1
|
Peng A, Li S, Wang Y, Cheng F, Chen J, Zheng X, Xiong J, Ding G, Zhang B, Zhai W, Song L, Wei W, Chen L. Mining Candidate Genes for Leaf Angle in Brassica napus L. by Combining QTL Mapping and RNA Sequencing Analysis. Int J Mol Sci 2024; 25:9325. [PMID: 39273273 PMCID: PMC11394825 DOI: 10.3390/ijms25179325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Leaf angle (LA) is an important trait of plant architecture, and individuals with narrow LA can better capture canopy light under high-density planting, which is beneficial for increasing the overall yield per unit area. To study the genetic basis and molecular regulation mechanism of leaf angle in rapeseed, we carried out a series of experiments. Quantitative trait loci (QTL) mapping was performed using the RIL population, and seven QTLs were identified. Transcriptome analysis showed that the cell wall formation/biogenesis processes and biosynthesis/metabolism of cell wall components were the most enrichment classes. Most differentially expressed genes (DEGs) involved in the synthesis of lignin, xylan, and cellulose showed down-regulated expression in narrow leaf material. Microscopic analysis suggested that the cell size affected by the cell wall in the junction area of the stem and petiole was the main factor in leaf petiole angle (LPA) differences. Combining QTL mapping and RNA sequencing, five promising candidate genes BnaA01G0125600ZS, BnaA01G0135700ZS, BnaA01G0154600ZS, BnaA10G0154200ZS, and BnaC03G0294200ZS were identified in rapeseed, and most of them were involved in cell wall biogenesis and the synthesis/metabolism of cell wall components. The results of QTL, transcriptome analysis, and cytological analysis were highly consistent, collectively revealing that genes related to cell wall function played a crucial role in regulating the LA trait in rapeseed. The study provides further insights into LA traits, and the discovery of new QTLs and candidate genes is highly beneficial for genetic improvement.
Collapse
Affiliation(s)
- Aoyi Peng
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Shuyu Li
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yuwen Wang
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Fengjie Cheng
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Jun Chen
- Fuzhou Teachers' College, East China University of Technology, Fuzhou 344000, China
| | - Xiaoxiao Zheng
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jie Xiong
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Ge Ding
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Bingchao Zhang
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Wen Zhai
- Fuzhou Teachers' College, East China University of Technology, Fuzhou 344000, China
| | - Laiqiang Song
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Wenliang Wei
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Lunlin Chen
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| |
Collapse
|
2
|
Zhang L, Yang B, Li X, Chen S, Zhang C, Xiang S, Sun T, Yang Z, Kong X, Qu C, Lu K, Li J. Integrating GWAS, RNA-Seq and functional analysis revealed that BnaA02.SE mediates silique elongation by affecting cell proliferation and expansion in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 38899717 DOI: 10.1111/pbi.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/08/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Rapeseed (Brassica napus) silique is the major carbohydrate source for seed development, and the final silique length has attracted great attention from breeders. However, no studies had focused on the dynamic character of silique elongation length (SEL). Here, the dynamic SEL investigation in a natural population including 588 lines over two years indicate that dynamic SEL during 0-20 days after flowering was the most essential stage associated with seed number per silique (SPS) and thousand seed weight (TSW). Then, nine loci were identified to be associated with SEL based on GWAS analysis, among which five SNPs (over 50%) distributed on the A02 chromosome within 6.08 to 6.48 Mb. Subsequently, we screened 5078 differentially expressed genes between two extreme materials. An unknown protein, BnaA02.SE, was identified combining with GWAS and RNA-Seq analysis. Subcellular localization and expression profiles analysis demonstrated that BnaA02.SE is a chloroplast- and nucleus-localized protein mainly expressed in pericarps and leaves. Furthermore, transgenic verification and dynamic cytological observation reveal that overexpressed BnaA02.SE can promote silique elongation by regulating JA and IAA contents, affecting cell proliferation and expansion, respectively, and finally enhance seed yield by influencing SPS and TSW. Haplotype analysis reveal that the homologs of BnaA02.SE may also be involved in silique elongation regulation. Our findings provided comprehensive insights into a newly SEL trait, and cloned the first gene (BnaA02.SE) controlling silique elongation in B. napus. The identified BnaA02.SE and its homologs can offer a valuable target for improving B. napus yield.
Collapse
Affiliation(s)
- Liyuan Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Bo Yang
- Industrial Crops Research Institute, Yunnan Acedemy of Agricultural Sciences, Kunming, China
| | - Xiaodong Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Si Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Chao Zhang
- Oil Research Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Sirou Xiang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Tingting Sun
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Ziyan Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xizeng Kong
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Kun Lu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Tan Z, Han X, Dai C, Lu S, He H, Yao X, Chen P, Yang C, Zhao L, Yang QY, Zou J, Wen J, Hong D, Liu C, Ge X, Fan C, Yi B, Zhang C, Ma C, Liu K, Shen J, Tu J, Yang G, Fu T, Guo L, Zhao H. Functional genomics of Brassica napus: Progresses, challenges, and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:484-509. [PMID: 38456625 DOI: 10.1111/jipb.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.
Collapse
Affiliation(s)
- Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanzi He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Canales J, Verdejo JF, Calderini DF. Transcriptome and Physiological Analysis of Rapeseed Tolerance to Post-Flowering Temperature Increase. Int J Mol Sci 2023; 24:15593. [PMID: 37958577 PMCID: PMC10648292 DOI: 10.3390/ijms242115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Climate-change-induced temperature fluctuations pose a significant threat to crop production, particularly in the Southern Hemisphere. This study investigates the transcriptome and physiological responses of rapeseed to post-flowering temperature increases, providing valuable insights into the molecular mechanisms underlying rapeseed tolerance to heat stress. Two rapeseed genotypes, Lumen and Solar, were assessed under control and heat stress conditions in field experiments conducted in Valdivia, Chile. Results showed that seed yield and seed number were negatively affected by heat stress, with genotype-specific responses. Lumen exhibited an average of 9.3% seed yield reduction, whereas Solar showed a 28.7% reduction. RNA-seq analysis of siliques and seeds revealed tissue-specific responses to heat stress, with siliques being more sensitive to temperature stress. Hierarchical clustering analysis identified distinct gene clusters reflecting different aspects of heat stress adaptation in siliques, with a role for protein folding in maintaining silique development and seed quality under high-temperature conditions. In seeds, three distinct patterns of heat-responsive gene expression were observed, with genes involved in protein folding and response to heat showing genotype-specific expression. Gene coexpression network analysis revealed major modules for rapeseed yield and quality, as well as the trade-off between seed number and seed weight. Overall, this study contributes to understanding the molecular mechanisms underlying rapeseed tolerance to heat stress and can inform crop improvement strategies targeting yield optimization under changing environmental conditions.
Collapse
Affiliation(s)
- Javier Canales
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - José F. Verdejo
- Graduate School, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Daniel F. Calderini
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
| |
Collapse
|
5
|
Calderwood A, Siles L, Eastmond PJ, Kurup S, Morris RJ. A causal inference and Bayesian optimisation framework for modelling multi-trait relationships-Proof-of-concept using Brassica napus seed yield under controlled conditions. PLoS One 2023; 18:e0290429. [PMID: 37656702 PMCID: PMC10473526 DOI: 10.1371/journal.pone.0290429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/09/2023] [Indexed: 09/03/2023] Open
Abstract
The improvement of crop yield is a major breeding target and there is a long history of research that has focussed on unravelling the mechanisms and processes that contribute to yield. Quantitative prediction of the interplay between morphological traits, and the effects of these trait-trait relationships on seed production remains, however, a challenge. Consequently, the extent to which crop varieties optimise their morphology for a given environment is largely unknown. This work presents a new combination of existing methodologies by framing crop breeding as an optimisation problem and evaluates the extent to which existing varieties exhibit optimal morphologies under the test conditions. In this proof-of-concept study using spring and winter oilseed rape plants grown under greenhouse conditions, we employ causal inference to model the hierarchically structured effects of 27 morphological yield traits on each other. We perform Bayesian optimisation of seed yield, to identify and quantify the morphologies of ideotype plants, which are expected to be higher yielding than the varieties in the studied panels. Under the tested growth conditions, we find that existing spring varieties occupy the optimal regions of trait-space, but that potentially high yielding strategies are unexplored in extant winter varieties. The same approach can be used to evaluate trait (morphology) space for any environment.
Collapse
Affiliation(s)
- Alexander Calderwood
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, United Kingdom
| | - Laura Siles
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Peter J. Eastmond
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Smita Kurup
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Richard J. Morris
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, United Kingdom
| |
Collapse
|
6
|
Bilgrami S, Darzi Ramandi H, Farokhzadeh S, Rousseau-Gueutin M, Sobhani Najafabadi A, Ghaderian M, Huang P, Liu L. Meta-analysis of seed weight QTLome using a consensus and highly dense genetic map in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:161. [PMID: 37354229 DOI: 10.1007/s00122-023-04401-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023]
Abstract
KEY MESSAGE We report here the discovery of high-confidence MQTL regions and of putative candidate genes associated with seed weight in B. napus using a highly dense consensus genetic map and by comparing various large-scale multiomics datasets. Seed weight (SW) is a direct determinant of seed yield in Brassica napus and is controlled by many loci. To unravel the main genomic regions associated with this complex trait, we used 13 available genetic maps to construct a consensus and highly dense map, comprising 40,401 polymorphic markers and 9191 genetic bins, harboring a cumulative length of 3047.8 cM. Then, we performed a meta-analysis using 639 projected SW quantitative trait loci (QTLs) obtained from studies conducted since 1999, enabling the identification of 57 meta-QTLS (MQTLs). The confidence intervals of our MQTLs were 9.8 and 4.3 times lower than the average CIs of the original QTLs for the A and C subgenomes, respectively, resulting in the detection of some key genes and several putative novel candidate genes associated with SW. By comparing the genes identified in MQTL intervals with multiomics datasets and coexpression analyses of common genes, we defined a more reliable and shorter list of putative candidate genes potentially involved in the regulation of seed maturation and SW. As an example, we provide a list of promising genes with high expression levels in seeds and embryos (e.g., BnaA03g04230D, BnaC03g08840D, BnaA10g29580D and BnaA03g27410D) that can be more finely studied through functional genetics experiments or that may be useful for MQTL-assisted breeding for SW. The high-density genetic consensus map and the single nucleotide polymorphism (SNP) physical map generated from the latest B. napus cv. Darmor-bzh v10 assembly will be a valuable resource for further mapping and map-based cloning of other important traits.
Collapse
Affiliation(s)
- Sayedehsaba Bilgrami
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Hadi Darzi Ramandi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Sara Farokhzadeh
- Department of Plant Production, College of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran
| | | | - Ahmad Sobhani Najafabadi
- Department of Biotechnology, Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Mostafa Ghaderian
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, 45220, USA
| | - Pu Huang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
7
|
Guo X, Yan N, Liu L, Yin X, Chen Y, Zhang Y, Wang J, Cao G, Fan C, Hu Z. Transcriptomic comparison of seeds and silique walls from two rapeseed genotypes with contrasting seed oil content. FRONTIERS IN PLANT SCIENCE 2023; 13:1082466. [PMID: 36714692 PMCID: PMC9880416 DOI: 10.3389/fpls.2022.1082466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Silique walls play pivotal roles in contributing photoassimilates and nutrients to fuel seed growth. However, the interaction between seeds and silique walls impacting oil biosynthesis is not clear during silique development. Changes in sugar, fatty acid and gene expression during Brassica napus silique development of L192 with high oil content and A260 with low oil content were investigated to identify key factors affecting difference of their seed oil content. During the silique development, silique walls contained more hexose and less sucrose than seeds, and glucose and fructose contents in seeds and silique walls of L192 were higher than that of A260 at 15 DAF, and sucrose content in the silique walls of L192 were lower than that of A260 at three time points. Genes related to fatty acid biosynthesis were activated over time, and differences on fatty acid content between the two genotypes occurred after 25 DAF. Genes related to photosynthesis expressed more highly in silique walls than in contemporaneous seeds, and were inhibited over time. Gene set enrichment analysis suggested photosynthesis were activated in L192 at 25 and 35 DAF in silique walls and at both 15 and 35 DAF in the seed. Expressions of sugar transporter genes in L192 was higher than that in A260, especially at 35 DAF. Expressions of genes related to fatty acid biosynthesis, such as BCCP2s, bZIP67 and LEC1s were higher in L192 than in A260, especially at 35 DAF. Meanwhile, genes related to oil body proteins were expressed at much lower levels in L192 than in A260. According to the WGCNA results, hub modules, such as ME.turquoise relative to photosynthesis, ME.green relative to embryo development and ME.yellow relative to lipid biosynthesis, were identified and synergistically regulated seed development and oil accumulation. Our results are helpful for understanding the mechanism of oil accumulation of seeds in oilseed rape for seed oil content improvement.
Collapse
Affiliation(s)
- Xupeng Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Na Yan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Linpo Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiangzhen Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Jingqiao Wang
- Institute of Economical Crops, Yunnan Agricultural Academy, Kunming, Yunnan, China
| | - Guozhi Cao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chengming Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Zhang C, Gong R, Zhong H, Dai C, Zhang R, Dong J, Li Y, Liu S, Hu J. Integrated multi-locus genome-wide association studies and transcriptome analysis for seed yield and yield-related traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 14:1153000. [PMID: 37123841 PMCID: PMC10140536 DOI: 10.3389/fpls.2023.1153000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Rapeseed (Brassica napus L.), the third largest oil crop, is an important source of vegetable oil and biofuel for the world. Although the breeding and yield has been improved, rapeseed still has the lowest yield compared with other major crops. Thus, increasing rapeseed yield is essential for the high demand of vegetable oil and high-quality protein for live stocks. Silique number per plant (SN), seed per pod (SP), and 1000-seed weight (SW) are the three important factors for seed yield in rapeseed. Some yield-related traits, including plant height (PH), flowering time (FT), primary branch number (BN) and silique number per inflorescence (SI) also affect the yield per plant (YP). Using six multi-locus genome-wide association study (ML-GWAS) approaches, a total of 908 yield-related quantitative trait nucleotides (QTNs) were identified in a panel consisting of 403 rapeseed core accessions based on whole-genome sequencing. Integration of ML-GWAS with transcriptome analysis, 79 candidate genes, including BnaA09g39790D (RNA helicase), BnaA09g39950D (Lipase) and BnaC09g25980D (SWEET7), were further identified and twelve genes were validated by qRT-PCRs to affect the SW or SP in rapeseed. The distribution of superior alleles from nineteen stable QTNs in 20 elite rapeseed accessions suggested that the high-yielding accessions contained more superior alleles. These results would contribute to a further understanding of the genetic basis of yield-related traits and could be used for crop improvement in B. napus.
Collapse
Affiliation(s)
- Cuiping Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Ruolin Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Hua Zhong
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Chunyan Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Ru Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Jungang Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shuai Liu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii at Manoa, Honolulu, HI, United States
- *Correspondence: Jihong Hu, ; Shuai Liu,
| | - Jihong Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Jihong Hu, ; Shuai Liu,
| |
Collapse
|
9
|
Systematic trait dissection in oilseed rape provides a comprehensive view, further insight, and exact roadmap for yield determination. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:38. [PMID: 35440054 PMCID: PMC9019968 DOI: 10.1186/s13068-022-02134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/03/2022] [Indexed: 11/10/2022]
Abstract
Background Yield is the most important and complex trait that is influenced by numerous relevant traits with very complicated interrelations. While there are a large number of studies on the phenotypic relationship and genetic basis of yield traits, systematic studies with further dissection focusing on yield are limited. Therefore, there is still lack of a comprehensive and in-depth understanding of the determination of yield. Results In this study, yield was systematically dissected at the phenotypic, genetic to molecular levels in oilseed rape (Brassica napus L.). The analysis of correlation, network, and principal component for 21 traits in BnaZN-RIL population showed that yield was determined by a complex trait network with key contributors. The analysis of the constructed high-density single nucleotide polymorphism (SNP) linkage map revealed the concentrated distribution of distorted and heterozygous markers, likely due to selection on genes controlling the growth period and yield heterosis. A total of 134 consensus quantitative trait loci (QTL) were identified for 21 traits, of which all were incorporated into an interconnecting QTL network with dozens of hub-QTL. Four representative hub-QTL were further dissected to the target or candidate genes that governed the causal relationships between the relevant traits. Conclusions The highly consistent results at the phenotypic, genetic, and molecular dissecting demonstrated that yield was determined by a multilayer composite network that involved numerous traits and genes showing complex up/down-stream and positive/negative regulation. This provides a systematic view, further insight, and exact roadmap for yield determination, which represents a significant advance toward the understanding and dissection of complex traits. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02134-w.
Collapse
|
10
|
Paczesniak D, Pellino M, Goertzen R, Guenter D, Jahnke S, Fischbach A, Lovell JT, Sharbel TF. Seed size, endosperm and germination variation in sexual and apomictic Boechera. FRONTIERS IN PLANT SCIENCE 2022; 13:991531. [PMID: 36466233 PMCID: PMC9716183 DOI: 10.3389/fpls.2022.991531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Asexual reproduction results in offspring that are genetically identical to the mother. Among apomictic plants (reproducing asexually through seeds) many require paternal genetic contribution for proper endosperm development (pseudogamous endosperm). We examined phenotypic diversity in seed traits using a diverse panel of sexual and apomictic accessions from the genus Boechera. While genetic uniformity resulting from asexual reproduction is expected to reduce phenotypic diversity in seeds produced by apomictic individuals, pseudogamous endosperm, variable endosperm ploidy, and the deviations from 2:1 maternal:paternal genome ratio in endosperm can all contribute to increased phenotypic diversity among apomictic offspring. We characterized seed size variation in 64 diploid sexual and apomictic (diploid and triploid) Boechera lineages. In order to find out whether individual seed size was related to endosperm ploidy we performed individual seed measurements (projected area and mass) using the phenoSeeder robot system and flow cytometric seed screen. In order to test whether individual seed size had an effect on resulting fitness we performed a controlled growth experiment and recorded seedling life history traits (germination success, germination timing, and root growth rate). Seeds with triploid embryos were 33% larger than those with diploid embryos, but no average size difference was found between sexual and apomictic groups. We identified a maternal effect whereby chloroplast lineage 2 had 30% larger seeds than lineage 3, despite having broad and mostly overlapping geographic ranges. Apomictic seeds were not more uniform in size than sexual seeds, despite genetic uniformity of the maternal gametophyte in the former. Among specific embryo/endosperm ploidy combinations, seeds with tetraploid (automomous) endosperm were on average smaller, and the proportion of such seeds was highest in apomicts. Larger seeds germinated more quickly than small seeds, and lead to higher rates of root growth in young seedlings. Seed mass is under balancing selection in Boechera, and it is an important predictor of several traits, including germination probability and timing, root growth rates, and developmental abnormalities in apomictic accessions.
Collapse
Affiliation(s)
- Dorota Paczesniak
- Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, SK, Canada
- Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Marco Pellino
- Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, SK, Canada
- Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Richard Goertzen
- Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, SK, Canada
| | - Devan Guenter
- Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, SK, Canada
| | - Siegfried Jahnke
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Jülich, Germany
| | - Andreas Fischbach
- Forschungszentrum Jülich, Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Jülich, Germany
| | - John T. Lovell
- Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Timothy F. Sharbel
- Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, SK, Canada
- Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
11
|
Koley S, Chu KL, Mukherjee T, Morley SA, Klebanovych A, Czymmek KJ, Allen DK. Metabolic synergy in Camelina reproductive tissues for seed development. SCIENCE ADVANCES 2022; 8:eabo7683. [PMID: 36306367 PMCID: PMC9616503 DOI: 10.1126/sciadv.abo7683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis in fruits is well documented, but its contribution to seed development and yield remains largely unquantified. In oilseeds, the pods are green and elevated with direct access to sunlight. With 13C labeling in planta and through an intact pod labeling system, a unique multi-tissue comprehensive flux model mechanistically described how pods assimilate up to one-half (33 to 45%) of seed carbon by proximal photosynthesis in Camelina sativa. By capturing integrated tissue metabolism, the studies reveal the contribution of plant architecture beyond leaves, to enable seed filling and maximize the number of viable seeds. The latent capacity of the pod wall in the absence of leaves contributes approximately 79% of seed biomass, supporting greater seed sink capacity and higher theoretical yields that suggest an opportunity for crop productivity gains.
Collapse
Affiliation(s)
- Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Kevin L. Chu
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | - Stewart A. Morley
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | | | - Doug K. Allen
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, MO, USA
| |
Collapse
|
12
|
Qadir M, Qin L, Ye J, Ahmad N, Wang X, Shi J, Wang H. Genetic dissection of the natural variation of ovule number per ovary in oilseed rape germplasm ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:999790. [PMID: 36176675 PMCID: PMC9513589 DOI: 10.3389/fpls.2022.999790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Oilseed rape is one of the world's largest oil and industrial crops, providing humans with various products, such as vegetable oil and biofuel. Ovules are the direct precursors of seeds, and ovule number per ovary (ONPO) largely determines seed number per fruit that affects both yield and fitness of seed crops. The ONPO shows wide variation in oilseed rape, whereas the underlying genes and mechanisms are poorly known. The present study performed the genetic, physiological and transcriptomic analyses of ovule number per ovary using an association panel and the extreme lines. The ONPO of 327 accessions planted in four environments showed a large variation from 19.2 to 43.8, indicating a great potential for the further genetic improvement of ovule number. The genome-wide association study (GWAS) identified a total of 43 significant SNP markers. Further, these SNPs were integrated into 18 association loci, which were distributed on chromosomes A01, A03, A06, A07, A09, C01, C03, C06, C07, and C09, explaining 4.3-11.5% of the phenotypic variance. The ONPO decreased as their appearance order on the inflorescence and was associated with the level of several types of endogenous phytohormones but not related to leaf area and photosynthetic rate. Comparative transcriptomic analysis identified a total of 4,449 DEGs enriched in 30 classes, including DNA, RNA, protein, signaling, transport, development, cell wall, lipid metabolism, and secondary metabolism. Nearly half of DEGs were involved in the known pathways in regulating ovule number, of which 12 were homologous to know ovule number regulating genes, indicating a strong link between the identified DEGs and ovule number. A total of 73 DEGs were located within the genomic regions of association loci, of which six were identified as candidates based on functional annotation. These results provide useful information for the further genetic improvement of ovule and seed number in oilseed rape.
Collapse
Affiliation(s)
- Muslim Qadir
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Lei Qin
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jiang Ye
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Nazir Ahmad
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
13
|
Wang Y, Li N, Zhan J, Wang X, Zhou XR, Shi J, Wang H. Genome-wide analysis of the JAZ subfamily of transcription factors and functional verification of BnC08.JAZ1-1 in Brassica napus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:93. [PMID: 36096884 PMCID: PMC9469596 DOI: 10.1186/s13068-022-02192-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/30/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND JAZ subfamily plays crucial roles in growth and development, stress, and hormone responses in various plant species. Despite its importance, the structural and functional analyses of the JAZ subfamily in Brassica napus are still limited. RESULTS Comparing to the existence of 12 JAZ genes (AtJAZ1-AtJAZ12) in Arabidopsis, there are 28, 31, and 56 JAZ orthologues in the reference genome of B. rapa, B. oleracea, and B. napus, respectively, in accordance with the proven triplication events during the evolution of Brassicaceae. The phylogenetic analysis showed that 127 JAZ proteins from A. thaliana, B. rapa, B. oleracea, and B. napus could fall into five groups. The structure analysis of all 127 JAZs showed that these proteins have the common motifs of TIFY and Jas, indicating their conservation in Brassicaceae species. In addition, the cis-element analysis showed that the main motif types are related to phytohormones, biotic and abiotic stresses. The qRT-PCR of the representative 11 JAZ genes in B. napus demonstrated that different groups of BnJAZ individuals have distinct patterns of expression under normal conditions or treatments with distinctive abiotic stresses and phytohormones. Especially, the expression of BnJAZ52 (BnC08.JAZ1-1) was significantly repressed by abscisic acid (ABA), gibberellin (GA), indoleacetic acid (IAA), polyethylene glycol (PEG), and NaCl treatments, while induced by methyl jasmonate (MeJA), cold and waterlogging. Expression pattern analysis showed that BnC08.JAZ1-1 was mainly expressed in the vascular bundle and young flower including petal, pistil, stamen, and developing ovule, but not in the stem, leaf, and mature silique and seed. Subcellular localization showed that the protein was localized in the nucleus, in line with its orthologues in Arabidopsis. Overexpression of BnC08.JAZ1-1 in Arabidopsis resulted in enhanced seed weight, likely through regulating the expression of the downstream response genes involved in the ubiquitin-proteasome pathway and phospholipid metabolism pathway. CONCLUSIONS The systematic identification, phylogenetic, syntenic, and expression analyses of BnJAZs subfamily improve our understanding of their roles in responses to stress and phytohormone in B. napus. In addition, the preliminary functional validation of BnC08.JAZ1-1 in Arabidopsis demonstrated that this subfamily might also play a role in regulating seed weight.
Collapse
Affiliation(s)
- Ying Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Na Li
- grid.464499.2The Laboratory of Melon Crops, Zhengzhou Fruit Research Institute of the Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province China
| | - Jiepeng Zhan
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xinfa Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Xue-Rong Zhou
- grid.1016.60000 0001 2173 2719Commonwealth Scientific & Industrial Research Organisation (CSIRO) Agriculture &Food, Canberra, ACT Australia
| | - Jiaqin Shi
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hanzhong Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
14
|
Brassica and Sinapis Seeds in Medieval Archaeological Sites: An Example of Multiproxy Analysis for Their Identification and Ethnobotanical Interpretation. PLANTS 2022; 11:plants11162100. [PMID: 36015403 PMCID: PMC9412621 DOI: 10.3390/plants11162100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
The genus Brassica includes some of the most important vegetable and oil crops worldwide. Many Brassica seeds (which can show diagnostic characters useful for species identification) were recovered from two archaeological sites in northern Italy, dated from between the Middle Ages and the Renaissance. We tested the combined use of archaeobotanical keys, ancient DNA barcoding, and references to ancient herbarium specimens to address the issue of diagnostic uncertainty. An unequivocal conventional diagnosis was possible for much of the material recovered, with the samples dominated by five Brassica species and Sinapis. The analysis using ancient DNA was restricted to the seeds with a Brassica-type structure and deployed a variant of multiplexed tandem PCR. The quality of diagnosis strongly depended on the molecular locus used. Nevertheless, many seeds were diagnosed down to species level, in concordance with their morphological identification, using one primer set from the core barcode site (matK). The number of specimens found in the Renaissance herbaria was not high; Brassica nigra, which is of great ethnobotanical importance, was the most common taxon. Thus, the combined use of independent means of species identification is particularly important when studying the early use of closely related crops, such as Brassicaceae.
Collapse
|
15
|
Dhaka N, Jain R, Yadav A, Yadav P, Kumar N, Sharma MK, Sharma R. Transcriptome analysis reveals cell cycle-related transcripts as key determinants of varietal differences in seed size of Brassica juncea. Sci Rep 2022; 12:11713. [PMID: 35810218 PMCID: PMC9271088 DOI: 10.1038/s41598-022-15938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Brassica juncea is an important oilseed crop, widely grown as a source of edible oil. Seed size is a pivotal agricultural trait in oilseed Brassicas. However, the regulatory mechanisms underlying seed size determination are poorly understood. To elucidate the transcriptional dynamics involved in the determination of seed size in B. juncea, we performed a comparative transcriptomic analysis using developing seeds of two varieties, small-seeded Early Heera2 (EH2) and bold-seeded Pusajaikisan (PJK), at three distinct stages (15, 30 and 45 days after pollination). We detected 112,550 transcripts, of which 27,186 and 19,522 were differentially expressed in the intra-variety comparisons and inter-variety comparisons, respectively. Functional analysis using pathway, gene ontology, and transcription factor enrichment revealed that cell cycle- and cell division-related transcripts stay upregulated during later stages of seed development in the bold-seeded variety but are downregulated at the same stage in the small-seeded variety, indicating that an extended period of cell proliferation in the later stages increased seed weight in PJK as compared to EH2. Further, k-means clustering and candidate genes-based analyses unravelled candidates for employing in seed size improvement of B. juncea. In addition, candidates involved in determining seed coat color, oil content, and other seed traits were also identified.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India.
| | - Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinandan Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Pinky Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neeraj Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | - Rita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
16
|
Tandukar Z, Chopra R, Frels K, Heim B, Marks MD, Anderson JA. Genetic dissection of seed characteristics in field pennycress via genome-wide association mapping studies. THE PLANT GENOME 2022; 15:e20211. [PMID: 35484973 DOI: 10.1002/tpg2.20211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Field pennycress (Thlaspi arvense L.) is a new winter annual cash cover crop with high oil content and seed yield, excellent winter hardiness, early maturation, and resistance to most pests and diseases. It provides living cover on fallow croplands between summer seasons, and in doing so reduces nutrient leaching into water sources, mitigates soil erosion, and suppresses weed growth. The first ever genome-wide association study (GWAS) was conducted on a pennycress diversity panel to identify marker trait associations with important seed size and composition related traits. The entire population was phenotyped in three total environments over 2 yr, and seed area, length, width, thousand grain weight, total oil, and total protein were measured post-harvest with specialized high-throughput imaging and near-infrared spectroscopy. Basic unbiased linear prediction values were calculated for each trait. Seed size traits tended to have higher entry mean reliabilities (0.76-0.79) compared with oil content (0.51) and protein content (0.37). Genotyping-by-sequencing identified 33,606 high quality genome-wide single nucleotide polymorphism (SNPs) that were coupled with phenotypic data to perform GWAS for seed area, length, width, thousand grain weight, total oil, and total protein content. Fifty-nine total marker-trait associations were identified revealing genomic regions controlling each trait. The significant SNPs explained 0.06-0.18% of the total variance for that trait in our population. A list of candidate genes was identified based on their functional annotations and characterization in other species. Our results confirm that GWAS is an efficient strategy to identify significant marker-trait associations that can be incorporated into marker-assisted selection pipelines to accelerate pennycress breeding progress.
Collapse
Affiliation(s)
- Zenith Tandukar
- Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, Saint Paul, MN, USA
| | - Ratan Chopra
- Dep. of Plant and Microbial Biology, Univ. of Minnesota, Saint Paul, MN, USA
| | - Katherine Frels
- Dep. of Agronomy and Horticulture, Univ. of Nebraska, Lincoln, NE, USA
| | - Brett Heim
- Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, Saint Paul, MN, USA
| | - M David Marks
- Dep. of Plant and Microbial Biology, Univ. of Minnesota, Saint Paul, MN, USA
| | - James A Anderson
- Dep. of Agronomy and Plant Genetics, Univ. of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
17
|
Zhang C, Chang W, Li X, Yang B, Zhang L, Xiao Z, Li J, Lu K. Transcriptome and Small RNA Sequencing Reveal the Mechanisms Regulating Harvest Index in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:855486. [PMID: 35444672 PMCID: PMC9014204 DOI: 10.3389/fpls.2022.855486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Harvest index (HI), the ratio of harvested seed weight to total aboveground biomass weight, is an economically critical value reflecting the convergence of complex agronomic traits. HI values in rapeseed (Brassica napus) remain much lower than in other major crops, and the underlying regulatory network is largely unknown. In this study, we performed mRNA and small RNA sequencing to reveal the mechanisms shaping HI in B. napus during the seed-filling stage. A total of 8,410 differentially expressed genes (DEGs) between high-HI and low-HI accessions in four tissues (silique pericarp, seed, leaves, and stem) were identified. Combining with co-expression network, 72 gene modules were identified, and a key gene BnaSTY46 was found to participate in retarded establishment of photosynthetic capacity to influence HI. Further research found that the genes involved in circadian rhythms and response to stimulus may play important roles in HI and that their transcript levels were modulated by differentially expressed microRNAs (DEMs), and we identified 903 microRNAs (miRNAs), including 46 known miRNAs and 857 novel miRNAs. Furthermore, transporter activity-related genes were critical to enhancing HI in good cultivation environments. Of 903 miRNAs, we found that the bna-miR396-Bna.A06SRp34a/Bna.A01EMB3119 pair may control the seed development and the accumulation of storage compounds, thus contributing to higher HI. Our findings uncovered the underlying complex regulatory network behind HI and offer potential approaches to rapeseed improvement.
Collapse
Affiliation(s)
- Chao Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Oil Research Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wei Chang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaodong Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bo Yang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Liyuan Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhongchun Xiao
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
18
|
Transgenerational Genetic Effects Help Explain Latitudinal Variation in Seed Mass and Germination Timing in Plantago lanceolata. PLANTS 2022; 11:plants11040522. [PMID: 35214858 PMCID: PMC8880339 DOI: 10.3390/plants11040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022]
Abstract
We know little about the underlying genetic control of phenotypic patterns of seed traits across large-scale geographic and environmental gradients. Such knowledge is important for understanding the evolution of populations within species and for improving species conservation. Therefore, to test for genetic variation in Plantago lanceolata, we made reciprocal crosses between northern and southern genotypes that span the species’ range in Europe. The results provide evidence of transgenerational genetic effects on seed mass and germination timing. Northern mothers produced larger seeds with delayed germination, in contrast to southern mothers, which produced smaller seeds with accelerated germination. A maternal latitude affected both the seed coat, solely maternal tissue, and embryo/endosperm tissues. Thus, latitudinal variation in seed size and germination timing can be explained, in part, by the direct influence of maternal genotype, independent of zygotic genes that parents pass directly to the embryo and endosperm. Data suggest that researchers exploring the existence and evolution of large-scale geographic variation within species test for transgenerational genetic effects. In addition, data suggest that transgenerational control of seed traits should be considered when developing procedures designed to facilitate species conservation and restoration.
Collapse
|
19
|
Siles L, Hassall KL, Sanchis Gritsch C, Eastmond PJ, Kurup S. Uncovering Trait Associations Resulting in Maximal Seed Yield in Winter and Spring Oilseed Rape. FRONTIERS IN PLANT SCIENCE 2021; 12:697576. [PMID: 34552604 PMCID: PMC8450599 DOI: 10.3389/fpls.2021.697576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Seed yield is a complex trait for many crop species including oilseed rape (OSR) (Brassica napus), the second most important oilseed crop worldwide. Studies have focused on the contribution of distinct factors in seed yield such as environmental cues, agronomical practices, growth conditions, or specific phenotypic traits at the whole plant level, such as number of pods in a plant. However, how female reproductive traits contribute to whole plant level traits, and hence to seed yield, has been largely ignored. Here, we describe the combined contribution of 33 phenotypic traits within a B. napus diversity set population and their trade-offs at the whole plant and organ level, along with their interaction with plant level traits. Our results revealed that both Winter OSR (WOSR) and Spring OSR (SOSR); the two more economically important OSR groups in terms of oil production; share a common dominant reproductive strategy for seed yield. In this strategy, the main inflorescence is the principal source of seed yield, producing a good number of ovules, a large number of long pods with a concomitantly high number of seeds per pod. Moreover, we observed that WOSR opted for additional reproductive strategies than SOSR, presenting more plasticity to maximise seed yield. Overall, we conclude that OSR adopts a key strategy to ensure maximal seed yield and propose an ideal ideotype highlighting crucial phenotypic traits that could be potential targets for breeding.
Collapse
Affiliation(s)
- Laura Siles
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Kirsty L. Hassall
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | | | - Peter J. Eastmond
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Smita Kurup
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
20
|
Pal L, Sandhu SK, Bhatia D, Sethi S. Genome-wide association study for candidate genes controlling seed yield and its components in rapeseed ( Brassica napus subsp. napus). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1933-1951. [PMID: 34629771 PMCID: PMC8484396 DOI: 10.1007/s12298-021-01060-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Genetic improvement of seed yield per plant (SY) is one of the major objectives in Brassica napus breeding programme. SY, being a complex quantitative trait is directly and indirectly influenced by yield-component traits such as siliqua length (SL), number of seeds per siliqua (NSS), and thousand seed weight (TSW). Therefore, concurrent improvement in SL, NSS and TSW can lead to higher SY in B. napus. This study was conducted to identify significant SNPs and putative candidate genes governing SY and its component traits (SL, NSS, TSW). All these traits were evaluated in a diverse set of 200 genotypes representing diversity from wide geographical locations. Of these, a set of 125 genotypes were chosen based on pedigree diversity and multi-location trait variation for genotyping by sequencing (GBS). Best linear unbiased predictors (BLUPs) of all the traits were used for genome-wide association study (GWAS) with 85,126 SNPs obtained from GBS. A total of 16, 18, 27 and 18 SNPs were found to be significantly associated for SL, NSS, TSW and SY respectively. Based on linkage disequilibrium decay analysis, 150 kb genomic region flanking the SNP was used for the identification of underlying candidate genes for each test trait. Important candidate genes involved in phytohormone signaling (WAT1, OSR1, ARR8, CKX1, REM7, REM9, BG1) and seed storage proteins (Cruciferin) were found to have significant influence on seed weight and yield. Genes involved in sexual reproduction and fertilization (PERK7, PERK13, PRK3, GATA15, NFD6) were found to determine the number of seeds per siliqua. Several genes found in this study namely ATS3A, CKX1, SPL2, SPL6, SPL9, WAT1 showed pleiotropic effect with yield component traits. Significant SNPs and putative candidate genes identified for SL, NSS, TSW and SY could be used in marker-assisted breeding for improvement of crop yield in B. napus. Genotypes identified with high SL, NSS, TSW and SY could serve as donors in crop improvement programs in B. napus. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01060-9.
Collapse
Affiliation(s)
- Lalit Pal
- Principal Scientist, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Surinder K. Sandhu
- Principal Scientist, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Dharminder Bhatia
- Principal Scientist, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Sorabh Sethi
- Principal Scientist, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
21
|
Zhang X, Huang Q, Wang P, Liu F, Luo M, Li X, Wang Z, Wan L, Yang G, Hong D. A 24,482-bp deletion is associated with increased seed weight in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2653-2669. [PMID: 34002254 DOI: 10.1007/s00122-021-03850-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
A major QTL for seed weight was fine-mapped in rapeseed, and a 24,482-bp deletion likely mediates the effect through multiple pathways. Exploration of the genes controlling seed weight is critical to the improvement of crop yield and elucidation of the mechanisms underlying seed formation in rapeseed (Brassica napus L.). We previously identified the quantitative trait locus (QTL) qSW.C9 for the thousand-seed weight (TSW) in a double haploid population constructed from F1 hybrids between the parental accessions HZ396 and Y106. Here, we confirmed the phenotypic effects associated with qSW.C9 in BC3F2 populations and fine-mapped the candidate causal locus to a 266-kb interval. Sequence and expression analyses revealed that a 24,482-bp deletion in HZ396 containing six predicted genes most likely underlies qSW.C9. Differential gene expression analysis and cytological observations suggested that qSW.C9 affects both cell proliferation and cell expansion through multiple signaling pathways. After genotyping of a rapeseed diversity panel to define the haplotype structure, it could be concluded that the selection of germplasm with two specific markers may be effective in improving the seed weight of rapeseed. This study provides a solid foundation for the identification of the causal gene of qSW.C9 and offers a promising target for the breeding of higher-yielding rapeseed.
Collapse
Affiliation(s)
- Xiaohui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiyang Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Feiyang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mudan Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhuanrong Wang
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Lili Wan
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
22
|
Canales J, Verdejo J, Carrasco-Puga G, Castillo FM, Arenas-M A, Calderini DF. Transcriptome Analysis of Seed Weight Plasticity in Brassica napus. Int J Mol Sci 2021; 22:4449. [PMID: 33923211 PMCID: PMC8123204 DOI: 10.3390/ijms22094449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
A critical barrier to improving crop yield is the trade-off between seed weight (SW) and seed number (SN), which has been commonly reported in several crops, including Brassica napus. Despite the agronomic relevance of this issue, the molecular factors involved in the interaction between SW and SN are largely unknown in crops. In this work, we performed a detailed transcriptomic analysis of 48 seed samples obtained from two rapeseed spring genotypes subjected to different source-sink (S-S) ratios in order to examine the relationship between SW and SN under different field conditions. A multifactorial analysis of the RNA-seq data was used to identify a group of 1014 genes exclusively regulated by the S-S ratio. We found that a reduction in the S-S ratio during seed filling induces the expression of genes involved in sucrose transport, seed weight, and stress responses. Moreover, we identified five co-expression modules that are positively correlated with SW and negatively correlated with SN. Interestingly, one of these modules was significantly enriched in transcription factors (TFs). Furthermore, our network analysis predicted several NAC TFs as major hubs underlying SW and SN compensation. Taken together, our study provides novel insights into the molecular factors associated with the SW-SN relationship in rapeseed and identifies TFs as potential targets when improving crop yield.
Collapse
Affiliation(s)
- Javier Canales
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile; (F.M.C.); (A.A.-M.)
- ANID–Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), 8331150 Santiago, Chile
| | - José Verdejo
- Graduate School, Faculty of Agricultural Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile;
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile;
| | - Gabriela Carrasco-Puga
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile;
| | - Francisca M. Castillo
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile; (F.M.C.); (A.A.-M.)
- ANID–Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), 8331150 Santiago, Chile
| | - Anita Arenas-M
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile; (F.M.C.); (A.A.-M.)
- ANID–Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), 8331150 Santiago, Chile
| | - Daniel F. Calderini
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile;
| |
Collapse
|
23
|
Wang H, Yan M, Xiong M, Wang P, Liu Y, Xin Q, Wan L, Yang G, Hong D. Genetic dissection of thousand-seed weight and fine mapping of cqSW.A03-2 via linkage and association analysis in rapeseed (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1321-1335. [PMID: 32002584 DOI: 10.1007/s00122-020-03553-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE: cqSW.A03-2, one of the six identified quantitative trait loci associated with thousand-seed weight in rapeseed, is mapped to a 61.6-kb region on chromosome A03 and corresponds to the candidate gene BnaA03G37960D. Seed weight is an important factor that determines the seed yield of oilseed rape (Brassica napus L.). To elucidate the genetic mechanism of thousand-seed weight (TSW), quantitative trait locus (QTL) mapping was conducted using a double haploid population derived from the cross between an elite line ZY50 and a pol cytoplasmic male sterility restorer line 7-5. The genetic basis of TSW was dissected into six major QTLs. One major QTL denoted as cqSW.A03-2, which explained 8.46-13.70% of the phenotypic variation, was detected across multiple environments. To uncover the genetic basis of cqSW.A03-2, a set of near-isogenic lines were developed. Based on the test of self-pollinated progenies, cqSW.A03-2 was identified as a single Mendelian factor and the ZY50 allele at cqSW.A03-2 showed a positive effect on TSW. Fine mapping delimited the cqSW.A03-2 locus into a 61.6-kb region, and 18 genes within this region were predicted. Candidate gene association analysis and expression analysis indicated that a histidine kinase gene (BnaA03G37960D) is likely to be the candidate gene for the cqSW.A03-2 locus. Our results may contribute to a better understanding of the molecular mechanism of seed weight regulation and promote the breeding program for yield improvement in rapeseed.
Collapse
Affiliation(s)
- Hao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Min Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mei Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ying Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Qiang Xin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lili Wan
- Institute of Crops, Wuhan Academy of Agricultural Sciences, Wuhan, 430065, Hubei, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
24
|
Zhu Y, Ye J, Zhan J, Zheng X, Zhang J, Shi J, Wang X, Liu G, Wang H. Validation and Characterization of a Seed Number Per Silique Quantitative Trait Locus qSN.A7 in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2020; 11:68. [PMID: 32153604 PMCID: PMC7047150 DOI: 10.3389/fpls.2020.00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Seed number is a key character/trait tightly related to the plant fitness/evolution and crop domestication/improvement. The seed number per silique (SNPS) shows a huge variation from several to more than 30, however the underlying regulatory mechanisms are poorly known, which has hindered its improvement. To answer this question, several representative lines with extreme SNPS were previously subjected to systematic genetic and cytological analyses. The results showed that the natural variation of seed number per silique is mainly controlled by maternal and embryonic genotype, which are co-determined by ovule number per ovary, fertile ovule ratio, ovule fertilization rate, and fertilized ovule development rate. More importantly, we also mapped two repeatable quantitative trait loci (QTLs) for SNPS using the F2:3 population derived from Zhongshuang11 and No. 73290, of which the major QTL qSN.A6 has been fine-mapped. In the current study, the near-isogenic lines (NILs) of qSN.A7 were successfully developed by the successive backcross of F1 with Zhongshuang11. First, the effect of qSN.A7 was validated by evaluating the SNPS of two types of homozygous NILs from BC3F2 population, which showed a significant difference of 2.23 on average. Then, qSN.A7 was successfully fine-mapped from the original 4.237 to 1.389 Mb, using a BC4F2 segregating population of 2,551 individuals. To further clarify the regulatory mechanism of qSN.A7, the two types of homologous NILs were subjected to genetic and cytological analyses. The results showed that the difference in SNPS between the two homologous NILs was determined by the embryonic genotypic effect. Highly accordant with this, no significant difference was observed in ovule number per ovary, ovule fertility, fertilization rate, and pollen fertility between the two homologous NILs. Therefore, the regulatory mechanism of qSN.A7 is completely different from the cloned qSS.C9 and qSN.A6. These results will advance the understanding of SNPS and facilitate gene cloning and molecular breeding in Brassica napus.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaqin Shi
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministryof Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | | | | |
Collapse
|
25
|
Li S, Zhu Y, Varshney RK, Zhan J, Zheng X, Shi J, Wang X, Liu G, Wang H. A systematic dissection of the mechanisms underlying the natural variation of silique number in rapeseed (Brassica napus L.) germplasm. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:568-580. [PMID: 31368615 PMCID: PMC6953207 DOI: 10.1111/pbi.13224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 05/12/2023]
Abstract
Silique number is the most important component of yield in rapeseed (Brassica napus L.). To dissect the mechanism underlying the natural variation of silique number in rapeseed germplasm, a series of studies were performed. A panel of 331 core lines was employed to genome-wide association study (GWAS), and 27 loci (including 20 novel loci) were identified. The silique number difference between the more- and fewer-silique lines can be attributed to the accumulative differences in flower number and silique setting rate. Each of them accounted for 75.2% and 24.8%, respectively. The silique number was highly associated with the total photosynthesis and biomass. Microscopic analysis showed that the difference between extremely more- and fewer-silique lines normally occurred at the amount of flower bud but not morphology. Transcriptome analysis of shoot apical meristem (SAM) suggested that most of enriched groups were associated with the auxin biosynthesis/metabolism, vegetative growth and nutrition/energy accumulation. By integrating GWAS and RNA-seq results, six promising candidate genes were identified, and some of them were related to biomass accumulation. In conclusion, the natural variation of silique number is largely affected by the biomass and nutrition accumulation, which essentially reflects the positive regulatory relationship between the source and sink. Our study provides a comprehensive and systematic explanation for natural variation of silique number in rapeseed, which provides a foundation for its improvement.
Collapse
Affiliation(s)
- Shuyu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
- Crop Research InstituteJiangxi Academy of Agricultural SciencesNanchangChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yaoyao Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Rajeev Kumar Varshney
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | - Jiepeng Zhan
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Xiaoxiao Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Guihua Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesKey Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhanChina
| |
Collapse
|
26
|
Shen W, Qin P, Yan M, Li B, Wu Z, Wen J, Yi B, Ma C, Shen J, Fu T, Tu J. Fine mapping of a silique length- and seed weight-related gene in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2985-2996. [PMID: 31321475 DOI: 10.1007/s00122-019-03400-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Using microarray analysis combined with map-based cloning, a major locus positively regulating SL and SW was mapped to a 98.47 kb interval on A09 in rapeseed. In rapeseed, seed yield is closely associated with silique-related traits such as silique length (SL) and seed weight (SW). Previously identified quantitative trait loci (QTLs) revealed that SL and SW are complex traits and many QTLs overlap. However, the genetic characterization of the association between SL and SW is poorly understood. In the present study, a BC3F3 near isogenic line developed from a short silique plant and the long silique cultivar 'ZS11' was analyzed to identify the locus related to SL. Map-based cloning indicated that a major locus acting as a single Mendelian factor was mapped to a 98.47 kb region on chromosome A09. BLAST analysis and DNA sequencing showed SNP variations and a fragment replacement in the upstream region of the candidate gene BnaA09g55530D may alter gene expression and influence SL. The results showed that this SL locus may also positively affect SW as well as in the 186 rapeseed accessions identified by the associated markers. Therefore, selecting plants with appropriate SL and developing functional markers for the associated gene could play important roles in the molecular breeding of high-yield rapeseed varieties.
Collapse
Affiliation(s)
- Wenhao Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengjiao Yan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bao Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zengxiang Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|