1
|
Khan A, Švara A, Wang N. Comparing Apples and Oranges: Advances in Disease Resistance Breeding of Woody Perennial Fruit Crops. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:263-287. [PMID: 38768395 DOI: 10.1146/annurev-phyto-021622-120124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Apple and citrus are perennial tree fruit crops that are vital for nutritional security and agricultural economy and to achieve the Sustainable Development Goals of the United Nations. Apple scab and fire blight, along with Huanglongbing, canker, and tristeza virus, stand out as their most notorious diseases and annually destabilize fruit supply. An environmentally sound approach to managing these diseases is improving tree resistance through breeding and biotechnology. Perennial fruit tree germplasm collections are distributed globally and offer untapped potential as sources of resistance. However, long juvenility, specific pollination and flowering habits, and extensive outcrossing hinder apple and citrus breeding. Advances in breeding approaches include trans- and cis-genesis, genome editing, and rapid-cycle breeding, which, in addition to conventional crossbreeding, can all facilitate accelerated integration of resistance into elite germplasm. In addition, the global pool of available sources of resistance can be characterized by the existing genetic mapping and gene expression studies for accurate discovery of associated loci, genes, and markers to efficiently include these sources in breeding efforts. We discuss and propose a multitude of approaches to overcome the challenges of breeding for resistance in woody perennials and outline a technical path to reduce the time required for the ultimate deployment of disease-resistant cultivars.
Collapse
Affiliation(s)
- Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, New York, USA;
| | - Anže Švara
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, New York, USA;
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, USA
| |
Collapse
|
2
|
Campa M, Miranda S, Licciardello C, Lashbrooke JG, Dalla Costa L, Guan Q, Spök A, Malnoy M. Application of new breeding techniques in fruit trees. PLANT PHYSIOLOGY 2024; 194:1304-1322. [PMID: 37394947 DOI: 10.1093/plphys/kiad374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
Climate change and rapid adaption of invasive pathogens pose a constant pressure on the fruit industry to develop improved varieties. Aiming to accelerate the development of better-adapted cultivars, new breeding techniques have emerged as a promising alternative to meet the demand of a growing global population. Accelerated breeding, cisgenesis, and CRISPR/Cas genome editing hold significant potential for crop trait improvement and have proven to be useful in several plant species. This review focuses on the successful application of these technologies in fruit trees to confer pathogen resistance and tolerance to abiotic stress and improve quality traits. In addition, we review the optimization and diversification of CRISPR/Cas genome editing tools applied to fruit trees, such as multiplexing, CRISPR/Cas-mediated base editing and site-specific recombination systems. Advances in protoplast regeneration and delivery techniques, including the use of nanoparticles and viral-derived replicons, are described for the obtention of exogenous DNA-free fruit tree species. The regulatory landscape and broader social acceptability for cisgenesis and CRISPR/Cas genome editing are also discussed. Altogether, this review provides an overview of the versatility of applications for fruit crop improvement, as well as current challenges that deserve attention for further optimization and potential implementation of new breeding techniques.
Collapse
Affiliation(s)
- Manuela Campa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
- Department of Genetics, Stellenbosch University, Matieland, South Africa
| | - Simón Miranda
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Concetta Licciardello
- Research Center for Olive Fruit and Citrus Crops, Council for Agricultural Research and Economics, 95024 Acireale, Italy
| | | | - Lorenza Dalla Costa
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Armin Spök
- Science, Technology and Society Unit, Graz University of Technology, Graz, Austria
| | - Mickael Malnoy
- Research and Innovation Centre, Foundation Edmund Mach, 38098 San Michele all'Adige, Italy
| |
Collapse
|
3
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
4
|
Kerr SC, Shehnaz S, Paudel L, Manivannan MS, Shaw LM, Johnson A, Velasquez JTJ, Tanurdžić M, Cazzonelli CI, Varkonyi-Gasic E, Prentis PJ. Advancing tree genomics to future proof next generation orchard production. FRONTIERS IN PLANT SCIENCE 2024; 14:1321555. [PMID: 38312357 PMCID: PMC10834703 DOI: 10.3389/fpls.2023.1321555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024]
Abstract
The challenges facing tree orchard production in the coming years will be largely driven by changes in the climate affecting the sustainability of farming practices in specific geographical regions. Identifying key traits that enable tree crops to modify their growth to varying environmental conditions and taking advantage of new crop improvement opportunities and technologies will ensure the tree crop industry remains viable and profitable into the future. In this review article we 1) outline climate and sustainability challenges relevant to horticultural tree crop industries, 2) describe key tree crop traits targeted for improvement in agroecosystem productivity and resilience to environmental change, and 3) discuss existing and emerging genomic technologies that provide opportunities for industries to future proof the next generation of orchards.
Collapse
Affiliation(s)
- Stephanie C Kerr
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Saiyara Shehnaz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mekaladevi S Manivannan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lindsay M Shaw
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda Johnson
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jose Teodoro J Velasquez
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Miloš Tanurdžić
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Peter J Prentis
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
5
|
Rehman S, Bahadur S, Xia W. An overview of floral regulatory genes in annual and perennial plants. Gene 2023; 885:147699. [PMID: 37567454 DOI: 10.1016/j.gene.2023.147699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The floral initiation in angiosperms is a complex process influenced by endogenous and exogenous signals. With this approach, we aim to provide a comprehensive review to integrate this complex floral regulatory process and summarize the regulatory genes and their functions in annuals and perennials. Seven primary paths leading to flowering have been discovered in Arabidopsis under several growth condition that include; photoperiod, ambient temperature, vernalization, gibberellins, autonomous, aging and carbohydrates. These pathways involve a series of interlinked signaling pathways that respond to both internal and external signals, such as light, temperature, hormones, and developmental cues, to coordinate the expression of genes that are involved in flower development. Among them, the photoperiodic pathway was the most important and conserved as some of the fundamental loci and mechanisms are shared even by closely related plant species. The activation of floral regulatory genes such as FLC, FT, LFY, and SOC1 that determine floral meristem identity and the transition to the flowering stage result from the merging of these pathways. Recent studies confirmed that alternative splicing, antisense RNA and epigenetic modification play crucial roles by regulating the expression of genes related to blooming. In this review, we documented recent progress in the floral transition time in annuals and perennials, with emphasis on the specific regulatory mechanisms along with the application of various molecular approaches including overexpression studies, RNA interference and Virus-induced flowering. Furthermore, the similarities and differences between annual and perennial flowering will aid significant contributions to the field by elucidating the mechanisms of perennial plant development and floral initiation regulation.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228 China
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
6
|
Baguma JK, Mukasa SB, Nuwamanya E, Alicai T, Omongo C, Hyde PT, Setter TL, Ochwo-Ssemakula M, Esuma W, Kanaabi M, Iragaba P, Baguma Y, Kawuki RS. Flowering and fruit-set in cassava under extended red-light photoperiod supplemented with plant-growth regulators and pruning. BMC PLANT BIOLOGY 2023; 23:335. [PMID: 37353746 DOI: 10.1186/s12870-023-04349-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Cassava (Manihot esculenta Crantz) is staple food and major source of calories for over 500 million people in sub-Saharan Africa. The crop is also a source of income for smallholder farmers, and has increasing potential for industrial utilization. However, breeding efforts to match the increasing demand of cassava are impeded by its inability to flower, delayed or unsynchronized flowering, low proportion of female flowers and high fruit abortions. To overcome these sexual reproductive bottlenecks, this study investigated the effectiveness of using red lights to extend the photoperiod (RLE), as a gateway to enhancing flowering and fruit set under field conditions. MATERIALS AND METHODS Panels of cassava genotypes, with non- or late and early flowering response, 10 in each case, were subjected to RLE from dusk to dawn. RLE was further evaluated at low (LL), medium (ML) and high (HL) red light intensities, at ~ ≤ 0.5; 1.0 and 1.5PFD (Photon Flux Density) in µmol m-2 s-1 respectively. Additionally, the effect of a cytokinin and anti-ethylene as plant growth regulators (PGR) and pruning under RLE treatment were examined. RESULTS RLE stimulated earlier flower initiation in all genotypes, by up to 2 months in the late-flowering genotypes. Height and number of nodes at first branching, particularly in the late-flowering genotypes were also reduced, by over 50%. Number and proportion of pistillate flowers more than doubled, while number of fruits and seeds also increased. Number of branching levels during the crop season also increased by about three. Earlier flowering in many genotypes was most elicited at LL to ML intensities. Additive effects on flower numbers were detected between RLE, PGR and pruning applications. PGR and pruning treatments further increased number and proportion of pistillate flowers and fruits. Plants subjected to PGR and pruning, developed bisexual flowers and exhibited feminization of staminate flowers. Pruning at first branching resulted in higher pistillate flower induction than at second branching. CONCLUSIONS These results indicate that RLE improves flowering in cassava, and its effectiveness is enhanced when PGR and pruning are applied. Thus, deployment of these technologies in breeding programs could significantly enhance cassava hybridizations and thus cassava breeding efficiency and impact.
Collapse
Affiliation(s)
- Julius K Baguma
- School of Agricultural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda.
| | - Settumba B Mukasa
- School of Agricultural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Ephraim Nuwamanya
- School of Agricultural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda
| | - Titus Alicai
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda
| | - Christopher Omongo
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda
| | - Peter T Hyde
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Tim L Setter
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - William Esuma
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda
| | - Michael Kanaabi
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda
| | - Paula Iragaba
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda
| | - Yona Baguma
- National Agricultural Research Organisation (NARO) Secretariat, P. O. Box 295, Entebbe, Uganda
| | - Robert S Kawuki
- National Crops Resources Research Institute (NaCRRI), Namulonge, P. O. Box 7084, Kampala, Uganda
| |
Collapse
|
7
|
Herath D, Wang T, Voogd C, Peng Y, Douglas M, Putterill J, Varkonyi-Gasic E, Allan AC. Strategies for fast breeding and improvement of Actinidia species. HORTICULTURE RESEARCH 2023; 10:uhad016. [PMID: 36968184 PMCID: PMC10031733 DOI: 10.1093/hr/uhad016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Affiliation(s)
| | | | - Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Yongyan Peng
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Mikaela Douglas
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Joanna Putterill
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|
8
|
Li M, Pan X, Li H. RD29A promoter constitutively drives a rice Hd3a expression to promote early-flowering in Saussurea involucrate Kar. et Kir. ex Maxim. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:155-162. [PMID: 36638605 DOI: 10.1016/j.plaphy.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
S. involucratae, an endemic and endangered plant, is a valuable and traditional Chinese medicinal herb. In order to control the flowering time of S. involucratae, we used the well-known stress inducible RD29A promoter to drive Hd3a (a FT ortholog from rice) expression in S. involucratae. Unexpectedly, the majority of regenerated buds in RD29A::Hd3a transgenic lines (S-RH) produced flowers in tissue culture stage under normal growth (25 ± 2 °C) condition. Their flowering time was not further influenced by salt treatment. Hd3a in S-RH was strongly expressed in MS media supplemented with or without 50 mM NaCl. RD29A::GUS transgenic experiments further revealed that RD29A constitutively promoted GUS expression in both S. involucrate and halophyte Thellungiella halophile, in contrast to glycophic plants Oryza sativa L. 'Zhonghua 11', in which its expression was up-regulated by cold, salinity, and drought stress. The results supported the hypothesis that RD29A promoter activity is inducible in stress-sensitive plants, but constitutive in stress-tolerant ones. Importantly, S-RH plants produced pollen grains and seeds under normal conditions. Additionally, we found that OsLEA3-1::Hd3a and HSP18.2::Hd3a could not promote S. involucrate to flower under either normal conditions or abiotic stresses. Taken together, we demonstrated the potential of RD29A::Hd3a might be served as a feasible approach in breeding S. involucrate under normal condition.
Collapse
Affiliation(s)
- Meiru Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, South China Botanical Garden, Guangzhou, 510650, People's Republic of China.
| | - Xiaoping Pan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, Chinese Academy of Sciences, South China Botanical Garden, Guangzhou, 510650, People's Republic of China.
| | - Hongqing Li
- Guangdong Provincial Key Lab of Biotechnology for Plant Development, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
9
|
Zhou H, Zeng RF, Liu TJ, Ai XY, Ren MK, Zhou JJ, Hu CG, Zhang JZ. Drought and low temperature-induced NF-YA1 activates FT expression to promote citrus flowering. PLANT, CELL & ENVIRONMENT 2022; 45:3505-3522. [PMID: 36117312 DOI: 10.1111/pce.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Flower induction in adult citrus is mainly regulated by drought and low temperatures. However, the mechanism of FLOWERING LOCUS T regulation of citrus flowering (CiFT) under two flower-inductive stimuli remains largely unclear. In this study, a citrus transcription factor, nuclear factor YA (CiNF-YA1), was found to specifically bind to the CiFT promoter by forming a complex with CiNF-YB2 and CiNF-YC2 to activate CiFT expression. CiNF-YA1 was induced in juvenile citrus by low temperature and drought treatments. Overexpression of CiNF-YA1 increased drought susceptibility in transgenic citrus, whereas suppression of CiNF-YA1 enhanced drought tolerance in silenced citrus plants. Furthermore, a GOLDEN2 - LIKE protein (CiFE) that interacts with CiFT protein was also isolated. Further experimental evidence showed that CiFE binds to the citrus LEAFY (CiLFY) promoter and activates its expression. In addition, the expressions of CiNF-YA1 and CiFE showed a seasonal increase during the floral induction period and were induced by artificial drought and low-temperature treatments at which floral induction occurred. These results indicate that CiNF-YA1 may activate CiFT expression in response to drought and low temperatures by binding to the CiFT promoter. CiFT then forms a complex with CiFE to activate CiLFY, thereby promoting the flowering of adult citrus.
Collapse
Affiliation(s)
- Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Tian-Jia Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Yan Ai
- Institute of Pomology and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Meng-Ke Ren
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing-Jing Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Bai X, Ke J, Huang P, Fatima I, Cheng T, Tang M. Promotion of natural flowers by JcFT depends on JcLFY in the perennial woody species Jatropha curcas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111236. [PMID: 35351308 DOI: 10.1016/j.plantsci.2022.111236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Production of normal gametes is necessary for flowering plant reproduction, which involves the transition from vegetative to reproductive stage and floral organ development. Such transitions and floral development are modulated by various environmental and endogenous stimuli and controlled by sophisticated regulatory networks. FLOWERING LOCUS T (FT) and LEAFY (LFY) are two key genes that integrate signals from multiple genetic pathways in Arabidopsis. However, the comprehensive functions and relationship between these two genes in trees are poorly understood. In this study, we found that JcFT played a vital role in regulating the flowering transition in the perennial woody species Jatropha curcas. JcLFY also involved in regulating this transition and controlled floral organ development. The non-flowering phenotype of JcFT-RNAi was rescued successfully by overexpression of JcLFY, while the abnormal flowers produced by JcLFY silencing were not recovered by JcFT overexpression via hybridization. These results indicate that JcFT, in which a mutation leads to a nonflowering phenotype, is the central gene of the floral meristem transition and that JcLFY, in which a mutation leads to striking changes in flowering and often sterility, is the central floral and inflorescence development gene. Moreover, our hybridization results suggest that JcLFY acts downstream of JcFT in Jatropha.
Collapse
Affiliation(s)
- Xue Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiapeng Ke
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Ping Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Iza Fatima
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China
| | - Tong Cheng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Mingyong Tang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, China.
| |
Collapse
|
11
|
Agustí M, Reig C, Martínez-Fuentes A, Mesejo C. Advances in Citrus Flowering: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:868831. [PMID: 35463419 PMCID: PMC9024417 DOI: 10.3389/fpls.2022.868831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 05/29/2023]
Abstract
Citrus are polycarpic and evergreen species that flower once in spring or several times a year depending on the genotype and the climatic conditions. Floral induction is triggered by low temperature and water-deficit stress and occurs 2-3 months before bud sprouting, whereas differentiation takes place at the same time as sprouting. The induced buds develop single flowers or determinate inflorescences, so that vegetative growth is required at the axillary buds to renew the polycarpic habit. The presence of fruits inhibits sprouting and flower induction from nearby axillary buds in the current season. In some species and cultivars, this results in low flowering intensity the following spring, thus giving rise to alternate bearing. A number of key flowering genes act in the leaf (CiFT3, CcMADS19, etc.) or in the bud (CsLFY, CsTFL1, etc.) to promote or inhibit both flowering time and reproductive meristem identity in response to these climatic factors, the fruit dominance, or the age of the plant (juvenility). The expression of some of these genes can be modified by gibberellin treatments, which reduce bud sprouting and flowering in adult trees, and constitute the main horticultural technique to control flowering in citrus. This review presents a comprehensive view of all aspects of the flowering process in citrus, converging the research published during the past half century, which focused on plant growth regulators and the nutritional source-sink relationships and guided research toward the study of gene transcription and plant transformation, and the advances made with the development of the tools of molecular biology published during the current century.
Collapse
|
12
|
Wu YM, Ma YJ, Wang M, Zhou H, Gan ZM, Zeng RF, Ye LX, Zhou JJ, Zhang JZ, Hu CG. Mobility of FLOWERING LOCUS T protein as a systemic signal in trifoliate orange and its low accumulation in grafted juvenile scions. HORTICULTURE RESEARCH 2022; 9:uhac056. [PMID: 35702366 PMCID: PMC9186307 DOI: 10.1093/hr/uhac056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 05/29/2023]
Abstract
The long juvenile period of perennial woody plants is a major constraint in breeding programs. FLOWERING LOCUS T (FT) protein is an important mobile florigen signal that induces plant flowering. However, whether FT can be transported in woody plants to shorten the juvenile period is unknown, and its transport mechanism remains unclear. In this study, trifoliate orange FT (ToFT) and Arabidopsis FT (AtFT, which has been confirmed to be transportable in Arabidopsis) as a control were transformed into tomato and trifoliate orange, and early flowering was induced in the transgenic plants. Long-distance and two-way (upward and downward) transmission of ToFT and AtFT proteins was confirmed in both tomato and trifoliate orange using grafting and western blot analysis. However, rootstocks of transgenic trifoliate orange could not induce flowering in grafted wild-type juvenile scions because of the low accumulation of total FT protein in the grafted scions. It was further confirmed that endogenous ToFT protein was reduced in trifoliate orange, and the accumulation of the transported ToFT and AtFT proteins was lower than that in grafted juvenile tomato scions. Furthermore, the trifoliate orange FT-INTERACTING PROTEIN1 homolog (ToFTIP1) was isolated by yeast two-hybrid analysis. The FTIP1 homolog may regulate FT transport by interacting with FT in tomato and trifoliate orange. Our findings suggest that FT transport may be conserved between the tomato model and woody plants. However, in woody plants, the transported FT protein did not accumulate in significant amounts in the grafted wild-type juvenile scions and induce the scions to flower.
Collapse
|
13
|
Tang M, Bai X, Wang J, Chen T, Meng X, Deng H, Li C, Xu ZF. Efficiency of graft-transmitted JcFT for floral induction in woody perennial species of the Jatropha genus depends on transport distance. TREE PHYSIOLOGY 2022; 42:189-201. [PMID: 34505154 PMCID: PMC8755054 DOI: 10.1093/treephys/tpab116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/24/2021] [Indexed: 06/01/2023]
Abstract
FLOWERING LOCUS T (FT) promotes flowering by integrating six genetic pathways. In Arabidopsis, the FT protein is transported from leaves to shoot apices and induces flowering. However, contradictory conclusions about floral induction via graft-transmitted FT in trees were reported in previous studies. We obtained extremely early-flowering transgenic woody Jatropha curcas L. by overexpression of J. curcas FT using Arabidopsis thaliana SUCROSE TRANSPORTER 2 (SUC2) promoter (SUC2:JcFT) and non-flowering transgenic J. curcas by RNA interference (RNAi), which were used to investigate the function of graft-transmitted JcFT in floral induction in woody perennials. Scions from five wild-type species of the Jatropha genus and from JcFT-RNAi transgenic J. curcas were grafted onto SUC2:JcFT rootstocks. Most grafted plants produced flowers in 1-2 months, and the flowering percentage and frequency of various grafted plants decreased with increasing scion length. Consistently, FT protein abundance in scions also decreased with increasing distance from graft junctions to the buds. These findings suggest that FT proteins can be transmitted by grafting and can induce the floral transition in woody perennials, and the efficiency of graft-transmitted JcFT for floral induction depends on the scion length, which may help explain previous seemingly contradictory observations regarding floral induction via graft-transmitted FT in trees.
Collapse
Affiliation(s)
| | | | - Jingxian Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Tao Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Meng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Hongjun Deng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Wenchang Street, Zhoukou, Henan 466001, China
| | - Zeng-Fu Xu
- Corresponding authors: M. Tang (), Z.-F. Xu ()
| |
Collapse
|
14
|
Conti G, Xoconostle-Cázares B, Marcelino-Pérez G, Hopp HE, Reyes CA. Citrus Genetic Transformation: An Overview of the Current Strategies and Insights on the New Emerging Technologies. FRONTIERS IN PLANT SCIENCE 2021; 12:768197. [PMID: 34917104 PMCID: PMC8670418 DOI: 10.3389/fpls.2021.768197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 05/04/2023]
Abstract
Citrus are among the most prevailing fruit crops produced worldwide. The implementation of effective and reliable breeding programs is essential for coping with the increasing demands of satisfactory yield and quality of the fruit as well as to deal with the negative impact of fast-spreading diseases. Conventional methods are time-consuming and of difficult application because of inherent factors of citrus biology, such as their prolonged juvenile period and a complex reproductive stage, sometimes presenting infertility, self-incompatibility, parthenocarpy, or polyembryony. Moreover, certain desirable traits are absent from cultivated or wild citrus genotypes. All these features are challenging for the incorporation of the desirable traits. In this regard, genetic engineering technologies offer a series of alternative approaches that allow overcoming the difficulties of conventional breeding programs. This review gives a detailed overview of the currently used strategies for the development of genetically modified citrus. We describe different aspects regarding genotype varieties used, including elite cultivars or extensively used scions and rootstocks. Furthermore, we discuss technical aspects of citrus genetic transformation procedures via Agrobacterium, regular physical methods, and magnetofection. Finally, we describe the selection of explants considering young and mature tissues, protoplast isolation, etc. We also address current protocols and novel approaches for improving the in vitro regeneration process, which is an important bottleneck for citrus genetic transformation. This review also explores alternative emerging transformation strategies applied to citrus species such as transient and tissue localized transformation. New breeding technologies, including cisgenesis, intragenesis, and genome editing by clustered regularly interspaced short palindromic repeats (CRISPR), are also discussed. Other relevant aspects comprising new promoters and reporter genes, marker-free systems, and strategies for induction of early flowering, are also addressed. We provided a future perspective on the use of current and new technologies in citrus and its potential impact on regulatory processes.
Collapse
Affiliation(s)
- Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriel Marcelino-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Horacio Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Laboratorio de Agrobiotecnología, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular (FBMC), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina A. Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, Buenos Aires, Argentina
| |
Collapse
|
15
|
Zeng RF, Zhou H, Fu LM, Yan Z, Ye LX, Hu SF, Gan ZM, Ai XY, Hu CG, Zhang JZ. Two citrus KNAT-like genes, CsKN1 and CsKN2, are involved in the regulation of spring shoot development in sweet orange. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7002-7019. [PMID: 34185082 DOI: 10.1093/jxb/erab311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/26/2021] [Indexed: 05/21/2023]
Abstract
Shoot-tip abortion is a very common phenomenon in some perennial woody plants and it affects the height, architecture, and branch orientation of trees; however, little is currently known about the underlying mechanisms. In this study, we identified a gene in sweet orange (Citrus sinensis) encoding a KNAT-like protein (CsKN1) and found high expression in the shoot apical meristem (SAM). Overexpression of CsKN1 in transgenic plants prolonged the vegetative growth of SAMs, whilst silencing resulted in either the loss or inhibition of SAMs. Yeast two-hybrid analysis revealed that CsKN1 interacted with another citrus KNAT-like protein (CsKN2), and overexpression of CsKN2 in lemon and tobacco caused an extreme multiple-meristem phenotype. Overexpression of CsKN1 and CsKN2 in transgenic plants resulted in the differential expression of numerous genes related to hormone biosynthesis and signaling. Yeast one-hybrid analysis revealed that the CsKN1-CsKN2 complex can bind to the promoter of citrus floral meristem gene LEAFY (CsLFY) and inhibit its expression. These results indicated that CsKN1 might prolong the vegetative growth period of SAMs by delaying flowering. In addition, an ethylene-responsive factor (CsERF) was found to bind to the CsKN1 promoter and suppresses its transcription. Overexpression of CsERF in Arabidopsis increased the contents of ethylene and reactive oxygen species, which might induce the occurrence of shoot-tip abscission. On the basis of our results, we conclude that CsKN1 and CsKN2 might work cooperatively to regulate the shoot-tip abscission process in spring shoots of sweet orange.
Collapse
Affiliation(s)
- Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Li-Ming Fu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhen Yan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Li-Xia Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Si-Fan Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Yan Ai
- Institute of Pomology and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Orbović V, Ravanfar SA, Acanda Y, Narvaez J, Merritt BA, Levy A, Lovatt CJ. Stress-inducible Arabidopsis thaliana RD29A promoter constitutively drives Citrus sinensis APETALA1 and LEAFY expression and precocious flowering in transgenic Citrus spp. Transgenic Res 2021; 30:687-699. [PMID: 34053006 DOI: 10.1007/s11248-021-00260-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
Transgenic 'Duncan' grapefruit (Citrus paradisi Macf.) and 'Valencia' sweet orange (Citrus sinensis [L.] Osbeck) plants ectopically expressing C. sinensis (cv. Washington navel orange) APETALA1 (CsAP1) or LEAFY (CsLFY) genes under control of the Arabidopsis thaliana stress-inducible promoter AtRD29A flowered under non-inductive (warm temperature, well-watered) greenhouse conditions, whereas their wild-type (WT) counterparts did not. The transgenic plants that flowered exhibited no altered morphological features, except the lack of thorns characteristic of juvenile WT plants. The most precocious T0 line, 'Duncan' grapefruit (Dun134-3) expressing the CsAP1 gene, flowered and fruited when it was 4.5 years old and the T1 siblings from this line flowered and fruited when they were just over 18 months old. In contrast, T1 seedlings from three lines of 'Duncan' grapefruit expressing the CsLFY gene flowered within 3 months after germination, but were unable to support fruit development. Transcript levels of corresponding transgenes in leaves were not correlated with earliness of flowering. To further study the activity of AtRD29A, leaves from three 'Carrizo' citrange (C. sinensis × Poncirus trifoliata) rootstock seedlings transformed with the green fluorescent protein (GFP) gene under regulation of the AtRD29A promoter were subjected to drought stress or well-watered conditions. Expression of GFP was not stress-dependent, consistent with the observation of flowering of CsAP1 and CsLFY transgenic plants under non-inductive conditions. Taken together, the results suggest that AtRD29A is constitutively expressed in a citrus background. Despite the loss of control over flowering time, transgenic citrus lines ectopically expressing C. sinensis AP1 or LFY genes under control of the A. thaliana RD29A promoter exhibit precocious flowering, fruit development and viable transgenic seed formation. These transformed lines can be useful tools to reduce the time between generations to accelerate breeding.
Collapse
Affiliation(s)
- Vladimir Orbović
- Citrus Research and Education Center, University of Florida/IFAS, Lake Alfred, FL, 33850, USA.
| | - Seyed Ali Ravanfar
- Citrus Research and Education Center, University of Florida/IFAS, Lake Alfred, FL, 33850, USA
| | - Yosvanis Acanda
- Citrus Research and Education Center, University of Florida/IFAS, Lake Alfred, FL, 33850, USA
| | - Javier Narvaez
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Benjamin A Merritt
- Citrus Research and Education Center, University of Florida/IFAS, Lake Alfred, FL, 33850, USA
| | - Amit Levy
- Citrus Research and Education Center, University of Florida/IFAS, Lake Alfred, FL, 33850, USA
| | - Carol J Lovatt
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
17
|
Rao MJ, Zuo H, Xu Q. Genomic insights into citrus domestication and its important agronomic traits. PLANT COMMUNICATIONS 2021; 2:100138. [PMID: 33511347 PMCID: PMC7816076 DOI: 10.1016/j.xplc.2020.100138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/04/2020] [Accepted: 12/25/2020] [Indexed: 05/12/2023]
Abstract
Citrus originated in Southeast Asia, and it has become one of the most important fruit crops worldwide. Citrus has a long and obscure domestication history due to its clonal propagation, long life cycle, wide sexual compatibility, and complex genetic background. As the genomic information of both wild and cultivated citrus becomes available, their domestication history and underlying traits or genes are becoming clear. This review outlines the genomic features of wild and cultivated species. We propose that the reduction of citric acid is a critical trait for citrus domestication. The genetic model representing the change during domestication may be associated with a regulatory complex known as WD-repeat-MYB-bHLH-WRKY (WMBW), which is involved in acidification and anthocyanin accumulation. The reduction in or loss of anthocyanins may be due to a hitchhiking effect of fruit acidity selection, in which mutation occurs in the common regulator of these two pathways in some domesticated types. Moreover, we have summarized the domestication traits and candidate genes for breeding purposes. This review represents a comprehensive summary of the genes controlling key traits of interest, such as acidity, metabolism, and disease resistance. It also sheds light on recent advances in early flowering from transgenic studies and provides a new perspective for fast breeding of citrus. Our review lays a foundation for future research on fruit acidity, flavor, and disease resistance in citrus.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology (Ministry of Education) Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Hao Zuo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology (Ministry of Education) Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Qiang Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Key Laboratory of Horticultural Plant Biology (Ministry of Education) Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|