1
|
Uranga M, Martín-Hernández AM, De Storme N, Pasin F. CRISPR-Cas systems and applications for crop bioengineering. Front Bioeng Biotechnol 2024; 12:1483857. [PMID: 39479297 PMCID: PMC11521923 DOI: 10.3389/fbioe.2024.1483857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
CRISPR-Cas technologies contribute to enhancing our understanding of plant gene functions, and to the precise breeding of crop traits. Here, we review the latest progress in plant genome editing, focusing on emerging CRISPR-Cas systems, DNA-free delivery methods, and advanced editing approaches. By illustrating CRISPR-Cas applications for improving crop performance and food quality, we highlight the potential of genome-edited crops to contribute to sustainable agriculture and food security.
Collapse
Affiliation(s)
- Mireia Uranga
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Valencia, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
2
|
Zhang X, Song M, Wang Y, Yao Q, Shen R, Tian Y, Lu Y, Zhu JK. Programmable broad-spectrum resistance to bacterial blight using targeted insertion in rice. Cell Discov 2024; 10:100. [PMID: 39375327 PMCID: PMC11458567 DOI: 10.1038/s41421-024-00714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/10/2024] [Indexed: 10/09/2024] Open
Affiliation(s)
- Xuening Zhang
- CAS Center for Excellence in Molecular Plant Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Minglei Song
- CAS Center for Excellence in Molecular Plant Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, China
| | - Yingying Wang
- CAS Center for Excellence in Molecular Plant Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qi Yao
- CAS Center for Excellence in Molecular Plant Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Rundong Shen
- CAS Center for Excellence in Molecular Plant Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yifu Tian
- CAS Center for Excellence in Molecular Plant Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Yuming Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Chen F, Chen L, Yan Z, Xu J, Feng L, He N, Guo M, Zhao J, Chen Z, Chen H, Yao G, Liu C. Recent advances of CRISPR-based genome editing for enhancing staple crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1478398. [PMID: 39376239 PMCID: PMC11456538 DOI: 10.3389/fpls.2024.1478398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024]
Abstract
An increasing population, climate change, and diminishing natural resources present severe threats to global food security, with traditional breeding and genetic engineering methods often falling short in addressing these rapidly evolving challenges. CRISPR/Cas systems have emerged as revolutionary tools for precise genetic modifications in crops, offering significant advancements in resilience, yield, and nutritional value, particularly in staple crops like rice and maize. This review highlights the transformative potential of CRISPR/Cas technology, emphasizing recent innovations such as prime and base editing, and the development of novel CRISPR-associated proteins, which have significantly improved the specificity, efficiency, and scope of genome editing in agriculture. These advancements enable targeted genetic modifications that enhance tolerance to abiotic stresses as well as biotic stresses. Additionally, CRISPR/Cas plays a crucial role in improving crop yield and quality by enhancing photosynthetic efficiency, nutrient uptake, and resistance to lodging, while also improving taste, texture, shelf life, and nutritional content through biofortification. Despite challenges such as off-target effects, the need for more efficient delivery methods, and ethical and regulatory concerns, the review underscores the importance of CRISPR/Cas in addressing global food security and sustainability challenges. It calls for continued research and integration of CRISPR with other emerging technologies like nanotechnology, synthetic biology, and machine learning to fully realize its potential in developing resilient, productive, and sustainable agricultural systems.
Collapse
Affiliation(s)
- Feng Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Lu Chen
- Pharma Technology A/S, Køge, Denmark
| | - Zhao Yan
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Jingyuan Xu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Luoluo Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Na He
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Mingli Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiaxiong Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengzhen Yao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Vats S, Kumar J, Sonah H, Zhang F, Deshmukh R. Prime editing in plants: prospects and challenges. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5344-5356. [PMID: 38366636 DOI: 10.1093/jxb/erae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Prime editors are reverse transcriptase (RT)-based genome-editing tools that utilize double-strand break (DSB)-free mechanisms to decrease off-target editing in genomes and enhance the efficiency of targeted insertions. The multiple prime editors that have been developed within a short span of time are a testament to the potential of this technique for targeted insertions. This is mainly because of the possibility of generation of all types of mutations including deletions, insertions, transitions, and transversions. Prime editing reverses several bottlenecks of gene editing technologies that limit the biotechnological applicability to produce designer crops. This review evaluates the status and evolution of the prime editing technique in terms of the types of editors available up to prime editor 5 and twin prime editors, and considers the developments in plants in a systematic manner. The various factors affecting prime editing efficiency in plants are discussed in detail, including the effects of temperature, the prime editing guide (peg)RNA, and RT template amongst others. We discuss the current obstructions, key challenges, and available resolutions associated with the technique, and consider future directions and further improvements that are feasible to elevate the efficiency in plants.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Regional Centre for Biotechnology, Faridabad, Haryana (NCR Delhi), India
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Feng Zhang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, 123031, India
| |
Collapse
|
5
|
Yan Y, Wang H, Bi Y, Song F. Rice E3 ubiquitin ligases: From key modulators of host immunity to potential breeding applications. PLANT COMMUNICATIONS 2024:101128. [PMID: 39245936 DOI: 10.1016/j.xplc.2024.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/17/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
To combat pathogen attacks, plants have developed a highly advanced immune system, which requires tight regulation to initiate robust defense responses while simultaneously preventing autoimmunity. The ubiquitin-proteasome system (UPS), which is responsible for degrading excess or misfolded proteins, has vital roles in ensuring strong and effective immune responses. E3 ligases, as key UPS components, play extensively documented roles in rice immunity by modulating the ubiquitination and degradation of downstream substrates involved in various immune signaling pathways. Here, we summarize the crucial roles of rice E3 ligases in both pathogen/microbe/damage-associated molecular pattern-triggered immunity and effector-triggered immunity, highlight the molecular mechanisms by which E3 ligases function in rice immune signaling, and emphasize the functions of E3 ligases as targets of pathogen effectors for pathogenesis. We also discuss potential strategies for application of immunity-associated E3 ligases in breeding of disease-resistant rice varieties without growth penalty. This review provides a comprehensive and updated understanding of the sophisticated and interconnected regulatory functions of E3 ligases in rice immunity and in balancing immunity with growth and development.
Collapse
Affiliation(s)
- Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Li B, Sun C, Li J, Gao C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat Rev Genet 2024; 25:603-622. [PMID: 38658741 DOI: 10.1038/s41576-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.
Collapse
Affiliation(s)
- Boshu Li
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Wu B, Luo H, Chen Z, Amin B, Yang M, Li Z, Wu S, Salmen SH, Alharbi SA, Fang Z. Rice Promoter Editing: An Efficient Genetic Improvement Strategy. RICE (NEW YORK, N.Y.) 2024; 17:55. [PMID: 39212859 PMCID: PMC11364747 DOI: 10.1186/s12284-024-00735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Gene expression levels in rice (Oryza sativa L.) and other plant species are determined by the promoters, which directly control phenotypic characteristics. As essential components of genes, promoters regulate the intensity, location, and timing of gene expression. They contain numerous regulatory elements and serve as binding sites for proteins that modulate transcription, including transcription factors and RNA polymerases. Genome editing can alter promoter sequences, thereby precisely modifying the expression patterns of specific genes, and ultimately affecting the morphology, quality, and resistance of rice. This paper summarizes research on rice promoter editing conducted in recent years, focusing on improvements in yield, heading date, quality, and disease resistance. It is expected to inform the application of promoter editing and encourage further research and development in crop genetic improvement with promote.
Collapse
Affiliation(s)
- Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Hangfei Luo
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhongbo Chen
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Bakht Amin
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Manyu Yang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhenghan Li
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Shuai Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Tripathi L, Ntui VO, Tripathi JN. Application of CRISPR/Cas-based gene-editing for developing better banana. Front Bioeng Biotechnol 2024; 12:1395772. [PMID: 39219618 PMCID: PMC11362101 DOI: 10.3389/fbioe.2024.1395772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Banana (Musa spp.), including plantain, is one of the major staple food and cash crops grown in over 140 countries in the subtropics and tropics, with around 153 million tons annual global production, feeding about 400 million people. Despite its widespread cultivation and adaptability to diverse environments, banana production faces significant challenges from pathogens and pests that often coexist within agricultural landscapes. Recent advancements in CRISPR/Cas-based gene editing offer transformative solutions to enhance banana resilience and productivity. Researchers at IITA, Kenya, have successfully employed gene editing to confer resistance to diseases such as banana Xanthomonas wilt (BXW) by targeting susceptibility genes and banana streak virus (BSV) by disrupting viral sequences. Other breakthroughs include the development of semi-dwarf plants, and increased β-carotene content. Additionally, non-browning banana have been developed to reduce food waste, with regulatory approval in the Philippines. The future prospects of gene editing in banana looks promising with CRISPR-based gene activation (CRISPRa) and inhibition (CRISPRi) techniques offering potential for improved disease resistance. The Cas-CLOVER system provides a precise alternative to CRISPR/Cas9, demonstrating success in generating gene-edited banana mutants. Integration of precision genetics with traditional breeding, and adopting transgene-free editing strategies, will be pivotal in harnessing the full potential of gene-edited banana. The future of crop gene editing holds exciting prospects for producing banana that thrives across diverse agroecological zones and offers superior nutritional value, ultimately benefiting farmers and consumers. This article highlights the pivotal role of CRISPR/Cas technology in advancing banana resilience, yield and nutritional quality, with significant implications for global food security.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | | | | |
Collapse
|
9
|
Wang X, Ju Y, Wu T, Kong L, Yuan M, Liu H, Chen X, Chu Z. The clade III subfamily of OsSWEETs directly suppresses rice immunity by interacting with OsHMGB1 and OsHsp20L. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2186-2200. [PMID: 38587024 PMCID: PMC11258985 DOI: 10.1111/pbi.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
The clade III subfamily of OsSWEETs includes transmembrane proteins necessary for susceptibility to bacterial blight (BB). These genes are targeted by the specific transcription activator-like effector (TALE) of Xanthomonas oryzae pv. oryzae and mediate sucrose efflux for bacterial proliferation. However, the mechanism through which OsSWEETs regulate rice immunity has not been fully elucidated. Here, we demonstrated that the cytosolic carboxyl terminus of OsSWEET11a/Xa13 is required for complementing susceptibility to PXO99 in IRBB13 (xa13/xa13). Interestingly, the C-terminus of ZmXa13, the maize homologue of OsSWEET11a/Xa13, could perfectly substitute for the C-terminus of OsSWEET11a/Xa13. Furthermore, OsSWEET11a/Xa13 interacted with the high-mobility group B1 (OsHMGB1) protein and the small heat shock-like protein OsHsp20L through the same regions in the C-terminus. Consistent with the physical interactions, knockdown or knockout of either OsHMGB1 or OsHsp20L caused an enhanced PXO99-resistant phenotype similar to that of OsSWEET11a/OsXa13. Surprisingly, the plants in which OsHMGB1 or OsHsp20L was repressed developed increased resistance to PXO86, PXO61 and YN24, which carry TALEs targeting OsSWEET14/Xa41 or OsSWEET11a/Xa13. Additionally, OsHsp20L can interact with all six members of clade III OsSWEETs, whereas OsHMGB1 can interact with five other members in addition to OsSWEET12. Overall, we revealed that OsHMGB1 and OsHsp20L mediate conserved BB susceptibility by interacting with clade III OsSWEETs, which are candidates for breeding broad-spectrum disease-resistant rice.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life SciencesWuhan UniversityWuhanChina
| | - Yanhu Ju
- State Key Laboratory of Wheat Breeding, College of AgronomyShandong Agricultural UniversityTai'anChina
- Present address:
College of Life SciencesLiaocheng UniversityLiaochengChina
| | - Tao Wu
- College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Lingguang Kong
- State Key Laboratory of Wheat Breeding, College of AgronomyShandong Agricultural UniversityTai'anChina
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Haifeng Liu
- State Key Laboratory of Wheat Breeding, College of AgronomyShandong Agricultural UniversityTai'anChina
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life SciencesWuhan UniversityWuhanChina
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
10
|
Mishra S, Nayak S, Tuteja N, Poosapati S, Swain DM, Sahoo RK. CRISPR/Cas-Mediated Genome Engineering in Plants: Application and Prospectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:1884. [PMID: 39065411 PMCID: PMC11279650 DOI: 10.3390/plants13141884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Genetic engineering has become an essential element in developing climate-resilient crops and environmentally sustainable solutions to respond to the increasing need for global food security. Genome editing using CRISPR/Cas [Clustered regulatory interspaced short palindromic repeat (CRISPR)-associated protein (Cas)] technology is being applied to a variety of organisms, including plants. This technique has become popular because of its high specificity, effectiveness, and low production cost. Therefore, this technology has the potential to revolutionize agriculture and contribute to global food security. Over the past few years, increasing efforts have been seen in its application in developing higher-yielding, nutrition-rich, disease-resistant, and stress-tolerant "crops", fruits, and vegetables. Cas proteins such as Cas9, Cas12, Cas13, and Cas14, among others, have distinct architectures and have been used to create new genetic tools that improve features that are important for agriculture. The versatility of Cas has accelerated genomic analysis and facilitated the use of CRISPR/Cas to manipulate and alter nucleic acid sequences in cells of different organisms. This review provides the evolution of CRISPR technology exploring its mechanisms and contrasting it with traditional breeding and transgenic approaches to improve different aspects of stress tolerance. We have also discussed the CRISPR/Cas system and explored three Cas proteins that are currently known to exist: Cas12, Cas13, and Cas14 and their potential to generate foreign-DNA-free or non-transgenic crops that could be easily regulated for commercialization in most countries.
Collapse
Affiliation(s)
- Swetaleena Mishra
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar 752050, India;
| | - Subhendu Nayak
- Vidya USA Corporation, Otis Stone Hunter Road, Bunnell, FL 32100, USA;
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India;
| | - Sowmya Poosapati
- Plant Biology Laboratory, Salk Institute for Biological Studies, San Diego, CA 92037, USA
| | - Durga Madhab Swain
- MU Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar 752050, India;
| |
Collapse
|
11
|
Li D, Li T, Yang X, Wang H, Chu J, Dong H, Lu P, Tao J, Cao P, Jin J, Xuan YH. Carbon nanosol promotes plant growth and broad-spectrum resistance. ENVIRONMENTAL RESEARCH 2024; 251:118635. [PMID: 38462083 DOI: 10.1016/j.envres.2024.118635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Carbon nanosol (CNS) is a carbon-based nanomaterial capable of promoting plant growth while the underlying mechanism involved in this process remains unknown. This study demonstrates that CNS promotes rice seedling growth under restricted concentrations. Macroelement transporter mutants were investigated to further investigate the CNS-mediated promotion of rice seedling growth. The genetic and physiological findings revealed that nitrate transporter 1.1B (NRT1.1B) and ammonium transporter 1 (AMT1) mutants inhibited the CNS-induced growth development of rice seedlings, whereas potassium transporter (AKT1) and phosphate transporter 8 (PT8) did not exhibit any inhibitory effects. Further investigations demonstrated the inhibition of CNS-mediated growth promotion via glutamine synthetase 1;1 (gs1;1) mutants. Additionally, the administration of CNS resulted in enhanced accumulation of chlorophyll in plants, and the promotion of CNS-induced growth was inhibited by yellow-green leaf 8 (YGL8) mutants and the chlorophyll biosynthetic gene divinyl reductase (DVR) mutants. According to these findings, the CNS promotes plant growth by stimulating chlorophyll biosynthesis. Furthermore, the presence of CNS enhanced the ability of rice to withstand blast, sheath blight (ShB), and bacterial blight. The nrt1.1b, amt1, dvr, and ygl8 mutants did not exhibit a broad spectrum effect. The positive regulation of broad-spectrum resistance in rice by GS1;1 suggests the requirement of N assimilation for CNS-mediated broad-spectrum resistance. In addition, an in vitro assay demonstrated that CNS inhibits the growth of pathogens responsible for blast, ShB, and bacterial blight, namely Magnaporthe oryzae, Rhizoctonia solani AG1-IA, and Xanthomonas oryzae pv. Oryzae, respectively. CNS application may also induce broad-spectrum resistance against bacterial and fungal pathogens, indicating that in addition to its antifungal and antibacterial properties, CNS application may also stimulate N assimilation. Collectively, the results indicate that CNS may be a potential nano-therapeutic agent for improved plant growth promotion while also providing broad-spectrum resistance.
Collapse
Affiliation(s)
- Dandan Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071 China; College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Tianmiao Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071 China; College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xujie Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Hujun Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jin Chu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| | - Hai Dong
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| | - Jiemeng Tao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China; Beijing Life Science Academy, Beijing 102200, China.
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China; Beijing Life Science Academy, Beijing 102200, China.
| | - Yuan Hu Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071 China.
| |
Collapse
|
12
|
Tang X, Ren Q, Yan X, Zhang R, Liu L, Han Q, Zheng X, Qi Y, Song H, Zhang Y. Boosting genome editing in plants with single transcript unit surrogate reporter systems. PLANT COMMUNICATIONS 2024; 5:100921. [PMID: 38616491 PMCID: PMC11211634 DOI: 10.1016/j.xplc.2024.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
CRISPR-Cas-based genome editing holds immense promise for advancing plant genomics and crop enhancement. However, the challenge of low editing activity complicates the identification of editing events. In this study, we introduce multiple single transcript unit surrogate reporter (STU-SR) systems to enhance the selection of genome-edited plants. These systems use the same single guide RNAs designed for endogenous genes to edit reporter genes, establishing a direct link between reporter gene editing activity and that of endogenous genes. Various strategies are used to restore functional reporter genes after genome editing, including efficient single-strand annealing (SSA) for homologous recombination in STU-SR-SSA systems. STU-SR-base editor systems leverage base editing to reinstate the start codon, enriching C-to-T and A-to-G base editing events. Our results showcase the effectiveness of these STU-SR systems in enhancing genome editing events in the monocot rice, encompassing Cas9 nuclease-based targeted mutagenesis, cytosine base editing, and adenine base editing. The systems exhibit compatibility with Cas9 variants, such as the PAM-less SpRY, and are shown to boost genome editing in Brassica oleracea, a dicot vegetable crop. In summary, we have developed highly efficient and versatile STU-SR systems for enrichment of genome-edited plants.
Collapse
Affiliation(s)
- Xu Tang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiurong Ren
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; School of Synbiology, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaodan Yan
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Rui Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Li Liu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qinqin Han
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xuelian Zheng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Hongyuan Song
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China.
| | - Yong Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
13
|
Dutta TK, Rupinikrishna K, Akhil VS, Vashisth N, Phani V, Pankaj, Sirohi A, Chinnusamy V. CRISPR/Cas9-induced knockout of an amino acid permease gene (AAP6) reduced Arabidopsis thaliana susceptibility to Meloidogyne incognita. BMC PLANT BIOLOGY 2024; 24:515. [PMID: 38851681 PMCID: PMC11162074 DOI: 10.1186/s12870-024-05175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Plant-parasitic root-knot nematode (Meloidogyne incognita) causes global yield loss in agri- and horticultural crops. Nematode management options rely on chemical method. However, only a handful of nematicides are commercially available. Resistance breeding efforts are not sustainable because R gene sources are limited and nematodes have developed resistance-breaking populations against the commercially available Mi-1.2 gene-expressing tomatoes. RNAi crops that manage nematode infection are yet to be commercialized because of the regulatory hurdles associated with transgenic crops. The deployment of the CRISPR/Cas9 system to improve nematode tolerance (by knocking out the susceptibility factors) in plants has emerged as a feasible alternative lately. RESULTS In the present study, a M. incognita-responsive susceptibility (S) gene, amino acid permease (AAP6), was characterized from the model plant Arabidodpsis thaliana by generating the AtAAP6 overexpression line, followed by performing the GUS reporter assay by fusing the promoter of AtAAP6 with the β-glucuronidase (GUS) gene. Upon challenge inoculation with M. incognita, overexpression lines supported greater nematode multiplication, and AtAAP6 expression was inducible to the early stage of nematode infection. Next, using CRISPR/Cas9, AtAAP6 was selectively knocked out without incurring any growth penalty in the host plant. The 'Cas9-free' homozygous T3 line was challenge inoculated with M. incognita, and CRISPR-edited A. thaliana plants exhibited considerably reduced susceptibility to nematode infection compared to the non-edited plants. Additionally, host defense response genes were unaltered between edited and non-edited plants, implicating the direct role of AtAAP6 towards nematode susceptibility. CONCLUSION The present findings enrich the existing literature on CRISPR/Cas9 research in plant-nematode interactions, which is quite limited currently while compared with the other plant-pathogen interaction systems.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Katakam Rupinikrishna
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Voodikala S Akhil
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neeraj Vashisth
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya (UBKV), Balurghat, 733133, India
| | - Pankaj
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
14
|
Chen L, Liu G, Zhang T. Integrating machine learning and genome editing for crop improvement. ABIOTECH 2024; 5:262-277. [PMID: 38974863 PMCID: PMC11224061 DOI: 10.1007/s42994-023-00133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/18/2023] [Indexed: 07/09/2024]
Abstract
Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.
Collapse
Affiliation(s)
- Long Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
15
|
Yang Y, Wheatley M, Meakem V, Galarneau E, Gutierrez B, Zhong G. Editing VvDXS1 for the creation of muscat flavour in Vitis vinifera cv. Scarlet Royal. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1610-1621. [PMID: 38243882 PMCID: PMC11123410 DOI: 10.1111/pbi.14290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/01/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Muscat flavour represents a group of unique aromatic attributes in some grape varieties. Biochemically, grape berries with muscat flavour produce high levels of monoterpenes. Monoterpene biosynthesis is mainly through the DOXP/MEP pathway, and VvDXS1 encodes the first enzyme in this plastidial pathway of terpene biosynthesis in grapevine. A single-point mutation resulting in the substitution of a lysine with an asparagine at position 284 in the VvDXS1 protein has previously been identified as the major cause for producing muscat flavour in grapes. In this study, the same substitution in the VvDXS1 protein was successfully created through prime editing in the table grape Vitis vinifera cv. 'Scarlet Royal'. The targeted point mutation was detected in most of the transgenic vines, with varying editing efficiencies. No unintended mutations were detected in the edited alleles, either by PCR Sanger sequencing or by amplicon sequencing. More than a dozen edited vines were identified with an editing efficiency of more than 50%, indicating that these vines were likely derived from single cells in which one allele was edited. These vines had much higher levels of monoterpenes in their leaves than the control, similar to what was found in leaf samples between field-grown muscat and non-muscat grapes.
Collapse
Affiliation(s)
- Yingzhen Yang
- USDA‐Agricultural Research ServiceGrape Genetics Research UnitGenevaNew YorkUSA
| | - Matthew Wheatley
- USDA‐Agricultural Research ServiceGrape Genetics Research UnitGenevaNew YorkUSA
| | - Victoria Meakem
- USDA‐Agricultural Research ServicePlant Genetic Resources UnitGenevaNew YorkUSA
| | - Erin Galarneau
- USDA‐Agricultural Research ServicePlant Genetic Resources UnitGenevaNew YorkUSA
| | - Benjamin Gutierrez
- USDA‐Agricultural Research ServicePlant Genetic Resources UnitGenevaNew YorkUSA
| | - Gan‐Yuan Zhong
- USDA‐Agricultural Research ServiceGrape Genetics Research UnitGenevaNew YorkUSA
| |
Collapse
|
16
|
Liu X, Gu D, Zhang Y, Jiang Y, Xiao Z, Xu R, Qin R, Li J, Wei P. Conditional knockdown of OsMLH1 to improve plant prime editing systems without disturbing fertility in rice. Genome Biol 2024; 25:131. [PMID: 38773623 PMCID: PMC11110357 DOI: 10.1186/s13059-024-03282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND High-efficiency prime editing (PE) is desirable for precise genome manipulation. The activity of mammalian PE systems can be largely improved by inhibiting DNA mismatch repair by coexpressing a dominant-negative variant of MLH1. However, this strategy has not been widely used for PE optimization in plants, possibly because of its less conspicuous effects and inconsistent performance at different sites. RESULTS We show that direct RNAi knockdown of OsMLH1 in an ePE5c system increases the efficiency of our most recently updated PE tool by 1.30- to 2.11-fold in stably transformed rice cells, resulting in as many as 85.42% homozygous mutants in the T0 generation. The high specificity of ePE5c is revealed by whole-genome sequencing. To overcome the partial sterility induced by OsMLH1 knockdown of ePE5c, a conditional excision system is introduced to remove the RNAi module by Cre-mediated site-specific recombination. Using a simple approach of enriching excision events, we generate 100% RNAi module-free plants in the T0 generation. The increase in efficiency due to OsMLH1 knockdown is maintained in the excised plants, whose fertility is not impaired. CONCLUSIONS This study provides a safe and reliable plant PE optimization strategy for improving editing efficiency without disturbing plant development via transient MMR inhibition with an excisable RNAi module of MLH1.
Collapse
Affiliation(s)
- Xiaoshuang Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Dongfang Gu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Yiru Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Yingli Jiang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhi Xiao
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Rongfang Xu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Ruiying Qin
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Juan Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China.
| | - Pengcheng Wei
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
- Research Centre for Biological Breeding Technology, Advance Academy, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
17
|
Schreiber T, Prange A, Schäfer P, Iwen T, Grützner R, Marillonnet S, Lepage A, Javelle M, Paul W, Tissier A. Efficient scar-free knock-ins of several kilobases in plants by engineered CRISPR-Cas endonucleases. MOLECULAR PLANT 2024; 17:824-837. [PMID: 38520090 DOI: 10.1016/j.molp.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double-strand breaks, making it challenging to generate knock-in events. In this study, we identified two groups of exonucleases from the herpes virus and the bacteriophage T7 families that conferred an up to 38-fold increase in homology-directed repair frequencies when fused to Cas9/Cas12a in a tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a herpes virus family exonuclease led to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrated stable and heritable knock-ins in wheat in 1% of the primary transformants. Taken together, our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.
Collapse
Affiliation(s)
- Tom Schreiber
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Anja Prange
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Petra Schäfer
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Thomas Iwen
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Ramona Grützner
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Aurélie Lepage
- Limagrain, Centre de Recherche, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Marie Javelle
- Limagrain, Centre de Recherche, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Wyatt Paul
- Limagrain, Centre de Recherche, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
18
|
Arra Y, Auguy F, Stiebner M, Chéron S, Wudick MM, Miras M, Schepler‐Luu V, Köhler S, Cunnac S, Frommer WB, Albar L. Rice Yellow Mottle Virus resistance by genome editing of the Oryza sativa L. ssp. japonica nucleoporin gene OsCPR5.1 but not OsCPR5.2. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1299-1311. [PMID: 38124291 PMCID: PMC11022797 DOI: 10.1111/pbi.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Rice yellow mottle virus (RYMV) causes one of the most devastating rice diseases in Africa. Management of RYMV is challenging. Genetic resistance provides the most effective and environment-friendly control. The recessive resistance locus rymv2 (OsCPR5.1) had been identified in African rice (Oryza glaberrima), however, introgression into Oryza sativa ssp. japonica and indica remains challenging due to crossing barriers. Here, we evaluated whether CRISPR/Cas9 genome editing of the two rice nucleoporin paralogs OsCPR5.1 (RYMV2) and OsCPR5.2 can be used to introduce RYMV resistance into the japonica variety Kitaake. Both paralogs had been shown to complement the defects of the Arabidopsis atcpr5 mutant, indicating partial redundancy. Despite striking sequence and structural similarities between the two paralogs, only oscpr5.1 loss-of-function mutants were fully resistant, while loss-of-function oscpr5.2 mutants remained susceptible, intimating that OsCPR5.1 plays a specific role in RYMV susceptibility. Notably, edited lines with short in-frame deletions or replacements in the N-terminal domain (predicted to be unstructured) of OsCPR5.1 were hypersusceptible to RYMV. In contrast to mutations in the single Arabidopsis AtCPR5 gene, which caused severely dwarfed plants, oscpr5.1 and oscpr5.2 single and double knockout mutants showed neither substantial growth defects nor symptoms indicative lesion mimic phenotypes, possibly reflecting functional differentiation. The specific editing of OsCPR5.1, while maintaining OsCPR5.2 activity, provides a promising strategy for generating RYMV-resistance in elite Oryza sativa lines as well as for effective stacking with other RYMV resistance genes or other traits.
Collapse
Affiliation(s)
- Yugander Arra
- Faculty of Mathematics and Natural SciencesInstitute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Florence Auguy
- IRD, CIRAD, INRAEPHIM Plant Health Institute of Montpellier, Institut Agro, University MontpellierMontpellierFrance
| | - Melissa Stiebner
- Faculty of Mathematics and Natural SciencesInstitute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Sophie Chéron
- IRD, CIRAD, INRAEPHIM Plant Health Institute of Montpellier, Institut Agro, University MontpellierMontpellierFrance
| | - Michael M. Wudick
- Faculty of Mathematics and Natural SciencesInstitute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Manuel Miras
- Faculty of Mathematics and Natural SciencesInstitute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Van Schepler‐Luu
- Faculty of Mathematics and Natural SciencesInstitute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Steffen Köhler
- Faculty of Mathematics and Natural SciencesInstitute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
- Center for Advanced ImagingHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Sébastien Cunnac
- IRD, CIRAD, INRAEPHIM Plant Health Institute of Montpellier, Institut Agro, University MontpellierMontpellierFrance
| | - Wolf B. Frommer
- Faculty of Mathematics and Natural SciencesInstitute for Molecular Physiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
- Center for Advanced ImagingHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Transformative Bio‐Molecules (ITbM‐WPI)Nagoya UniversityNagoyaJapan
| | - Laurence Albar
- IRD, CIRAD, INRAEPHIM Plant Health Institute of Montpellier, Institut Agro, University MontpellierMontpellierFrance
| |
Collapse
|
19
|
Park HJ, Kim M, Lee D, Kim HJ, Jung HW. CRISPR-Cas9 and beyond: identifying target genes for developing disease-resistant plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:369-377. [PMID: 38363032 DOI: 10.1111/plb.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Throughout the history of crop domestication, desirable traits have been selected in agricultural products. However, such selection often leads to crops and vegetables with weaker vitality and viability than their wild ancestors when exposed to adverse environmental conditions. Considering the increasing human population and climate change challenges, it is crucial to enhance crop quality and quantity. Accordingly, the identification and utilization of diverse genetic resources are imperative for developing disease-resistant plants that can withstand unexpected epidemics of plant diseases. In this review, we provide a brief overview of recent progress in genome-editing technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) technologies. In particular, we classify disease-resistant mutants of Arabidopsis thaliana and several crop plants based on the roles or functions of the mutated genes in plant immunity and suggest potential target genes for molecular breeding of genome-edited disease-resistant plants. Genome-editing technologies are resilient tools for sustainable development and promising solutions for coping with climate change and population increases.
Collapse
Affiliation(s)
- H J Park
- Institute of Agricultural Life Science, Dong-A University, Busan, Korea
- Department of Biological Sciences and Research Center of Ecomimetics, Chonnam National University, Gwangju, Korea
| | - M Kim
- Department of Applied Bioscience, Dong-A University, Busan, Korea
| | - D Lee
- Department of Applied Bioscience, Dong-A University, Busan, Korea
| | - H J Kim
- Department of Molecular Genetics, Dong-A University, Busan, Korea
| | - H W Jung
- Institute of Agricultural Life Science, Dong-A University, Busan, Korea
- Department of Applied Bioscience, Dong-A University, Busan, Korea
- Department of Molecular Genetics, Dong-A University, Busan, Korea
| |
Collapse
|
20
|
Gupta A, Liu B, Raza S, Chen QJ, Yang B. Modularly assembled multiplex prime editors for simultaneous editing of agronomically important genes in rice. PLANT COMMUNICATIONS 2024; 5:100741. [PMID: 37897041 PMCID: PMC10873889 DOI: 10.1016/j.xplc.2023.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Prime editing (PE) technology enables precise alterations in the genetic code of a genome of interest. PE offers great potential for identifying major agronomically important genes in plants and editing them into superior variants, ideally targeting multiple loci simultaneously to realize the collective effects of the edits. Here, we report the development of a modular assembly-based multiplex PE system in rice and demonstrate its efficacy in editing up to four genes in a single transformation experiment. The duplex PE (DPE) system achieved a co-editing efficiency of 46.1% in the T0 generation, converting TFIIAγ5 to xa5 and xa23 to Xa23SW11. The resulting double-mutant lines exhibited robust broad-spectrum resistance against multiple Xanthomonas oryzae pathovar oryzae (Xoo) strains in the T1 generation. In addition, we successfully edited OsEPSPS1 to an herbicide-tolerant variant and OsSWEET11a to a Xoo-resistant allele, achieving a co-editing rate of 57.14%. Furthermore, with the quadruple PE (QPE) system, we edited four genes-two for herbicide tolerance (OsEPSPS1 and OsALS1) and two for Xoo resistance (TFIIAγ5 and OsSWEET11a)-using one construct, with a co-editing efficiency of 43.5% for all four genes in the T0 generation. We performed multiplex PE using five more constructs, including two for triplex PE (TPE) and three for QPE, each targeting a different set of genes. The editing rates were dependent on the activity of pegRNA and/or ngRNA. For instance, optimization of ngRNA increased the PE rates for one of the targets (OsSPL13) from 0% to 30% but did not improve editing at another target (OsGS2). Overall, our modular assembly-based system yielded high PE rates and streamlined the cloning of PE reagents, making it feasible for more labs to utilize PE for their editing experiments. These findings have significant implications for advancing gene editing techniques in plants and may pave the way for future agricultural applications.
Collapse
Affiliation(s)
- Ajay Gupta
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Bo Liu
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Saad Raza
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Qi-Jun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Bing Yang
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
21
|
Rengasamy B, Manna M, Thajuddin NB, Sathiyabama M, Sinha AK. Breeding rice for yield improvement through CRISPR/Cas9 genome editing method: current technologies and examples. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:185-198. [PMID: 38623165 PMCID: PMC11016042 DOI: 10.1007/s12298-024-01423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
The impending climate change is threatening the rice productivity of the Asian subcontinent as instances of crop failures due to adverse abiotic and biotic stress factors are becoming common occurrences. CRISPR-Cas9 mediated genome editing offers a potential solution for improving rice yield as well as its stress adaptation. This technology allows modification of plant's genetic elements and is not dependent on foreign DNA/gene insertion for incorporating a particular trait. In this review, we have discussed various CRISPR-Cas9 mediated genome editing tools for gene knockout, gene knock-in, simultaneously disrupting multiple genes by multiplexing, base editing and prime editing the genes. The review here also presents how these genome editing technologies have been employed to improve rice productivity by directly targeting the yield related genes or by indirectly manipulating various abiotic and biotic stress responsive genes. Lately, many countries treat genome-edited crops as non-GMOs because of the absence of foreign DNA in the final product. Thus, genome edited rice plants with improved yield attributes and stress resilience are expected to be accepted by the public and solve food crisis of a major portion of the globe. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01423-y.
Collapse
Affiliation(s)
- Balakrishnan Rengasamy
- Department of Botany, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024 India
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Mrinalini Manna
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Nargis Begum Thajuddin
- P. G. and Research Department of Biotechnology, Jamal Mohamed College, Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024 India
| | | | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
22
|
Wang C, Wang K, Kou Y. Genome editing creates disease-resistant crops without yield penalties. TRENDS IN PLANT SCIENCE 2024; 29:114-116. [PMID: 37838519 DOI: 10.1016/j.tplants.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Application of disease-resistant varieties is the most effective and environmentally friendly way to control crop diseases. However, there is often a trade-off between disease resistance and yield. Several recent studies have demonstrated that genome-editing technology brings a new strategy for generating disease-resistant crops without yield penalties.
Collapse
Affiliation(s)
- Chun Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Kejian Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
23
|
Yu X, Huo G, Yu J, Li H, Li J. Prime editing: Its systematic optimization and current applications in disease treatment and agricultural breeding. Int J Biol Macromol 2023; 253:127025. [PMID: 37769783 DOI: 10.1016/j.ijbiomac.2023.127025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
CRISPR/Cas-mediated genome-editing technology has accelerated the development of the life sciences. Prime editing has raised genome editing to a new level because it allows for all 12 types of base substitutions, targeted insertions and deletions, large DNA fragment integration, and even combinations of these edits without generating DNA double-strand breaks. This versatile and game-changing technology has successfully been applied to human cells and plants, and it currently plays important roles in basic research, gene therapy, and crop breeding. Although prime editing has substantially expanded the range of possibilities for genome editing, its efficiency requires improvement. In this review, we briefly introduce prime editing and highlight recent optimizations that have improved the efficiency of prime editors. We also describe how the dual-pegRNA strategy has expanded current editing capabilities, and we summarize the potential of prime editing in treating mammalian diseases and improving crop breeding. Finally, we discuss the limitations of current prime editors and future prospects for optimizing these editors.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Guanzhong Huo
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Jintai Yu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China; College of Modern Science and Technology, Hebei Agricultural University, Baoding, China
| | - Huiyuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jun Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
24
|
Tan J, Shen M, Chai N, Liu Q, Liu YG, Zhu Q. Genome editing for plant synthetic metabolic engineering and developmental regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154141. [PMID: 38016350 DOI: 10.1016/j.jplph.2023.154141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Plant metabolism and development are a reflection of the orderly expression of genetic information intertwined with the environment interactions. Genome editing is the cornerstone for scientists to modify endogenous genes or introduce exogenous functional genes and metabolic pathways, holding immense potential applications in molecular breeding and biosynthesis. Over the course of nearly a decade of development, genome editing has advanced significantly beyond the simple cutting of double-stranded DNA, now enabling precise base and fragment replacements, regulation of gene expression and translation, as well as epigenetic modifications. However, the utilization of genome editing in plant synthetic metabolic engineering and developmental regulation remains exploratory. Here, we provide an introduction and a comprehensive overview of the editing attributes associated with various CRISPR/Cas tools, along with diverse strategies for the meticulous control of plant metabolic pathways and developments. Furthermore, we discuss the limitations of current approaches and future prospects for genome editing-driven plant breeding.
Collapse
Affiliation(s)
- Jiantao Tan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| | - Mengyuan Shen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Tang Q, Wang X, Jin X, Peng J, Zhang H, Wang Y. CRISPR/Cas Technology Revolutionizes Crop Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3119. [PMID: 37687368 PMCID: PMC10489799 DOI: 10.3390/plants12173119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Crop breeding is an important global strategy to meet sustainable food demand. CRISPR/Cas is a most promising gene-editing technology for rapid and precise generation of novel germplasm and promoting the development of a series of new breeding techniques, which will certainly lead to the transformation of agricultural innovation. In this review, we summarize recent advances of CRISPR/Cas technology in gene function analyses and the generation of new germplasms with increased yield, improved product quality, and enhanced resistance to biotic and abiotic stress. We highlight their applications and breakthroughs in agriculture, including crop de novo domestication, decoupling the gene pleiotropy tradeoff, crop hybrid seed conventional production, hybrid rice asexual reproduction, and double haploid breeding; the continuous development and application of these technologies will undoubtedly usher in a new era for crop breeding. Moreover, the challenges and development of CRISPR/Cas technology in crops are also discussed.
Collapse
Affiliation(s)
- Qiaoling Tang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xi Jin
- Hebei Technology Innovation Center for Green Management of Soi-Borne Diseases, Baoding University, Baoding 071000, China;
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Haiwen Zhang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Youhua Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|