1
|
Li F, Hou Z, Xu S, Han D, Li B, Hu H, Liu J, Cai S, Gan Z, Gu Y, Zhang X, Zhou X, Wang S, Zhao J, Mei Y, Zhang J, Wang Z, Wang J. Haplotype-resolved genomes of octoploid species in Phyllanthaceae family reveal a critical role for polyploidization and hybridization in speciation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:348-363. [PMID: 38606539 DOI: 10.1111/tpj.16767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/14/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
The Phyllanthaceae family comprises a diverse range of plants with medicinal, edible, and ornamental value, extensively cultivated worldwide. Polyploid species commonly occur in Phyllanthaceae. Due to the rather complex genomes and evolutionary histories, their speciation process has been still lacking in research. In this study, we generated chromosome-scale haplotype-resolved genomes of two octoploid species (Phyllanthus emblica and Sauropus spatulifolius) in Phyllanthaceae family. Combined with our previously reported one tetraploid (Sauropus androgynus) and one diploid species (Phyllanthus cochinchinensis) from the same family, we explored their speciation history. The three polyploid species were all identified as allopolyploids with subgenome A/B. Each of their two distinct subgenome groups from various species was uncovered to independently share a common diploid ancestor (Ancestor-AA and Ancestor-BB). Via different evolutionary routes, comprising various scenarios of bifurcating divergence, allopolyploidization (hybrid polyploidization), and autopolyploidization, they finally evolved to the current tetraploid S. androgynus, and octoploid S. spatulifolius and P. emblica, respectively. We further discuss the variations in copy number of alleles and the potential impacts within the two octoploids. In addition, we also investigated the fluctuation of metabolites with medical values and identified the key factor in its biosynthesis process in octoploids species. Our study reconstructed the evolutionary history of these Phyllanthaceae species, highlighting the critical roles of polyploidization and hybridization in their speciation processes. The high-quality genomes of the two octoploid species provide valuable genomic resources for further research of evolution and functional genomics.
Collapse
Affiliation(s)
- Fangping Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhuangwei Hou
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, 510631, Guangzhou, China
| | - Bin Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Haifei Hu
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jieying Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shike Cai
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Zhenpeng Gan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Gu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Xiufeng Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofan Zhou
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Junliang Zhao
- Rice Research Institute & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yu Mei
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| | - Jisen Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning, 530005, China
| | - Zefu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
| |
Collapse
|
2
|
Li W, Dong X, Zhang X, Cao J, Liu M, Zhou X, Long H, Cao H, Lin H, Zhang L. Genome assembly and resequencing shed light on evolution, population selection, and sex identification in Vernicia montana. HORTICULTURE RESEARCH 2024; 11:uhae141. [PMID: 38988615 PMCID: PMC11233859 DOI: 10.1093/hr/uhae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/08/2024] [Indexed: 07/12/2024]
Abstract
Vernicia montana is a dioecious plant widely cultivated for high-quality tung oil production and ornamental purposes in the Euphorbiaceae family. The lack of genomic information has severely hindered molecular breeding for genetic improvement and early sex identification in V. montana. Here, we present a chromosome-level reference genome of a male V. montana with a total size of 1.29 Gb and a contig N50 of 3.69 Mb. Genome analysis revealed that different repeat lineages drove the expansion of genome size. The model of chromosome evolution in the Euphorbiaceae family suggests that polyploidization-induced genomic structural variation reshaped the chromosome structure, giving rise to the diverse modern chromosomes. Based on whole-genome resequencing data and analyses of selective sweep and genetic diversity, several genes associated with stress resistance and flavonoid synthesis such as CYP450 genes and members of the LRR-RLK family, were identified and presumed to have been selected during the evolutionary process. Genome-wide association studies were conducted and a putative sex-linked insertion and deletion (InDel) (Chr 2: 102 799 917-102 799 933 bp) was identified and developed as a polymorphic molecular marker capable of effectively detecting the gender of V. montana. This InDel is located in the second intron of VmBASS4, suggesting a possible role of VmBASS4 in sex determination in V. montana. This study sheds light on the genome evolution and sex identification of V. montana, which will facilitate research on the development of agronomically important traits and genomics-assisted breeding.
Collapse
Affiliation(s)
- Wenying Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
- College of Biology and Agricultural Resources, Huanggang Normal University, No.146 Xingang 2nd Road, Huangzhou District, Huanggang, Hubei 438000, China
| | - Xiang Dong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No.7 Pengfei Road, Dapeng New District, Shenzhen 518120, China
| | - Jie Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Xu Zhou
- College of Landscape Architecture, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Hongxu Long
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Blvd, New Orleans, LA 70124-4305, USA
| | - Hai Lin
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education and Key Laboratory of Non-Wood Forest Products of the Forestry Ministry, Central South University of Forestry and Technology, Shaoshan South Road, No.498, Tianxin District, Changsha, Hunan 410004, China
| |
Collapse
|
3
|
Zhang L, Fu M, Li W, Dong Y, Zhou Q, Wang Q, Li X, Gao J, Wang Y, Wang H, Li Y, Wang J, Wu Y, Li Y. Genetic variation in ZmKW1 contributes to kernel weight and size in dent corn and popcorn. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1453-1467. [PMID: 38163293 PMCID: PMC11123423 DOI: 10.1111/pbi.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Kernel weight is a critical factor that essentially affects maize (Zea mays) yield. In natural inbred lines, popcorn kernels exhibit overtly smaller sizes compared to dent corn kernels, and kernel weight, which is controlled by multiple genetic loci, varies widely. Here, we characterized a major quantitative trait locus on chromosome 1, responsible for controlling kernel weight (qKW1) and size. The qKW1 locus encodes a protein containing a seven in absentia domain with E3 ubiquitin ligase activity, expressed prominently from the top to the middle region of the endosperm. The presence and function of qKW1 were confirmed through ZmKW1 gene editing, where the mutations in ZmKW1 within dent corn significantly increased kernel weight, consistent with alterations in kernel size, while overexpression of ZmKW1 had the opposite effect. ZmKW1 acts as a negative regulator of kernel weight and size by reducing both the number and size of the endosperm cells and impacting endosperm filling. Notably, the popcorn allele qKW1N and the dent corn allele qKW1D encode identical proteins; however, the differences in promoter activity arise due to the insertion of an Indel-1346 sequence in the qKW1N promoter, resulting in higher expression levels compared to qKW1D, thus contributing to the variation in kernel weight and size between popcorn and dent corn kernels. Linkage disequilibrium analysis of the 2.8 kb promoter region of ZmKW1 in a dataset comprising 111 maize association panels identified two distinct haplotypes. Our results provide insight into the mechanisms underlying kernel development and yield regulation in dent corn and popcorn, with a specific focus on the role of the ubiquitination system.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
- College of ForestryHenan Agricultural UniversityZhengzhouChina
| | - Miaomiao Fu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and Ecology Chinese Academy of SciencesShanghaiChina
| | - Wenyu Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Yongbin Dong
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Qiang Zhou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
- College of AgronomyXinyang Agricultural and Forestry UniversityXinyangChina
| | - Qilei Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xinyu Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Jie Gao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Yan Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Han Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Yayong Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and Ecology Chinese Academy of SciencesShanghaiChina
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and Ecology Chinese Academy of SciencesShanghaiChina
| | - Yuling Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
4
|
Garg V, Barmukh R, Chitikineni A, Roorkiwal M, Ojiewo C, Bohra A, Thudi M, Singh VK, Kudapa H, Saxena RK, Fountain J, Mir RR, Bharadwaj C, Chen X, Xin L, Pandey MK. Celebrating Professor Rajeev K. Varshney's transformative research odyssey from genomics to the field on his induction as Fellow of the Royal Society. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1504-1515. [PMID: 38206288 PMCID: PMC11123405 DOI: 10.1111/pbi.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Professor Rajeev K. Varshney's transformative impact on crop genomics, genetics, and agriculture is the result of his passion, dedication, and unyielding commitment to harnessing the potential of genomics to address the most pressing challenges faced by the global agricultural community. Starting from a small town in India and reaching the global stage, Professor Varshney's academic and professional trajectory has inspired many scientists active in research today. His ground-breaking work, especially his effort to list orphan tropical crops to genomic resource-rich entities, has been transformative. Beyond his scientific achievements, Professor Varshney is recognized by his colleagues as an exemplary mentor, fostering the growth of future researchers, building institutional capacity, and strengthening scientific capability. His focus on translational genomics and strengthening seed system in developing countries for the improvement of agriculture has made a tangible impact on farmers' lives. His skills have been best utilized in roles at leading research centres where he has applied his expertise to deliver a new vision for crop improvement. These efforts have now been recognized by the Royal Society with the award of the Fellowship (FRS). As we mark this significant milestone in his career, we not only celebrate Professor Varshney's accomplishments but also his wider contributions that continue to transform the agricultural landscape.
Collapse
Affiliation(s)
- Vanika Garg
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Rutwik Barmukh
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Annapurna Chitikineni
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and BiotechnologyUnited Arab Emirates UniversityAl AinUAE
| | - Chris Ojiewo
- International Maize and Wheat Improvement Center (CIMMYT)NairobiKenya
| | - Abhishek Bohra
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | | | - Vikas K. Singh
- International Rice Research Institute (IRRI)‐South‐Asia HubInternational Crops Research Institute for the Semi‐Arid TropicsHyderabadIndia
| | - Himabindu Kudapa
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | | | - Jake Fountain
- Department of Plant PathologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of AgricultureSKUAST‐KashmirWaduraIndia
| | | | - Xiaoping Chen
- Crops Research InstituteGuangdong Academy of Agricultural Sciences (GDAAS)GuangzhouChina
| | | | - Manish K. Pandey
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| |
Collapse
|
5
|
Gilman IS, Smith JAC, Holtum JAM, Sage RF, Silvera K, Winter K, Edwards EJ. The CAM lineages of planet Earth. ANNALS OF BOTANY 2023; 132:627-654. [PMID: 37698538 PMCID: PMC10799995 DOI: 10.1093/aob/mcad135] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/09/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND SCOPE The growth of experimental studies of crassulacean acid metabolism (CAM) in diverse plant clades, coupled with recent advances in molecular systematics, presents an opportunity to re-assess the phylogenetic distribution and diversity of species capable of CAM. It has been more than two decades since the last comprehensive lists of CAM taxa were published, and an updated survey of the occurrence and distribution of CAM taxa is needed to facilitate and guide future CAM research. We aimed to survey the phylogenetic distribution of these taxa, their diverse morphology, physiology and ecology, and the likely number of evolutionary origins of CAM based on currently known lineages. RESULTS AND CONCLUSIONS We found direct evidence (in the form of experimental or field observations of gas exchange, day-night fluctuations in organic acids, carbon isotope ratios and enzymatic activity) for CAM in 370 genera of vascular plants, representing 38 families. Further assumptions about the frequency of CAM species in CAM clades and the distribution of CAM in the Cactaceae and Crassulaceae bring the currently estimated number of CAM-capable species to nearly 7 % of all vascular plants. The phylogenetic distribution of these taxa suggests a minimum of 66 independent origins of CAM in vascular plants, possibly with dozens more. To achieve further insight into CAM origins, there is a need for more extensive and systematic surveys of previously unstudied lineages, particularly in living material to identify low-level CAM activity, and for denser sampling to increase phylogenetic resolution in CAM-evolving clades. This should allow further progress in understanding the functional significance of this pathway by integration with studies on the evolution and genomics of CAM in its many forms.
Collapse
Affiliation(s)
- Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | | | - Joseph A M Holtum
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Katia Silvera
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- Department of Botany & Plant Sciences, University of California, Riverside, CA, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Shim S, Ha J. The complete mitochondrial genome of the biodiesel plant Jatropha curcas L. Mitochondrial DNA B Resour 2023; 8:1016-1020. [PMID: 37753242 PMCID: PMC10519264 DOI: 10.1080/23802359.2023.2260541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Jatropha curcas (Linnaeus, 1753) is a plant species in the order Malpighiales and the family Euphorbiaceae and is native to the tropical regions of America, such as Mexico and Argentina. Currently, this plant species inhabits tropical and subtropical regions of the world. Jatropha has been widely used as a biofuel plant to produce high-quality diesel engine fuel. In this study, the complete mitochondrial genome sequence of J. curcas was assembled into 561,839 bp circular nucleotides with a GC content of 44.6%. The mitochondrial genome of J. curcas comprises 33 known protein-coding genes, 22 tRNA genes, three rRNA genes, one ncRNA gene, and 85 open reading frame genes. Phylogenetic analysis showed this species is closely related to the castor bean (Ricinus communis).
Collapse
Affiliation(s)
- Sangrea Shim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Jungmin Ha
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
- Haeram Institute of Bakery Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
7
|
Yang C, Yi Y, Wang J, Ge L, Zhang L, Liu M. Phylogenetic Analysis of the PR-4 Gene Family in Euphorbiaceae and Its Expression Profiles in Tung Tree ( Vernicia fordii). PLANTS (BASEL, SWITZERLAND) 2023; 12:3154. [PMID: 37687401 PMCID: PMC10490464 DOI: 10.3390/plants12173154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Pathogenesis-related protein-4 (PR-4) is generally believed to be involved in physiological processes. However, a comprehensive investigation of this protein in tung tree (Vernicia fordii) has yet to be conducted. In this study, we identified 30 PR-4 genes in the genomes of Euphorbiaceae species and investigated their domain organization, evolution, promoter cis-elements, expression profiles, and expression profiles in the tung tree. Sequence and structural analyses indicated that VF16136 and VF16135 in the tung tree could be classified as belonging to Class II and I, respectively. Phylogenetic and Ka/Ks analyses revealed that Hevea brasiliensis exhibited a significantly expanded number of PR-4 genes. Additionally, the analysis of promoter cis-elements suggested that two VfPR-4 genes may play a role in the response to hormones and biotic and abiotic stress of tung trees. Furthermore, the expression patterns of VfPR-4 genes and their responses to 6-BA, salicylic acid, and silver nitrate in inflorescence buds of tung trees were evaluated using qRT-PCR. Notably, the expression of two VfPR-4 genes was found to be particularly high in leaves and early stages of tung seeds. These results suggest that VF16136 and VF16135 may have significant roles in the development of leaves and seeds in tung trees. Furthermore, these genes were found to be responsive to 6-BA, salicylic acid, and silver nitrate in the development of inflorescence buds. This research provides valuable insights for future investigation into the functions of PR-4 genes in tung trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410001, China; (C.Y.)
| |
Collapse
|
8
|
Varshney RK. Meet the PCP Editor-Rajeev K. Varshney FRS. PLANT & CELL PHYSIOLOGY 2023; 64:841-843. [PMID: 37338338 PMCID: PMC10434731 DOI: 10.1093/pcp/pcad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/21/2023]
Affiliation(s)
- Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
9
|
Cao Y, Li Q, Zhang L. The core triacylglycerol toolbox in woody oil plants reveals targets for oil production bioengineering. FRONTIERS IN PLANT SCIENCE 2023; 14:1170723. [PMID: 37077641 PMCID: PMC10106636 DOI: 10.3389/fpls.2023.1170723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Woody oil plants are the most productive oil-bearing species that produce seeds with high levels of valuable triacylglycerols (TAGs). TAGs and their derivatives are the raw materials for many macromolecular bio-based products, such as nylon precursors, and biomass-based diesel. Here, we identified 280 genes encoding seven distinct classes of enzymes (i.e., G3PAT, LPAAT, PAP, DGAT, PDCT, PDAT, and CPT) involved in TAGs-biosynthesis. Several multigene families are expanded by large-scale duplication events, such as G3PATs, and PAPs. RNA-seq was used to survey the expression profiles of these TAG pathway-related genes in different tissues or development, indicating functional redundancy for some duplicated genes originated from the large-scale duplication events, and neo-functionalization or sub-functionalization for some of them. Sixty-two genes showed strong, preferential expression during the period of rapid seed lipid synthesis, suggesting that their might represented the core TAG-toolbox. We also revealed for the first time that there is no PDCT pathway in Vernicia fordii and Xanthoceras sorbifolium. The identification of key genes involved in lipid biosynthesis will be the foundation to plan strategies to develop woody oil plant varieties with enhanced processing properties and high oil content.
Collapse
Affiliation(s)
- Yunpeng Cao
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
- *Correspondence: Yunpeng Cao, ; Lin Zhang,
| | - Qiang Li
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
| | - Lin Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Yunpeng Cao, ; Lin Zhang,
| |
Collapse
|
10
|
Zhang W, Xu S, Gu Y, Jiao M, Mei Y, Wang J. The first high-quality chromosome-level genome assembly of Phyllanthaceae (Phyllanthus cochinchinensis) provides insights into flavonoid biosynthesis. PLANTA 2022; 256:109. [PMID: 36350413 DOI: 10.1007/s00425-022-04026-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
We report the genome assembly of P. cochinchinensis, as the first high-quality chromosome-level genome of Phyllanthaceae which is rich in medicinal plants. Phyllanthus cochinchinensis, a member of the Phyllanthaceae, is one of the famous medicinal plants in South China. Here, we report a de novo chromosome-level genome assembly for P. cochinchinensis using a combination of Nanopore and Illumina sequencing technologies. In total, the assembled genome consists of 284.88 Mb genomic sequences with a contig N50 of 10.32 Mb, representing ~ 95.49% of the estimated genome size. By applying Hi-C data, 13 pseudochromosomes of P. cochinchinensis were constructed, covering ~ 99.87% of the assembled sequences. The genome is annotated with 59.12% repetitive sequences and 20,836 protein-coding genes. Whole-genome duplication of P. cochinchinensis is likely shared with Ricinus communis as well as Vitis vinifera. Homologous genes within the flavonoid pathway for P. cochinchinensis were identified and copy numbers and expression level of related genes revealed potential critical genes involved in flavonoid biosynthesis. This study provides the first whole-genome sequence for the Phyllanthaceae, confirms the evolutionary status of Phyllanthus from the genomic level, and provides foundations for accelerating functional genomic research of species from Phyllanthus.
Collapse
Affiliation(s)
- Wenting Zhang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Yan Gu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Meng Jiao
- College of Life Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Yu Mei
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China.
| |
Collapse
|
11
|
Jiang L, Fan T, Wang L, Zhang L, Xu J. Divergence of flowering-related genes to control flowering in five Euphorbiaceae genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1015114. [PMID: 36340397 PMCID: PMC9627276 DOI: 10.3389/fpls.2022.1015114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Reproductive growth and vegetative growth are a pair of main contradictions in the process of plant growth. Flowering, as part of reproductive growth, is a key switch in the life cycle of higher plants, which affects the yield and economic benefits of plants to a certain extent. The Euphorbiaceae species, including castor bean (Ricinus communis), physic nut (Jatropha curcas), tung tree (Vernicia fordii), cassava (Manihot esculenta), and rubber tree (Hevea brasiliensis), have important economic values because they are raw materials for the production of biodiesel, rubber, etc. The flowering mechanisms are still excluded in the Euphorbiaceae species. The flowering-related genes of Arabidopsis thaliana (Arabidopsis) were used as a reference to determine the orthologs of these genes in Euphorbiaceae genomes. The result showed that 146, 144, 114, 114, and 149 of 207 A. thaliana genes were respectively matched to R. communis, V. fordii, J. curcas, H. brasiliensis, and M. esculenta. These identified genes were clustered into seven pathways including gibberellins, floral meristem identity (FMI), vernalization, photoperiod, floral pathway integrators (FPIs), and autonomous pathways. Then, some key numbers of flowering-related genes are widely conserved in the Euphorbiaceae genomes including but not limited to FPI genes LFY, SOC1, FT, and FMI genes AG, CAL, and FUL. However, some genes, including FRI, FLC, and GO, were missing in several or all five Euphorbiaceae species. In this study, we proposed the putative mechanisms of flowering-related genes to control flowering and provided new candidate flowering genes for using marker-assisted breeding to improve variety quality.
Collapse
Affiliation(s)
- Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, China
| | - Tingting Fan
- Forestry College, Central South University of Forestry and Technology, Changsha, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Jun Xu
- Hunan Institute of Microbiology, Changsha, China
| |
Collapse
|
12
|
Cao Y, Li Y, Wang L, Zhang L, Jiang L. Evolution and function of ubiquitin-specific proteases (UBPs): Insight into seed development roles in tung tree (Vernicia fordii). Int J Biol Macromol 2022; 221:796-805. [PMID: 36037910 DOI: 10.1016/j.ijbiomac.2022.08.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022]
Abstract
The tung oil produced by the tung tree (Vernicia fordii) provides resources for the manufacture of biodiesel. Ubiquitin-specific proteases (UBPs) are the largest group of deubiquitinases and play key roles in regulating development and stress responses. Here, 21 UBPs were identified in V. fordii, roughly one-half the number found in Manihot esculenta and Hevea brasiliensis. Most UBP duplications are produced from whole-genome duplication (WGD), and significant differences in gene retention existed among Euphorbiaceae. The great majority of UBP-containing blocks in V. fordii, V. montana, Ricinus communis, and Jatropha curcas exhibited extensive conservation with the duplicated regions of M. esculenta and H. brasiliensis. These blocks formed 14 orthologous groups, indicating they shared WGD with UBPs in M. esculenta and H. brasiliensis, but most of these UBPs copies were lost. The UBP orthologs contained significant functional divergence which explained the susceptibility of V. fordii to Fusarium wilt and the resistance of V. montana to Fusarium wilt. The expression patterns and experiments suggested that Vf03G1417 could affect the seed-related traits and positively regulate the seed oil accumulation. This study provided important insights into the evolution of UBPs in Euphorbiaceae and identified important candidate VfUBPs for marker-assisted breeding in V. fordii.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; College of Forestry, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yanli Li
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, 430000 Wuhan, China.
| | - Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China.
| |
Collapse
|
13
|
Ramesh A, Ali BM, Manigandan R, Da CT, Nguyen-Le MT. Hydrogenolysis of glycerol to 1, 2-propanediol on MgO/Ni3C catalysts fabricated by a solid-state thermal synthesis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Song JM, Zhang Y, Zhou ZW, Lu S, Ma W, Lu C, Chen LL, Guo L. Oil plant genomes: current state of the science. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2859-2874. [PMID: 35560205 DOI: 10.1093/jxb/erab472] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/22/2021] [Indexed: 05/25/2023]
Abstract
Vegetable oils are an indispensable nutritional component of the human diet as well as important raw materials for a variety of industrial applications such as pharmaceuticals, cosmetics, oleochemicals, and biofuels. Oil plant genomes are highly diverse, and their genetic variation leads to a diversity in oil biosynthesis and accumulation along with agronomic traits. This review discusses plant oil biosynthetic pathways, current state of genome assembly, polyploidy and asymmetric evolution of genomes of oil plants and their wild relatives, and research progress of pan-genomics in oil plants. The availability of complete high-resolution genomes and pan-genomes has enabled the identification of structural variations in the genomes that are associated with the diversity of agronomic and environment fitness traits. These and future genomes also provide powerful tools to understand crop evolution and to harvest the rich natural variations to improve oil crops for enhanced productivity, oil quality, and adaptability to changing environments.
Collapse
Affiliation(s)
- Jia-Ming Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhi-Wei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Chaofu Lu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
15
|
Al-Khayri JM, Sudheer WN, Preetha TR, Nagella P, Rezk AA, Shehata WF. Biotechnological Research Progress in Jatropha, a Biodiesel-Yielding Plant. PLANTS (BASEL, SWITZERLAND) 2022; 11:1292. [PMID: 35631717 PMCID: PMC9147403 DOI: 10.3390/plants11101292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution is one of the most pressing challenges in today's world. The main cause of this pollution is fuel emissions from automobiles and other sources. As industrialization progresses, we will be unable to compromise on the use of energy to power heavy machines and will be forced to seek out the best options. As a consequence, utilizing green fuel, such as biodiesel derived from natural sources, is a realistic option. Jatropha curcas L. (Euphorbiaceae) is recognized as the greatest feedstock for biodiesel production throughout the world, and it has gained a huge market value in the recent years. Conventional cultivation alone will not be sufficient to meet the global need for the plant's biomass for the production of biodiesel. Adoption of plant tissue culture techniques that improve the biomass availability is an immediate need. The present review provides detailed information regarding in-vitro plant propagation (direct and indirect organogenesis), somatic embryogenesis, and acclimatization protocols of plantlets for stabilized production of biomass. The review also focuses on biotechnological approaches such as gene transformation studies, production of haploids, and double haploids for developing elite germplasm for high biomass and improved traits for the production of biodiesel.
Collapse
Affiliation(s)
- Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.R.); (W.F.S.)
| | - Wudali N. Sudheer
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India; (W.N.S.); (T.R.P.)
| | - Thenmozhi R. Preetha
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India; (W.N.S.); (T.R.P.)
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, India; (W.N.S.); (T.R.P.)
| | - Adel A. Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.R.); (W.F.S.)
- Agricultural Research Center, Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Giza 12619, Egypt
| | - Wael F. Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.R.); (W.F.S.)
| |
Collapse
|
16
|
Heterologous Expression of Jatropha curcas Fatty Acyl-ACP Thioesterase A (JcFATA) and B (JcFATB) Affects Fatty Acid Accumulation and Promotes Plant Growth and Development in Arabidopsis. Int J Mol Sci 2022; 23:ijms23084209. [PMID: 35457027 PMCID: PMC9029028 DOI: 10.3390/ijms23084209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Plant fatty acyl-acyl carrier protein (ACP) thioesterases terminate the process of de novo fatty acid biosynthesis in plastids by hydrolyzing the acyl-ACP intermediates, and determine the chain length and levels of free fatty acids. They are of interest due to their roles in fatty acid synthesis and their potential to modify plant seed oils through biotechnology. Fatty acyl-ACP thioesterases (FAT) are divided into two families, i.e., FATA and FATB, according to their amino acid sequence and substrate specificity. The high oil content in Jatropha curcas L. seed has attracted global attention due to its potential for the production of biodiesel. However, the detailed effects of JcFATA and JcFATB on fatty acid biosynthesis and plant growth and development are still unclear. In this study, we found that JcFATB transcripts were detected in all tissues and organs examined, with especially high accumulation in the roots, leaves, flowers, and some stages of developing seeds, and JcFATA showed a very similar expression pattern. Subcellular localization of the JcFATA-GFP and JcFATB-GFP fusion protein in Arabidopsis leaf protoplasts showed that both JcFATA and JcFATB localized in chloroplasts. Heterologous expression of JcFATA and JcFATB in Arabidopsis thaliana individually generated transgenic plants with longer roots, stems and siliques, larger rosette leaves, and bigger seeds compared with those of the wild type, indicating the overall promotion effects of JcFATA and JcFATB on plant growth and development while JcFATB had a larger impact. Compositional analysis of seed oil revealed that all fatty acids except 22:0 were significantly increased in the mature seeds of JcFATA-transgenic Arabidopsis lines, especially unsaturated fatty acids, such as the predominant fatty acids of seed oil, 18:1, 18:2, and 18:3. In the mature seeds of the JcFATB-transgenic Arabidopsis lines, most fatty acids were increased compared with those in wild type too, especially saturated fatty acids, such as 16:0, 18:0, 20:0, and 22:0. Our results demonstrated the promotion effect of JcFATA and JcFATB on plant growth and development, and their possible utilization to modify the seed oil composition and content in higher plants.
Collapse
|
17
|
Yepuri V, Jalali S, Mudunuri V, Pothakani S, Kancharla N, Arockiasamy S. Genotyping by sequencing-based linkage map construction and identification of quantitative trait loci for yield-related traits and oil content in Jatropha (Jatropha curcas L.). Mol Biol Rep 2022; 49:4293-4306. [PMID: 35239140 DOI: 10.1007/s11033-022-07264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Jatropha (Jatropha curcas L.) has been considered as a potential bioenergy crop and its genetic improvement is essential for higher seed yield and oil content which has been hampered due to lack of desirable molecular markers. METHODS AND RESULTS An F2 population was created using an intraspecific cross involving a Central American line RJCA9 and an Asiatic species RJCS-9 to develop a dense genetic map and for Quantitative trait loci (QTL) identification. The genotyping-by-sequencing (GBS) approach was used to genotype the mapping population of 136 F2 individuals along with the two parental lines for classification of the genotypes based on single nucleotide polymorphism (SNPs). NextSeq 2500 sequencing technology provided a total of 517.23 million clean reads, with an average of ~ 3.8 million reads per sample. We analysed 411 SNP markers and developed 11 linkage groups. The total length of the genetic map was 4092.3 cM with an average marker interval of 10.04 cM. We have identified a total of 83 QTLs for various yield and oil content governing traits. The percentage of phenotypic variation (PV) was found to be in the range of 8.81 to 65.31%, and a QTL showed the maximum PV of 65.3% for a total seed number on the 6th linkage group (LG). CONCLUSIONS The QTLs detected in this study for various phenotypic traits will lay down the path for marker-assisted breeding in the future and cloning of genes that are responsible for phenotypic variation.
Collapse
Affiliation(s)
- Vijay Yepuri
- Agronomy Division, Reliance Technology Group, Reliance Industries Ltd, Ghansoli, Navi Mumbai, 400701, India
| | - Saakshi Jalali
- Agronomy Division, Reliance Technology Group, Reliance Industries Ltd, Ghansoli, Navi Mumbai, 400701, India
| | - Vishwnadharaju Mudunuri
- Jatropha Breeding station, Reliance Industries Ltd, IDA-Peddapuram, ADB Road, Samalkota, Andhra Pradesh, 533440, India
| | - Sai Pothakani
- Jatropha Breeding station, Reliance Industries Ltd, IDA-Peddapuram, ADB Road, Samalkota, Andhra Pradesh, 533440, India
| | - Nagesh Kancharla
- Agronomy Division, Reliance Technology Group, Reliance Industries Ltd, Ghansoli, Navi Mumbai, 400701, India
| | - S Arockiasamy
- Agronomy Division, Reliance Technology Group, Reliance Industries Ltd, Ghansoli, Navi Mumbai, 400701, India.
| |
Collapse
|
18
|
Ramesh A, Shanthi K, Nguyen-Le MT. NiMoS over Ti-incorporated mesoporous silicates for the hydrotreating of non-edible oils to bio-jet fuels. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Yuan Y, Cao X, Zhang H, Liu C, Zhang Y, Song XL, Gai S. Genome-wide identification and analysis of Oleosin gene family in four cotton species and its involvement in oil accumulation and germination. BMC PLANT BIOLOGY 2021; 21:569. [PMID: 34863105 PMCID: PMC8642851 DOI: 10.1186/s12870-021-03358-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cotton is not only a major textile fiber crop but also a vital oilseed, industrial, and forage crop. Oleosins are the structural proteins of oil bodies, influencing their size and the oil content in seeds. In addition, the degradation of oleosins is involved in the mobilization of lipid and oil bodies during seed germination. However, comprehensive identification and the systematic analysis of the Oleosin gene (OLEOs) family have not been conducted in cotton. RESULTS An in-depth analysis has enabled us to identify 25 and 24 OLEOs in tetraploid cotton species G. hirsutum and G. barbadense, respectively, while 12 and 13 OLEOs were identified in diploid species G. arboreum and G. raimondii, respectively. The 74 OLEOs were further clustered into three lineages according to the phylogenetic tree. Synteny analysis revealed that most of the OLEOs were conserved and that WGD or segmental duplications might drive their expansion. The transmembrane helices in GhOLEO proteins were predicted, and three transmembrane models were summarized, in which two were newly proposed. A total of 24 candidate miRNAs targeting GhOLEOs were predicted. Three highly expressed oil-related OLEOs, GH_A07G0501 (SL), GH_D10G0941 (SH), and GH_D01G1686 (U), were cloned, and their subcellular localization and function were analyzed. Their overexpression in Arabidopsis increased seed oil content and decreased seed germination rates. CONCLUSION We identified OLEO gene family in four cotton species and performed comparative analyses of their relationships, conserved structure, synteny, and gene duplication. The subcellular localization and function of three highly expressed oil-related OLEOs were detected. These results lay the foundation for further functional characterization of OLEOs and improving seed oil content.
Collapse
Affiliation(s)
- Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Xinzhe Cao
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Haijun Zhang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China
| | - Xian-Liang Song
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China.
| | - Shupeng Gai
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| |
Collapse
|
20
|
Ha J, Satyawan D, Jeong H, Lee E, Cho KH, Kim MY, Lee SH. A near-complete genome sequence of mungbean (Vigna radiata L.) provides key insights into the modern breeding program. THE PLANT GENOME 2021; 14:e20121. [PMID: 34275211 DOI: 10.1002/tpg2.20121] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Mungbean (Vigna radiata L.), a fast-growing legume species, is an important source of carbohydrates and proteins in developing countries of Asia. Here, we constructed a near-complete genome sequence of mungbean with a scaffold N50 value of 5.2 Mb and only a 0.4% gap, with a total scaffold size of 475 Mb. We identified several misassembled pseudomolecules (Chr03, Chr04, Chr05, and Chr08) in the previous draft assembly; Chr03, Chr04, and Chr08 were assembled into one chromosome, and Chr05 was broken into two chromosomes in the improved reference genome assembly, thus providing more accurate linkage information to breeders. Additionally, using an ultra-high-resolution linkage map constructed based on resequencing data, we identified several quantitative trait loci (QTLs) and the underlying candidate genes affecting synchronous pod maturity (SPM). Mungbean homologs of two soybean ([Glycine max (L.) Merr.] flowering genes, E3 (phytochrome A) and J (early flowering 3), were identified as candidate genes for the QTLs, and the candidate genes for plant height, node number, and SPM showed critical nucleotide substitutions between the reference cultivar and other genotypes (landraces and wild accessions). Based on the analysis of genetic diversity among 276 accessions collected from 23 countries, we identified 36 selective sweep regions and observed that the overall genetic diversity of cultivars decreased to 30% of that in wild accessions postdomestication. The near-complete genome sequence of mungbean represents an important resource for genome-assisted improvement in the mungbean breeding program.
Collapse
Affiliation(s)
- Jungmin Ha
- Dep. of Plant Science, Gangneung-Wonju National Univ., Gangneung, Republic of Korea
| | - Dani Satyawan
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD-IAARD), Jl. Tentara Pelajar No. 3A, Bogor, 16111, Indonesia
| | - Haneul Jeong
- Dep. of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National Univ., Seoul, 08826, Republic of Korea
| | - Eunsoo Lee
- Dep. of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National Univ., Seoul, 08826, Republic of Korea
| | - Kang-Heum Cho
- Dep. of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National Univ., Seoul, 08826, Republic of Korea
| | - Moon Young Kim
- Dep. of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National Univ., Seoul, 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National Univ., Seoul, 08826, Republic of Korea
| | - Suk-Ha Lee
- Dep. of Agriculture, Forestry and Bioresources and Research Institute of Agriculture and Life Sciences, Seoul National Univ., Seoul, 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National Univ., Seoul, 08826, Republic of Korea
| |
Collapse
|
21
|
Hu Y, Zhao H, Yang A, Lv Q, Ding N, Lu TL, Hu L, Wang X. Jatrophacine, a 4,5- seco-rhamnofolane diterpenoid with potent anti-inflammatory activity from Jatropha curcas. Nat Prod Res 2021; 35:2748-2752. [PMID: 34414845 DOI: 10.1080/14786419.2019.1660656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new diterpenoid named jatrophacine (1), with an unusual 4,5-seco- rhamnofolane skeleton, was isolated from the roots of Jatropha curcas, together with eleven known diterpenoids. The structure of the new compound was elucidated through a detailed analysis of its 1 D- and 2 D-NMR spectra. The X-ray structure of jatrophol (2) is also presented. Anti-inflammatory activity with LPS-induced RAW 264.7 macrophages revealed that compound 1 strongly inhibited the production of nitric oxide (IC50 = 0.53 μM).
Collapse
Affiliation(s)
- Yang Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Huimin Zhao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Aiping Yang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Qi Lv
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Ning Ding
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Tu-Lin Lu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,R&D Department, Jiangsu Hongdian Research Institute of Traditional Chinese Medicine Industry Co., Ltd, Nanjing, People's Republic of China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiachang Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,R&D Department, Jiangsu Hongdian Research Institute of Traditional Chinese Medicine Industry Co., Ltd, Nanjing, People's Republic of China
| |
Collapse
|
22
|
Lu J, Pan C, Fan W, Liu W, Zhao H, Li D, Wang S, Hu L, He B, Qian K, Qin R, Ruan J, Lin Q, Lü S, Cui P. A Chromosome-level Assembly of A Wild Castor Genome Provides New Insights into the Adaptive Evolution in A Tropical Desert. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:42-59. [PMID: 34339842 PMCID: PMC9510866 DOI: 10.1016/j.gpb.2021.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 02/01/2023]
Abstract
Wild castor grows in the high-altitude tropical desert of the African Plateau, a region known for high ultraviolet radiation, strong light, and extremely dry condition. To investigate the potential genetic basis of adaptation to both highland and tropical deserts, we generated a chromosome-level genome sequence assembly of the wild castor accession WT05, with a genome size of 316 Mb, a scaffold N50 of 31.93 Mb, and a contig N50 of 8.96 Mb, respectively. Compared with cultivated castor and other Euphorbiaceae species, the wild castor exhibits positive selection and gene family expansion for genes involved in DNA repair, photosynthesis, and abiotic stress responses. Genetic variations associated with positive selection were identified in several key genes, such as LIG1, DDB2, and RECG1, involved in nucleotide excision repair. Moreover, a study of genomic diversity among wild and cultivated accessions revealed genomic regions containing selection signatures associated with the adaptation to extreme environments. The identification of the genes and alleles with selection signatures provides insights into the genetic mechanisms underlying the adaptation of wild castor to the high-altitude tropical desert and would facilitate direct improvement of modern castor varieties.
Collapse
Affiliation(s)
- Jianjun Lu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Pan
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wei Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wanfei Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 434200, China
| | - Donghai Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lianlian Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kun Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Rui Qin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiang Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 434200, China.
| | - Peng Cui
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
23
|
Wang Z, Zhu J, Yuan W, Wang Y, Hu P, Jiao C, Xia H, Wang D, Cai Q, Li J, Wang C, Zhang X, Chen Y, Wang Z, Ou Z, Xu Z, Shi J, Chen J. Genome-wide characterization of bZIP transcription factors and their expression patterns in response to drought and salinity stress in Jatropha curcas. Int J Biol Macromol 2021; 181:1207-1223. [PMID: 33971233 DOI: 10.1016/j.ijbiomac.2021.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 11/18/2022]
Abstract
The basic leucine zipper (bZIP) family is one of the largest families of transcription factors (TFs) in plants and is responsible for various functions, including regulating development and responses to abiotic/biotic stresses. However, the roles of bZIPs in the regulation of responses to drought stress and salinity stress remain poorly understood in Jatropha curcas L., a biodiesel crop. In the present study, 50 JcbZIP genes were identified and classified into ten groups. Cis-element analysis indicated that JcbZIP genes are associated with abiotic stress. Gene expression patterns and quantitative real-time PCR (qRT-PCR) showed that four JcbZIP genes (JcbZIPs 34, 36, 49 and 50) are key resistance-related genes under both drought and salinity stress conditions. On the basis of the results of cis-element and phylogenetic analyses, JcbZIP49 and JcbZIP50 are likely involved in responses to drought and salinity stress; moreover, JcbZIP34 and JcbZIP36 might also play important roles in seed development and response to abiotic stress. These findings advance our understanding of the comprehensive characteristics of JcbZIP genes and provide new insights for functional validation in the further.
Collapse
Affiliation(s)
- Zhanjun Wang
- College of Life Sciences, Hefei Normal University, Hefei 230601, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Zhu
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Wenya Yuan
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Ying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Peipei Hu
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Chunyan Jiao
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Haimeng Xia
- School of Biosciences, University of Nottingham, Sutton Bonington 999020, UK
| | - Dandan Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qianwen Cai
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Jie Li
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Chenchen Wang
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Xie Zhang
- Institute of Botany, Hunan Academy of Forestry, Changsha 410004, China
| | - Yansong Chen
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Zhaoxia Wang
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Zulan Ou
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Zhongdong Xu
- College of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Jisen Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
24
|
Cao Y, Mo W, Li Y, Li W, Dong X, Liu M, Jiang L, Zhang L. Deciphering the roles of leucine-rich repeat receptor-like protein kinases (LRR-RLKs) in response to Fusarium wilt in the Vernicia fordii (Tung tree). PHYTOCHEMISTRY 2021; 185:112686. [PMID: 33582587 DOI: 10.1016/j.phytochem.2021.112686] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 05/27/2023]
Abstract
Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are vital for plant growth and development, signal transduction, immunity, and play diverse roles in plant defense responses. However, the LRR-RLK genes have not been systematically studied in Vernicia fordii (tung tree), especially its response to Fusarium wilt. Here, we carried out an integrative analysis of LRR-RLKs among five Euphorbiaceae species: Hevea brasiliensis (rubber tree), Manihot esculenta (cassava), Jatropha curcas (physic nut), Ricinus communis (castor bean), and V. fordii, which contained 223, 311, 186, 138, and 167 LRR-RLKs, respectively. Maximum-likelihood tree was estimated using LRR-RLKs of Arabidopsis thaliana as a template, and they allowed us to divide Euphorbiaceae LRR-RLKs into 22 groups. There are 126 segmental and 30 tandem duplications in these Euphorbiaceae genomes by synteny analysis. The tissue-specific expression patterns revealed that V. fordii LRR-RLKs (VfLRR-RLKs) were differentially expressed in various tissues, and some of them exhibited specific expression in meristems tissues, which suggested their potential functions during organ formation and cell fate specification. Two VfLRR-RLK pairs (Vf01G2125 and Vf03G1740, Vf06G2687 and Vf10G1659), which generated by tandem duplication events, were associated with possible resistance to Fusarium wilt infection. The qRT-PCR confirmed these four VfLRR-RLKs contained opposite expression profiles during pathogen infection in V. fordii and V. montana. Taken together, our data systematically analyzed the LRR-RLK family in Euphorbiaceae genomes for the first time. We highlight the putative roles of VfLRR-RLKs in response to Fusarium wilt infection, and VfLRR-RLKs may be further applied in marker-assisted breeding to control Fusarium wilt in V. fordii.
Collapse
Affiliation(s)
- Yunpeng Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Wanzhen Mo
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Yanli Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wenying Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xiang Dong
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Meilan Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Lan Jiang
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China; Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, 241001, China.
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
25
|
|
26
|
de Almeida NP, Neto DFM, Carneiro GRA, de Farias ARB, Domont GB, de Paiva Campos FDA, Nogueira FCS. Monitoring casbene synthase in Jatropha curcas tissues using targeted proteomics. PLANT METHODS 2021; 17:15. [PMID: 33549129 PMCID: PMC7868020 DOI: 10.1186/s13007-021-00716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Casbene synthase (CS) is responsible for the first committed step in the biosynthesis of phorbol esters (PE) in the Euphorbiaceae. PE are abundant in the seeds of the biofuel crop Jatropha curcas and its toxicity precludes the use of the protein-rich cake obtained after oil extraction as an animal feed and the toxicity of the fumes derived from burning PE containing biofuel is also a matter of concern. This toxicity is a major hindrance to exploit the potential of this crop as a source of raw material to produce biodiesel. For this reason, the current research on J. curcas is mainly focused on the understanding of the biosynthesis and site of synthesis of PE, as an avenue for the development of genotypes unable to synthesize PE in its seeds. RESULTS Here, we present targeted proteomics assays (SRM and PRM) to detect and quantify CS in leaves, endosperm, and roots of two J. curcas genotypes with contrasting levels of PE. These assays were based on the use of reference isotopic labeled synthetic peptides (ILSP) predicted from 12 gene models of CS from the J. curcas genome. CONCLUSION Our targeted proteomics methods were able to detect and quantify, for the first time, CS gene products and demonstrate the distribution of CS isoforms only in roots from J. curcas genotypes with a high and low concentration of PE. These methods can be expanded to monitor CS, at the protein level, in different tissues and genotypes of J. curcas.
Collapse
Affiliation(s)
- Natália Pinto de Almeida
- Laboratory of Proteomics/LADETEC, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Gabriel Reis Alves Carneiro
- Laboratory of Proteomics/LADETEC, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Gilberto Barbosa Domont
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fábio César Sousa Nogueira
- Laboratory of Proteomics/LADETEC, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Huang H, Liang J, Tan Q, Ou L, Li X, Zhong C, Huang H, Møller IM, Wu X, Song S. Insights into triterpene synthesis and unsaturated fatty-acid accumulation provided by chromosomal-level genome analysis of Akebia trifoliata subsp. australis. HORTICULTURE RESEARCH 2021; 8:33. [PMID: 33518712 PMCID: PMC7848005 DOI: 10.1038/s41438-020-00458-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 05/10/2023]
Abstract
Akebia trifoliata subsp. australis is a well-known medicinal and potential woody oil plant in China. The limited genetic information available for A. trifoliata subsp. australis has hindered its exploitation. Here, a high-quality chromosome-level genome sequence of A. trifoliata subsp. australis is reported. The de novo genome assembly of 682.14 Mb was generated with a scaffold N50 of 43.11 Mb. The genome includes 25,598 protein-coding genes, and 71.18% (485.55 Mb) of the assembled sequences were identified as repetitive sequences. An ongoing massive burst of long terminal repeat (LTR) insertions, which occurred ~1.0 million years ago, has contributed a large proportion of LTRs in the genome of A. trifoliata subsp. australis. Phylogenetic analysis shows that A. trifoliata subsp. australis is closely related to Aquilegia coerulea and forms a clade with Papaver somniferum and Nelumbo nucifera, which supports the well-established hypothesis of a close relationship between basal eudicot species. The expansion of UDP-glucoronosyl and UDP-glucosyl transferase gene families and β-amyrin synthase-like genes and the exclusive contraction of terpene synthase gene families may be responsible for the abundant oleanane-type triterpenoids in A. trifoliata subsp. australis. Furthermore, the acyl-ACP desaturase gene family, including 12 stearoyl-acyl-carrier protein desaturase (SAD) genes, has expanded exclusively. A combined transcriptome and fatty-acid analysis of seeds at five developmental stages revealed that homologs of SADs, acyl-lipid desaturase omega fatty acid desaturases (FADs), and oleosins were highly expressed, consistent with the rapid increase in the content of fatty acids, especially unsaturated fatty acids. The genomic sequences of A. trifoliata subsp. australis will be a valuable resource for comparative genomic analyses and molecular breeding.
Collapse
Affiliation(s)
- Hui Huang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Juan Liang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Qi Tan
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Linfeng Ou
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Xiaolin Li
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, 100700, China
| | - Caihong Zhong
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Huilin Huang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, DK-4200, Slagelse, Denmark
| | - Xianjin Wu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Songquan Song
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China.
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
28
|
Liu Y, Yang X, Zhao Y, Yang Y, Liu Z. An effective method for Agrobacterium tumefaciens-mediated transformation of Jatropha curcas L. using cotyledon explants. Bioengineered 2020; 11:1146-1158. [PMID: 33070678 PMCID: PMC8291823 DOI: 10.1080/21655979.2020.1831363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 11/05/2022] Open
Abstract
Jatropha curcas is one of oilseed crops and has been considered as an energy crop. In the present study, efficient plant regeneration protocol and transformation method were developed for J. curcas. Because the regeneration efficiency of adventitious bud from cotyledon explants of J. curcas induced by traditional methods is low, and it takes a long time to get complete plants. It is necessary to establish a new regeneration system to improve regeneration efficiency. Cotyledon explants were dipped into TDZ solution at different concentrations respectively for various times to obtain higher efficiency of adventitious bud regeneration. This new regeneration method was then applied to genetic transformation of J. curcas. Cotyledon explants were precultured for 1 day after treated with high concentration of Thidiazuron (TDZ) solution (20 mg/L for 40 min), followed by Agrobacterium tumefaciens infection. After co-cultured for 2 days, the explants were placed on the induction hormone-free media for bud regeneration and resistant screening. After 30 days, selected shoot buds were transferred onto elongation medium for 15 days. Young leaf sections of the regenerated shoots were used for PCR (Polymerase chain reaction) detection of the transgenic shoots. The PCR positive shoots were isolated and used for in vitro grafting. The intact plants were obtained within 20 days. GUS (β-Glucosidase) staining and Southern analysis confirmed the transformation events. Briefly, a transformation efficiency of 34.32% was achieved and an intact transgenic plant could be obtained within 65 days.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoyan Yang
- Department of Park, Yantai Kunyu Mountain Forest Station, Yantai, China
| | - Yahuan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yuesheng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
29
|
Correa SM, Alseekh S, Atehortúa L, Brotman Y, Ríos-Estepa R, Fernie AR, Nikoloski Z. Model-assisted identification of metabolic engineering strategies for Jatropha curcas lipid pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:76-95. [PMID: 33001507 DOI: 10.1111/tpj.14906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Efficient approaches to increase plant lipid production are necessary to meet current industrial demands for this important resource. While Jatropha curcas cell culture can be used for in vitro lipid production, scaling up the system for industrial applications requires an understanding of how growth conditions affect lipid metabolism and yield. Here we present a bottom-up metabolic reconstruction of J. curcas supported with labeling experiments and biomass characterization under three growth conditions. We show that the metabolic model can accurately predict growth and distribution of fluxes in cell cultures and use these findings to pinpoint energy expenditures that affect lipid biosynthesis and metabolism. In addition, by using constraint-based modeling approaches we identify network reactions whose joint manipulation optimizes lipid production. The proposed model and computational analyses provide a stepping stone for future rational optimization of other agronomically relevant traits in J. curcas.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Grupo de Biotecnología, Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Saleh Alseekh
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Lucía Atehortúa
- Grupo de Biotecnología, Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Zoran Nikoloski
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany
- Systems Biology and Mathematical Modelling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
30
|
Yan X, Ma L, Yang M. Identification and characterization of long non-coding RNA (lncRNA) in the developing seeds of Jatropha curcas. Sci Rep 2020; 10:10395. [PMID: 32587349 PMCID: PMC7316758 DOI: 10.1038/s41598-020-67410-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in plant development. However, the information of lncRNAs in Jatropha curcas remains largely unexplored. Thus, an attempt has been made in J. curcas to identify 1,850 lncRNAs based on deep sequencing of developing seeds at three typical stages. About ten percent lncRNAs (196 lncRNAs) were differentially expressed lncRNAs during seed developing process. Together with reverse transcription quantitative real-time PCR, the lncRNA expression analyses revealed the stage-specific expression patterns of some novel lncRNAs in J. curcas. The target genes of lncRNAs were annotated for their roles in various biological processes such as gene expression, metabolism, and cell growth. Besides, 10 lncRNAs were identified as the precursors of microRNAs and 26 lncRNAs were predicted to be the targets of Jatropha miRNAs. A total of 31 key lncRNAs play critical roles in the seed developing process in the context of cell growth and development, lipid metabolism, and seed maturation. Our study provides the first systematic study of lncRNAs in the developing seeds of J. curcas and facilitates the functional research of plant lncRNAs and the regulation of seed development.
Collapse
Affiliation(s)
- Xihuan Yan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.,Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Lanqing Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China. .,Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
| | - MingFeng Yang
- Key Laboratory for Northern Urban, Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
| |
Collapse
|
31
|
Yepuri V, Jalali S, Kancharla N, Reddy VB, Arockiasamy S. Development of genome wide transposable elements based repeat junction markers in Jatropha (Jatropha curcas L.). Mol Biol Rep 2020; 47:5091-5099. [PMID: 32562173 DOI: 10.1007/s11033-020-05579-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/10/2020] [Indexed: 11/29/2022]
Abstract
Jatropha curcas is a potential biodiesel crop and a highly adaptable species to various agro-climatic conditions. In this study, we have utilized transposable elements' (TE) repeat junctions (RJs) which are an important constituent of the genome, used to form a genome-wide molecular marker platform owing to its use in genomic studies of plants. We screened our previously generated Jatropha hybrid genome assembly of size 265 Mbp using RJPrimers pipeline software and identified a total of 1274 TE junctions. For the predicted RJs, we designed 2868 polymerase chain reaction (PCR) based RJ markers (RJMs) flanking the junction regions. In addition to marker design, the identified RJs were utilized to detect 225,517 TEs across the genome. The different types of transposable repeat elements mainly were scattered into Retro, LTR, Copia and Gypsy categories. The efficacy of the designed markers was tested by utilizing a subset of RJMs selected randomly. We have validated 96 randomly selected RJ primers in a group of 32 J. curcas genotypes and more than 90% of the markers effectively intensified as amplicons. Of these, 10 primers were shown to be polymorphic in estimating genetic diversity among the 32 Jatropha lines. UPGMA cluster analysis revealed the formation of two clusters such as A and B exhibiting 85.5% and 87% similarity coefficient respectively. The various RJMs identified in this study could be utilized as a significant asset in Jatropha functional genomics including genome determination, mapping and marker-assisted selection.
Collapse
Affiliation(s)
- Vijay Yepuri
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Saakshi Jalali
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Nagesh Kancharla
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - V B Reddy
- AgriGenome Labs Private Limited, Hyderabad, 500078, India
| | - S Arockiasamy
- Agronomy Division, Reliance Technology Group, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India.
| |
Collapse
|
32
|
Maghuly F, Deák T, Vierlinger K, Pabinger S, Tafer H, Laimer M. Gene expression profiling identifies pathways involved in seed maturation of Jatropha curcas. BMC Genomics 2020; 21:290. [PMID: 32272887 PMCID: PMC7146973 DOI: 10.1186/s12864-020-6666-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background Jatropha curcas, a tropical shrub, is a promising biofuel crop, which produces seeds with high content of oil and protein. To better understand the maturation process of J. curcas seeds and to improve its agronomic performance, a two-step approach was performed in six different maturation stages of seeds: 1) generation of the entire transcriptome of J. curcas seeds using 454-Roche sequencing of a cDNA library, 2) comparison of transcriptional expression levels using a custom Agilent 8x60K oligonucleotide microarray. Results A total of 793,875 high-quality reads were assembled into 19,382 unique full-length contigs, of which 13,507 could be annotated with Gene Ontology (GO) terms. Microarray data analysis identified 9111 probes (out of 57,842 probes), which were differentially expressed between the six maturation stages. The expression results were validated for 75 selected transcripts based on expression levels, predicted function, pathway, and length. Result from cluster analyses showed that transcripts associated with fatty acid, flavonoid, and phenylpropanoid biosynthesis were over-represented in the early stages, while those of lipid storage were over-represented in the late stages. Expression analyses of different maturation stages of J. curcas seed showed that most changes in transcript abundance occurred between the two last stages, suggesting that the timing of metabolic pathways during seed maturation in J. curcas occurs in late stages. The co-expression results showed that the hubs (CB5-D, CDR1, TT8, DFR, HVA22) with the highest number of edges, associated with fatty acid and flavonoid biosynthesis, are showing a decrease in their expression during seed maturation. Furthermore, seed development and hormone pathways are significantly well connected. Conclusion The obtained results revealed differentially expressed sequences (DESs) regulating important pathways related to seed maturation, which could contribute to the understanding of the complex regulatory network during seed maturation with the focus on lipid, flavonoid and phenylpropanoid biosynthesis. This study provides detailed information on transcriptional changes during J. curcas seed maturation and provides a starting point for a genomic survey of seed quality traits. The results highlighted specific genes and processes relevant to the molecular mechanisms involved in Jatropha seed maturation. These data can also be utilized regarding other Euphorbiaceae species.
Collapse
Affiliation(s)
- Fatemeh Maghuly
- Plant Functional Genomics, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Tamás Deák
- Department of Viticulture, Szent István University, Villányi út 29-43, 1118 Budapest, Hungary
| | - Klemens Vierlinger
- Center for Health and Bioresources, Molecular Diagnostics, Austrian Institute of Technology (AIT), Giefinggasse 4, 1210, Vienna, Austria
| | - Stephan Pabinger
- Center for Health and Bioresources, Molecular Diagnostics, Austrian Institute of Technology (AIT), Giefinggasse 4, 1210, Vienna, Austria
| | - Hakim Tafer
- Austrian Center of Biological Resources (ACBR), Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Margit Laimer
- Plant Biotechnology Unit, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
33
|
Exploitation of Hi-C sequencing for improvement of genome assembly and in-vitro validation of differentially expressing genes in Jatropha curcas L. 3 Biotech 2020; 10:91. [PMID: 32089986 DOI: 10.1007/s13205-020-2082-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/20/2020] [Indexed: 10/25/2022] Open
Abstract
Jatropha curcas is one of the major sources of renewable energy due to potential use of its oil as a biofuel. The genome of this crop is constituted by the high content of repetitive elements. We employed the Hi-C proximity ligation technique to re-scaffold our existing hybrid genome assembly of an elite genotype (RJC1) developed using Illumina and Pacbio technologies. We assembled 99.81% of non-truncated reads to achieve 266.80 Mbp of the genome with an N50 value of 1.58 Mb. Furthermore, we compared the efficiency of Hi-C-augmented genome assembly with the hybrid genome assembly and observed a ~ 50% reduction in scaffolds and a tenfold increase in the N50 value. The gene ontology analysis revealed the identification of terms for molecular function (45.52%), cellular component (33.47%), and biological function (20.99%). Comparative genomic analysis of 13-plant species showed the conservation of 414 lipid metabolizing genes identified in the KEGG pathway analysis. Differential gene expression (DGE) studies were conducted in the healthy and Jatropha mosaic virus-infected leaves via RNA-seq analysis and observed gene expression changes for 2185 genes. Out of these, we observed 546 genes having more than two-fold change of transcript level and among these 259 genes were down-regulated and 287 genes were up-regulated. To validate RNA-seq data, two DEGs were selected for gene expression analysis using qRT-PCR and the data was in correlation with in silico results. RNA-seq analysis further shows the identification of some of the candidate genes and may be useful to develop JMV resistant plants after functional validation. This Hi-C genome assembly provides a detailed accurate reference genome which could be utilized to improve Jatropha and other economically important Euphorbiaceae family members.
Collapse
|
34
|
Chen MS, Niu L, Zhao ML, Xu C, Pan BZ, Fu Q, Tao YB, He H, Hou C, Xu ZF. De novo genome assembly and Hi-C analysis reveal an association between chromatin architecture alterations and sex differentiation in the woody plant Jatropha curcas. Gigascience 2020; 9:giaa009. [PMID: 32048715 PMCID: PMC7014976 DOI: 10.1093/gigascience/giaa009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/04/2019] [Accepted: 01/19/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Chromatin architecture is an essential factor regulating gene transcription in different cell types and developmental phases. However, studies on chromatin architecture in perennial woody plants and on the function of chromatin organization in sex determination have not been reported. RESULTS Here, we produced a chromosome-scale de novo genome assembly of the woody plant Jatropha curcas with a total length of 379.5 Mb and a scaffold N50 of 30.7 Mb using Pacific Biosciences long reads combined with genome-wide chromosome conformation capture (Hi-C) technology. Based on this high-quality reference genome, we detected chromatin architecture differences between monoecious and gynoecious inflorescence buds of Jatropha. Differentially expressed genes were significantly enriched in the changed A/B compartments and topologically associated domain regions and occurred preferentially in differential contact regions between monoecious and gynoecious inflorescence buds. Twelve differentially expressed genes related to flower development or hormone synthesis displayed significantly different genomic interaction patterns in monoecious and gynoecious inflorescence buds. These results demonstrate that chromatin organization participates in the regulation of gene transcription during the process of sex differentiation in Jatropha. CONCLUSIONS We have revealed the features of chromatin architecture in perennial woody plants and investigated the possible function of chromatin organization in Jatropha sex differentiation. These findings will facilitate understanding of the regulatory mechanisms of sex determination in higher plants.
Collapse
Affiliation(s)
- Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Longjian Niu
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, Guangdong 518055, China
- Department of Biology, Nankai University, 94 Weijing Rd., Tianjin 660885, China
| | - Mei-Li Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, 19(A) Yuquan Rd., Beijing 100049, China
| | - Chuanjia Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, 19(A) Yuquan Rd., Beijing 100049, China
| | - Bang-Zhen Pan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yan-Bin Tao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Huiying He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Chunhui Hou
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Rd., Shenzhen, Guangdong 518055, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| |
Collapse
|
35
|
Ming X, Tao YB, Fu Q, Tang M, He H, Chen MS, Pan BZ, Xu ZF. Flower-Specific Overproduction of Cytokinins Altered Flower Development and Sex Expression in the Perennial Woody Plant Jatropha curcas L. Int J Mol Sci 2020; 21:ijms21020640. [PMID: 31963715 PMCID: PMC7013397 DOI: 10.3390/ijms21020640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Jatropha curcas L. is monoecious with a low female-to-male ratio, which is one of the factors restricting its seed yield. Because the phytohormone cytokinins play an essential role in flower development, particularly pistil development, in this study, we elevated the cytokinin levels in J. curcas flowers through transgenic expression of a cytokinin biosynthetic gene (AtIPT4) from Arabidopsis under the control of a J. curcas orthologue of TOMATO MADS BOX GENE 6 (JcTM6) promoter that is predominantly active in flowers. As expected, the levels of six cytokinin species in the inflorescences were elevated, and flower development was modified without any alterations in vegetative growth. In the transgenic J. curcas plants, the flower number per inflorescence was significantly increased, and most flowers were pistil-predominantly bisexual, i.e., the flowers had a huge pistil surrounded with small stamens. Unfortunately, both the male and the bisexual flowers of transgenic J. curcas were infertile, which might have resulted from the continuously high expression of the transgene during flower development. However, the number and position of floral organs in the transgenic flowers were well defined, which suggested that the determinacy of the floral meristem was not affected. These results suggest that fine-tuning the endogenous cytokinins can increase the flower number and the female-to-male ratio in J. curcas.
Collapse
Affiliation(s)
- Xin Ming
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China;
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, China (M.T.); (H.H.); (M.-S.C.); (B.-Z.P.)
| | - Yan-Bin Tao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, China (M.T.); (H.H.); (M.-S.C.); (B.-Z.P.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China
- Correspondence: (Y.-B.T.); (Z.-F.X.)
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, China (M.T.); (H.H.); (M.-S.C.); (B.-Z.P.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China
| | - Mingyong Tang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, China (M.T.); (H.H.); (M.-S.C.); (B.-Z.P.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China
| | - Huiying He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, China (M.T.); (H.H.); (M.-S.C.); (B.-Z.P.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China
| | - Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, China (M.T.); (H.H.); (M.-S.C.); (B.-Z.P.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China
| | - Bang-Zhen Pan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, China (M.T.); (H.H.); (M.-S.C.); (B.-Z.P.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, China (M.T.); (H.H.); (M.-S.C.); (B.-Z.P.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China
- Correspondence: (Y.-B.T.); (Z.-F.X.)
| |
Collapse
|
36
|
Zhang X, Pan BZ, Chen M, Chen W, Li J, Xu ZF, Liu C. JCDB: a comprehensive knowledge base for Jatropha curcas, an emerging model for woody energy plants. BMC Genomics 2019; 20:958. [PMID: 31874631 PMCID: PMC6929279 DOI: 10.1186/s12864-019-6356-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/29/2019] [Indexed: 12/02/2022] Open
Abstract
Background Jatropha curcas is an oil-bearing plant, and has seeds with high oil content (~ 40%). Several advantages, such as easy genetic transformation and short generation duration, have led to the emergence of J. curcas as a model for woody energy plants. With the development of high-throughput sequencing, the genome of Jatropha curcas has been sequenced by different groups and a mass of transcriptome data was released. How to integrate and analyze these omics data is crucial for functional genomics research on J. curcas. Results By establishing pipelines for processing novel gene identification, gene function annotation, and gene network construction, we systematically integrated and analyzed a series of J. curcas transcriptome data. Based on these data, we constructed a J. curcas database (JCDB), which not only includes general gene information, gene functional annotation, gene interaction networks, and gene expression matrices but also provides tools for browsing, searching, and downloading data, as well as online BLAST, the JBrowse genome browser, ID conversion, heatmaps, and gene network analysis tools. Conclusions JCDB is the most comprehensive and well annotated knowledge base for J. curcas. We believe it will make a valuable contribution to the functional genomics study of J. curcas. The database is accessible at http://jcdb.xtbg.ac.cn.
Collapse
Affiliation(s)
- Xuan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bang-Zhen Pan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Maosheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Wen Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China. .,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China.
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China.
| |
Collapse
|
37
|
Integrative analysis reveals evolutionary patterns and potential functions of SWEET transporters in Euphorbiaceae. Int J Biol Macromol 2019; 139:1-11. [DOI: 10.1016/j.ijbiomac.2019.07.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 01/06/2023]
|
38
|
Hu P, Wu L, Hollister EB, Wang AS, Somenahally AC, Hons FM, Gentry TJ. Fungal Community Structural and Microbial Functional Pattern Changes After Soil Amendments by Oilseed Meals of Jatropha curcas and Camelina sativa: A Microcosm Study. Front Microbiol 2019; 10:537. [PMID: 30984123 PMCID: PMC6450180 DOI: 10.3389/fmicb.2019.00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/01/2019] [Indexed: 11/13/2022] Open
Abstract
The meals after oil extraction from many oilseed crops have nutrition and biofumigation potential for land application. Oilseed meal (SM) from the dedicated bioenergy crop Jatropha curcas were implicated to contain compounds that have antibacterial properties on some soil pathogens. However, little is known about its effect on non-targeted soil microbial community, especially on fungi. SM from Camelina sativa contains moderate level of glucosinolates (GLS) and was under studied. To investigate soil fungal community responses to jatropha and camelina SMs, we conducted a lab based microcosm study, amending soil with 1% SMs of jatropha, camelina, flax, and biomass of wheat straw. Fungal community abundance and structure were analyzed based on the ITS region using qPCR and tag-pyrosequencing. Microbial functional changes were examined by community level physiological profile (CLPP) using Biolog assay. Both SMs from jatropha and camelina showed biofumigant properties and inhibited fungal proliferation. Jatropha SM significantly altered soil fungal community structures with lower fungal biodiversity and higher Chaetomium composition. Camelina SM amended soil promoted Fusarium proliferation. CLPP indicated sequential hierarchy for C metabolism in the oilseed-amended microcosms was generally complex C > phosphate-associated C > carboxylic acids > carbohydrates > amines > amino acids. No significant difference in CLPP was detected due to the type of SM treatment. Our data indicate that both SMs of jatropha and camelina have biofumigant properties and can differentially impact soil microbial communities, and the changes were relatively persistent over time. Microbial functional patterns on the other side were not impacted by SM type. Our study revealed biofumigant and nutritional influence of SMs from dedicated biofuel plants on soil microbial community. This information will help properly using jatropha and camelina SMs for pathogen control while minimizing their negative impacts on non-target microorganisms. However, further studies in the field are demanded to investigate their influences in real practice.
Collapse
Affiliation(s)
- Ping Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangjun Wu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Emily B. Hollister
- Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Hospital, Houston, TX, United States
| | - Autumn S. Wang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | | | - Frank M. Hons
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Terry J. Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|