials based amperometric biosensors are found to be more stable, selective and cost-effective analytical devices in comparison to other biosensors. But many unresolved issues about their stability, toxicity and metabolic fate needs further studies. In-depth studies are needed for development of advanced nanomaterials integrated biosensors for specific, sensitive and fast monitoring of AFB1 toxicity in foods. Integration of biosensing system with micro array technology for simultaneous and automated detection of multiple AFs in real samples is also needed. Concerted efforts are also required to reduce their possible hazardous consequences of nanomaterials based biosensors.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Deparment of Botany, MaharshiDayanand University, Rohtak, Haryana, 124001, India.
| | - Anil Kumar Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India.
| |
Collapse
|
25
|
Xu Y, Li X, Zeng X, Cao J, Jiang W. Application of blockchain technology in food safety control:current trends and future prospects. Crit Rev Food Sci Nutr 2020; 62:2800-2819. [PMID: 33307729 DOI: 10.1080/10408398.2020.1858752] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Blockchain technology is a distributed ledger technology and is expected to face some difficulties and challenges in various industries due to its transparency, decentralization, tamper-proof nature, and encryption security. Food safety has been paid increasing attention in recent years with economic development. Based on a systematic literature critical analysis, the causes of food safety problems and the state-of-the-art blockchain technology overview, including the definition of blockchain, development history, classification, structure, characteristics, and main applications, the feasibility and application prospects of blockchain technology in plant food safety, animal food safety, and processed food safety were proposed in this review. Finally, the challenges of the blockchain technology itself and the difficulties in the application of food safety were analyzed. This study contributes to the extant literature in the field of food safety by discovering the excellent potential of blockchain technology and its implications for food safety control. Our results indicated that blockchain is a promising technology toward a food safety control, with many ongoing initiatives in food products, but many food-related issues, barriers, and challenges still exist. Nevertheless, it is expected to provide a feasible solution for controlling food safety risks.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| | - Xiangquan Zeng
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural, University, Beijing, PR, China
| |
Collapse
|
26
|
Khan SA, Chen H, Deng Y, Chen Y, Zhang C, Cai T, Ali N, Mamadou G, Xie D, Guo B, Varshney RK, Zhuang W. High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hypogaea). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2239-2257. [PMID: 32285164 DOI: 10.1007/s00122-020-03594-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Two novel resistant QTLs mapped and candidate genes identified for Aspergillus flavus resistance in cultivated peanut using SLAF-seq. Aflatoxin contamination in peanuts caused by Aspergillus flavus is a serious food safety issue for human health around the world. Host plant resistance to fungal infection and reduction in aflatoxin are crucial for mitigating this problem. Identification of the resistance-linked markers can be used in marker-assisted breeding for varietal development. Here we report construction of two high-density genetic linkage maps with 1975 SNP loci and 5022 SNP loci, respectively. Two consistent quantitative trait loci (QTL) were identified as qRAF-3-1 and qRAF-14-1, which located on chromosomes A03 and B04, respectively. QTL qRAF-3-1 was mapped within 1.67 cM and had more than 19% phenotypic variance explained (PVE), while qRAF-14-1 was located within 1.34 cM with 5.15% PVE. While comparing with the reference genome, the mapped QTLs, qRAF-3-1 and qRAF-14-1, were located within a physical distance of 1.44 Megabase pair (Mbp) and 2.22 Mbp, harboring 67 and 137 genes, respectively. Among the identified candidate genes, six genes with the same function were found within both QTLs regions. In addition, putative disease resistance RPP13-like protein 1 (RPP13), lipoxygenase (Lox), WRKY transcription factor (WRKY) and cytochrome P450 71B34 genes were also identified. Using microarray analysis, genes responded to A. flavus infection included coding for RPP13, pentatricopeptide repeat-containing-like protein, and Lox which may be possible candidate genes for resistance to A. flavus. The QTLs and candidate genes will further facilitate marker development and validation of genes for deployment in the molecular breeding programs against A. flavus in peanuts.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hua Chen
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ye Deng
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yuhua Chen
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chong Zhang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Tiecheng Cai
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Niaz Ali
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Gandeka Mamadou
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Dongyang Xie
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, 31793, USA
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502324, India
| | - Weijian Zhuang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
27
|
Hu D, Chen Z, Zhang C, Ganiger M. Reduction of Phakopsora pachyrhizi infection on soybean through host- and spray-induced gene silencing. MOLECULAR PLANT PATHOLOGY 2020; 21:794-807. [PMID: 32196911 PMCID: PMC7214474 DOI: 10.1111/mpp.12931] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 02/19/2020] [Indexed: 05/10/2023]
Abstract
Asian soybean rust (ASR), caused by the obligate fungal pathogen Phakopsora pachyrhizi, often leads to significant yield losses and can only be managed through fungicide applications currently. In the present study, eight urediniospore germination or appressorium formation induced P. pachyrhizi genes were investigated for their feasibility to suppress ASR through a bean pod mottle virus (BPMV)-based host-induced gene silencing (HIGS) strategy. Soybean plants expressing three of these modified BPMV vectors suppressed the expression of their corresponding target gene by 45%-80%, fungal biomass accumulation by 58%-80%, and significantly reduced ASR symptom development in soybean leaves after the plants were inoculated with P. pachyrhizi, demonstrating that HIGS can be used to manage ASR. In addition, when the in vitro synthesized double-stranded RNAs (dsRNAs) for three of the genes encoding an acetyl-CoA acyltransferase, a 40S ribosomal protein S16, and glycine cleavage system H protein were sprayed directly onto detached soybean leaves prior to P. pachyrhizi inoculation, they also resulted in an average of over 73% reduction of pustule numbers and 75% reduction in P. pachyrhizi biomass accumulation on the detached leaves compared to the controls. To the best of our knowledge, this is the first report of suppressing P. pachyrhizi infection in soybean through both HIGS and spray-induced gene silencing. It was demonstrated that either HIGS constructs targeting P. pachyrhizi genes or direct dsRNA spray application could be an effective strategy for reducing ASR development on soybean.
Collapse
Affiliation(s)
- Dongfang Hu
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Zhi‐Yuan Chen
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Chunquan Zhang
- Department of AgricultureAlcorn State UniversityLormanMSUSA
| | - Mala Ganiger
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Department of Plant PathologyUniversity of MinnesotaSt. PaulMNUSA
| |
Collapse
|
28
|
Raruang Y, Omolehin O, Hu D, Wei Q, Han ZQ, Rajasekaran K, Cary JW, Wang K, Chen ZY. Host Induced Gene Silencing Targeting Aspergillus flavus aflM Reduced Aflatoxin Contamination in Transgenic Maize Under Field Conditions. Front Microbiol 2020; 11:754. [PMID: 32411110 PMCID: PMC7201132 DOI: 10.3389/fmicb.2020.00754] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
Maize (Zea mays L.) is one of the major crops susceptible to Aspergillus flavus infection and subsequent contamination with aflatoxins, the most potent naturally produced carcinogenic secondary metabolites. This pathogen can pose serious health concerns and cause severe economic losses due to the Food and Drug Administration (FDA) regulations on permissible levels of aflatoxins in food and feed. Although biocontrol has yielded some successes in managing aflatoxin contamination, enhancing crop resistance is still the preferred choice of management for long-term sustainability. Hence, host induced gene silencing (HIGS) strategy was explored in this study. The A. flavus gene aflM encoding versicolorin dehydrogenase, a key enzyme involved in the aflatoxin biosynthetic pathway, was selected as a possible target for suppression through HIGS. An RNAi vector containing a portion of the aflM gene was constructed and introduced into immature B104 maize zygotic embryos through Agrobacterium transformation. PCR analysis of the genomic DNA from T0 leaf tissue confirmed the presence of the transgene in six out of the seven events. The seeds from the lines that showed reduced aflatoxin production in laboratory aflatoxin kernel screening assay (KSA) have been increased from T1 to T4 generation in the past four years. Changes in aflatoxin resistance in these transgenic kernels have been evaluated under both field and laboratory conditions. The T2 generation kernels containing the transgene from two events out of four examined had less aflatoxin (P ≤ 0.01 and P ≤ 0.08) than those without the transgene. Field-inoculated homozygous T3 and T4 transgenic kernels also revealed lower levels of aflatoxins (P ≤ 0.04) than kernels from the null (segregated non-transgenic samples) or B104 controls. A similar result was observed when the harvested T3 and T4 homozygous transgenic kernels were evaluated under KSA conditions without inoculation (P ≤ 0.003–0.05). These two events were crossed with LH195, LH197, LH210, and PHW79 elite breeding lines and the resulting crosses supported less aflatoxin (P ≤ 0.02) than the crosses made with non-transgenic lines. In addition, significantly higher levels of aflM gene-specific small RNAs were detected in the transgenic leaf and kernel tissues, indicating that the enhanced aflatoxin resistance in the homozygous transgenic kernels is likely due to suppression of aflM expression through HIGS.
Collapse
Affiliation(s)
- Yenjit Raruang
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Olanike Omolehin
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Dongfang Hu
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Qijian Wei
- Food and Feed Safety Research Unit, United States Department of Agriculture - Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Zhu-Qiang Han
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, United States Department of Agriculture - Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Jeffrey W Cary
- Food and Feed Safety Research Unit, United States Department of Agriculture - Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Zhi-Yuan Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
29
|
Soni P, Gangurde SS, Ortega-Beltran A, Kumar R, Parmar S, Sudini HK, Lei Y, Ni X, Huai D, Fountain JC, Njoroge S, Mahuku G, Radhakrishnan T, Zhuang W, Guo B, Liao B, Singam P, Pandey MK, Bandyopadhyay R, Varshney RK. Functional Biology and Molecular Mechanisms of Host-Pathogen Interactions for Aflatoxin Contamination in Groundnut ( Arachis hypogaea L.) and Maize ( Zea mays L.). Front Microbiol 2020; 11:227. [PMID: 32194520 PMCID: PMC7063101 DOI: 10.3389/fmicb.2020.00227] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
Aflatoxins are secondary metabolites produced by soilborne saprophytic fungus Aspergillus flavus and closely related species that infect several agricultural commodities including groundnut and maize. The consumption of contaminated commodities adversely affects the health of humans and livestock. Aflatoxin contamination also causes significant economic and financial losses to producers. Research efforts and significant progress have been made in the past three decades to understand the genetic behavior, molecular mechanisms, as well as the detailed biology of host-pathogen interactions. A range of omics approaches have facilitated better understanding of the resistance mechanisms and identified pathways involved during host-pathogen interactions. Most of such studies were however undertaken in groundnut and maize. Current efforts are geared toward harnessing knowledge on host-pathogen interactions and crop resistant factors that control aflatoxin contamination. This study provides a summary of the recent progress made in enhancing the understanding of the functional biology and molecular mechanisms associated with host-pathogen interactions during aflatoxin contamination in groundnut and maize.
Collapse
Affiliation(s)
- Pooja Soni
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sunil S. Gangurde
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Rakesh Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sejal Parmar
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Hari K. Sudini
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Yong Lei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinzhi Ni
- Crop Genetics and Breeding Research Unit, United States Department of Agriculture – Agriculture Research Service, Tifton, GA, United States
| | - Dongxin Huai
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jake C. Fountain
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Samuel Njoroge
- International Crops Research Institute for the Semi-Arid Tropics, Lilongwe, Malawi
| | - George Mahuku
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | | | - Weijian Zhuang
- Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United States Department of Agriculture – Agricultural Research Service, Tifton, GA, United States
| | - Boshou Liao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | | | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| |
Collapse
|
30
|
Ncube J, Maphosa M. Current state of knowledge on groundnut aflatoxins and their management from a plant breeding perspective: Lessons for Africa. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
Wei H, Movahedi A, Xu C, Sun W, Wang X, Li D, Zhuge Q. Overexpression of PtDefensin enhances resistance to Septotis populiperda in transgenic poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110379. [PMID: 32005384 DOI: 10.1016/j.plantsci.2019.110379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Plant defensins have been implicated in the plant defense system, but their role in poplar immunity is still unclear. In the present study, we present evidence that PtDefensin, a putative plant defensin, participates in the defense of poplar plants against Septotis populiperda infection. After the construction of recombinant plasmid PET-32a-PtDefensin, PtDefensin protein was expressed in Escherichia coli strain BL21 (DE3) and purified through Ni-IDA resin affinity chromatography. The Trx-PtDefensin fusion protein displayed no cytotoxic activity against RAW264.7 cells but had cytotoxic activity against E. coli K12D31 cells. Analyses of PtDefensin transcript abundance showed that the expression levels of PtDefensin responded to abiotic and biotic stresses. Overexpression of PtDefensin in 'Nanlin 895' poplars (Populus × euramericana cv 'Nanlin895') increased resistance to Septotis populiperda, coupled with upregulation of MYC2 (basic helix-loop-helix (bHLH) transcription factor) related to jasmonic acid (JA) signal transduction pathways and downregulation of Jasmonate-zim domain (JAZ), an inhibitor in the JA signal transduction pathway. We speculate that systemic acquired resistance (SAR) was activated in non-transgenic poplars after S. populiperda incubation, and that induced systemic resistance (ISR) was activated more obviously in transgenic poplars after S. populiperda incubation. Hence, overexpression of PtDefensin may improve the resistance of poplar plants to pathogens.
Collapse
Affiliation(s)
- Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Chen Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China; Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Xiaoli Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University. Nanjing, 210037, China.
| |
Collapse
|
32
|
Ojiewo CO, Janila P, Bhatnagar-Mathur P, Pandey MK, Desmae H, Okori P, Mwololo J, Ajeigbe H, Njuguna-Mungai E, Muricho G, Akpo E, Gichohi-Wainaina WN, Variath MT, Radhakrishnan T, Dobariya KL, Bera SK, Rathnakumar AL, Manivannan N, Vasanthi RP, Kumar MVN, Varshney RK. Advances in Crop Improvement and Delivery Research for Nutritional Quality and Health Benefits of Groundnut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2020; 11:29. [PMID: 32153601 PMCID: PMC7046547 DOI: 10.3389/fpls.2020.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/13/2020] [Indexed: 05/28/2023]
Abstract
Groundnut is an important global food and oil crop that underpins agriculture-dependent livelihood strategies meeting food, nutrition, and income security. Aflatoxins, pose a major challenge to increased competitiveness of groundnut limiting access to lucrative markets and affecting populations that consume it. Other drivers of low competitiveness include allergens and limited shelf life occasioned by low oleic acid profile in the oil. Thus grain off-takers such as consumers, domestic, and export markets as well as processors need solutions to increase profitability of the grain. There are some technological solutions to these challenges and this review paper highlights advances in crop improvement to enhance groundnut grain quality and nutrient profile for food, nutrition, and economic benefits. Significant advances have been made in setting the stage for marker-assisted allele pyramiding for different aflatoxin resistance mechanisms-in vitro seed colonization, pre-harvest aflatoxin contamination, and aflatoxin production-which, together with pre- and post-harvest management practices, will go a long way in mitigating the aflatoxin menace. A breakthrough in aflatoxin control is in sight with overexpression of antifungal plant defensins, and through host-induced gene silencing in the aflatoxin biosynthetic pathway. Similarly, genomic and biochemical approaches to allergen control are in good progress, with the identification of homologs of the allergen encoding genes and development of monoclonal antibody based ELISA protocol to screen for and quantify major allergens. Double mutation of the allotetraploid homeologous genes, FAD2A and FAD2B, has shown potential for achieving >75% oleic acid as demonstrated among introgression lines. Significant advances have been made in seed systems research to bridge the gap between trait discovery, deployment, and delivery through innovative partnerships and action learning.
Collapse
Affiliation(s)
- Chris O. Ojiewo
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | - Pasupuleti Janila
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pooja Bhatnagar-Mathur
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Manish K. Pandey
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Haile Desmae
- Research Program – West and Central Africa, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Bamako, Mali
| | - Patrick Okori
- Research Program – Eastern and Southern Africa, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe, Malawi
| | - James Mwololo
- Research Program – Eastern and Southern Africa, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe, Malawi
| | - Hakeem Ajeigbe
- Research Program – West and Central Africa, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Kano, Nigeria
| | - Esther Njuguna-Mungai
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | - Geoffrey Muricho
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | - Essegbemon Akpo
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | - Wanjiku N. Gichohi-Wainaina
- Research Program – Eastern and Southern Africa, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe, Malawi
| | - Murali T. Variath
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Thankappan Radhakrishnan
- Indian Council of Agricultural Research - Directorate of Groundnut Research (ICAR-DGR), Junagadh, India
| | - Kantilal L. Dobariya
- Main Oilseeds Research Station, Junagadh Agricultural University (JAU), Junagadh, India
| | - Sandip Kumar Bera
- Indian Council of Agricultural Research - Directorate of Groundnut Research (ICAR-DGR), Junagadh, India
| | | | - Narayana Manivannan
- National Pulses Research Center, Tamil Nadu Agricultural University (TNAU), Pudukkottai, India
| | - Ragur Pandu Vasanthi
- Regional Agricultural Research Station, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Mallela Venkata Nagesh Kumar
- Department of Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, India
| | - Rajeev K. Varshney
- Research Program – Genetic Gains, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
33
|
Mohamed MA, Abd-Elsalam KA. Nanoparticles and gene silencing for suppression of mycotoxins. NANOMYCOTOXICOLOGY 2020:423-448. [DOI: 10.1016/b978-0-12-817998-7.00018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
34
|
Adnan M, Islam W, Noman A, Hussain A, Anwar M, Khan MU, Akram W, Ashraf MF, Raza MF. Q-SNARE protein FgSyn8 plays important role in growth, DON production and pathogenicity of Fusarium graminearum. Microb Pathog 2019; 140:103948. [PMID: 31874229 DOI: 10.1016/j.micpath.2019.103948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
SNAREs (Soluble N-ethylmaleimide-sensitive factor attachment protein receptors) help intracellular vesicle trafficking and membrane fusion among eukaryotes. They are vital for growth and development of phyto-pathogenic fungi such as Fusarium graminearum which causes Fusarium Head Blight (FHB) of wheat and barley. The SNARE protein Syn8 and its homologues play many roles among different organisms. Here, we have characterized FgSyn8 in F. graminearum as a homologue of Syn8. We have integrated biochemical, microbiological and molecular genetic approaches to investigate the roles of this protein. Our results reveal that FgSyn8 is indispensable for normal vegetative growth, conidiation, conidial morphology and pathogenicity of F. graminearum. Deoxynivalenol (DON) biochemical assay reveals active participation of this protein in DON production of F. graminearum. This has further been confirmed by the production of bulbous structures among the intercalary hyphae. FgSyn8 mutant strain produced defects in perithecia formation which portrays its role in sexual reproduction. In summary, our results support that the SNARE protein FgSyn8 is required for vegetative growth, sexual reproduction, DON production and pathogenicity of F. graminearum.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Ansar Hussain
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Anwar
- Guangdong Technology Research Centre for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Umar Khan
- Fujian Provincial Key Laboratory of Agro-Ecology Processing and Safety Monitoring, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Waheed Akram
- Guangdong Agriculture Institute, Guangzhou, China
| | | | - Muhammad Fahad Raza
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
35
|
R-SNARE FgSec22 is essential for growth, pathogenicity and DON production of Fusarium graminearum. Curr Genet 2019; 66:421-435. [DOI: 10.1007/s00294-019-01037-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 01/10/2023]
|
36
|
Pixley KV, Falck-Zepeda JB, Giller KE, Glenna LL, Gould F, Mallory-Smith CA, Stelly DM, Stewart CN. Genome Editing, Gene Drives, and Synthetic Biology: Will They Contribute to Disease-Resistant Crops, and Who Will Benefit? ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:165-188. [PMID: 31150590 DOI: 10.1146/annurev-phyto-080417-045954] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Genetically engineered crops have been grown for more than 20 years, resulting in widespread albeit variable benefits for farmers and consumers. We review current, likely, and potential genetic engineering (GE) applications for the development of disease-resistant crop cultivars. Gene editing, gene drives, and synthetic biology offer novel opportunities to control viral, bacterial, and fungal pathogens, parasitic weeds, and insect vectors of plant pathogens. We conclude that there will be no shortage of GE applications totackle disease resistance and other farmer and consumer priorities for agricultural crops. Beyond reviewing scientific prospects for genetically engineered crops, we address the social institutional forces that are commonly overlooked by biological scientists. Intellectual property regimes, technology regulatory frameworks, the balance of funding between public- and private-sector research, and advocacy by concerned civil society groups interact to define who uses which GE technologies, on which crops, and for the benefit of whom. Ensuring equitable access to the benefits of genetically engineered crops requires affirmative policies, targeted investments, and excellent science.
Collapse
Affiliation(s)
- Kevin V Pixley
- International Maize and Wheat Improvement Center (CIMMYT), 56237 Texcoco, Mexico;
| | - Jose B Falck-Zepeda
- International Food Policy Research Institute (IFPRI), Washington, DC 20005-3915, USA
| | - Ken E Giller
- Plant Production Systems Group, Wageningen University & Research (WUR), 6700 AK Wageningen, The Netherlands
| | - Leland L Glenna
- Department of Agricultural Economics, Sociology, and Education, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Fred Gould
- Genetic Engineering and Society Center and Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Carol A Mallory-Smith
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843-2474, USA
| | - C Neal Stewart
- Department of Plant Sciences and Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
37
|
Desmae H, Janila P, Okori P, Pandey MK, Motagi BN, Monyo E, Mponda O, Okello D, Sako D, Echeckwu C, Oteng‐Frimpong R, Miningou A, Ojiewo C, Varshney RK. Genetics, genomics and breeding of groundnut ( Arachis hypogaea L.). PLANT BREEDING = ZEITSCHRIFT FUR PFLANZENZUCHTUNG 2019; 138:425-444. [PMID: 31598026 PMCID: PMC6774334 DOI: 10.1111/pbr.12645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/10/2018] [Accepted: 07/13/2018] [Indexed: 05/04/2023]
Abstract
Groundnut is an important food and oil crop in the semiarid tropics, contributing to household food consumption and cash income. In Asia and Africa, yields are low attributed to various production constraints. This review paper highlights advances in genetics, genomics and breeding to improve the productivity of groundnut. Genetic studies concerning inheritance, genetic variability and heritability, combining ability and trait correlations have provided a better understanding of the crop's genetics to develop appropriate breeding strategies for target traits. Several improved lines and sources of variability have been identified or developed for various economically important traits through conventional breeding. Significant advances have also been made in groundnut genomics including genome sequencing, marker development and genetic and trait mapping. These advances have led to a better understanding of the groundnut genome, discovery of genes/variants for traits of interest and integration of marker-assisted breeding for selected traits. The integration of genomic tools into the breeding process accompanied with increased precision of yield trialing and phenotyping will increase the efficiency and enhance the genetic gain for release of improved groundnut varieties.
Collapse
Affiliation(s)
- Haile Desmae
- International Crop Research Institute for the Semi‐Arid Tropics (ICRISAT)BamakoMali
| | | | | | | | | | | | - Omari Mponda
- Division of Research and Development (DRD)Tanzania Agricultural Research Institute (TARI) ‐ NaliendeleMtwaraTanzania
| | - David Okello
- National Agricultural Research Organization (NARO)EntebbeUganda
| | | | | | | | - Amos Miningou
- Institut National d'Environnement et de Recherches Agricoles (INERA)OuagadougouBurkina Faso
| | | | | |
Collapse
|
38
|
Pandey MK, Kumar R, Pandey AK, Soni P, Gangurde SS, Sudini HK, Fountain JC, Liao B, Desmae H, Okori P, Chen X, Jiang H, Mendu V, Falalou H, Njoroge S, Mwololo J, Guo B, Zhuang W, Wang X, Liang X, Varshney RK. Mitigating Aflatoxin Contamination in Groundnut through A Combination of Genetic Resistance and Post-Harvest Management Practices. Toxins (Basel) 2019; 11:E315. [PMID: 31163657 PMCID: PMC6628460 DOI: 10.3390/toxins11060315] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/12/2023] Open
Abstract
Aflatoxin is considered a "hidden poison" due to its slow and adverse effect on various biological pathways in humans, particularly among children, in whom it leads to delayed development, stunted growth, liver damage, and liver cancer. Unfortunately, the unpredictable behavior of the fungus as well as climatic conditions pose serious challenges in precise phenotyping, genetic prediction and genetic improvement, leaving the complete onus of preventing aflatoxin contamination in crops on post-harvest management. Equipping popular crop varieties with genetic resistance to aflatoxin is key to effective lowering of infection in farmer's fields. A combination of genetic resistance for in vitro seed colonization (IVSC), pre-harvest aflatoxin contamination (PAC) and aflatoxin production together with pre- and post-harvest management may provide a sustainable solution to aflatoxin contamination. In this context, modern "omics" approaches, including next-generation genomics technologies, can provide improved and decisive information and genetic solutions. Preventing contamination will not only drastically boost the consumption and trade of the crops and products across nations/regions, but more importantly, stave off deleterious health problems among consumers across the globe.
Collapse
Affiliation(s)
- Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Rakesh Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Arun K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Pooja Soni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Hari K Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| | - Jake C Fountain
- Crop Protection and Management Research Unit, United State Department of Agriculture-Agricultural Research Service (USDA-ARS), Tifton, GA 31793, USA.
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA.
| | - Boshou Liao
- Oil Crops Research Institute (OCRI) of Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Haile Desmae
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Bamako BP 320, Mali.
| | - Patrick Okori
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe PB 1096, Malawi.
| | - Xiaoping Chen
- Crops Research Institute (CRI) of Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou 510640, China.
| | - Huifang Jiang
- Oil Crops Research Institute (OCRI) of Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Venugopal Mendu
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| | - Hamidou Falalou
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey BP 12404, Niger.
| | - Samuel Njoroge
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe PB 1096, Malawi.
| | - James Mwololo
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Lilongwe PB 1096, Malawi.
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United State Department of Agriculture-Agricultural Research Service (USDA-ARS), Tifton, GA 31793, USA.
| | - Weijian Zhuang
- Institute of Oil Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xingjun Wang
- Shandong Academy of Agricultural Sciences, Jinan 250108, China.
| | - Xuanqiang Liang
- Crops Research Institute (CRI) of Guangdong Academy of Agricultural Sciences (GAAS), Guangzhou 510640, China.
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India.
| |
Collapse
|
39
|
Sathoff AE, Samac DA. Antibacterial Activity of Plant Defensins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:507-514. [PMID: 30501455 DOI: 10.1094/mpmi-08-18-0229-cr] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plant defensins are antimicrobial host defense peptides expressed in all higher plants. Performing a significant role in plant innate immunity, plant defensins display potent activity against a wide range of pathogens. Vertebrate and invertebrate defensins have well-characterized antibacterial activity, but plant defensins are commonly considered to display antimicrobial activity against only fungi. In this review, we highlight the often-overlooked antibacterial activity of plant defensins. Also, we illustrate methods to evaluate defensins for antibacterial activity and describe the current advances in uncovering their antibacterial modes of action.
Collapse
Affiliation(s)
- Andrew E Sathoff
- 1 Department of Plant Pathology, 1991 Upper Buford Circle, University of Minnesota, St. Paul, MN, 55108, U.S.A.; and
| | - Deborah A Samac
- 1 Department of Plant Pathology, 1991 Upper Buford Circle, University of Minnesota, St. Paul, MN, 55108, U.S.A.; and
- 2 USDA-ARS, Plant Science Research Unit, 1991 Upper Buford Circle, St. Paul, MN 55108, U.S.A
| |
Collapse
|
40
|
Sathoff AE, Velivelli S, Shah DM, Samac DA. Plant Defensin Peptides have Antifungal and Antibacterial Activity Against Human and Plant Pathogens. PHYTOPATHOLOGY 2019; 109:402-408. [PMID: 30252607 DOI: 10.1094/phyto-09-18-0331-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant defensins are small, cysteine-rich antimicrobial peptides. These peptides have previously been shown to primarily inhibit the growth of fungal plant pathogens. Plant defensins have a γ-core motif, defined as GXCX3-9C, which is required for their antifungal activity. To evaluate plant defensins as a potential control for a problematic agricultural disease (alfalfa crown rot), short, chemically synthesized peptides containing γ-core motif sequences were screened for activity against numerous crown rot pathogens. These peptides showed both antifungal and, surprisingly, antibacterial activity. Core motif peptides from Medicago truncatula defensins (MtDef4 and MtDef5) displayed high activity against both plant and human bacterial pathogens in vitro. Full-length defensins had higher antimicrobial activity compared with the peptides containing their predictive γ-core motifs. These results show the future promise for controlling a wide array of economically important fungal and bacterial plant pathogens through the transgenic expression of a plant defensin. They also suggest that plant defensins may be an untapped reservoir for development of therapeutic compounds for combating human and animal pathogens.
Collapse
Affiliation(s)
- Andrew E Sathoff
- 1 Department of Plant Pathology, 1991 Upper Buford Circle, University of Minnesota, St. Paul, MN 55108
| | - Siva Velivelli
- 2 Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132; and
| | - Dilip M Shah
- 2 Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132; and
| | - Deborah A Samac
- 1 Department of Plant Pathology, 1991 Upper Buford Circle, University of Minnesota, St. Paul, MN 55108
- 3 United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, 1991 Upper Buford Circle, St. Paul, MN 55108
| |
Collapse
|
41
|
Xu L, Zhang H, Yan X, Peng H, Wang Z, Zhang Q, Li P, Zhang Z, Le XC. Binding-Induced DNA Dissociation Assay for Small Molecules: Sensing Aflatoxin B1. ACS Sens 2018; 3:2590-2596. [PMID: 30430837 DOI: 10.1021/acssensors.8b00975] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We describe a new fluorescence turn-on sensor for homogeneous detection of aflatoxin B1 (AFB1), a potent low molecular weight mycotoxin. A key innovation is the binding-induced intramolecular interaction involving the following two sets of probes: (1) a gold nanoparticle (AuNP) immobilized with hundreds of assistant oligonucleotides (AO) and dozens of anti-AFB1 monoclonal antibodies, and (2) the AFB1-BSA (BSA = bovine serum albumin) antigen conjugated with fluorophore-labeled signal oligonucleotides (SO) that contained a short sequence complementary to AO. Specific binding of AFB1-BSA to the antibody brought the fluorophore very close to the surface of the AuNP through a stable intramolecular hybridization between AO and SO, resulting in efficient quenching of fluorescence. The improved fluorescence quenching substantially reduced the background, due to the binding-induced intramolecular hybridization, and improved the signal-to-background ratio by 390%. In the presence of AFB1 in a sample, competitive binding of AFB1 in the sample to the antibodies immobilized on the AuNP caused the release of the fluorophore-labeled AFB1-BSA from the AuNP, turning on fluorescence. A detection limit of 2.3 nM was achieved, which meets the requirement for AFB1 detection at regulatory levels. Analyses of rice samples using this assay showed recoveries of 86-102%. Incorporating appropriate antibody probes could extend the assay to the detection of other small molecules.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, and National Reference Laboratory for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P. R. China
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xiaowen Yan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Zhixin Wang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, and National Reference Laboratory for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P. R. China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, and National Reference Laboratory for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P. R. China
| | - Zhaowei Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, and National Reference Laboratory for Biotoxin Test, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, P. R. China
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
42
|
Gantait S, Mondal S. Transgenic approaches for genetic improvement in groundnut ( Arachis hypogaea L.) against major biotic and abiotic stress factors. J Genet Eng Biotechnol 2018; 16:537-544. [PMID: 30733771 PMCID: PMC6354002 DOI: 10.1016/j.jgeb.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/17/2018] [Accepted: 08/29/2018] [Indexed: 01/11/2023]
Abstract
Cultivated groundnut (Arachis hypogaea L.) is considered as one of the primary oilseed crops and a major fodder for cattle industry in most of the developing countries, owing to its rich source of protein. It is due to its geocarpic nature of growth that the overall yield performance of groundnut is hindered by several biotic and abiotic stress factors. Multidimensional attempts were undertaken to combat these factors by developing superior groundnut varieties, modified with integral mechanism of tolerance/resistance; however this approach proved to be futile, owing to inferior pod and kernel quality. As a superior alternative, biotechnological intervention like transformation of foreign genes, either directly (biolistic) or via Agrobacterium, significantly aided in the development of advanced groundnut genotypes equipped with integral resistance against stresses and enhanced yield attributing traits. Several genes triggered by biotic and abiotic stresses, were detected and some of them were cloned and transformed as major parts of transgenic programmes. Application of modern molecular biological techniques, in designing biotic and abiotic stress tolerant/resistant groundnut varieties that exhibited mechanisms of resistance, relied on the expression of specific genes associated to particular stress. The genetically transformed stress tolerant groundnut varieties possess the potential to be employed as donor parents in traditional breeding programmes for developing varieties that are resilient to fungal, bacterial, and viral diseases, as well as to draught and salinity. The present review emphasizes on the retrospect and prospect of genetic transformation tools, implemented for the enhancement of groundnut varieties against key biotic and abiotic stress factors.
Collapse
Affiliation(s)
- Saikat Gantait
- All India Coordinated Research Project on Groundnut, Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal 741235, India
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra, India
| |
Collapse
|
43
|
Njoroge SMC. A Critical Review of Aflatoxin Contamination of Peanuts in Malawi and Zambia: The Past, Present, and Future. PLANT DISEASE 2018; 102:2394-2406. [PMID: 30351226 DOI: 10.1094/pdis-02-18-0266-fe] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Peanut (Arachis hypogaea L.) is an important crop in Malawi and Zambia. The crop is valued for soil improvement in cereal-based cropping systems, for improving the livelihoods of farming households who consume it and also sell it for cash, and for earning foreign exchange when exported. Research and development efforts have resulted in an increase in both peanut production area and productivity. However, a key challenge that still needs to be solved in these countries is how to produce peanuts with acceptable levels of aflatoxin contamination. Data continues to show that aflatoxin continues to be a problem in both formal and informal trade. As a result, unlike 30 years ago, most of the peanut trade has now shifted to domestic and regional markets that do not restrict the sale of aflatoxin-contaminated peanuts. Impacts of aflatoxin contamination on health and also on the full cost burden of control are not well documented. Technologies are available for mitigating against aflatoxin contamination. The advantages, disadvantages, and gaps associated with these technologies are discussed. Considerable money and effort continues to be invested in Malawi and Zambia into mitigating aflatoxin contamination, but evidence of long-term success is limited. Based on past and current initiatives, the prospects of eliminating aflatoxin in the near future at the household level and in trade are not promising.
Collapse
Affiliation(s)
- Samuel M C Njoroge
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), P. O. Box 1096, Lilongwe, Malawi
| |
Collapse
|
44
|
Xie H, Wang X, Zhang L, Wang T, Zhang W, Jiang J, Chang PK, Chen ZY, Bhatnagar D, Zhang Q, Li P. Monitoring Metabolite Production of Aflatoxin Biosynthesis by Orbitrap Fusion Mass Spectrometry and a D-Optimal Mixture Design Method. Anal Chem 2018; 90:14331-14338. [DOI: 10.1021/acs.analchem.8b03703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Huali Xie
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
| | - Tong Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
| | - Jun Jiang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
| | - Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, New Orleans, Louisiana 70124, United States
| | - Zhi-Yuan Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana 70803, United States
| | - Deepak Bhatnagar
- Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, New Orleans, Louisiana 70124, United States
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430061, People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430061, People’s Republic of China
- Key Laboratory of Detection for Aflatoxins, Ministry of Agriculture, Wuhan 430061, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, 430061, People’s Republic of China
| |
Collapse
|
45
|
Mutegi CK, Cotty PJ, Bandyopadhyay R. Prevalence and mitigation of aflatoxins in Kenya (1960-to date). WORLD MYCOTOXIN J 2018; 11:341-357. [PMID: 33552311 PMCID: PMC7797628 DOI: 10.3920/wmj2018.2362] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022]
Abstract
Aflatoxins are highly toxic metabolites of several Aspergillus species widely distributed throughout the environment. These toxins have adverse effects on humans and livestock at a few micrograms per kilogram (μg/kg) concentrations. Strict regulations on the concentrations of aflatoxins allowed in food and feed exist in many nations in the developing world. Loopholes in implementing regulations result in the consumption of dangerous concentrations of aflatoxins. In Kenya, where 'farm-to-mouth' crops become severely contaminated, solutions to the aflatoxins problem are needed. Across the decades, aflatoxins have repeatedly caused loss of human and animal life. A prerequisite to developing viable solutions for managing aflatoxins is understanding the geographical distribution and severity of food and feed contamination, and the impact on lives. This review discusses the scope of the aflatoxins problem and management efforts by various players in Kenya. Economic drivers likely to influence the choice of aflatoxins management options include historical adverse health effects on humans and animals, cost of intervention for mitigation of aflatoxins, knowledge about aflatoxins and their impact, incentives for aflatoxins safe food and intended scope of use of interventions. It also highlights knowledge gaps that can direct future management efforts. These include: sparse documented information on human exposure; few robust tools to accurately measure economic impact in widely unstructured value chains; lack of long-term impact studies on benefits of aflatoxins mitigation; inadequate sampling mechanisms in smallholder farms and grain holding stores/containers; overlooking social learning networks in technology uptake and lack of in-depth studies on an array of aflatoxins control measures followed in households. The review proposes improved linkages between agriculture, nutrition and health sectors to address aflatoxins contamination better. Sustained public awareness at all levels, capacity building and aflatoxins related policies are necessary to support management initiatives.
Collapse
Affiliation(s)
- C K Mutegi
- International Institute of Tropical Agriculture, IITA, c/o ILRI, P.O. Box 30709, Nairobi 00100, Kenya
| | - P J Cotty
- United States Department of Agriculture, Agricultural Research Service, 416 West Congress Street, Tucson, AZ 85701, USA
| | - R Bandyopadhyay
- International Institute of Tropical Agriculture, IITA, PMB 5320, Ibadan, Nigeria
| |
Collapse
|
46
|
Ojiambo PS, Battilani P, Cary JW, Blum BH, Carbone I. Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. PHYTOPATHOLOGY 2018; 108:1024-1037. [PMID: 29869954 DOI: 10.1094/phyto-04-18-0134-rvw] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aspergillus flavus is a morphologically complex species that can produce the group of polyketide derived carcinogenic and mutagenic secondary metabolites, aflatoxins, as well as other secondary metabolites such as cyclopiazonic acid and aflatrem. Aflatoxin causes aflatoxicosis when aflatoxins are ingested through contaminated food and feed. In addition, aflatoxin contamination is a major problem, from both an economic and health aspect, in developing countries, especially Asia and Africa, where cereals and peanuts are important food crops. Earlier measures for control of A. flavus infection and consequent aflatoxin contamination centered on creating unfavorable environments for the pathogen and destroying contaminated products. While development of atoxigenic (nonaflatoxin producing) strains of A. flavus as viable commercial biocontrol agents has marked a unique advance for control of aflatoxin contamination, particularly in Africa, new insights into the biology and sexuality of A. flavus are now providing opportunities to design improved atoxigenic strains for sustainable biological control of aflatoxin. Further, progress in the use of molecular technologies such as incorporation of antifungal genes in the host and host-induced gene silencing, is providing knowledge that could be harnessed to develop germplasm that is resistant to infection by A. flavus and aflatoxin contamination. This review summarizes the substantial progress that has been made to understand the biology of A. flavus and mitigate aflatoxin contamination with emphasis on maize. Concepts developed to date can provide a basis for future research efforts on the sustainable management of aflatoxin contamination.
Collapse
Affiliation(s)
- Peter S Ojiambo
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Paola Battilani
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Jeffrey W Cary
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Burt H Blum
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| | - Ignazio Carbone
- First and fifth authors: Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695; second author: Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; third author: U.S. Department of Agriculture-Agriculture Research Service, SRRC, New Orleans, LA 70124; and fourth author: Department of Plant Pathology, University of Arkansas, Fayetteville 72701
| |
Collapse
|
47
|
Deng Y, Chen H, Zhang C, Cai T, Zhang B, Zhou S, Fountain JC, Pan RL, Guo B, Zhuang WJ. Evolution and characterisation of the AhRAF4 NB-ARC gene family induced by Aspergillus flavus inoculation and abiotic stresses in peanut. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:737-750. [PMID: 29603544 DOI: 10.1111/plb.12726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Aflatoxin contamination in peanut is a serious food safety issue to human health around the world. Finding disease resistance genes is a key strategy for genetic improvement in breeding to deal with this issue. We identified an Aspergillus flavus-induced NBS-LRR gene, AhRAF4, using a microarray-based approach. By comparison of 23 sequences from three species using phytogenetics, protein secondary structure and three-dimensional structural analyses, AhRAF4 was revealed to be derived from Arachis duranensis by recombination, and has newly evolved into a family of several members, characterised by duplications and point mutations. However, the members of the family descended from A. ipaensis were lost following tetraploidisation. AhRAF4 was slightly up-regulated by low temperature, drought, salicylic acid and ethylene, but down-regulated by methyl jasmonate. The distinct responses upon As. flavus inoculation and the differential reactions between resistant and susceptible varieties indicate that AhRAF4 might play a role in defence responses. Temporal and spatial expression and the phenotype of transformed protoplasts suggest that AhRAF4 may also be associated with pericarp development. Because tetraploid cultivated peanuts are vulnerable to many pathogens, an exploration of R-genes may provide an effective method for genetic improvement of peanut cultivars.
Collapse
Affiliation(s)
- Y Deng
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - H Chen
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - C Zhang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - T Cai
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - B Zhang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - S Zhou
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - J C Fountain
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - R-L Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsin Chu, Taiwan, China
| | - B Guo
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
- Crop Protection and Management Research Unit, US Department of Agriculture, Agricultural Research Service, Tifton, GA, USA
| | - W-J Zhuang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
48
|
Gilbert MK, Majumdar R, Rajasekaran K, Chen ZY, Wei Q, Sickler CM, Lebar MD, Cary JW, Frame BR, Wang K. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. PLANTA 2018; 247:1465-1473. [PMID: 29541880 DOI: 10.1007/s00425-018-2875-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/01/2018] [Indexed: 05/22/2023]
Abstract
Expressing an RNAi construct in maize kernels that targets the gene for alpha-amylase in Aspergillus flavus resulted in suppression of alpha-amylase (amy1) gene expression and decreased fungal growth during in situ infection resulting in decreased aflatoxin production. Aspergillus flavus is a saprophytic fungus and pathogen to several important food and feed crops, including maize. Once the fungus colonizes lipid-rich seed tissues, it has the potential to produce toxic secondary metabolites, the most dangerous of which is aflatoxin. The pre-harvest control of A. flavus contamination and aflatoxin production is an area of intense research, which includes breeding strategies, biological control, and the use of genetically-modified crops. Host-induced gene silencing, whereby the host crop produces siRNA molecules targeting crucial genes in the invading fungus and targeting the gene for degradation, has shown to be promising in its ability to inhibit fungal growth and decrease aflatoxin contamination. Here, we demonstrate that maize inbred B104 expressing an RNAi construct targeting the A. flavus alpha-amylase gene amy1 effectively reduces amy1 gene expression resulting in decreased fungal colonization and aflatoxin accumulation in kernels. This work contributes to the development of a promising technology for reducing the negative economic and health impacts of A. flavus growth and aflatoxin contamination in food and feed crops.
Collapse
Affiliation(s)
- Matthew K Gilbert
- Food and Feed Safety Unit, Agricultural Research Service, USDA, 100 Robert E Lee Blvd., New Orleans, LA, 70124, USA.
| | - Rajtilak Majumdar
- Food and Feed Safety Unit, Agricultural Research Service, USDA, 100 Robert E Lee Blvd., New Orleans, LA, 70124, USA
| | - Kanniah Rajasekaran
- Food and Feed Safety Unit, Agricultural Research Service, USDA, 100 Robert E Lee Blvd., New Orleans, LA, 70124, USA
| | - Zhi-Yuan Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Science Building, Baton Rouge, LA, 70803, USA
| | - Qijian Wei
- Food and Feed Safety Unit, Agricultural Research Service, USDA, 100 Robert E Lee Blvd., New Orleans, LA, 70124, USA
| | - Christine M Sickler
- Food and Feed Safety Unit, Agricultural Research Service, USDA, 100 Robert E Lee Blvd., New Orleans, LA, 70124, USA
| | - Matthew D Lebar
- Food and Feed Safety Unit, Agricultural Research Service, USDA, 100 Robert E Lee Blvd., New Orleans, LA, 70124, USA
| | - Jeffrey W Cary
- Food and Feed Safety Unit, Agricultural Research Service, USDA, 100 Robert E Lee Blvd., New Orleans, LA, 70124, USA
| | - Bronwyn R Frame
- Plant Transformation Facility, Iowa State University, G405 Agronomy Hall, Ames, IA, 50011, USA
| | - Kan Wang
- Plant Transformation Facility, Iowa State University, G405 Agronomy Hall, Ames, IA, 50011, USA
| |
Collapse
|
49
|
Scaling-Up the Impact of Aflatoxin Research in Africa. The Role of Social Sciences. Toxins (Basel) 2018; 10:toxins10040136. [PMID: 29570687 PMCID: PMC5923302 DOI: 10.3390/toxins10040136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/01/2018] [Accepted: 03/13/2018] [Indexed: 11/17/2022] Open
Abstract
At the interface between agriculture and nutrition, the aflatoxin contamination of food and feed touches on agriculture, health, and trade. For more than three decades now, the problem of aflatoxin has been researched in Africa. The interest of development cooperation for aflatoxin and the support to aflatoxin mitigation projects has its ups and downs. The academic world and the development world still seem to operate in different spheres and a collaboration is still challenging due to the complexity of the contamination sources at pre-harvest and post-harvest levels. There is a growing call by research funders and development actors for the impact of solutions at a scale. The solutions to mitigate aflatoxin contamination require new ways of working together. A more prominent role is to be played by social scientists. The role of social scientists in scaling-up the impact of aflatoxin research in Africa and the proposed mitigation solutions is to ensure that awareness, advantage, affordability, and access are systematically assessed. Aflatoxin-reduced staple foods and feed would be an agricultural result with a considerable health and food safety impact.
Collapse
|
50
|
Bhatnagar D, Rajasekaran K, Gilbert M, Cary J, Magan N. Advances in molecular and genomic research to safeguard food and feed supply from aflatoxin contamination. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2283] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Worldwide recognition that aflatoxin contamination of agricultural commodities by the fungus Aspergillus flavus is a global problem has significantly benefitted from global collaboration for understanding the contaminating fungus, as well as for developing and implementing solutions against the contamination. The effort to address this serious food and feed safety issue has led to a detailed understanding of the taxonomy, ecology, physiology, genomics and evolution of A. flavus, as well as strategies to reduce or control pre-harvest aflatoxin contamination, including (1) biological control, using atoxigenic aspergilli, (2) proteomic and genomic analyses for identifying resistance factors in maize as potential breeding markers to enable development of resistant maize lines, and (3) enhancing host-resistance by bioengineering of susceptible crops, such as cotton, maize, peanut and tree nuts. A post-harvest measure to prevent the occurrence of aflatoxin contamination in storage is also an important component for reducing exposure of populations worldwide to aflatoxins in food and feed supplies. The effect of environmental changes on aflatoxin contamination levels has recently become an important aspect for study to anticipate future contamination levels. The ability of A. flavus to produce dozens of secondary metabolites, in addition to aflatoxins, has created a new avenue of research for understanding the role these metabolites play in the survival and biodiversity of this fungus. The understanding of A. flavus, the aflatoxin contamination problem, and control measures to prevent the contamination has become a unique example for an integrated approach to safeguard global food and feed safety.
Collapse
Affiliation(s)
- D. Bhatnagar
- US Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - K. Rajasekaran
- US Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - M. Gilbert
- US Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - J.W. Cary
- US Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - N. Magan
- Applied Mycology Group, Cranfield University, MK45 4DT, Cranfield, United Kingdom
| |
Collapse
|