1
|
Yan X, Yu R, Wang J, Jiao Y. Ancestral genome reconstruction and the evolution of chromosomal rearrangements in Triticeae. J Genet Genomics 2024:S1673-8527(24)00370-9. [PMID: 39746604 DOI: 10.1016/j.jgg.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Chromosomal rearrangements (CRs) often cause phenotypic variations. Although several major rearrangements have been identified in Triticeae, a comprehensive study of the order, timing, and breakpoints of CRs has not been conducted. Here, we reconstruct high-quality ancestral genomes for the most recent common ancestor (MRCA) of the Triticeae, and the MRCA of the wheat lineage (Triticum and Aegilops). The protogenes of MRCA of the Triticeae and the wheat lineage are 22,894 and 29,060, respectively, which were arranged in their ancestral order. By partitioning modern Triticeae chromosomes into sets of syntenic regions and linking each to the corresponding protochromosomes, we revisit the rye chromosome structural evolution and propose alternative evolutionary routes. The previously identified 4L/5L reciprocal translocation in rye and Triticum urartu are found to have occurred independently and are unlikely the result of chromosomal introgression following distant hybridization. We also clarify that the 4AL/7BS translocation in tetraploid wheat was a bidirectional rather than unidirectional translocation event. Lastly, we identify several breakpoints in protochromosomes that independently reoccur following Triticeae evolution, representing potential CR hotspots. This study demonstrates that these reconstructed ancestral genomes can serve as special comparative references and facilitate a better understanding of the evolution of structural rearrangements in Triticeae.
Collapse
Affiliation(s)
- Xueqing Yan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runxian Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinpeng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Pavlu S, Nikumbh S, Kovacik M, An T, Lenhard B, Simkova H, Navratilova P. Core promoterome of barley embryo. Comput Struct Biotechnol J 2024; 23:264-277. [PMID: 38173877 PMCID: PMC10762323 DOI: 10.1016/j.csbj.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Precise localization and dissection of gene promoters are key to understanding transcriptional gene regulation and to successful bioengineering applications. The core RNA polymerase II initiation machinery is highly conserved among eukaryotes, leading to a general expectation of equivalent underlying mechanisms. Still, less is known about promoters in the plant kingdom. In this study, we employed cap analysis of gene expression (CAGE) at three embryonic developmental stages in barley to accurately map, annotate, and quantify transcription initiation events. Unsupervised discovery of de novo sequence clusters grouped promoters based on characteristic initiator and position-specific core-promoter motifs. This grouping was complemented by the annotation of transcription factor binding site (TFBS) motifs. Integration with genome-wide epigenomic data sets and gene ontology (GO) enrichment analysis further delineated the chromatin environments and functional roles of genes associated with distinct promoter categories. The TATA-box presence governs all features explored, supporting the general model of two separate genomic regulatory environments. We describe the extent and implications of alternative transcription initiation events, including those that are specific to developmental stages, which can affect the protein sequence or the presence of regions that regulate translation. The generated promoterome dataset provides a valuable genomic resource for enhancing the functional annotation of the barley genome. It also offers insights into the transcriptional regulation of individual genes and presents opportunities for the informed manipulation of promoter architecture, with the aim of enhancing traits of agronomic importance.
Collapse
Affiliation(s)
- Simon Pavlu
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Sarvesh Nikumbh
- Merck Sharp & Dohme (UK) Limited, 120 Moorgate, London EC2M 6UR, UK
| | - Martin Kovacik
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Tadaichi An
- DNAFORM Precision Gene Technologies, 230–0046 Yokohama, Kanagawa, Japan
| | - Boris Lenhard
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Hana Simkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
| | - Pavla Navratilova
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, 77900 Olomouc, Czech Republic
| |
Collapse
|
3
|
Chen J, Bartoš J, Boudichevskaia A, Voigt A, Rabanus-Wallace MT, Dreissig S, Tulpová Z, Šimková H, Macas J, Kim G, Buhl J, Bürstenbinder K, Blattner FR, Fuchs J, Schmutzer T, Himmelbach A, Schubert V, Houben A. The genetic mechanism of B chromosome drive in rye illuminated by chromosome-scale assembly. Nat Commun 2024; 15:9686. [PMID: 39516474 PMCID: PMC11549084 DOI: 10.1038/s41467-024-53799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The genomes of many plants, animals, and fungi frequently comprise dispensable B chromosomes that rely upon various chromosomal drive mechanisms to counteract the tendency of non-essential genetic elements to be purged over time. The B chromosome of rye - a model system for nearly a century - undergoes targeted nondisjunction during first pollen mitosis, favouring segregation into the generative nucleus, thus increasing their numbers over generations. However, the genetic mechanisms underlying this process are poorly understood. Here, using a newly-assembled, ~430 Mb-long rye B chromosome pseudomolecule, we identify five candidate genes whose role as trans-acting moderators of the chromosomal drive is supported by karyotyping, chromosome drive analysis and comparative RNA-seq. Among them, we identify DCR28, coding a microtubule-associated protein related to cell division, and detect this gene also in the B chromosome of Aegilops speltoides. The DCR28 gene family is neo-functionalised and serially-duplicated with 15 B chromosome-located copies that are uniquely highly expressed in the first pollen mitosis of rye.
Collapse
Affiliation(s)
- Jianyong Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| | - Jan Bartoš
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Anastassia Boudichevskaia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Anna Voigt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Mark Timothy Rabanus-Wallace
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- School of Agriculture, Forestry, and Ecosystem Science (SAFES), The University of Melbourne, Parkville, VIC, Australia
| | - Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Jiří Macas
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Gihwan Kim
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jonas Buhl
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Institute of Biology, Department of Plant Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Institute of Biology, Department of Plant Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
| |
Collapse
|
4
|
Zhao L, Li Z, Jiang S, Xia C, Deng K, Liu B, Wang Z, Liu Q, He M, Zou M, Xia Z. The Telomere-to-Telomere Genome of Jaboticaba Reveals the Genetic Basis of Fruit Color and Citric Acid Content. Int J Mol Sci 2024; 25:11951. [PMID: 39596019 PMCID: PMC11593881 DOI: 10.3390/ijms252211951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Jaboticaba is a typical tropical plant that blossoms and bears fruit on the tree trunks and branches. The fruits resemble grapes in appearance and texture and are also known as "treegrapes". Currently, research on the genomics of jaboticaba is lacking. In this study, we constructed an integrated, telomere-to-telomere (T2T) gap-free reference genome and two nearly complete haploid genomes, thereby providing a high-quality genomic resource. Furthermore, we unveiled the evolutionary history of several species within the Myrtaceae family, highlighting significant expansions in metabolic pathways such as the citric acid cycle, glycolysis/gluconeogenesis, and phenylpropanoid biosynthesis throughout their evolutionary process. Transcriptome analysis of jaboticaba fruits of different colors revealed that the development of fruit skin color in jaboticaba is associated with the phenylpropanoid and flavonoid biosynthesis pathways, with the flavanone 3-hydroxylase (F3H) gene potentially regulating fruit skin color. Additionally, by constructing the regulatory pathway of the citric acid cycle, we found that low citric acid content is correlated with high expression levels of genes such as thiamin diphosphate (ThDP) and low expression of phosphoenolpyruvate carboxykinase (PEPCK), indicating that PEPCK positively regulates citric acid content. These T2T genomic resources will accelerate jaboticaba pepper genetic improvement and help to understand jaboticaba genome evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Meiling Zou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (L.Z.); (Z.L.); (S.J.); (C.X.); (K.D.); (B.L.); (Z.W.); (Q.L.); (M.H.)
| | - Zhiqiang Xia
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (L.Z.); (Z.L.); (S.J.); (C.X.); (K.D.); (B.L.); (Z.W.); (Q.L.); (M.H.)
| |
Collapse
|
5
|
Espina MJC, Lovell JT, Jenkins J, Shu S, Sreedasyam A, Jordan BD, Webber J, Boston L, Brůna T, Talag J, Goodstein D, Grimwood J, Stacey G, Cannon SB, Lorenz AJ, Schmutz J, Stupar RM. Assembly, comparative analysis, and utilization of a single haplotype reference genome for soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1221-1235. [PMID: 39276372 DOI: 10.1111/tpj.17026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Cultivar Williams 82 has served as the reference genome for the soybean research community since 2008, but is known to have areas of genomic heterogeneity among different sub-lines. This work provides an updated assembly (version Wm82.a6) derived from a specific sub-line known as Wm82-ISU-01 (seeds available under USDA accession PI 704477). The genome was assembled using Pacific BioSciences HiFi reads and integrated into chromosomes using HiC. The 20 soybean chromosomes assembled into a genome of 1.01Gb, consisting of 36 contigs. The genome annotation identified 48 387 gene models, named in accordance with previous assembly versions Wm82.a2 and Wm82.a4. Comparisons of Wm82.a6 with other near-gapless assemblies of Williams 82 reveal large regions of genomic heterogeneity, including regions of differential introgression from the cultivar Kingwa within approximately 30 Mb and 25 Mb segments on chromosomes 03 and 07, respectively. Additionally, our analysis revealed a previously unknown large (>20 Mb) heterogeneous region in the pericentromeric region of chromosome 12, where Wm82.a6 matches the 'Williams' haplotype while the other two near-gapless assemblies do not match the haplotype of either parent of Williams 82. In addition to the Wm82.a6 assembly, we also assembled the genome of 'Fiskeby III,' a rich resource for abiotic stress resistance genes. A genome comparison of Wm82.a6 with Fiskeby III revealed the nucleotide and structural polymorphisms between the two genomes within a QTL region for iron deficiency chlorosis resistance. The Wm82.a6 and Fiskeby III genomes described here will enhance comparative and functional genomics capacities and applications in the soybean community.
Collapse
Affiliation(s)
- Mary Jane C Espina
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
- Lawrence Berkeley National Laboratory, Department of Energy Joint Genome Institute, Berkeley, California, 94720, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
| | - Shengqiang Shu
- Lawrence Berkeley National Laboratory, Department of Energy Joint Genome Institute, Berkeley, California, 94720, USA
| | - Avinash Sreedasyam
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
- Lawrence Berkeley National Laboratory, Department of Energy Joint Genome Institute, Berkeley, California, 94720, USA
| | - Brandon D Jordan
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture - Agricultural Research Service, Ames, Iowa, 50011, USA
| | - Jenell Webber
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
| | - LoriBeth Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
| | - Tomáš Brůna
- Lawrence Berkeley National Laboratory, Department of Energy Joint Genome Institute, Berkeley, California, 94720, USA
| | - Jayson Talag
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721, USA
| | - David Goodstein
- Lawrence Berkeley National Laboratory, Department of Energy Joint Genome Institute, Berkeley, California, 94720, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
| | - Gary Stacey
- Division of Plant Science & Technology, C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture - Agricultural Research Service, Ames, Iowa, 50011, USA
| | - Aaron J Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA
- Lawrence Berkeley National Laboratory, Department of Energy Joint Genome Institute, Berkeley, California, 94720, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, 55108, USA
| |
Collapse
|
6
|
Qi Y, Shan D, Cao Y, Ma N, Lu L, Tian L, Feng Z, Ke F, Jian J, Gao Z, Xu Y. Telomere-to-telomere Genome Assembly of two representative Asian and European pear cultivars. Sci Data 2024; 11:1170. [PMID: 39461942 PMCID: PMC11513147 DOI: 10.1038/s41597-024-04015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
As the third most important temperate fruit, Pear (Pyrus spp.) exhibits a remarkable genetic diversity and is classified into two mainly categories known as Asian pear and European pear. Although several pear genomes are available, most of the released versions are fragmented and not chromosome-level high-quality. In this study, we report two high-quality genomes for Pyrus bretschneideri Rhed. cv. 'Danshansuli' (DS) and Pyrus communis L. cv. 'Conference' (KFL), which represent the predominant Asian and European cultivars, respectively, with nearly telomere-to-telomere (T2T) gap-free level. The finally assembled genome sizes for DS and KFL were 510.98 Mb and 510.71 Mb, respectively, with Contig N50 of 29.47 Mb and 30.47 Mb, where each chromosome was represented by a single contig. The DS and KFL genomes yielded a total of 46,394 and 44,702 protein-coding genes, respectively. Among these genes, the functional annotation accounted for 96.47% and 96.46% in the DS and KFL genomes. The two novels nearly T2T genomic information offers an invaluable resource for comparative genomics, genetic diversity analysis, molecular breeding strategies, and functional exploration.
Collapse
Affiliation(s)
- Yongjie Qi
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization(Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Dai Shan
- BGI Genomics, Shenzhen, 518083, China
| | - Yufen Cao
- Chinese Academy of Agricultural Sciences (CAAS), Xingcheng, 125100, China
| | - Na Ma
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization(Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Liqing Lu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization(Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Luming Tian
- Chinese Academy of Agricultural Sciences (CAAS), Xingcheng, 125100, China
| | - Zhan Feng
- BGI Genomics, Shenzhen, 518083, China
| | - Fanjun Ke
- Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jianbo Jian
- BGI Genomics, Shenzhen, 518083, China.
- Marine Biology Institute, Shantou University, Shantou, 515063, China.
| | - Zhenghui Gao
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization(Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Yiliu Xu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization(Co-construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
7
|
Feng X, Zhu G, Meng Q, Zeng J, He X, Liu W. Comprehensive analysis of PLATZ family genes and their responses to abiotic stresses in Barley. BMC PLANT BIOLOGY 2024; 24:982. [PMID: 39420254 PMCID: PMC11488246 DOI: 10.1186/s12870-024-05690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Plant A/T-rich protein and zinc-binding protein (PLATZ) transcription factors are pivotal regulators in various aspects of plant biology, including growth, development, and responses to environmental stresses. While PLATZ genes have been extensively studied and functionally characterized in various plants, limited information is available for these genes in barley. RESULTS Here, we discovered a total of 11 PLATZ genes distributed across seven chromosomes in barley. Based on phylogenetic and conserved motif analysis, we classified PLATZ into five subfamilies, comprising 3, 1, 2, 1 and 4 genes, respectively. Analysis of gene structure demonstrated that these 11 HvPLATZ genes typically possessed two to four exons. Most HvPLATZ genes were found to possess at least one ABRE cis-element in their promoter regions, and a few of them also contained LTR, CAT-box, MRE, and DRE cis-elements. Then, we conducted an exploration of the expression patterns of HvPLATZs, which displayed notable differences across various tissues and in response to abiotic stresses. Functional analysis of HvPLATZ6 and HvPLATZ8 in yeast cells showed that they may be involved in drought tolerance. Additionally, we constructed a regulatory network including miRNA-targeted gene predictions and identified two miRNAs targeting two HvPLATZs, such as hvu-miR5053 and hvu-miR6184 targeting HvPLATZ2, hvu-miR6184 targeting HvPLATZ10. CONCLUSION In summary, these findings provide valuable insights for future functional verification of HvPLATZs and contribute to a deeper understanding of the role of HvPLATZs in response to stress conditions in barley.
Collapse
Affiliation(s)
- Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Gehao Zhu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Quan Meng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianbin Zeng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyan He
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenxing Liu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, School of Life Sciences, Ministry of Education, Shandong University, Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
8
|
Velásquez-Zapata V, Smith S, Surana P, Chapman AV, Jaiswal N, Helm M, Wise RP. Diverse epistatic effects in barley-powdery mildew interactions localize to host chromosome hotspots. iScience 2024; 27:111013. [PMID: 39445108 PMCID: PMC11497433 DOI: 10.1016/j.isci.2024.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/27/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Barley Mildew locus a (Mla) encodes a multi-allelic series of nucleotide-binding leucine-rich repeat (NLR) receptors that specify recognition to diverse cereal diseases. We exploited time-course transcriptome dynamics of barley and derived immune mutants infected with the powdery mildew fungus, Blumeria hordei (Bh), to infer gene effects governed by Mla6 and two other loci significant to disease development, Blufensin1 (Bln1), and Required for Mla6 resistance3 (rar3 = Sgt1 ΔKL308-309 ). Interactions of Mla6 and Bln1 resulted in diverse epistatic effects on the Bh-induced barley transcriptome, differential immunity to Pseudomonas syringae expressing the effector protease AvrPphB, and reaction to Bh. From a total of 468 barley NLRs, 115 were grouped under different gene effect models; genes classified under these models localized to host chromosome hotspots. The corresponding Bh infection transcriptome was classified into nine co-expressed modules, linking differential expression with pathogen structures, signifying that disease is regulated by an inter-organismal network that diversifies the response.
Collapse
Affiliation(s)
- Valeria Velásquez-Zapata
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Schuyler Smith
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Priyanka Surana
- Informatics Infrastructure Team, Tree of Life Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Antony V.E. Chapman
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA
- Phytoform Labs, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Namrata Jaiswal
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - Matthew Helm
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
| | - Roger P. Wise
- Program in Bioinformatics & Computational Biology, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, IA 50011, USA
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| |
Collapse
|
9
|
Gálvez-Galván A, Barea L, Garrido-Ramos MA, Prieto P. Highly divergent satellitomes of two barley species of agronomic importance, Hordeum chilense and H. vulgare. PLANT MOLECULAR BIOLOGY 2024; 114:108. [PMID: 39356367 PMCID: PMC11447152 DOI: 10.1007/s11103-024-01501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024]
Abstract
In this paper, we have performed an in-depth study of the complete set of the satellite DNA (satDNA) families (i.e. the satellitomes) in the genome of two barley species of agronomic value in a breeding framework, H. chilense (H1 and H7 accessions) and H. vulgare (H106 accession), which can be useful tools for studying chromosome associations during meiosis. The study has led to the analysis of a total of 18 satDNA families in H. vulgare, 25 satDNA families in H. chilense (accession H1) and 27 satDNA families in H. chilense (accession H7) that constitute 46 different satDNA families forming 36 homology groups. Our study highlights different important contributions of evolutionary and applied interests. Thus, both barley species show very divergent satDNA profiles, which could be partly explained by the differential effects of domestication versus wildlife. Divergence derives from the differential amplification of different common ancestral satellites and the emergence of new satellites in H. chilense, usually from pre-existing ones but also random sequences. There are also differences between the two H. chilense accessions, which support genetically distinct groups. The fluorescence in situ hybridization (FISH) patterns of some satDNAs yield distinctive genetic markers for the identification of specific H. chilense or H. vulgare chromosomes. Some of the satellites have peculiar structures or are related to transposable elements which provide information about their origin and expansion. Among these, we discuss the existence of different (peri)centromeric satellites that supply this region with some plasticity important for centromere evolution. These peri(centromeric) satDNAs and the set of subtelomeric satDNAs (a total of 38 different families) are analyzed in the framework of breeding as the high diversity found in the subtelomeric regions might support their putative implication in chromosome recognition and pairing during meiosis, a key point in the production of addition/substitution lines and hybrids.
Collapse
Affiliation(s)
- Ana Gálvez-Galván
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo s/n, 14004, Córdoba, Spain
| | - Lorena Barea
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo s/n, 14004, Córdoba, Spain
- Area of Plant Breeding and Biotechnology, IFAPA Alameda del Obispo, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avda. Menéndez Pidal, Campus Alameda del Obispo s/n, 14004, Córdoba, Spain.
| |
Collapse
|
10
|
Tong Z, Huang Y, Zhu QH, Fan L, Xiao B, Shen E. Retrospect and prospect of Nicotiana tabacum genome sequencing. FRONTIERS IN PLANT SCIENCE 2024; 15:1474658. [PMID: 39354948 PMCID: PMC11442231 DOI: 10.3389/fpls.2024.1474658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024]
Abstract
Investigating plant genomes offers crucial foundational resources for exploring various aspects of plant biology and applications, such as functional genomics and breeding practices. With the development in sequencing and assembly technology, several Nicotiana tabacum genomes have been published. In this paper, we reviewed the progress on N. tabacum genome assembly and quality, from the initial draft genomes to the recent high-quality chromosome-level assemblies. The application of long-read sequencing, optical mapping, and Hi-C technologies has significantly improved the contiguity and completeness of N. tabacum genome assemblies, with the latest assemblies having a contig N50 size over 50 Mb. Despite these advancements, further improvements are still required and possible, particularly on the development of pan-genome and telomere-to-telomere (T2T) genomes. These new genomes will capture the genomic diversity and variations among different N. tabacum cultivars and species, and provide a comprehensive view of the N. tabacum genome structure and gene content, so to deepen our understanding of the N. tabacum genome and facilitate precise breeding and functional genomics.
Collapse
Affiliation(s)
- Zhijun Tong
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Yujie Huang
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qian-Hao Zhu
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT, Australia
| | - Longjiang Fan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bingguang Xiao
- Key Laboratory of Tobacco Biotechnological Breeding, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Enhui Shen
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- The Rural Development Academy, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Šimková H, Câmara AS, Mascher M. Hi-C techniques: from genome assemblies to transcription regulation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5357-5365. [PMID: 38430521 DOI: 10.1093/jxb/erae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/04/2024]
Abstract
The invention of chromosome conformation capture (3C) techniques, in particular the key method Hi-C providing genome-wide information about chromatin contacts, revolutionized the way we study the three-dimensional organization of the nuclear genome and how it affects transcription, replication, and DNA repair. Because the frequency of chromatin contacts between pairs of genomic segments predictably relates to the distance in the linear genome, the information obtained by Hi-C has also proved useful for scaffolding genomic sequences. Here, we review recent improvements in experimental procedures of Hi-C and its various derivatives, such as Micro-C, HiChIP, and Capture Hi-C. We assess the advantages and limitations of the techniques, and present examples of their use in recent plant studies. We also report on progress in the development of computational tools used in assembling genome sequences.
Collapse
Affiliation(s)
- Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Slechtitelu 31, CZ-779 00 Olomouc, Czech Republic
| | - Amanda Souza Câmara
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, D-06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
12
|
Garg V, Bohra A, Mascher M, Spannagl M, Xu X, Bevan MW, Bennetzen JL, Varshney RK. Unlocking plant genetics with telomere-to-telomere genome assemblies. Nat Genet 2024; 56:1788-1799. [PMID: 39048791 DOI: 10.1038/s41588-024-01830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Contiguous genome sequence assemblies will help us to realize the full potential of crop translational genomics. Recent advances in sequencing technologies, especially long-read sequencing strategies, have made it possible to construct gapless telomere-to-telomere (T2T) assemblies, thus offering novel insights into genome organization and function. Plant genomes pose unique challenges, such as a continuum of ancient to recent polyploidy and abundant highly similar and long repetitive elements. Owing to progress in sequencing approaches, for most crop plants, chromosome-scale reference genome assemblies are available, but T2T assembly construction remains challenging. Here we describe methods for haplotype-resolved, gapless T2T assembly construction in plants, including various crop species. We outline the impact of T2T assemblies in elucidating the roles of repetitive elements in gene regulation, as well as in pangenomics, functional genomics, genome-assisted breeding and targeted genome manipulation. In conjunction with sequence-enriched germplasm repositories, T2T assemblies thus hold great promise for basic and applied plant sciences.
Collapse
Affiliation(s)
- Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Abhishek Bohra
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Manuel Spannagl
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xun Xu
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| |
Collapse
|
13
|
Li M, Chen C, Wang H, Qin H, Hou S, Yang X, Jian J, Gao P, Liu M, Mu Z. Telomere-to-telomere genome assembly of sorghum. Sci Data 2024; 11:835. [PMID: 39095379 PMCID: PMC11297213 DOI: 10.1038/s41597-024-03664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
"Cuohu Bazi" (CHBZ) is an ancient sorghum variety collected from the fields of China, known for its agronomic traits like dwarf stature, early maturation. In this study, we present the first telomere-to-telomere (T2T) and gap-free genome assembly of CHBZ using PacBio HiFi reads, Oxford Nanopore Technologies, and Hi-C data. The assembled genome comprises 724.85 Mb, effectively resolving all 3,913 gaps that were present in the previous sorghum BTx623 reference genome. Notably, the T2T assembly captures 10 centromeres and all 20 telomeres, providing strong support for their integrity. This assembly is of high quality in terms of contiguity (contig N50: 71.1 Mb), completeness (BUSCO score: 99.01%, k-mer completeness: 98.88%), and correctness (QV: 61.60). Repetitive sequences accounted for 70.41% of the genome and a total of 32,855 protein-coding genes have been annotated. Furthermore, 161 CHBZ-specific presence/absence variants genes have been identified when comparing to BTx623 genome. This study provides valuable insights for future research on sorghum genetics, genomics, and evolutionary history.
Collapse
Affiliation(s)
- Meng Li
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China.
| | | | - Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | - Huibin Qin
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | - Sen Hou
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | | | | | | | - Minxuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China.
| |
Collapse
|
14
|
Schreiber M, Jayakodi M, Stein N, Mascher M. Plant pangenomes for crop improvement, biodiversity and evolution. Nat Rev Genet 2024; 25:563-577. [PMID: 38378816 PMCID: PMC7616794 DOI: 10.1038/s41576-024-00691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 02/22/2024]
Abstract
Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes - complete sequences of multiple individuals of a species or higher taxonomic unit - have now entered the geneticists' toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.
Collapse
Affiliation(s)
- Mona Schreiber
- Department of Biology, University of Marburg, Marburg, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
15
|
Yang T, Cai Y, Huang T, Yang D, Yang X, Yin X, Zhang C, Yang Y, Yang Y. A telomere-to-telomere gap-free reference genome assembly of avocado provides useful resources for identifying genes related to fatty acid biosynthesis and disease resistance. HORTICULTURE RESEARCH 2024; 11:uhae119. [PMID: 38966866 PMCID: PMC11220182 DOI: 10.1093/hr/uhae119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/14/2024] [Indexed: 07/06/2024]
Abstract
Avocado (Persea americana Mill.) is an economically valuable plant because of the high fatty acid content and unique flavor of its fruits. Its fatty acid content, especially the relatively high unsaturated fatty acid content, provides significant health benefits. We herein present a telomere-to-telomere gapless genome assembly (841.6 Mb) of West Indian avocado. The genome contains 40 629 predicted protein-coding genes. Repeat sequences account for 57.9% of the genome. Notably, all telomeres, centromeres, and a nucleolar organizing region are included in this genome. Fragments from these three regions were observed via fluorescence in situ hybridization. We identified 376 potential disease resistance-related nucleotide-binding leucine-rich repeat genes. These genes, which are typically clustered on chromosomes, may be derived from gene duplication events. Five NLR genes (Pa11g0262, Pa02g4855, Pa07g3139, Pa07g0383, and Pa02g3196) were highly expressed in leaves, stems, and fruits, indicating they may be involved in avocado disease responses in multiple tissues. We also identified 128 genes associated with fatty acid biosynthesis and analyzed their expression patterns in leaves, stems, and fruits. Pa02g0113, which encodes one of 11 stearoyl-acyl carrier protein desaturases mediating C18 unsaturated fatty acid synthesis, was more highly expressed in the leaves than in the stems and fruits. These findings provide valuable insights that enhance our understanding of fatty acid biosynthesis in avocado.
Collapse
Affiliation(s)
- Tianyu Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tianping Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Gardening & Horticulture, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Danni Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xingyu Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yin
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunqiang Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
16
|
Wang H, Wang J, Chen C, Chen L, Li M, Qin H, Tian X, Hou S, Yang X, Jian J, Gao P, Wang L, Qiao Z, Mu Z. A complete reference genome of broomcorn millet. Sci Data 2024; 11:657. [PMID: 38906866 PMCID: PMC11192726 DOI: 10.1038/s41597-024-03489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Broomcorn millet (Panicum miliaceum L.), known for its traits of drought resistance, adaptability to poor soil, short growth period, and high photosynthetic efficiency as a C4 plant, represents one of the earliest domesticated crops globally. This study reports the telomere-to-telomere (T2T) gap-free reference genome for broomcorn millet (AJ8) using PacBio high-fidelity (HiFi) long reads, Oxford Nanopore long-read technologies and high-throughput chromosome conformation capture (Hi-C) sequencing data. The size of AJ8 genome was approximately 834.7 Mb, anchored onto 18 pseudo-chromosomes. Notably, 18 centromeres and 36 telomeres were obtained. The assembled genome showed high quality in terms of completeness (BUSCO score: 99.6%, QV: 61.7, LAI value: 20.4). In addition, 63,678 protein-coding genes and 433.8 Mb (~52.0%) repetitive sequences were identified. The complete reference genome for broomcorn millet provides a valuable resource for genetic studies and breeding of this important cereal crop.
Collapse
Affiliation(s)
- Haigang Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China.
| | - Junjie Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | | | - Ling Chen
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | - Meng Li
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | - Huibin Qin
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | - Xiang Tian
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | - Sen Hou
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China
| | | | | | | | - Lun Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China.
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China.
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan, 030031, China.
| |
Collapse
|
17
|
Tang M, Liu Y, Zhang H, Sun L, Lü P, Chen K. Comprehensive transcriptome sequencing of silkworm Midguts: Uncovering extensive isoform diversity and alternative splicing in BmNPV-Sensitive and BmNPV-resistant strains. J Invertebr Pathol 2024; 204:108104. [PMID: 38608751 DOI: 10.1016/j.jip.2024.108104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The silkworm, Bombyx mori, stands out as one of the few economically valuable insects within the realm of model organisms. However, Bombyx mori nucleopolyhedrovirus (BmNPV) poses a significant threat, decreasing the quality and quantity of silkworm cocoons. Over the past few decades, a multitude of researchers has delved into the mechanisms that underlie silkworm resistance to BmNPV, employing diverse methodologies and approaching the problem from various angles. Despite this extensive research, the role of alternative splicing (AS) in the silkworm's response to BmNPV infection has been largely unexplored. This study leveraged both third-generation (Oxford Nanopore Technologies) and second-generation (Illumina) high-throughput sequencing technologies to meticulously identify and analyze AS patterns in the context of BmNPV response, utilizing two distinct silkworm strains-the susceptible strain 306 and the resistant strain NB. Consequently, we identified five crucial genes (Dsclp, LOC692903, LOC101743583, LOC101742498, LOC101743809) that are linked to the response to BmNPV infection through AS and differential expression. Additionally, a thorough comparative analysis was conducted on their diverse transcriptomic expression profiles, including alternative polyadenylation, simple sequence repeats, and transcription factors.
Collapse
Affiliation(s)
- Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
18
|
Mascher M, Marone MP, Schreiber M, Stein N. Are cereal grasses a single genetic system? NATURE PLANTS 2024; 10:719-731. [PMID: 38605239 PMCID: PMC7616769 DOI: 10.1038/s41477-024-01674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
In 1993, a passionate and provocative call to arms urged cereal researchers to consider the taxon they study as a single genetic system and collaborate with each other. Since then, that group of scientists has seen their discipline blossom. In an attempt to understand what unity of genetic systems means and how the notion was borne out by later research, we survey the progress and prospects of cereal genomics: sequence assemblies, population-scale sequencing, resistance gene cloning and domestication genetics. Gene order may not be as extraordinarily well conserved in the grasses as once thought. Still, several recurring themes have emerged. The same ancestral molecular pathways defining plant architecture have been co-opted in the evolution of different cereal crops. Such genetic convergence as much as cross-fertilization of ideas between cereal geneticists has led to a rich harvest of genes that, it is hoped, will lead to improved varieties.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Marina Püpke Marone
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mona Schreiber
- University of Marburg, Department of Biology, Marburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
19
|
Pei Y, Leng L, Sun W, Liu B, Feng X, Li X, Chen S. Whole-genome sequencing in medicinal plants: current progress and prospect. SCIENCE CHINA. LIFE SCIENCES 2024; 67:258-273. [PMID: 37837531 DOI: 10.1007/s11427-022-2375-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/23/2023] [Indexed: 10/16/2023]
Abstract
Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.
Collapse
Affiliation(s)
- Yifei Pei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baocai Liu
- Institute of Agricultural Bioresource, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
20
|
Wang X, Tu M, Wang Y, Zhang Y, Yin W, Fang J, Gao M, Li Z, Zhan W, Fang Y, Song J, Xi Z, Wang X. Telomere-to-telomere and gap-free genome assembly of a susceptible grapevine species (Thompson Seedless) to facilitate grape functional genomics. HORTICULTURE RESEARCH 2024; 11:uhad260. [PMID: 38288254 PMCID: PMC10822838 DOI: 10.1093/hr/uhad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/26/2023] [Indexed: 01/31/2024]
Abstract
Grapes are globally recognized as economically significant fruit trees. Among grape varieties, Thompson Seedless holds paramount influence for fresh consumption and for extensive applications in winemaking, drying, and juicing. This variety is one of the most efficient genotypes for grape genetic modification. However, the lack of a high-quality genome has impeded effective breeding efforts. Here, we present the high-quality reference genome of Thompson Seedless with all 19 chromosomes represented as 19 contiguous sequences (N50 = 27.1 Mb) with zero gaps and prediction of all telomeres and centromeres. Compared with the previous assembly (TSv1 version), the new assembly incorporates an additional 31.5 Mb of high-quality sequenced data with annotation of a total of 30 397 protein-coding genes. We also performed a meticulous analysis to identify nucleotide-binding leucine-rich repeat genes (NLRs) in Thompson Seedless and two wild grape varieties renowned for their disease resistance. Our analysis revealed a significant reduction in the number of two types of NLRs, TIR-NB-LRR (TNL) and CC-NB-LRR (CNL), in Thompson Seedless, which may have led to its sensitivity to many fungal diseases, such as powdery mildew, and an increase in the number of a third type, RPW8 (resistance to powdery mildew 8)-NB-LRR (RNL). Subsequently, transcriptome analysis showed significant enrichment of NLRs during powdery mildew infection, emphasizing the pivotal role of these elements in grapevine's defense against powdery mildew. The successful assembly of a high-quality Thompson Seedless reference genome significantly contributes to grape genomics research, providing insight into the importance of seedlessness, disease resistance, and color traits, and these data can be used to facilitate grape molecular breeding efforts.
Collapse
Affiliation(s)
- Xianhang Wang
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxing Tu
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yali Zhang
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuchen Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinghao Fang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Zhan
- Xi'an Haorui Genomics Technology Co., Ltd, Xi'an 710116, China
| | - Yulin Fang
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junyang Song
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhumei Xi
- College of Enology, College of Food Science and Engineering, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
21
|
Chen P, Lian JY, Wu B, Cao HL, Li ZH, Wang ZF. Draft genome of Castanopsis chinensis, a dominant species safeguarding biodiversity in subtropical broadleaved evergreen forests. BMC Genom Data 2023; 24:78. [PMID: 38097945 PMCID: PMC10722680 DOI: 10.1186/s12863-023-01183-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVES Castanopsis is the third largest genus in the Fagaceae family and is essentially tropical or subtropical in origin. The species in this genus are mainly canopy-dominant trees, and the key components of evergreen broadleaved forests play a crucial role in the maintenance of local biodiversity. Castanopsis chinensis, distributed from South China to Vietnam, is a representative species. It currently suffers from a high disturbance of human activity and climate change. Here, we present its assembled genome to facilitate its preliminary conservation and breeding on the genome level. DATA DESCRIPTION The C. chinensis genome was assembled and annotated by Nanopore and MGI whole-genome sequencing and RNA-seq reads using leaf tissues. The assembly was 888,699,661 bp in length, consisting of 133 contigs and a contig N50 of 23,395,510 bp. A completeness assessment of the assembly with Benchmarking Universal Single-Copy Orthologs (BUSCO) indicated a score of 98.3%. Repetitive elements comprised 471,006,885 bp, accounting for 55.9% of the assembled sequences. A total of 51,406 genes that coded for 54,310 proteins were predicted. Multiple databases were used to functionally annotate the protein sequences.
Collapse
Affiliation(s)
- Pan Chen
- Guangdong Forestry Survey and Planning Institute, Guangzhou, 510520, China
| | - Ju-Yu Lian
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| | - Bin Wu
- Guangdong Forestry Survey and Planning Institute, Guangzhou, 510520, China
| | - Hong-Lin Cao
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Zhi-Hong Li
- Guangdong Forestry Survey and Planning Institute, Guangzhou, 510520, China
| | - Zheng-Feng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
22
|
Xu XD, Zhao RP, Xiao L, Lu L, Gao M, Luo YH, Zhou ZW, Ye SY, Qian YQ, Fan BL, Shang X, Shi P, Zeng W, Cao S, Wu Z, Yan H, Chen LL, Song JM. Telomere-to-telomere assembly of cassava genome reveals the evolution of cassava and divergence of allelic expression. HORTICULTURE RESEARCH 2023; 10:uhad200. [PMID: 38023477 PMCID: PMC10673656 DOI: 10.1093/hr/uhad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023]
Abstract
Cassava is a crucial crop that makes a significant contribution to ensuring human food security. However, high-quality telomere-to-telomere cassava genomes have not been available up to now, which has restricted the progress of haploid molecular breeding for cassava. In this study, we constructed two nearly complete haploid resolved genomes and an integrated, telomere-to-telomere gap-free reference genome of an excellent cassava variety, 'Xinxuan 048', thereby providing a new high-quality genomic resource. Furthermore, the evolutionary history of several species within the Euphorbiaceae family was revealed. Through comparative analysis of haploid genomes, it was found that two haploid genomes had extensive differences in linear structure, transcriptome features, and epigenetic characteristics. Genes located within the highly divergent regions and differentially expressed alleles are enriched in the functions of auxin response and the starch synthesis pathway. The high heterozygosity of cassava 'Xinxuan 048' leads to rapid trait segregation in the first selfed generation. This study provides a theoretical basis and genomic resource for molecular breeding of cassava haploids.
Collapse
Affiliation(s)
- Xin-Dong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ru-Peng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Liang Xiao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Liuying Lu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Min Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu-Hong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zu-Wen Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Si-Ying Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yong-Qing Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Bing-Liang Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaohong Shang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Pingli Shi
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wendan Zeng
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhengdan Wu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Huabing Yan
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Ming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
23
|
Serrano-León IM, Prieto P, Aguilar M. Telomere and subtelomere high polymorphism might contribute to the specificity of homologous recognition and pairing during meiosis in barley in the context of breeding. BMC Genomics 2023; 24:642. [PMID: 37884878 PMCID: PMC10601145 DOI: 10.1186/s12864-023-09738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Barley (Hordeum vulgare) is one of the most popular cereal crops globally. Although it is a diploid species, (2n = 2x = 14) the study of its genome organization is necessary in the framework of plant breeding since barley is often used in crosses with other cereals like wheat to provide them with advantageous characters. We already have an extensive knowledge on different stages of the meiosis, the cell division to generate the gametes in species with sexual reproduction, such as the formation of the synaptonemal complex, recombination, and chromosome segregation. But meiosis really starts with the identification of homologous chromosomes and pairing initiation, and it is still unclear how chromosomes exactly choose a partner to appropriately pair for additional recombination and segregation. In this work we present an exhaustive molecular analysis of both telomeres and subtelomeres of barley chromosome arms 2H-L, 3H-L and 5H-L. As expected, the analysis of multiple features, including transposable elements, repeats, GC content, predicted CpG islands, recombination hotspots, G4 quadruplexes, genes and targeted sequence motifs for key DNA-binding proteins, revealed a high degree of variability both in telomeres and subtelomeres. The molecular basis for the specificity of homologous recognition and pairing occurring in the early chromosomal interactions at the start of meiosis in barley may be provided by these polymorphisms. A more relevant role of telomeres and most distal part of subtelomeres is suggested.
Collapse
Affiliation(s)
- I M Serrano-León
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain
| | - P Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain.
| | - M Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 3ª Planta, Córdoba, Spain
| |
Collapse
|
24
|
Zheng H, Wang B, Hua X, Gao R, Wang Y, Zhang Z, Zhang Y, Mei J, Huang Y, Huang Y, Lin H, Zhang X, Lin D, Lan S, Liu Z, Lu G, Wang Z, Ming R, Zhang J, Lin Z. A near-complete genome assembly of the allotetrapolyploid Cenchrus fungigraminus (JUJUNCAO) provides insights into its evolution and C4 photosynthesis. PLANT COMMUNICATIONS 2023; 4:100633. [PMID: 37271992 PMCID: PMC10504591 DOI: 10.1016/j.xplc.2023.100633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/07/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
JUJUNCAO (Cenchrus fungigraminus; 2n = 4x = 28) is a Cenchrus grass with the highest biomass production among cultivated plants, and it can be used for mushroom cultivation, animal feed, and biofuel production. Here, we report a nearly complete genome assembly of JUJUNCAO and reveal that JUJUNCAO is an allopolyploid that originated ∼2.7 million years ago (mya). Its genome consists of two subgenomes, and subgenome A shares high collinear synteny with pearl millet. We also investigated the genome evolution of JUJUNCAO and suggest that the ancestral karyotype of Cenchrus split into the A and B ancestral karyotypes of JUJUNCAO. Comparative transcriptome and DNA methylome analyses revealed functional divergence of homeologous gene pairs between the two subgenomes, which was a further indication of asymmetric DNA methylation. The three types of centromeric repeat in the JUJUNCAO genome (CEN137, CEN148, and CEN156) may have evolved independently within each subgenome, with some introgressions of CEN156 from the B to the A subgenome. We investigated the photosynthetic characteristics of JUJUNCAO, revealing its typical C4 Kranz anatomy and high photosynthetic efficiency. NADP-ME and PEPCK appear to cooperate in the major C4 decarboxylation reaction of JUJUNCAO, which is different from other C4 photosynthetic subtypes and may contribute to its high photosynthetic efficiency and biomass yield. Taken together, our results provide insights into the highly efficient photosynthetic mechanism of JUJUNCAO and provide a valuable reference genome for future genetic and evolutionary studies, as well as genetic improvement of Cenchrus grasses.
Collapse
Affiliation(s)
- Huakun Zheng
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baiyu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China; Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiuting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China
| | - Ruiting Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuhao Wang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixin Zhang
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixing Zhang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Mei
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongji Huang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yumin Huang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Lin
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingtan Zhang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongjian Liu
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guodong Lu
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ray Ming
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China.
| | - Zhanxi Lin
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
25
|
Ma B, Wang H, Liu J, Chen L, Xia X, Wei W, Yang Z, Yuan J, Luo Y, He N. The gap-free genome of mulberry elucidates the architecture and evolution of polycentric chromosomes. HORTICULTURE RESEARCH 2023; 10:uhad111. [PMID: 37786730 PMCID: PMC10541557 DOI: 10.1093/hr/uhad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 10/04/2023]
Abstract
Mulberry is a fundamental component of the global sericulture industry, and its positive impact on our health and the environment cannot be overstated. However, the mulberry reference genomes reported previously remained unassembled or unplaced sequences. Here, we report the assembly and analysis of the telomere-to-telomere gap-free reference genome of the mulberry species, Morus notabilis, which has emerged as an important reference in mulberry gene function research and genetic improvement. The mulberry gap-free reference genome produced here provides an unprecedented opportunity for us to study the structure and function of centromeres. Our results revealed that all mulberry centromeric regions share conserved centromeric satellite repeats with different copies. Strikingly, we found that M. notabilis is a species with polycentric chromosomes and the only reported polycentric chromosome species up to now. We propose a compelling model that explains the formation mechanism of new centromeres and addresses the unsolved scientific question of the chromosome fusion-fission cycle in mulberry species. Our study sheds light on the functional genomics, chromosome evolution, and genetic improvement of mulberry species.
Collapse
Affiliation(s)
- Bi Ma
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Honghong Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Jingchun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Lin Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Xiaoyu Xia
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Wuqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Zhen Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Jianglian Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Yiwei Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| |
Collapse
|
26
|
Gao Y, Liao HB, Liu TH, Wu JM, Wang ZF, Cao HL. Draft genome and transcriptome of Nepenthes mirabilis, a carnivorous plant in China. BMC Genom Data 2023; 24:21. [PMID: 37060047 PMCID: PMC10103442 DOI: 10.1186/s12863-023-01126-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/06/2023] [Indexed: 04/16/2023] Open
Abstract
OBJECTIVES Nepenthes belongs to the monotypic family Nepenthaceae, one of the largest carnivorous plant families. Nepenthes species show impressive adaptive radiation and suffer from being overexploited in nature. Nepenthes mirabilis is the most widely distributed species and the only Nepenthes species that is naturally distributed within China. Herein, we reported the genome and transcriptome assemblies of N. mirabilis. The assemblies will be useful resources for comparative genomics, to understand the adaptation and conservation of carnivorous species. DATA DESCRIPTION This work produced ~ 139.5 Gb N. mirabilis whole genome sequencing reads using leaf tissues, and ~ 21.7 Gb and ~ 27.9 Gb of raw RNA-seq reads for its leaves and flowers, respectively. Transcriptome assembly obtained 339,802 transcripts, in which 79,758 open reading frames (ORFs) were identified. Function analysis indicated that these ORFs were mainly associated with proteolysis and DNA integration. The assembled genome was 691,409,685 bp with 159,555 contigs/scaffolds and an N50 of 10,307 bp. The BUSCO assessment of the assembled genome and transcriptome indicated 91.1% and 93.7% completeness, respectively. A total of 42,961 genes were predicted in the genome identified, coding for 45,461 proteins. The predicted genes were annotated using multiple databases, facilitating future functional analyses of them. This is the first genome report on the Nepenthaceae family.
Collapse
Affiliation(s)
- Yuan Gao
- Zhongshan Management Centre of the Natural Protected Area, Zhongshan, China
| | - Hao-Bin Liao
- Zhongshan Management Centre of the Natural Protected Area, Zhongshan, China
| | - Ting-Hong Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jia-Ming Wu
- Zhongshan Management Centre of the Natural Protected Area, Zhongshan, China
| | - Zheng-Feng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Hong-Lin Cao
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
27
|
Li T, Li Y, Shangguan H, Bian J, Luo R, Tian Y, Li Z, Nie X, Cui L. BarleyExpDB: an integrative gene expression database for barley. BMC PLANT BIOLOGY 2023; 23:170. [PMID: 37003963 PMCID: PMC10064564 DOI: 10.1186/s12870-023-04193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND RNA-sequencing (RNA-seq) has been widely used to study the dynamic expression patterns of transcribed genes, which can lead to new biological insights. However, processing and analyzing these huge amounts of histological data remains a great challenge for wet labs and field researchers who lack bioinformatics experience and computational resources. RESULTS We present BarleyExpDB, an easy-to-operate, free, and web-accessible database that integrates transcriptional profiles of barley at different growth and developmental stages, tissues, and stress conditions, as well as differential expression of mutants and populations to build a platform for barley expression and visualization. The expression of a gene of interest can be easily queried by searching by known gene ID or sequence similarity. Expression data can be displayed as a heat map, along with functional descriptions as well as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Proteins Families Database, and Simple Modular Architecture Research Tool annotations. CONCLUSIONS BarleyExpDB will serve as a valuable resource for the barley research community to leverage the vast publicly available RNA-seq datasets for functional genomics research and crop molecular breeding.
Collapse
Affiliation(s)
- Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Hongbin Shangguan
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325 Shandong China
| | - Ruihan Luo
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Yuan Tian
- Xintai Urban and Rural Development Group Co., Ltd, Taian, 271200 Shandong China
| | - Zhimin Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| |
Collapse
|
28
|
Gao L, Xu W, Xin T, Song J. Application of third-generation sequencing to herbal genomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1124536. [PMID: 36959935 PMCID: PMC10027759 DOI: 10.3389/fpls.2023.1124536] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
There is a long history of traditional medicine use. However, little genetic information is available for the plants used in traditional medicine, which limits the exploitation of these natural resources. Third-generation sequencing (TGS) techniques have made it possible to gather invaluable genetic information and develop herbal genomics. In this review, we introduce two main TGS techniques, PacBio SMRT technology and Oxford Nanopore technology, and compare the two techniques against Illumina, the predominant next-generation sequencing technique. In addition, we summarize the nuclear and organelle genome assemblies of commonly used medicinal plants, choose several examples from genomics, transcriptomics, and molecular identification studies to dissect the specific processes and summarize the advantages and disadvantages of the two TGS techniques when applied to medicinal organisms. Finally, we describe how we expect that TGS techniques will be widely utilized to assemble telomere-to-telomere (T2T) genomes and in epigenomics research involving medicinal plants.
Collapse
|
29
|
Wang P, Wang F. A proposed metric set for evaluation of genome assembly quality. Trends Genet 2023; 39:175-186. [PMID: 36402623 DOI: 10.1016/j.tig.2022.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
Quality control is essential for genome assemblies; however, a consensus has yet to be reached on what metrics should be adopted for the evaluation of assembly quality. N50 is widely used for contiguity measurement, but its effectiveness is constantly in question. Prevailing metrics for the completeness evaluation focus on gene space, yet challenging areas such as tandem repeats are commonly overlooked. Achieving correctness has become an indispensable dimension for quality control, while prevailing assembly releases lack scores reflecting this aspect. We propose a metric set with a set of statistic indexes for effective, comprehensive evaluation of assemblies and provide a score of a finished assembly for each metric, which can be utilized as a benchmark for achieving high-quality genome assemblies.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, No. 4 Xueyuan Rd, Haikou City, Hainan 571101, China.
| | - Fei Wang
- School of Electrical and Electronic Engineering, Shanghai Institute of Technology, No. 100 Haiquan Rd, Shanghai 201416, China.
| |
Collapse
|
30
|
Yue J, Chen Q, Wang Y, Zhang L, Ye C, Wang X, Cao S, Lin Y, Huang W, Xian H, Qin H, Wang Y, Zhang S, Wu Y, Wang S, Yue Y, Liu Y. Telomere-to-telomere and gap-free reference genome assembly of the kiwifruit Actinidia chinensis. HORTICULTURE RESEARCH 2023; 10:uhac264. [PMID: 36778189 PMCID: PMC9909506 DOI: 10.1093/hr/uhac264] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/21/2022] [Indexed: 05/19/2023]
Abstract
Kiwifruit is an economically and nutritionally important fruit crop with extremely high contents of vitamin C. However, the previously released versions of kiwifruit genomes all have a mass of unanchored or missing regions. Here, we report a highly continuous and completely gap-free reference genome of Actinidia chinensis cv. 'Hongyang', named Hongyang v4.0, which is the first to achieve two de novo haploid-resolved haplotypes, HY4P and HY4A. HY4P and HY4A have a total length of 606.1 and 599.6 Mb, respectively, with almost the entire telomeres and centromeres assembled in each haplotype. In comparison with Hongyang v3.0, the integrity and contiguity of Hongyang v4.0 is markedly improved by filling all unclosed gaps and correcting some misoriented regions, resulting in ~38.6-39.5 Mb extra sequences, which might affect 4263 and 4244 protein-coding genes in HY4P and HY4A, respectively. Furthermore, our gap-free genome assembly provides the first clue for inspecting the structure and function of centromeres. Globally, centromeric regions are characterized by higher-order repeats that mainly consist of a 153-bp conserved centromere-specific monomer (Ach-CEN153) with different copy numbers among chromosomes. Functional enrichment analysis of the genes located within centromeric regions demonstrates that chromosome centromeres may not only play physical roles for linking a pair of sister chromatids, but also have genetic features for participation in the regulation of cell division. The availability of the telomere-to-telomere and gap-free Hongyang v4.0 reference genome lays a solid foundation not only for illustrating genome structure and functional genomics studies but also for facilitating kiwifruit breeding and improvement.
Collapse
Affiliation(s)
- Junyang Yue
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Qinyao Chen
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yingzhen Wang
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Lei Zhang
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Chen Ye
- School of Information and Computer, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xu Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Shuo Cao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Yunzhi Lin
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulic and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Wei Huang
- Department of Bioinformatics, Anhui Double Helix Gene Technology Corporation, Hefei, Anhui 230022, China
| | - He Xian
- Comprehensive Testing Ground, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830012, China
| | - Hongyan Qin
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Yanli Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Sijia Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ying Wu
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Songhu Wang
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yi Yue
- School of Information and Computer, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulic and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
31
|
Song S, Liu H, Miao L, He L, Xie W, Lan H, Yu C, Yan W, Wu Y, Wen XP, Xu Q, Deng X, Chen C. Molecular cytogenetic map visualizes the heterozygotic genome and identifies translocation chromosomes in Citrus sinensis. J Genet Genomics 2023:S1673-8527(22)00283-1. [PMID: 36608932 DOI: 10.1016/j.jgg.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
Citrus sinensis is the most cultivated and economically valuable Citrus species in the world, whose genome has been assembled by three generation sequencings. However, chromosome recognition remains a problem due to the small size of chromosomes, and difficulty in differentiating between pseudo and real chromosomes because of a highly heterozygous genome. Here, we employ fluorescence in situ hybridization (FISH) with 9 chromosome painting probes, 30 oligo pools, and 8 repetitive sequences to visualize 18 chromosomes. Then, we develop an approach to identify each chromosome in one cell through single experiment of oligo-FISH and Chromoycin A3 (CMA) staining. By this approach, we construct a high-resolution molecular cytogenetic map containing the physical positions of CMA banding and 38 sequences of FISH including centromere regions, which enable us to visualize significant differences between homologous chromosomes. Based on the map, we locate several highly repetitive sequences on chromosomes and estimate sizes and copy numbers of each site. In particular, we discover the translocation regions of chromosomes 4 and 9 in C. sinensis "Valencia." The high-resolution molecular cytogenetic map will help improve understanding of sweet orange genome assembly and also provide a fundamental reference for investigating chromosome evolution and chromosome engineering for genetic improvement in Citrus.
Collapse
Affiliation(s)
- Shipeng Song
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hui Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Luke Miao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li He
- National-local Joint Engineering Laboratory of Citrus Breeding and Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Wenzhao Xie
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hong Lan
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; Hubei Province Engineering Research Center of Legume Plants, College of Life Science, Jianghan University, Wuhan, Hubei 430056, China
| | - Changxiu Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenkai Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Peng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Chunli Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
32
|
Shi J, Tian Z, Lai J, Huang X. Plant pan-genomics and its applications. MOLECULAR PLANT 2023; 16:168-186. [PMID: 36523157 DOI: 10.1016/j.molp.2022.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Plant genomes are so highly diverse that a substantial proportion of genomic sequences are not shared among individuals. The variable DNA sequences, along with the conserved core sequences, compose the more sophisticated pan-genome that represents the collection of all non-redundant DNA in a species. With rapid progress in genome sequencing technologies, pan-genome research in plants is now accelerating. Here we review recent advances in plant pan-genomics, including major driving forces of structural variations that constitute the variable sequences, methodological innovations for representing the pan-genome, and major successes in constructing plant pan-genomes. We also summarize recent efforts toward decoding the remaining dark matter in telomere-to-telomere or gapless plant genomes. These new genome resources, which have remarkable advantages over numerous previously assembled less-than-perfect genomes, are expected to become new references for genetic studies and plant breeding.
Collapse
Affiliation(s)
- Junpeng Shi
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
33
|
Marone MP, Singh HC, Pozniak CJ, Mascher M. A technical guide to TRITEX, a computational pipeline for chromosome-scale sequence assembly of plant genomes. PLANT METHODS 2022; 18:128. [PMID: 36461065 PMCID: PMC9719158 DOI: 10.1186/s13007-022-00964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND As complete and accurate genome sequences are becoming easier to obtain, more researchers wish to get one or more of them to support their research endeavors. Reliable and well-documented sequence assembly workflows find use in reference or pangenome projects. RESULTS We describe modifications to the TRITEX genome assembly workflow motivated by the rise of fast and easy long-read contig assembly of inbred plant genomes and the routine deployment of the toolchains in pangenome projects. New features include the use as surrogates of or complements to dense genetic maps and the introduction of user-editable tables to make the curation of contig placements easier and more intuitive. CONCLUSION Even maximally contiguous sequence assemblies of the telomere-to-telomere sort, and to a yet greater extent, the fragmented kind require validation, correction, and comparison to reference standards. As pangenomics is burgeoning, these tasks are bound to become more widespread and TRITEX is one tool to get them done. This technical guide is supported by a step-by-step computational tutorial accessible under https://tritexassembly.bitbucket.io/ . The TRITEX source code is hosted under this URL: https://bitbucket.org/tritexassembly .
Collapse
Affiliation(s)
- Marina Püpke Marone
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Harmeet Chawla Singh
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Curtis J Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Martin Mascher
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|