1
|
Ye H, Liu H, Li H, Lei D, Gao Z, Zhou H, Zhao P. Complete mitochondrial genome assembly of Juglans regia unveiled its molecular characteristics, genome evolution, and phylogenetic implications. BMC Genomics 2024; 25:894. [PMID: 39342114 PMCID: PMC11439326 DOI: 10.1186/s12864-024-10818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The Persian walnut (Juglans regia), an economically vital species within the Juglandaceae family, has seen its mitochondrial genome sequenced and assembled in the current study using advanced Illumina and Nanopore sequencing technology. RESULTS The 1,007,576 bp mitogenome of J. regia consisted of three circular chromosomes with a 44.52% GC content encoding 39 PCGs, 47 tRNA, and five rRNA genes. Extensive repetitive sequences, including 320 SSRs, 512 interspersed, and 83 tandem repeats, were identified, contributing to genomic complexity. The protein-coding sequences (PCGs) favored A/T-ending codons, and the codon usage bias was primarily shaped by selective pressure. Intracellular gene transfer occurred among the mitogenome, chloroplast, and nuclear genomes. Comparative genomic analysis unveiled abundant structure and sequence variation among J. regia and related species. The results of selective pressure analysis indicated that most PCGs underwent purifying selection, whereas the atp4 and ccmB genes had experienced positive selection between many species pairs. In addition, the phylogenetic examination, grounded in mitochondrial genome data, precisely delineated the evolutionary and taxonomic relationships of J. regia and its relatives. We identified a total of 539 RNA editing sites, among which 288 were corroborated by transcriptome sequencing data. Furthermore, expression profiling under temperature stress highlighted the complex regulation pattern of 28 differently expressed PCGs, wherein NADH dehydrogenase and ATP synthase genes might be critical in the mitochondria response to cold stress. CONCLUSIONS Our results provided valuable molecular resources for understanding the genetic characteristics of J. regia and offered novel perspectives for population genetics and evolutionary studies in Juglans and related woody species.
Collapse
Affiliation(s)
- Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Haochen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Dingfan Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zhimei Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Huijuan Zhou
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Academy of Science, Xi'an, Shaanxi, 710061, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
2
|
Montanari S, Deng C, Koot E, Bassil NV, Zurn JD, Morrison-Whittle P, Worthington ML, Aryal R, Ashrafi H, Pradelles J, Wellenreuther M, Chagné D. A multiplexed plant-animal SNP array for selective breeding and species conservation applications. G3 (BETHESDA, MD.) 2023; 13:jkad170. [PMID: 37565490 PMCID: PMC10542201 DOI: 10.1093/g3journal/jkad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023]
Abstract
Reliable and high-throughput genotyping platforms are of immense importance for identifying and dissecting genomic regions controlling important phenotypes, supporting selection processes in breeding programs, and managing wild populations and germplasm collections. Amongst available genotyping tools, single nucleotide polymorphism arrays have been shown to be comparatively easy to use and generate highly accurate genotypic data. Single-species arrays are the most commonly used type so far; however, some multi-species arrays have been developed for closely related species that share single nucleotide polymorphism markers, exploiting inter-species cross-amplification. In this study, the suitability of a multiplexed plant-animal single nucleotide polymorphism array, including both closely and distantly related species, was explored. The performance of the single nucleotide polymorphism array across species for diverse applications, ranging from intra-species diversity assessments to parentage analysis, was assessed. Moreover, the value of genotyping pooled DNA of distantly related species on the single nucleotide polymorphism array as a technique to further reduce costs was evaluated. Single nucleotide polymorphism performance was generally high, and species-specific single nucleotide polymorphisms proved suitable for diverse applications. The multi-species single nucleotide polymorphism array approach reported here could be transferred to other species to achieve cost savings resulting from the increased throughput when several projects use the same array, and the pooling technique adds another highly promising advancement to additionally decrease genotyping costs by half.
Collapse
Affiliation(s)
- Sara Montanari
- The New Zealand Institute for Plant and Food Research Ltd, Motueka 7198, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Ltd, Auckland 1025, New Zealand
| | - Emily Koot
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North 4410, New Zealand
| | - Nahla V Bassil
- USDA-ARS National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Jason D Zurn
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson 7010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North 4410, New Zealand
| |
Collapse
|
3
|
Itoo H, Shah RA, Qurat S, Jeelani A, Khursheed S, Bhat ZA, Mir MA, Rather GH, Zargar SM, Shah MD, Padder BA. Genome-wide characterization and development of SSR markers for genetic diversity analysis in northwestern Himalayas Walnut ( Juglans regia L.). 3 Biotech 2023; 13:136. [PMID: 37124992 PMCID: PMC10130282 DOI: 10.1007/s13205-023-03563-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/15/2023] [Indexed: 05/02/2023] Open
Abstract
In the present study, we designed and validated genome-wide polymorphic SSR markers (110 SSRs) by mining the walnut genome. A total of 198,924 SSR loci were identified. Among these, successful primers were designed for 162,594 (81.73%) SSR loci. Dinucleotides were the most predominant accounting for 88.40% (175,075) of total SSRs. The SSR frequency was 377.312 SSR/Mb and it showed a decreasing trend from dinucleotide to octanucleotide motifs. We identified 20 highly polymorphic SSR markers and used them to genotype 72 walnut accessions. Over all, we obtained 118 alleles that ranged from 2 to 12 with an average value of 5.9. The higher SSR PIC values indicate their robustness in discriminating walnut genotypes. Heat map, PCA, and population structure categorized 72 walnut genotypes into 2 distinct clusters. The genetic variation within population was higher than among population as inferred by analysis of molecular variance (AMOVA). For walnut improvement, it is necessary to have a large repository of SSRs with high discriminative power. The present study reports 150,000 SSRs, which is the largest SSR repository for this important nut crop. Scientific communities may use this repository for walnut improvement such as QTL mapping, genetic studies, linkage map construction, and marker-assisted selection. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03563-6.
Collapse
Affiliation(s)
- H. Itoo
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Rafiq Ahmad Shah
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - S. Qurat
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - Afnan Jeelani
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - Sheikh Khursheed
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Zahoor A. Bhat
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - M. A. Mir
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - G. H. Rather
- Ambri Apple Research Centre, Pahnoo Shopian, Sheri-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K 192303 India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Faculty of Horticulture, Shalimar, Kashmir, Srinagar, J&K 190 025 India
| | - M. D. Shah
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Kashmir, 190 025 Srinagar, J&K India
| | - Bilal A. Padder
- Plant Virology and Molecular Plant Pathology Laboratory, Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Kashmir, 190 025 Srinagar, J&K India
| |
Collapse
|
4
|
Jia H, Zhao Q, Song J, Zhang X, Yang W, Du Z, Zhu Y, Wang H. Large-scale population structure and genetic architecture of agronomic traits of garlic. HORTICULTURE RESEARCH 2023; 10:uhad034. [PMID: 37799626 PMCID: PMC10548411 DOI: 10.1093/hr/uhad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/16/2023] [Indexed: 10/07/2023]
Abstract
Garlic, an asexually propagated crop, is the second important bulb crop after the onion and is used as a vegetable and medicinal plant. Abundant and diverse garlic resources have been formed over thousands of years of cultivation. However, genome variation, population structure and genetic architecture of garlic agronomic traits were still not well elucidated. Here, 1 100 258 single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing in 606 garlic accessions collected from 43 countries. Population structure, principal component and phylogenetic analysis showed that these accessions were divided into five subpopulations. Twenty agronomic traits, including above-ground growth traits, bulb-related and bolt-related traits in two consecutive years were implemented in a genome-wide association study. In total, 542 SNPs were associated with these agronomic traits, among which 188 SNPs were repeatedly associated with more than two traits. One SNP (chr6: 1896135972) was repeatedly associated with ten traits. These associated SNPs were located within or near 858 genes, 56 of which were transcription factors. Interestingly, one non-synonymous SNP (Chr4: 166524085) in ribosomal protein S5 was repeatedly associated with above-ground growth and bulb-related traits. Additionally, gene ontology enrichment analysis of candidate genes for genomic selection regions between complete-bolting and non-bolting accessions showed that these genes were significantly enriched in 'vegetative to reproductive phase transition of meristem', 'shoot system development', 'reproductive process', etc. These results provide valuable information for the reliable and efficient selection of candidate genes to achieve garlic genetic improvement and superior varieties.
Collapse
Affiliation(s)
- Huixia Jia
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qing Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangping Song
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaohui Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenlong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenzhen Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Zhu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiping Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Duval H, Coindre E, Ramos-Onsins SE, Alexiou KG, Rubio-Cabetas MJ, Martínez-García PJ, Wirthensohn M, Dhingra A, Samarina A, Arús P. Development and Evaluation of an Axiom TM 60K SNP Array for Almond ( Prunus dulcis). PLANTS (BASEL, SWITZERLAND) 2023; 12:242. [PMID: 36678957 PMCID: PMC9866729 DOI: 10.3390/plants12020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
A high-density single nucleotide polymorphism (SNP) array is essential to enable faster progress in plant breeding for new cultivar development. In this regard, we have developed an Axiom 60K almond SNP array by resequencing 81 almond accessions. For the validation of the array, a set of 210 accessions were genotyped and 82.8% of the SNPs were classified in the best recommended SNPs. The rate of missing data was between 0.4% and 2.7% for the almond accessions and less than 15.5% for the few peach and wild accessions, suggesting that this array can be used for peach and interspecific peach × almond genetic studies. The values of the two SNPs linked to the RMja (nematode resistance) and SK (bitterness) genes were consistent. We also genotyped 49 hybrids from an almond F2 progeny and could build a genetic map with a set of 1159 SNPs. Error rates, less than 1%, were evaluated by comparing replicates and by detection of departures from Mendelian inheritance in the F2 progeny. This almond array is commercially available and should be a cost-effective genotyping tool useful in the search for new genes and quantitative traits loci (QTL) involved in the control of agronomic traits.
Collapse
Affiliation(s)
- Henri Duval
- Unité de Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE (French National Research Institute for Agriculture, Food and Environment), 84143 Montfavet, France
| | - Eva Coindre
- Unité de Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE (French National Research Institute for Agriculture, Food and Environment), 84143 Montfavet, France
| | - Sebastian E. Ramos-Onsins
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
| | - Konstantinos G. Alexiou
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
- IRTA (Institute of Agrifood Research and Technology), Campus UAB, Edifici CRAG, Cerdanyola del Valles (Bellaterra), 08193 Barcelona, Spain
| | - Maria J. Rubio-Cabetas
- CITA (Agrifood Research and Technology Centre of Aragon), Department of Plant Science, Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Pedro J. Martínez-García
- CEBAS (Centro de Edafología y Biología Aplicada del Segura), CSIC, Department of Plant Breeding, Campus Universitario de Espinardo, 30100 Espinardo, Spain
| | - Michelle Wirthensohn
- Waite Research Institute, University of Adelaide, PMB 1 Glen, Osmond, SA 5064, Australia
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Anna Samarina
- Thermo Fisher Scientific, Frankfurter Str. 129B, 64293 Darmstadt, Germany
| | - Pere Arús
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Carrer de la Vall Moronta, Edifici CRAG, Campus UAB, Cerdanyola del Valles, 08193 Barcelona, Spain
- IRTA (Institute of Agrifood Research and Technology), Campus UAB, Edifici CRAG, Cerdanyola del Valles (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
6
|
Kabiri G, Bouda S, Ennahli S, Hafida H. THE WALNUT - CONSTRAINTS AND ADVANTAGES FOR A SUSTAINABLE DEVELOPMENT. FRUIT GROWING RESEARCH 2022. [DOI: 10.33045/fgr.v38.2022.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Persian walnut or English walnut (Juglans regia L.) is a commonly grown species for nut production and noble wood. The nut is one of the oldest food and traditional medicine sources. The native and commercial walnut genotypes present a large diversity that differ widely in nut productivity and quality. However, genetic erosion poses a serious threat to this tree. Several researches of walnut genetic diversity are being carried out utilizing morphological, biochemical, and molecular approaches in order to select superior walnut cultivars of different agroclimatic areas to increase nut production and quality. Genetic resource evaluation and agrodiversity conservation have a major role in ensuring food security for future generations through a continuous supply of new rootstocks and improved cultivars.
Collapse
|
7
|
Wang J, Ye H, Zhou H, Chen P, Liu H, Xi R, Wang G, Hou N, Zhao P. Genome-wide association analysis of 101 accessions dissects the genetic basis of shell thickness for genetic improvement in Persian walnut (Juglans regia L.). BMC PLANT BIOLOGY 2022; 22:436. [PMID: 36096735 PMCID: PMC9469530 DOI: 10.1186/s12870-022-03824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Understanding the underlying genetic mechanisms that drive phenotypic variations is essential for enhancing the efficacy of crop improvement. Persian walnut (Juglans regia L.), which is grown extensively worldwide, is an important economic tree fruit due to its horticultural, medicinal, and material value. The quality of the walnut fruit is related to the selection of traits such as thinner shells, larger filling rates, and better taste, which is very important for breeding in China. The complex quantitative fruit-related traits are influenced by a variety of physiological and environmental factors, which can vary widely between walnut genotypes. RESULTS For this study, a set of 101 Persian walnut accessions were re-sequenced, which generated a total of 906.2 Gb of Illumina sequence data with an average read depth of 13.8× for each accession. We performed the genome-wide association study (GWAS) using 10.9 Mb of high-quality single-nucleotide polymorphisms (SNPs) and 10 agronomic traits to explore the underlying genetic basis of the walnut fruit. Several candidate genes are proposed to be involved in walnut characteristics, including JrPXC1, JrWAKL8, JrGAMYB, and JrFRK1. Specifically, the JrPXC1 gene was confirmed to participate in the regulation of secondary wall cellulose thickening in the walnut shell. CONCLUSION In addition to providing considerable available genetic resources for walnut trees, this study revealed the underlying genetic basis involved in important walnut agronomic traits, particularly shell thickness, as well as providing clues for the improvement of genetic breeding and domestication in other perennial economic crops.
Collapse
Affiliation(s)
- Jiangtao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Huijuan Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Pengpeng Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Hengzhao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Ruimin Xi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Gang Wang
- Guizhou Academy of Forestry, Guiyang, 550005, Guizhou, China
| | - Na Hou
- Guizhou Academy of Forestry, Guiyang, 550005, Guizhou, China.
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
8
|
Valorization of Traditional Italian Walnut (Juglans regia L.) Production: Genetic, Nutritional and Sensory Characterization of Locally Grown Varieties in the Trentino Region. PLANTS 2022; 11:plants11151986. [PMID: 35956464 PMCID: PMC9370163 DOI: 10.3390/plants11151986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/12/2022]
Abstract
Juglans regia (L.) is cultivated worldwide for its nutrient-rich nuts. In Italy, despite the growing demand, walnut cultivation has gone through a strong decline in recent decades, which led to Italy being among the top five net importing countries. To promote the development of local high-quality Italian walnut production, we devised a multidisciplinary project to highlight the distinctive traits of three varieties grown in the mountainous region Trentino (northeast of Italy): the heirloom ‘Bleggiana’, a second local accession called local Franquette and the French cultivar ‘Lara’, recently introduced in the local production to increase yield. The genetic characterization confirmed the uniqueness of ‘Bleggiana’ and revealed local Franquette as a newly described autochthonous variety, thus named ‘Blegette’. The metabolic profiles highlighted a valuable nutritional composition of the local varieties, richer in polyphenols and with a lower ω-6/ω-3 ratio than the commercial ‘Lara’. ‘Blegette’ obtained the highest preference scores from consumers for both the visual aspect and tasting; however, the volatile organic compound profiles did not discriminate among the characterized cultivars. The described local varieties represent an interesting reservoir of walnut genetic diversity and quality properties, which deserve future investigation on agronomically useful traits (e.g., local adaptation and water usage) for a high-quality and sustainable production.
Collapse
|
9
|
Ding YM, Cao Y, Zhang WP, Chen J, Liu J, Li P, Renner SS, Zhang DY, Bai WN. Population-genomic analyses reveal bottlenecks and asymmetric introgression from Persian into iron walnut during domestication. Genome Biol 2022; 23:145. [PMID: 35787713 PMCID: PMC9254524 DOI: 10.1186/s13059-022-02720-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/25/2022] [Indexed: 12/05/2022] Open
Abstract
Background Persian walnut, Juglans regia, occurs naturally from Greece to western China, while its closest relative, the iron walnut, Juglans sigillata, is endemic in southwest China; both species are cultivated for their nuts and wood. Here, we infer their demographic histories and the time and direction of possible hybridization and introgression between them. Results We use whole-genome resequencing data, different population-genetic approaches (PSMC and GONE), and isolation-with-migration models (IMa3) on individuals from Europe, Iran, Kazakhstan, Pakistan, and China. IMa3 analyses indicate that the two species diverged from each other by 0.85 million years ago, with unidirectional gene flow from eastern J. regia and its ancestor into J. sigillata, including the shell-thickness gene. Within J. regia, a western group, located from Europe to Iran, and an eastern group with individuals from northern China, experienced dramatically declining population sizes about 80 generations ago (roughly 2400 to 4000 years), followed by an expansion at about 40 generations, while J. sigillata had a constant population size from about 100 to 20 generations ago, followed by a rapid decline. Conclusions Both J. regia and J. sigillata appear to have suffered sudden population declines during their domestication, suggesting that the bottleneck scenario of plant domestication may well apply in at least some perennial crop species. Introgression from introduced J. regia appears to have played a role in the domestication of J. sigillata. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02720-z.
Collapse
Affiliation(s)
- Ya-Mei Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Cao
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Wei-Ping Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jun Chen
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.,China National Botanical Garden, Beijing, 100093, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Pan Li
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO, 63130, USA.
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
10
|
Sun R, Sun B, Tian Y, Su S, Zhang Y, Zhang W, Wang J, Yu P, Guo B, Li H, Li Y, Gao H, Gu Y, Yu L, Ma Y, Su E, Li Q, Hu X, Zhang Q, Guo R, Chai S, Feng L, Wang J, Hong H, Xu J, Yao X, Wen J, Liu J, Li Y, Qiu L. Dissection of the practical soybean breeding pipeline by developing ZDX1, a high-throughput functional array. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1413-1427. [PMID: 35187586 PMCID: PMC9033737 DOI: 10.1007/s00122-022-04043-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/22/2022] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE We developed the ZDX1 high-throughput functional soybean array for high accuracy evaluation and selection of both parents and progeny, which can greatly accelerate soybean breeding. Microarray technology facilitates rapid, accurate, and economical genotyping. Here, using resequencing data from 2214 representative soybean accessions, we developed the high-throughput functional array ZDX1, containing 158,959 SNPs, covering 90.92% of soybean genes and sites related to important traits. By application of the array, a total of 817 accessions were genotyped, including three subpopulations of candidate parental lines, parental lines and their progeny from practical breeding. The fixed SNPs were identified in progeny, indicating artificial selection during the breeding process. By identifying functional sites of target traits, novel soybean cyst nematode-resistant progeny and maturity-related novel sources were identified by allele combinations, demonstrating that functional sites provide an efficient method for the rapid screening of desirable traits or gene sources. Notably, we found that the breeding index (BI) was a good indicator for progeny selection. Superior progeny were derived from the combination of distantly related parents, with at least one parent having a higher BI. Furthermore, new combinations based on good performance were proposed for further breeding after excluding redundant and closely related parents. Genomic best linear unbiased prediction (GBLUP) analysis was the best analysis method and achieved the highest accuracy in predicting four traits when comparing SNPs in genic regions rather than whole genomic or intergenic SNPs. The prediction accuracy was improved by 32.1% by using progeny to expand the training population. Collectively, a versatile assay demonstrated that the functional ZDX1 array provided efficient information for the design and optimization of a breeding pipeline for accelerated soybean breeding.
Collapse
Affiliation(s)
- Rujian Sun
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
- Hulunbuir Institute of Agriculture and Animal Husbandry, Hulunbuir, 021000, People's Republic of China
| | - Bincheng Sun
- Hulunbuir Institute of Agriculture and Animal Husbandry, Hulunbuir, 021000, People's Republic of China
| | - Yu Tian
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Shanshan Su
- Beijing Compass Biotechnology Co, Ltd, Beijing, 102200, People's Republic of China
| | - Yong Zhang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161600, People's Republic of China
| | - Wanhai Zhang
- Hulunbuir Institute of Agriculture and Animal Husbandry, Hulunbuir, 021000, People's Republic of China
| | - Jingshun Wang
- Hulunbuir Institute of Agriculture and Animal Husbandry, Hulunbuir, 021000, People's Republic of China
| | - Ping Yu
- Hulunbuir Institute of Agriculture and Animal Husbandry, Hulunbuir, 021000, People's Republic of China
| | - Bingfu Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Huihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Yanfei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Huawei Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Yongzhe Gu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Lili Yu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Yansong Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Erhu Su
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010000, People's Republic of China
| | - Qiang Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010000, People's Republic of China
| | - Xingguo Hu
- Hulunbuir Institute of Agriculture and Animal Husbandry, Hulunbuir, 021000, People's Republic of China
| | - Qi Zhang
- Hulunbuir Institute of Agriculture and Animal Husbandry, Hulunbuir, 021000, People's Republic of China
| | - Rongqi Guo
- Hulunbuir Institute of Agriculture and Animal Husbandry, Hulunbuir, 021000, People's Republic of China
| | - Shen Chai
- Hulunbuir Institute of Agriculture and Animal Husbandry, Hulunbuir, 021000, People's Republic of China
| | - Lei Feng
- Hulunbuir Institute of Agriculture and Animal Husbandry, Hulunbuir, 021000, People's Republic of China
| | - Jun Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Huilong Hong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Jiangyuan Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Xindong Yao
- Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), 3430, Tulln, Austria
| | - Jing Wen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Jiqiang Liu
- Beijing Compass Biotechnology Co, Ltd, Beijing, 102200, People's Republic of China
| | - Yinghui Li
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Lijuan Qiu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
11
|
Kastally C, Niskanen AK, Perry A, Kujala ST, Avia K, Cervantes S, Haapanen M, Kesälahti R, Kumpula TA, Mattila TM, Ojeda DI, Tyrmi JS, Wachowiak W, Cavers S, Kärkkäinen K, Savolainen O, Pyhäjärvi T. Taming the massive genome of Scots pine with PiSy50k, a new genotyping array for conifer research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1337-1350. [PMID: 34897859 PMCID: PMC9303803 DOI: 10.1111/tpj.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Pinus sylvestris (Scots pine) is the most widespread coniferous tree in the boreal forests of Eurasia, with major economic and ecological importance. However, its large and repetitive genome presents a challenge for conducting genome-wide analyses such as association studies, genetic mapping and genomic selection. We present a new 50K single-nucleotide polymorphism (SNP) genotyping array for Scots pine research, breeding and other applications. To select the SNP set, we first genotyped 480 Scots pine samples on a 407 540 SNP screening array and identified 47 712 high-quality SNPs for the final array (called 'PiSy50k'). Here, we provide details of the design and testing, as well as allele frequency estimates from the discovery panel, functional annotation, tissue-specific expression patterns and expression level information for the SNPs or corresponding genes, when available. We validated the performance of the PiSy50k array using samples from Finland and Scotland. Overall, 39 678 (83.2%) SNPs showed low error rates (mean = 0.9%). Relatedness estimates based on array genotypes were consistent with the expected pedigrees, and the level of Mendelian error was negligible. In addition, array genotypes successfully discriminate between Scots pine populations of Finnish and Scottish origins. The PiSy50k SNP array will be a valuable tool for a wide variety of future genetic studies and forestry applications.
Collapse
Affiliation(s)
- Chedly Kastally
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Alina K. Niskanen
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Annika Perry
- UK Centre for Ecology & HydrologyBush EstatePenicuikMidlothianEH26 0QBUK
| | - Sonja T. Kujala
- Natural Resources Institute Finland (Luke)Paavo Havaksen tie 390570OuluFinland
| | - Komlan Avia
- Université de StrasbourgINRAESVQV UMR‐A 1131F‐68000ColmarFrance
| | - Sandra Cervantes
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Matti Haapanen
- Natural Resources Institute Finland (Luke)Latokartanonkaari 9FI‐00790HelsinkiFinland
| | - Robert Kesälahti
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Timo A. Kumpula
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Tiina M. Mattila
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Department of Organismal BiologyEBCUppsala UniversityNorbyvägen 18 AUppsala752 36Sweden
| | - Dario I. Ojeda
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Norwegian Institute of Bioeconomy ResearchP.O. Box 115Ås1431Norway
| | - Jaakko S. Tyrmi
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Witold Wachowiak
- Institute of Environmental BiologyFaculty of BiologyAdam Mickiewicz University in PoznańUniwersytetu Poznańskiego 661‐614PoznańPoland
| | - Stephen Cavers
- UK Centre for Ecology & HydrologyBush EstatePenicuikMidlothianEH26 0QBUK
| | - Katri Kärkkäinen
- Natural Resources Institute Finland (Luke)Paavo Havaksen tie 390570OuluFinland
| | - Outi Savolainen
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Tanja Pyhäjärvi
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Department of Forest SciencesUniversity of HelsinkiP.O. Box 2700014HelsinkiFinland
| |
Collapse
|
12
|
Arab MM, Brown PJ, Abdollahi-Arpanahi R, Sohrabi SS, Askari H, Aliniaeifard S, Mokhtassi-Bidgoli A, Mesgaran MB, Leslie CA, Marrano A, Neale DB, Vahdati K. Genome-wide association analysis and pathway enrichment provide insights into the genetic basis of photosynthetic responses to drought stress in Persian walnut. HORTICULTURE RESEARCH 2022; 9:uhac124. [PMID: 35928405 PMCID: PMC9343916 DOI: 10.1093/hr/uhac124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/17/2022] [Indexed: 05/17/2023]
Abstract
Uncovering the genetic basis of photosynthetic trait variation under drought stress is essential for breeding climate-resilient walnut cultivars. To this end, we examined photosynthetic capacity in a diverse panel of 150 walnut families (1500 seedlings) from various agro-climatic zones in their habitats and grown in a common garden experiment. Photosynthetic traits were measured under well-watered (WW), water-stressed (WS) and recovery (WR) conditions. We performed genome-wide association studies (GWAS) using three genomic datasets: genotyping by sequencing data (∼43 K SNPs) on both mother trees (MGBS) and progeny (PGBS) and the Axiom™ Juglans regia 700 K SNP array data (∼295 K SNPs) on mother trees (MArray). We identified 578 unique genomic regions linked with at least one trait in a specific treatment, 874 predicted genes that fell within 20 kb of a significant or suggestive SNP in at least two of the three GWAS datasets (MArray, MGBS, and PGBS), and 67 genes that fell within 20 kb of a significant SNP in all three GWAS datasets. Functional annotation identified several candidate pathways and genes that play crucial roles in photosynthesis, amino acid and carbohydrate metabolism, and signal transduction. Further network analysis identified 15 hub genes under WW, WS and WR conditions including GAPB, PSAN, CRR1, NTRC, DGD1, CYP38, and PETC which are involved in the photosynthetic responses. These findings shed light on possible strategies for improving walnut productivity under drought stress.
Collapse
Affiliation(s)
- Mohammad M Arab
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Patrick J Brown
- Department of Plant Sciences, University of California, Davis, CA 95616
| | | | - Seyed Sajad Sohrabi
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Hossein Askari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sasan Aliniaeifard
- Photosynthesis laboratory, Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohsen B Mesgaran
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Annarita Marrano
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, CA 95616
| | | |
Collapse
|
13
|
Ji F, Ma Q, Zhang W, Liu J, Feng Y, Zhao P, Song X, Chen J, Zhang J, Wei X, Zhou Y, Chang Y, Zhang P, Huang X, Qiu J, Pei D. A genome variation map provides insights into the genetics of walnut adaptation and agronomic traits. Genome Biol 2021; 22:300. [PMID: 34706738 PMCID: PMC8554829 DOI: 10.1186/s13059-021-02517-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Common walnut (Juglans regia L.) is one of the top four most consumed nuts in the world due to its health benefits and pleasant taste. Despite its economic importance, the evolutionary history and genetic control of its adaptation and agronomic traits remain largely unexplored. RESULTS We report a comprehensive walnut genomic variation map based on whole-genome resequencing of 815 walnut accessions. Evolutionary analyses suggest that Chinese J. regia diverged from J. sigillata with extensive hybridizations after the split of the two species. In contrast to annual crops, the genetic diversity and heterozygous deleterious mutations of Chinese common walnut trees have continued to increase during the improvement process. Selective sweep analyses identify 902 genes uniquely selected in the improved common walnut compared to its progenitor population. Five major-effect loci are identified to be involved in walnut adaptations to temperature, precipitation, and altitude. Genome-wide association studies reveal 27 genomic loci responsible for 18 important agronomic traits, among which JrFAD2 and JrANR are the potentially major-effect causative genes controlling linoleic acid content and color of the endopleura of the nut, respectively. CONCLUSIONS The largest genomic resource for walnuts to date has been generated and explored in this study, unveiling their evolutionary history and cracking the genetic code for agronomic traits and environmental adaptation of this economically crucial crop tree.
Collapse
Affiliation(s)
- Feiyang Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Qingguo Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenting Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jie Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yu Feng
- Systematic & Evolutionary Botany and Biodiversity group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xiaobo Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Junpei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ye Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yingying Chang
- Engineering Laboratory of Biotechnology for Green Medicinal Plant of Henan Province, Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs of Colleges and Universities in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Pu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
14
|
Fang H, Liu X, Dong Y, Feng S, Zhou R, Wang C, Ma X, Liu J, Yang KQ. Transcriptome and proteome analysis of walnut (Juglans regia L.) fruit in response to infection by Colletotrichum gloeosporioides. BMC PLANT BIOLOGY 2021; 21:249. [PMID: 34059002 PMCID: PMC8166054 DOI: 10.1186/s12870-021-03042-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/13/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Walnut anthracnose induced by Colletotrichum gloeosporioides is a disastrous disease affecting walnut production. The resistance of walnut fruit to C. gloeosporioides is a highly complicated and genetically programmed process. However, the underlying mechanisms have not yet been elucidated. RESULTS To understand the molecular mechanism underlying the defense of walnut to C. gloeosporioides, we used RNA sequencing and label-free quantitation technologies to generate transcriptomic and proteomic profiles of tissues at various lifestyle transitions of C. gloeosporioides, including 0 hpi, pathological tissues at 24 hpi, 48 hpi, and 72 hpi, and distal uninoculated tissues at 120 hpi, in anthracnose-resistant F26 fruit bracts and anthracnose-susceptible F423 fruit bracts, which were defined through scanning electron microscopy. A total of 21,798 differentially expressed genes (DEGs) and 1929 differentially expressed proteins (DEPs) were identified in F26 vs. F423 at five time points, and the numbers of DEGs and DEPs were significantly higher in the early infection stage. Using pairwise comparisons and weighted gene co-expression network analysis of the transcriptome, we identified two modules significantly related to disease resistance and nine hub genes in the transcription expression gene networks. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the DEGs and DEPs revealed that many genes were mainly related to immune response, plant hormone signal transduction, and secondary metabolites, and many DEPs were involved in carbon metabolism and photosynthesis. Correlation analysis between the transcriptome data and proteome data also showed that the consistency of the differential expression of the mRNA and corresponding proteins was relatively higher in the early stage of infection. CONCLUSIONS Collectively, these results help elucidate the molecular response of walnut fruit to C. gloeosporioides and provide a basis for the genetic improvement of walnut disease resistance.
Collapse
Affiliation(s)
- Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
- State Forestry and Grassland Administr, ation Key Laboratory of Silviculture inthe Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Xia Liu
- Department of Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
- State Forestry and Grassland Administr, ation Key Laboratory of Silviculture inthe Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Shan Feng
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Rui Zhou
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Xinmei Ma
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Jianning Liu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong Province, China.
- State Forestry and Grassland Administr, ation Key Laboratory of Silviculture inthe Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an, Shandong Province, China.
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai'an, Shandong Province, China.
| |
Collapse
|
15
|
Howard NP, Troggio M, Durel CE, Muranty H, Denancé C, Bianco L, Tillman J, van de Weg E. Integration of Infinium and Axiom SNP array data in the outcrossing species Malus × domestica and causes for seemingly incompatible calls. BMC Genomics 2021; 22:246. [PMID: 33827434 PMCID: PMC8028180 DOI: 10.1186/s12864-021-07565-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Single nucleotide polymorphism (SNP) array technology has been increasingly used to generate large quantities of SNP data for use in genetic studies. As new arrays are developed to take advantage of new technology and of improved probe design using new genome sequence and panel data, a need to integrate data from different arrays and array platforms has arisen. This study was undertaken in view of our need for an integrated high-quality dataset of Illumina Infinium® 20 K and Affymetrix Axiom® 480 K SNP array data in apple (Malus × domestica). In this study, we qualify and quantify the compatibility of SNP calling, defined as SNP calls that are both accurate and concordant, across both arrays by two approaches. First, the concordance of SNP calls was evaluated using a set of 417 duplicate individuals genotyped on both arrays starting from a set of 10,295 robust SNPs on the Infinium array. Next, the accuracy of the SNP calls was evaluated on additional germplasm (n = 3141) from both arrays using Mendelian inconsistent and consistent errors across thousands of pedigree links. While performing this work, we took the opportunity to evaluate reasons for probe failure and observed discordant SNP calls. Results Concordance among the duplicate individuals was on average of 97.1% across 10,295 SNPs. Of these SNPs, 35% had discordant call(s) that were further curated, leading to a final set of 8412 (81.7%) SNPs that were deemed compatible. Compatibility was highly influenced by the presence of alternate probe binding locations and secondary polymorphisms. The impact of the latter was highly influenced by their number and proximity to the 3′ end of the probe. Conclusions The Infinium and Axiom SNP array data were mostly compatible. However, data integration required intense data filtering and curation. This work resulted in a workflow and information that may be of use in other data integration efforts. Such an in-depth analysis of array concordance and accuracy as ours has not been previously described in the literature and will be useful in future work on SNP array data integration and interpretation, and in probe/platform development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07565-7.
Collapse
Affiliation(s)
- Nicholas P Howard
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Univ., Oldenburg, Germany.,Department of Horticultural Science, Univ. of Minnesota, St Paul, USA
| | | | - Charles-Eric Durel
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Beaucouzé, France
| | - Hélène Muranty
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Beaucouzé, France
| | - Caroline Denancé
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Beaucouzé, France
| | - Luca Bianco
- Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - John Tillman
- Department of Horticultural Science, Univ. of Minnesota, St Paul, USA
| | - Eric van de Weg
- Department of Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
16
|
Aneklaphakij C, Saigo T, Watanabe M, Naake T, Fernie AR, Bunsupa S, Satitpatipan V, Tohge T. Diversity of Chemical Structures and Biosynthesis of Polyphenols in Nut-Bearing Species. FRONTIERS IN PLANT SCIENCE 2021; 12:642581. [PMID: 33889165 PMCID: PMC8056029 DOI: 10.3389/fpls.2021.642581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 05/27/2023]
Abstract
Nuts, such as peanut, almond, and chestnut, are valuable food crops for humans being important sources of fatty acids, vitamins, minerals, and polyphenols. Polyphenols, such as flavonoids, stilbenoids, and hydroxycinnamates, represent a group of plant-specialized (secondary) metabolites which are characterized as health-beneficial antioxidants within the human diet as well as physiological stress protectants within the plant. In food chemistry research, a multitude of polyphenols contained in culinary nuts have been studied leading to the identification of their chemical properties and bioactivities. Although functional elucidation of the biosynthetic genes of polyphenols in nut species is crucially important for crop improvement in the creation of higher-quality nuts and stress-tolerant cultivars, the chemical diversity of nut polyphenols and the key biosynthetic genes responsible for their production are still largely uncharacterized. However, current technical advances in whole-genome sequencing have facilitated that nut plant species became model plants for omics-based approaches. Here, we review the chemical diversity of seed polyphenols in majorly consumed nut species coupled to insights into their biological activities. Furthermore, we present an example of the annotation of key genes involved in polyphenolic biosynthesis in peanut using comparative genomics as a case study outlining how we are approaching omics-based approaches of the nut plant species.
Collapse
Affiliation(s)
- Chaiwat Aneklaphakij
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomoki Saigo
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Thomas Naake
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Somnuk Bunsupa
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Veena Satitpatipan
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Takayuki Tohge
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
17
|
Xiong H, Li Y, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Liu L. Genetic Mapping by Integration of 55K SNP Array and KASP Markers Reveals Candidate Genes for Important Agronomic Traits in Hexaploid Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:628478. [PMID: 33708233 PMCID: PMC7942297 DOI: 10.3389/fpls.2021.628478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Agronomic traits such as heading date (HD), plant height (PH), thousand grain weight (TGW), and spike length (SL) are important factors affecting wheat yield. In this study, we constructed a high-density genetic linkage map using the Wheat55K SNP Array to map quantitative trait loci (QTLs) for these traits in 207 recombinant inbred lines (RILs). A total of 37 QTLs were identified, including 9 QTLs for HD, 7 QTLs for PH, 12 QTLs for TGW, and 9 QTLs for SL, which explained 3.0-48.8% of the phenotypic variation. Kompetitive Allele Specific PCR (KASP) markers were developed based on sequencing data and used for validation of the stably detected QTLs on chromosomes 3A, 4B and 6A using 400 RILs. A QTL cluster on chromosome 4B for PH and TGW was delimited to a 0.8 Mb physical interval explaining 12.2-22.8% of the phenotypic variation. Gene annotations and analyses of SNP effects suggested that a gene encoding protein Photosynthesis Affected Mutant 68, which is essential for photosystem II assembly, is a candidate gene affecting PH and TGW. In addition, the QTL for HD on chromosome 3A was narrowed down to a 2.5 Mb interval, and a gene encoding an R3H domain-containing protein was speculated to be the causal gene influencing HD. The linked KASP markers developed in this study will be useful for marker-assisted selection in wheat breeding, and the candidate genes provide new insight into genetic study for those traits in wheat.
Collapse
|
18
|
Recent Large-Scale Genotyping and Phenotyping of Plant Genetic Resources of Vegetatively Propagated Crops. PLANTS 2021; 10:plants10020415. [PMID: 33672381 PMCID: PMC7926561 DOI: 10.3390/plants10020415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Several recent national and international projects have focused on large-scale genotyping of plant genetic resources in vegetatively propagated crops like fruit and berries, potatoes and woody ornamentals. The primary goal is usually to identify true-to-type plant material, detect possible synonyms, and investigate genetic diversity and relatedness among accessions. A secondary goal may be to create sustainable databases that can be utilized in research and breeding for several years ahead. Commonly applied DNA markers (like microsatellite DNA and SNPs) and next-generation sequencing each have their pros and cons for these purposes. Methods for large-scale phenotyping have lagged behind, which is unfortunate since many commercially important traits (yield, growth habit, storability, and disease resistance) are difficult to score. Nevertheless, the analysis of gene action and development of robust DNA markers depends on environmentally controlled screening of very large sets of plant material. Although more time-consuming, co-operative projects with broad-scale data collection are likely to produce more reliable results. In this review, we will describe some of the approaches taken in genotyping and/or phenotyping projects concerning a wide variety of vegetatively propagated crops.
Collapse
|
19
|
Tian H, Yang Y, Yi H, Xu L, He H, Fan Y, Wang L, Ge J, Liu Y, Wang F, Zhao J. New resources for genetic studies in maize (Zea mays L.): a genome-wide Maize6H-60K single nucleotide polymorphism array and its application. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1113-1122. [PMID: 33225500 DOI: 10.1111/tpj.15089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Despite the availability of numerous molecular markers in maize, effective evaluation of all types of germplasm resources, accurate identification of varieties and analysis of a large number of materials in a timely, low-cost manner is challenging. Here, we present Maize6H-60K, a genome-wide single nucleotide polymorphism (SNP) array to facilitate maize genotyping. We first identified 160 million variants by sequencing data of 388 representative inbreds and then tiled 200 000 high-quality variants on a screening array. These variants were further narrowed down to 61 282 using stringent filtering criteria. Among the 60 000 markers, 21 460 SNPs (35%) were within genic regions and 12 835 (21%) were located in coding regions. To assess their effectiveness, 329 inbreds, 221 hybrids, 34 parent-offspring sets and six breeding samples were genotyped. Overall, 48 972 SNPs (80%) were categorized into the highest quality class, that of 'poly high resolution'. A total of 54 658 (89.29%) and 53 091 (86.73%) SNPs had minor allele frequency values ≥ 0.20 in inbreds and hybrids respectively. A linkage disequilibrium (LD) analysis revealed that LD decline was in equilibrium when r2 was between 0.10 and 0.15, which corresponds to a physical distance of 400-600 kb. UPGMA clustering analysis divided the 329 inbred lines into nine groups that were consistent with known pedigrees. A background analysis of breeding materials indicated that the 60 000 markers were suitable for evaluation of breeding populations constructed by materials between or within heterotic groups. The developed Maize6H-60K array should be an important tool in maize genetic studies, variety identification and molecular breeding.
Collapse
Affiliation(s)
- Hongli Tian
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Yang Yang
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Hongmei Yi
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Liwen Xu
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Hang He
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Yaming Fan
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Lu Wang
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Jianrong Ge
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Yawei Liu
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Fengge Wang
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| | - Jiuran Zhao
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing, 100097, China
| |
Collapse
|
20
|
Pirrello C, Zeilmaker T, Bianco L, Giacomelli L, Moser C, Vezzulli S. Mining Grapevine Downy Mildew Susceptibility Genes: A Resource for Genomics-Based Breeding and Tailored Gene Editing. Biomolecules 2021; 11:181. [PMID: 33525704 PMCID: PMC7912118 DOI: 10.3390/biom11020181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Several pathogens continuously threaten viticulture worldwide. Until now, the investigation on resistance loci has been the main trend to understand the interaction between grapevine and the mildew causal agents. Dominantly inherited gene-based resistance has shown to be race-specific in some cases, to confer partial immunity, and to be potentially overcome within a few years since its introgression. Recently, on the footprint of research conducted in Arabidopsis, putative genes associated with downy mildew susceptibility have been discovered also in the grapevine genome. In this work, we deep-sequenced four putative susceptibility genes-namely VvDMR6.1, VvDMR6.2, VvDLO1, VvDLO2-in 190 genetically diverse grapevine genotypes to discover new sources of broad-spectrum and recessively inherited resistance. Identified Single Nucleotide Polymorphisms were screened in a bottleneck analysis from the genetic sequence to their impact on protein structure. Fifty-five genotypes showed at least one impacting mutation in one or more of the scouted genes. Haplotypes were inferred for each gene and two of them at the VvDMR6.2 gene were found significantly more represented in downy mildew resistant genotypes. The current results provide a resource for grapevine and plant genetics and could corroborate genomic-assisted breeding programs as well as tailored gene editing approaches for resistance to biotic stresses.
Collapse
Affiliation(s)
- Carlotta Pirrello
- Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.P.); (L.B.); (L.G.); (C.M.)
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Tieme Zeilmaker
- SciENZA Biotechnologies B.V., Sciencepark 904, 1098 XH Amsterdam, The Netherlands;
| | - Luca Bianco
- Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.P.); (L.B.); (L.G.); (C.M.)
| | - Lisa Giacomelli
- Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.P.); (L.B.); (L.G.); (C.M.)
- SciENZA Biotechnologies B.V., Sciencepark 904, 1098 XH Amsterdam, The Netherlands;
| | - Claudio Moser
- Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.P.); (L.B.); (L.G.); (C.M.)
| | - Silvia Vezzulli
- Research and Innovation Centre, Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.P.); (L.B.); (L.G.); (C.M.)
| |
Collapse
|
21
|
Feng S, Fang H, Liu X, Dong Y, Wang Q, Yang KQ. Genome-wide identification and characterization of long non-coding RNAs conferring resistance to Colletotrichum gloeosporioides in walnut (Juglans regia). BMC Genomics 2021; 22:15. [PMID: 33407106 PMCID: PMC7789297 DOI: 10.1186/s12864-020-07310-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/07/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Walnut anthracnose caused by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. is an important walnut production problem in China. Although the long non-coding RNAs (lncRNAs) are important for plant disease resistance, the molecular mechanisms underlying resistance to C. gloeosporioides in walnut remain poorly understood. RESULTS The anthracnose-resistant F26 fruits from the B26 clone and the anthracnose-susceptible F423 fruits from the 4-23 clone of walnut were used as the test materials. Specifically, we performed a comparative transcriptome analysis of F26 and F423 fruit bracts to identify differentially expressed LncRNAs (DELs) at five time-points (tissues at 0 hpi, pathological tissues at 24 hpi, 48 hpi, 72 hpi, and distal uninoculated tissues at 120 hpi). Compared with F423, a total of 14,525 DELs were identified, including 10,645 upregulated lncRNAs and 3846 downregulated lncRNAs in F26. The number of upregulated lncRNAs in F26 compared to in F423 was significantly higher at the early stages of C. gloeosporioides infection. A total of 5 modules related to disease resistance were screened by WGCNA and the target genes of lncRNAs were obtained. Bioinformatic analysis showed that the target genes of upregulated lncRNAs were enriched in immune-related processes during the infection of C. gloeosporioides, such as activation of innate immune response, defense response to bacterium, incompatible interaction and immune system process, and enriched in plant hormone signal transduction, phenylpropanoid biosynthesis and other pathways. And 124 known target genes for 96 hub lncRNAs were predicted, including 10 known resistance genes. The expression of 5 lncRNAs and 5 target genes was confirmed by qPCR, which was consistent with the RNA-seq data. CONCLUSIONS The results of this study provide the basis for future functional characterizations of lncRNAs regarding the C. gloeosporioides resistance of walnut fruit bracts.
Collapse
Affiliation(s)
- Shan Feng
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Tai'an, 271018, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Tai'an, 271018, Shandong Province, China
| | - Xia Liu
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
- Department of Science and Technology, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Qingpeng Wang
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China.
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Tai'an, 271018, Shandong Province, China.
- Shandong Taishan Forest Ecosystem Research Station, Tai'an, 271018, Shandong Province, China.
| |
Collapse
|
22
|
Pérez de Los Cobos F, Martínez-García PJ, Romero A, Miarnau X, Eduardo I, Howad W, Mnejja M, Dicenta F, Socias I Company R, Rubio-Cabetas MJ, Gradziel TM, Wirthensohn M, Duval H, Holland D, Arús P, Vargas FJ, Batlle I. Pedigree analysis of 220 almond genotypes reveals two world mainstream breeding lines based on only three different cultivars. HORTICULTURE RESEARCH 2021; 8:11. [PMID: 33384415 PMCID: PMC7775440 DOI: 10.1038/s41438-020-00444-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 05/16/2023]
Abstract
Loss of genetic variability is an increasing challenge in tree breeding programs due to the repeated use of a reduced number of founder genotypes. However, in almond, little is known about the genetic variability in current breeding stocks, although several cases of inbreeding depression have been reported. To gain insights into the genetic structure in modern breeding programs worldwide, marker-verified pedigree data of 220 almond cultivars and breeding selections were analyzed. Inbreeding coefficients, pairwise relatedness, and genetic contribution were calculated for these genotypes. The results reveal two mainstream breeding lines based on three cultivars: "Tuono", "Cristomorto", and "Nonpareil". Descendants from "Tuono" or "Cristomorto" number 76 (sharing 34 descendants), while "Nonpareil" has 71 descendants. The mean inbreeding coefficient of the analyzed genotypes was 0.041, with 14 genotypes presenting a high inbreeding coefficient, over 0.250. Breeding programs from France, the USA, and Spain showed inbreeding coefficients of 0.075, 0.070, and 0.037, respectively. According to their genetic contribution, modern cultivars from Israel, France, the USA, Spain, and Australia trace back to a maximum of six main founding genotypes. Among the group of 65 genotypes carrying the Sf allele for self-compatibility, the mean relatedness coefficient was 0.125, with "Tuono" as the main founding genotype (24.7% of total genetic contribution). The results broaden our understanding about the tendencies followed in almond breeding over the last 50 years and will have a large impact into breeding decision-making process worldwide. Increasing current genetic variability is required in almond breeding programs to assure genetic gain and continuing breeding progress.
Collapse
Affiliation(s)
- Felipe Pérez de Los Cobos
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, 43120, Constantí, Tarragona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193, Barcelona, Spain
| | - Pedro J Martínez-García
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100, Espinardo, Murcia, Spain
| | - Agustí Romero
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, 43120, Constantí, Tarragona, Spain
| | - Xavier Miarnau
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Fruitcentre, PCiTAL, Gardeny Park, Fruitcentre Building, 25003, Lleida, Spain
| | - Iban Eduardo
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193, Barcelona, Spain
| | - Werner Howad
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193, Barcelona, Spain
| | - Mourad Mnejja
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193, Barcelona, Spain
| | - Federico Dicenta
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100, Espinardo, Murcia, Spain
| | - Rafel Socias I Company
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Instituto Agroalimentario de Aragón IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Maria J Rubio-Cabetas
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Instituto Agroalimentario de Aragón IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | | | - Michelle Wirthensohn
- University of Adelaide, Waite Research, School of Agriculture, Food and Wine, PMB 1, Glen Osmond, Adelaide, SA, 5064, Australia
| | - Henri Duval
- Institut National de la Recherche Agronomique (INRA), Domain St. Maurice CS 60094, 84143, Montfavet Cedex, France
| | - Doron Holland
- Agricultural Research Organization, Newe-Ya'ar Research Center, P.O. Box 1021, Ramat Yishad, 30095, Israel
| | - Pere Arús
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193, Barcelona, Spain
| | - Francisco J Vargas
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, 43120, Constantí, Tarragona, Spain
| | - Ignasi Batlle
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Mas Bové, Ctra. Reus-El Morell Km 3,8, 43120, Constantí, Tarragona, Spain.
| |
Collapse
|
23
|
Genetic Analysis of Walnut ( Juglans regia L.) Pellicle Pigment Variation Through a Novel, High-Throughput Phenotyping Platform. G3-GENES GENOMES GENETICS 2020; 10:4411-4424. [PMID: 33008832 PMCID: PMC7718756 DOI: 10.1534/g3.120.401580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Walnut pellicle color is a key quality attribute that drives consumer preference and walnut sales. For the first time a high-throughput, computer vision-based phenotyping platform using a custom algorithm to quantitatively score each walnut pellicle in L* a* b* color space was deployed at large-scale. This was compared to traditional qualitative scoring by eye and was used to dissect the genetics of pellicle pigmentation. Progeny from both a bi-parental population of 168 trees (‘Chandler’ × ‘Idaho’) and a genome-wide association (GWAS) with 528 trees of the UC Davis Walnut Improvement Program were analyzed. Color phenotypes were found to have overlapping regions in the ‘Chandler’ genetic map on Chr01 suggesting complex genetic control. In the GWAS population, multiple, small effect QTL across Chr01, Chr07, Chr08, Chr09, Chr10, Chr12 and Chr13 were discovered. Marker trait associations were co-localized with QTL mapping on Chr01, Chr10, Chr14, and Chr16. Putative candidate genes controlling walnut pellicle pigmentation were postulated.
Collapse
|
24
|
Bernhardsson C, Zan Y, Chen Z, Ingvarsson PK, Wu HX. Development of a highly efficient 50K single nucleotide polymorphism genotyping array for the large and complex genome of Norway spruce (Picea abies L. Karst) by whole genome resequencing and its transferability to other spruce species. Mol Ecol Resour 2020; 21:880-896. [PMID: 33179386 PMCID: PMC7984398 DOI: 10.1111/1755-0998.13292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022]
Abstract
Norway spruce (Picea abies L. Karst) is one of the most important forest tree species with significant economic and ecological impact in Europe. For decades, genomic and genetic studies on Norway spruce have been challenging due to the large and repetitive genome (19.6 Gb with more than 70% being repetitive). To accelerate genomic studies, including population genetics, genome‐wide association studies (GWAS) and genomic selection (GS), in Norway spruce and related species, we here report on the design and performance of a 50K single nucleotide polymorphism (SNP) genotyping array for Norway spruce. The array is developed based on whole genome resequencing (WGS), making it the first WGS‐based SNP array in any conifer species so far. After identifying SNPs using genome resequencing data from 29 trees collected in northern Europe, we adopted a two‐step approach to design the array. First, we built a 450K screening array and used this to genotype a population of 480 trees sampled from both natural and breeding populations across the Norway spruce distribution range. These samples were then used to select high‐confidence probes that were put on the final 50K array. The SNPs selected are distributed over 45,552 scaffolds from the P. abies version 1.0 genome assembly and target 19,954 unique gene models with an even coverage of the 12 linkage groups in Norway spruce. We show that the array has a 99.5% probe specificity, >98% Mendelian allelic inheritance concordance, an average sample call rate of 96.30% and an SNP call rate of 98.90% in family trios and haploid tissues. We also observed that 23,797 probes (50%) could be identified with high confidence in three other spruce species (white spruce [Picea glauca], black spruce [P. mariana] and Sitka spruce [P. sitchensis]). The high‐quality genotyping array will be a valuable resource for genetic and genomic studies in Norway spruce as well as in other conifer species of the same genus.
Collapse
Affiliation(s)
- Carolina Bernhardsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Yanjun Zan
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden
| | - Zhiqiang Chen
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden.,Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Black Mountain Laboratory, CSIRO National Research Collection Australia, Canberra, ACT, Australia
| |
Collapse
|
25
|
Zaini PA, Feinberg NG, Grilo FS, Saxe HJ, Salemi MR, Phinney BS, Crisosto CH, Dandekar AM. Comparative Proteomic Analysis of Walnut ( Juglans regia L.) Pellicle Tissues Reveals the Regulation of Nut Quality Attributes. Life (Basel) 2020; 10:E314. [PMID: 33261033 PMCID: PMC7760677 DOI: 10.3390/life10120314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
Walnuts (Juglans regia L.) are a valuable dietary source of polyphenols and lipids, with increasing worldwide consumption. California is a major producer, with 'Chandler' and 'Tulare' among the cultivars more widely grown. 'Chandler' produces kernels with extra light color at a higher frequency than other cultivars, gaining preference by growers and consumers. Here we performed a deep comparative proteome analysis of kernel pellicle tissue from these two valued genotypes at three harvest maturities, detecting a total of 4937 J. regia proteins. Late and early maturity stages were compared for each cultivar, revealing many developmental responses common or specific for each cultivar. Top protein biomarkers for each developmental stage were also selected based on larger fold-change differences and lower variance among replicates, including proteins for biosynthesis of lipids and phenols, defense-related proteins and desiccation stress-related proteins. Comparison between the genotypes also revealed the common and specific protein repertoires, totaling 321 pellicle proteins with differential abundance at harvest stage. The proteomics data provides clues on antioxidant, secondary, and hormonal metabolism that could be involved in the loss of quality in the pellicles during processing for commercialization.
Collapse
Affiliation(s)
- Paulo A. Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.); (N.G.F.); (H.J.S.); (C.H.C.)
| | - Noah G. Feinberg
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.); (N.G.F.); (H.J.S.); (C.H.C.)
| | - Filipa S. Grilo
- Department of Food Sciences and Technology, University of California, Davis, CA 95616, USA;
| | - Houston J. Saxe
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.); (N.G.F.); (H.J.S.); (C.H.C.)
| | - Michelle R. Salemi
- Proteomics Core Facility, University of California, Davis, CA 95616, USA; (M.R.S.); (B.S.P.)
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, CA 95616, USA; (M.R.S.); (B.S.P.)
| | - Carlos H. Crisosto
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.); (N.G.F.); (H.J.S.); (C.H.C.)
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (P.A.Z.); (N.G.F.); (H.J.S.); (C.H.C.)
| |
Collapse
|
26
|
Bükücü ŞB, Sütyemez M, Kefayati S, Paizila A, Jighly A, Kafkas S. Major QTL with pleiotropic effects controlling time of leaf budburst and flowering-related traits in walnut (Juglans regia L.). Sci Rep 2020; 10:15207. [PMID: 32938965 PMCID: PMC7495441 DOI: 10.1038/s41598-020-71809-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022] Open
Abstract
Breeding studies in walnut (Juglans regia L.) are usually time consuming due to the long juvenile period and therefore, this study aimed to determine markers associated with time of leaf budburst and flowering-related traits by performing a genome-wide association study (GWAS). We investigated genotypic variation and its association with time of leaf budburst and flowering-related traits in 188 walnut accessions. Phenotypic data was obtained from 13 different traits during 3 consecutive years. We used DArT-seq for genotyping with a total of 33,519 (14,761 SNP and 18,758 DArT) markers for genome-wide associations to identify marker underlying these traits. Significant correlations were determined among the 13 different traits. Linkage disequilibrium decayed very quickly in walnut in comparison with other plants. Sixteen quantitative trait loci (QTL) with major effects (R2 between 0.08 and 0.23) were found to be associated with a minimum of two phenotypic traits each. Of these QTL, QTL05 had the maximum number of associated traits (seven). Our study is GWAS for time of leaf budburst and flowering-related traits in Juglans regia L. and has a strong potential to efficiently implement the identified QTL in walnut breeding programs.
Collapse
Affiliation(s)
- Şakir Burak Bükücü
- Department of Horticulture, Faculty of Agriculture, University of Sütçü İmam, Kahramanmaraş, Turkey
| | - Mehmet Sütyemez
- Department of Horticulture, Faculty of Agriculture, University of Sütçü İmam, Kahramanmaraş, Turkey
| | - Sina Kefayati
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Sariçam, Adana, Turkey
| | - Aibibula Paizila
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Sariçam, Adana, Turkey
| | - Abdulqader Jighly
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Salih Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Sariçam, Adana, Turkey.
| |
Collapse
|
27
|
Wang JY, Yan SY, Hui WK, Gong W. SNP discovery for genetic diversity and population structure analysis coupled with restriction-associated DNA (RAD) sequencing in walnut cultivars of Sichuan Province, China. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1797531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jing-Yan Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Security on the Upper Reaches of Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Si-Yu Yan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Security on the Upper Reaches of Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Wen-Kai Hui
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Security on the Upper Reaches of Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Wei Gong
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Security on the Upper Reaches of Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
28
|
Kitchen SA, Von Kuster G, Kuntz KLV, Reich HG, Miller W, Griffin S, Fogarty ND, Baums IB. STAGdb: a 30K SNP genotyping array and Science Gateway for Acropora corals and their dinoflagellate symbionts. Sci Rep 2020; 10:12488. [PMID: 32719467 PMCID: PMC7385180 DOI: 10.1038/s41598-020-69101-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/22/2020] [Indexed: 11/26/2022] Open
Abstract
Standardized identification of genotypes is necessary in animals that reproduce asexually and form large clonal populations such as coral. We developed a high-resolution hybridization-based genotype array coupled with an analysis workflow and database for the most speciose genus of coral, Acropora, and their symbionts. We designed the array to co-analyze host and symbionts based on bi-allelic single nucleotide polymorphisms (SNP) markers identified from genomic data of the two Caribbean Acropora species as well as their dominant dinoflagellate symbiont, Symbiodinium ‘fitti’. SNPs were selected to resolve multi-locus genotypes of host (called genets) and symbionts (called strains), distinguish host populations and determine ancestry of coral hybrids between Caribbean acroporids. Pacific acroporids can also be genotyped using a subset of the SNP loci and additional markers enable the detection of symbionts belonging to the genera Breviolum, Cladocopium, and Durusdinium. Analytic tools to produce multi-locus genotypes of hosts based on these SNP markers were combined in a workflow called the Standard Tools for Acroporid Genotyping (STAG). The STAG workflow and database are contained within a customized Galaxy environment (https://coralsnp.science.psu.edu/galaxy/), which allows for consistent identification of host genet and symbiont strains and serves as a template for the development of arrays for additional coral genera. STAG data can be used to track temporal and spatial changes of sampled genets necessary for restoration planning and can be applied to downstream genomic analyses. Using STAG, we uncover bi-directional hybridization between and population structure within Caribbean acroporids and detect a cryptic Acroporid species in the Pacific.
Collapse
Affiliation(s)
- S A Kitchen
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - G Von Kuster
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - K L Vasquez Kuntz
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - H G Reich
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - W Miller
- Centre for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - S Griffin
- NOAA Restoration Center, 260 Guard Rd., Aguadilla, PR, 00603, USA
| | - Nicole D Fogarty
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, 28403, USA
| | - I B Baums
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
29
|
Marrano A, Britton M, Zaini PA, Zimin AV, Workman RE, Puiu D, Bianco L, Pierro EAD, Allen BJ, Chakraborty S, Troggio M, Leslie CA, Timp W, Dandekar A, Salzberg SL, Neale DB. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. Gigascience 2020; 9:giaa050. [PMID: 32432329 PMCID: PMC7238675 DOI: 10.1093/gigascience/giaa050] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/13/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The release of the first reference genome of walnut (Juglans regia L.) enabled many achievements in the characterization of walnut genetic and functional variation. However, it is highly fragmented, preventing the integration of genetic, transcriptomic, and proteomic information to fully elucidate walnut biological processes. FINDINGS Here, we report the new chromosome-scale assembly of the walnut reference genome (Chandler v2.0) obtained by combining Oxford Nanopore long-read sequencing with chromosome conformation capture (Hi-C) technology. Relative to the previous reference genome, the new assembly features an 84.4-fold increase in N50 size, with the 16 chromosomal pseudomolecules assembled and representing 95% of its total length. Using full-length transcripts from single-molecule real-time sequencing, we predicted 37,554 gene models, with a mean gene length higher than the previous gene annotations. Most of the new protein-coding genes (90%) present both start and stop codons, which represents a significant improvement compared with Chandler v1.0 (only 48%). We then tested the potential impact of the new chromosome-level genome on different areas of walnut research. By studying the proteome changes occurring during male flower development, we observed that the virtual proteome obtained from Chandler v2.0 presents fewer artifacts than the previous reference genome, enabling the identification of a new potential pollen allergen in walnut. Also, the new chromosome-scale genome facilitates in-depth studies of intraspecies genetic diversity by revealing previously undetected autozygous regions in Chandler, likely resulting from inbreeding, and 195 genomic regions highly differentiated between Western and Eastern walnut cultivars. CONCLUSION Overall, Chandler v2.0 will serve as a valuable resource to better understand and explore walnut biology.
Collapse
Affiliation(s)
- Annarita Marrano
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Monica Britton
- Bioinformatics Core Facility, Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Rachael E Workman
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Luca Bianco
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Erica Adele Di Pierro
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michela Troggio
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
- Departments of Computer Science and Biostatistics, Johns Hopkins University, 3400 North Charles Street Baltimore, MD 21218, USA
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
30
|
Marrano A, Britton M, Zaini PA, Zimin AV, Workman RE, Puiu D, Bianco L, Pierro EAD, Allen BJ, Chakraborty S, Troggio M, Leslie CA, Timp W, Dandekar A, Salzberg SL, Neale DB. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome. Gigascience 2020. [PMID: 32432329 DOI: 10.1101/80979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The release of the first reference genome of walnut (Juglans regia L.) enabled many achievements in the characterization of walnut genetic and functional variation. However, it is highly fragmented, preventing the integration of genetic, transcriptomic, and proteomic information to fully elucidate walnut biological processes. FINDINGS Here, we report the new chromosome-scale assembly of the walnut reference genome (Chandler v2.0) obtained by combining Oxford Nanopore long-read sequencing with chromosome conformation capture (Hi-C) technology. Relative to the previous reference genome, the new assembly features an 84.4-fold increase in N50 size, with the 16 chromosomal pseudomolecules assembled and representing 95% of its total length. Using full-length transcripts from single-molecule real-time sequencing, we predicted 37,554 gene models, with a mean gene length higher than the previous gene annotations. Most of the new protein-coding genes (90%) present both start and stop codons, which represents a significant improvement compared with Chandler v1.0 (only 48%). We then tested the potential impact of the new chromosome-level genome on different areas of walnut research. By studying the proteome changes occurring during male flower development, we observed that the virtual proteome obtained from Chandler v2.0 presents fewer artifacts than the previous reference genome, enabling the identification of a new potential pollen allergen in walnut. Also, the new chromosome-scale genome facilitates in-depth studies of intraspecies genetic diversity by revealing previously undetected autozygous regions in Chandler, likely resulting from inbreeding, and 195 genomic regions highly differentiated between Western and Eastern walnut cultivars. CONCLUSION Overall, Chandler v2.0 will serve as a valuable resource to better understand and explore walnut biology.
Collapse
Affiliation(s)
- Annarita Marrano
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Monica Britton
- Bioinformatics Core Facility, Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Rachael E Workman
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Daniela Puiu
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Luca Bianco
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Erica Adele Di Pierro
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Brian J Allen
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michela Troggio
- Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach, 1 38010 S. Michele all'Adige (TN) 38010, Italy
| | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Steven L Salzberg
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD 21205, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, 3100 Wyman Park Dr., Baltimore, MD 21211, USA
- Departments of Computer Science and Biostatistics, Johns Hopkins University, 3400 North Charles Street Baltimore, MD 21218, USA
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
31
|
Trouern-Trend AJ, Falk T, Zaman S, Caballero M, Neale DB, Langley CH, Dandekar AM, Stevens KA, Wegrzyn JL. Comparative genomics of six Juglans species reveals disease-associated gene family contractions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:410-423. [PMID: 31823432 DOI: 10.1111/tpj.14630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Juglans (walnuts), the most speciose genus in the walnut family (Juglandaceae), represents most of the family's commercially valuable fruit and wood-producing trees. It includes several species used as rootstock for their resistance to various abiotic and biotic stressors. We present the full structural and functional genome annotations of six Juglans species and one outgroup within Juglandaceae (Juglans regia, J. cathayensis, J. hindsii, J. microcarpa, J. nigra, J. sigillata and Pterocarya stenoptera) produced using BRAKER2 semi-unsupervised gene prediction pipeline and additional tools. For each annotation, gene predictors were trained using 19 tissue-specific J. regia transcriptomes aligned to the genomes. Additional functional evidence and filters were applied to multi-exonic and mono-exonic putative genes to yield between 27 000 and 44 000 high-confidence gene models per species. Comparison of gene models to the BUSCO embryophyta dataset suggested that, on average, genome annotation completeness was 85.6%. We utilized these high-quality annotations to assess gene family evolution within Juglans, and among Juglans and selected Eurosid species. We found notable contractions in several gene families in J. hindsii, including disease resistance-related wall-associated kinase (WAK), Catharanthus roseus receptor-like kinase (CrRLK1L) and others involved in abiotic stress response. Finally, we confirmed an ancient whole-genome duplication that took place in a common ancestor of Juglandaceae using site substitution comparative analysis.
Collapse
Affiliation(s)
| | - Taylor Falk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Sumaira Zaman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Madison Caballero
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - David B Neale
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Charles H Langley
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Kristian A Stevens
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
- Department of Computer Science, University of California Davis, Davis, CA, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
32
|
Bernard A, Marrano A, Donkpegan A, Brown PJ, Leslie CA, Neale DB, Lheureux F, Dirlewanger E. Association and linkage mapping to unravel genetic architecture of phenological traits and lateral bearing in Persian walnut (Juglans regia L.). BMC Genomics 2020; 21:203. [PMID: 32131731 PMCID: PMC7057608 DOI: 10.1186/s12864-020-6616-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Unravelling the genetic architecture of agronomic traits in walnut such as budbreak date and bearing habit, is crucial for climate change adaptation and yield improvement. A Genome-Wide Association Study (GWAS) using multi-locus models was conducted in a panel of 170 walnut accessions genotyped using the Axiom™ J. regia 700 K SNP array, with phenological data from 2018, 2019 and legacy data. These accessions come from the INRAE walnut germplasm collection which is the result of important prospecting work performed in many countries around the world. In parallel, an F1 progeny of 78 individuals segregating for phenology-related traits, was genotyped with the same array and phenotyped for the same traits, to construct linkage maps and perform Quantitative Trait Loci (QTLs) detection. RESULTS Using GWAS, we found strong associations of SNPs located at the beginning of chromosome 1 with both budbreak and female flowering dates. These findings were supported by QTLs detected in the same genomic region. Highly significant associated SNPs were also detected using GWAS for heterodichogamy and lateral bearing habit, both on chromosome 11. We developed a Kompetitive Allele Specific PCR (KASP) marker for budbreak date in walnut, and validated it using plant material from the Walnut Improvement Program of the University of California, Davis, demonstrating its effectiveness for marker-assisted selection in Persian walnut. We found several candidate genes involved in flowering events in walnut, including a gene related to heterodichogamy encoding a sugar catabolism enzyme and a cell division related gene linked to female flowering date. CONCLUSIONS This study enhances knowledge of the genetic architecture of important agronomic traits related to male and female flowering processes and lateral bearing in walnut. The new marker available for budbreak date, one of the most important traits for good fruiting, will facilitate the selection and development of new walnut cultivars suitable for specific climates.
Collapse
Affiliation(s)
- Anthony Bernard
- INRAE, Univ. Bordeaux, UMR BFP, F-33882, Villenave d'Ornon, France
- CTIFL, centre opérationnel de Lanxade, 24130, Prigonrieux, France
| | - Annarita Marrano
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Armel Donkpegan
- INRAE, Univ. Bordeaux, UMR BFP, F-33882, Villenave d'Ornon, France
| | - Patrick J Brown
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Fabrice Lheureux
- CTIFL, centre opérationnel de Lanxade, 24130, Prigonrieux, France
| | | |
Collapse
|
33
|
Howe GT, Jayawickrama K, Kolpak SE, Kling J, Trappe M, Hipkins V, Ye T, Guida S, Cronn R, Cushman SA, McEvoy S. An Axiom SNP genotyping array for Douglas-fir. BMC Genomics 2020; 21:9. [PMID: 31900111 PMCID: PMC6942338 DOI: 10.1186/s12864-019-6383-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/10/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In forest trees, genetic markers have been used to understand the genetic architecture of natural populations, identify quantitative trait loci, infer gene function, and enhance tree breeding. Recently, new, efficient technologies for genotyping thousands to millions of single nucleotide polymorphisms (SNPs) have finally made large-scale use of genetic markers widely available. These methods will be exceedingly valuable for improving tree breeding and understanding the ecological genetics of Douglas-fir, one of the most economically and ecologically important trees in the world. RESULTS We designed SNP assays for 55,766 potential SNPs that were discovered from previous transcriptome sequencing projects. We tested the array on ~ 2300 related and unrelated coastal Douglas-fir trees (Pseudotsuga menziesii var. menziesii) from Oregon and Washington, and 13 trees of interior Douglas-fir (P. menziesii var. glauca). As many as ~ 28 K SNPs were reliably genotyped and polymorphic, depending on the selected SNP call rate. To increase the number of SNPs and improve genome coverage, we developed protocols to 'rescue' SNPs that did not pass the default Affymetrix quality control criteria (e.g., 97% SNP call rate). Lowering the SNP call rate threshold from 97 to 60% increased the number of successful SNPs from 20,669 to 28,094. We used a subset of 395 unrelated trees to calculate SNP population genetic statistics for coastal Douglas-fir. Over a range of call rate thresholds (97 to 60%), the median call rate for SNPs in Hardy-Weinberg equilibrium ranged from 99.2 to 99.7%, and the median minor allele frequency ranged from 0.198 to 0.233. The successful SNPs also worked well on interior Douglas-fir. CONCLUSIONS Based on the original transcriptome assemblies and comparisons to version 1.0 of the Douglas-fir reference genome, we conclude that these SNPs can be used to genotype about 10 K to 15 K loci. The Axiom genotyping array will serve as an excellent foundation for studying the population genomics of Douglas-fir and for implementing genomic selection. We are currently using the array to construct a linkage map and test genomic selection in a three-generation breeding program for coastal Douglas-fir.
Collapse
Affiliation(s)
- Glenn T Howe
- Pacific Northwest Tree Improvement Research Cooperative, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA.
| | - Keith Jayawickrama
- Northwest Tree Improvement Cooperative, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Scott E Kolpak
- Pacific Northwest Tree Improvement Research Cooperative, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Jennifer Kling
- Pacific Northwest Tree Improvement Research Cooperative, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Matt Trappe
- Northwest Tree Improvement Cooperative, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Valerie Hipkins
- USDA Forest Service, National Forest Genetics Laboratory, Placerville, CA, USA
| | - Terrance Ye
- Northwest Tree Improvement Cooperative, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | | | - Richard Cronn
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, USA
| | - Samuel A Cushman
- USDA Forest Service, Rocky Mountain Research Station, Flagstaff, AZ, USA
| | - Susan McEvoy
- Pacific Northwest Tree Improvement Research Cooperative, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
34
|
Bernard A, Crabier J, Donkpegan ASL, Marrano A, Lheureux F, Dirlewanger E. Genome-Wide Association Study Reveals Candidate Genes Involved in Fruit Trait Variation in Persian Walnut ( Juglans regia L.). FRONTIERS IN PLANT SCIENCE 2020; 11:607213. [PMID: 33584750 PMCID: PMC7873874 DOI: 10.3389/fpls.2020.607213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/10/2020] [Indexed: 05/08/2023]
Abstract
Elucidating the genetic determinants of fruit quality traits in walnut is essential to breed new cultivars meeting the producers and consumers' needs. We conducted a genome-wide association study (GWAS) using multi-locus models in a panel of 170 accessions of Juglans regia from the INRAE walnut germplasm collection, previously genotyped using the AxiomTM J. regia 700K SNP array. We phenotyped the panel for 25 fruit traits related to morphometrics, shape, volume, weight, ease of cracking, and nutritional composition. We found more than 60 marker-trait associations (MTAs), including a highly significant SNP associated with nut face diameter, nut volume and kernel volume on chromosome 14, and 5 additional associations were detected for walnut weight. We proposed several candidate genes involved in nut characteristics, such as a gene coding for a beta-galactosidase linked to several size-related traits and known to be involved in fruit development in other species. We also confirmed associations on chromosomes 5 and 11 with nut suture strength, recently reported by the University of California, Davis. Our results enhance knowledge of the genetic control of important agronomic traits related to fruit quality in walnut, and pave the way for the development of molecular markers for future assisted selection.
Collapse
Affiliation(s)
- Anthony Bernard
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d’Ornon, France
- CTIFL, Centre Opérationnel de Lanxade, Prigonrieux, France
| | - Julie Crabier
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d’Ornon, France
| | - Armel S. L. Donkpegan
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d’Ornon, France
| | - Annarita Marrano
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | | | - Elisabeth Dirlewanger
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d’Ornon, France
- *Correspondence: Elisabeth Dirlewanger,
| |
Collapse
|
35
|
Arab MM, Marrano A, Abdollahi-Arpanahi R, Leslie CA, Askari H, Neale DB, Vahdati K. Genome-wide patterns of population structure and association mapping of nut-related traits in Persian walnut populations from Iran using the Axiom J. regia 700K SNP array. Sci Rep 2019; 9:6376. [PMID: 31015545 PMCID: PMC6478883 DOI: 10.1038/s41598-019-42940-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/12/2019] [Indexed: 11/09/2022] Open
Abstract
Persian plateau (including Iran) is considered as one of the primary centers of origin of walnut. Sampling walnut trees originating from this arena and exploiting the capabilities of next-generation sequencing (NGS) can provide new insights into the degree of genetic variation across the walnut genome. The present study aimed to explore the population structure and genomic variation of an Iranian collection of Persian walnut (Juglans regia L.) and identify loci underlying the variation in nut and kernel related traits using the new Axiom J. regia 700K SNP genotyping array. We genotyped a diversity panel including 95 walnut genotypes from eight Iranian provinces with a variety of climate zones. A majority of the SNPs (323,273, 53.03%) fell into the “Poly High Resolution” class of polymorphisms, which includes the highest quality variants. Genetic structure assessment, using several approaches, divided the Iranian walnut panel into four principal clusters, reflecting their geographic partitioning. We observed high genetic variation across all of the populations (HO = 0.34 and HE = 0.38). The overall level of genetic differentiation among populations was moderate (FST = 0.07). However, the Semnan population showed high divergence from the other Iranian populations (on average FST = 0.12), most likely due to its geographical isolation. Based on parentage analysis, the level of relatedness was very low among the Iranian walnuts examined, reflecting the geographical distance between the Iranian provinces considered in our study. Finally, we performed a genome-wide association study (GWAS), identifying 55 SNPs significantly associated with nut and kernel-related traits. In conclusion, by applying the novel Axiom J. regia 700K SNP array we uncovered new unexplored genetic diversity and identified significant marker-trait associations for nut-related traits in Persian walnut that will be useful for future breeding programs in Iran and other countries.
Collapse
Affiliation(s)
- Mohammad Mehdi Arab
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Annarita Marrano
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | | | - Charles A Leslie
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Hossein Askari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - David B Neale
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kourosh Vahdati
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran.
| |
Collapse
|
36
|
Marrano A, Sideli GM, Leslie CA, Cheng H, Neale DB. Deciphering of the Genetic Control of Phenology, Yield, and Pellicle Color in Persian Walnut ( Juglans regia L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1140. [PMID: 31616449 PMCID: PMC6764078 DOI: 10.3389/fpls.2019.01140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/21/2019] [Indexed: 05/02/2023]
Abstract
Yield, nut quality, and ability to adapt to specific climate conditions, are all important factors to consider in the development and selection of new Persian walnut (Juglans regia L.) varieties. The genetic control of these traits is still unknown in walnut, limiting the accuracy and rapidity of releasing new cultivars for commercial use. We studied the genetic architecture of five traits crucial for either marketing (i.e., yield, lateral fruit-bearing, and pellicle color) or selection of individuals with specific phenology (i.e., leafing and harvest date). By combining over 30 years of phenotypic data with genetic profiles generated using the latest Axiom™ J. regia 700K SNP array, we were able to identify and confirm major loci for all these traits. In particular, we revealed that a genomic region at the beginning of Chr1 controls both leafing and harvest date in walnut, consistent with the observed strong phenotypical correlation between these traits, and including candidate genes involved in plant development, leaf formation, and cell division. In addition, a large genomic region on Chr11 that includes genes with a central role in flowering control and shoot meristem growth underlies both lateral fruit-bearing and yield in walnut. We observed a more complex genetic architecture for pellicle color, strongly influenced by the environment (h 2 = 0.43). We identified two marker-trait associations on Chr6 and 7 for pellicle color, where genes encoding a UDP-glycosyltransferase or involved in the response to oxidation were found. In conclusion, by combining classical quantitative trait loci (QTL) mapping and genome-wide association mapping, we deciphered, for the first time, the molecular pathways controlling walnut phenology, yield, lateral fruitfulness, and pellicle color. Our findings represent a further milestone in the transition from conventional to genome-assisted breeding in Persian walnut.
Collapse
Affiliation(s)
- Annarita Marrano
- Department of Plant Sciences, University of California, Davis, CA, United States
- *Correspondence: Annarita Marrano,
| | - Gina M. Sideli
- Department of Plant Sciences, University of California, Davis, CA, United States
| | - Charles A. Leslie
- Department of Plant Sciences, University of California, Davis, CA, United States
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, CA, United States
| | - David B. Neale
- Department of Plant Sciences, University of California, Davis, CA, United States
| |
Collapse
|