1
|
Ma B, Lv Q, Zhang R, Zhang J, Wang Y, Cai J. Effect of freeze-thaw treatments with different conditions on frost fatigue in three diffuse-porous trees. TREE PHYSIOLOGY 2024; 44:tpae115. [PMID: 39244748 DOI: 10.1093/treephys/tpae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
In addition to inducing xylem embolism, freeze-thaw events can cause frost fatigue phenomena. Freezing temperature, freezing times, number of freeze-thaw cycles and frost drought can affect the level of freeze-thaw-induced embolism, but it is unknown whether there is an effect on frost fatigue. We assessed whether these frost-related factors changed frost fatigue in the three diffuse-porous species by simulating freeze-thaw treatments under different conditions. We also proposed a new metric, embolism area, in place of embolism resistance, to more accurately quantify the shift of the vulnerability curve after experiencing freeze-thaw-induced embolism and refilling. Frost fatigue caused vulnerability curves of all species to change from S-shaped to double S-shaped or even R-shaped curves. When exposed to a freeze-thaw event, Acer truncatum showed strong resistance to frost fatigue; in contrast, Populus (I-101 × 84 K) and Liriodendron chinense were more vulnerable. Changing freezing temperature and times did not impact the response to frost fatigue in the three species, but a greater number of freeze-thaw cycles and more severe frost drought significantly exacerbated their fatigue degree. Considering that frost fatigue may be a widespread phenomenon among temperate diffuse-porous species, more work is needed in the future to reveal the mechanisms of frost fatigue.
Collapse
Affiliation(s)
- Bolong Ma
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Qingzi Lv
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Ruihan Zhang
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Junyao Zhang
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Yue Wang
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, Tai Cheng Road No. 3, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Beckett HAA, Bryant C, Neeman T, Mencuccini M, Ball MC. Plasticity in branch water relations and stem hydraulic vulnerability enhances hydraulic safety in mangroves growing along a salinity gradient. PLANT, CELL & ENVIRONMENT 2024; 47:854-870. [PMID: 37975319 DOI: 10.1111/pce.14764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Coping with water stress depends on maintaining cellular function and hydraulic conductance. Yet measurements of vulnerability to drought and salinity do not often focus on capacitance in branch organs that buffer hydraulic function during water stress. The relationships between branch water relations, stem hydraulic vulnerability and stem anatomy were investigated in two co-occurring mangroves Aegiceras corniculatum and Rhizophora stylosa growing at low and high salinity. The dynamics of branch water release acted to conserve water content in the stem at the expense of the foliage during extended drying. Hydraulic redistribution from the foliage to the stem increased stem relative water content by up to 21%. The water potentials at which 12% and 50% loss of stem hydraulic conductivity occurred decreased by ~1.7 MPa in both species between low and high salinity sites. These coordinated tissue adjustments increased hydraulic safety despite declining turgor safety margins at higher salinity sites. Our results highlight the complex interplay of plasticity in organ-level water relations with hydraulic vulnerability in the maintenance of stem hydraulic function in mangroves distributed along salinity gradients. These results emphasise the importance of combining water relations and hydraulic vulnerability parameters to understand vulnerability to water stress across the whole plant.
Collapse
Affiliation(s)
- Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Callum Bryant
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Teresa Neeman
- Biological Data Science Institute, Australian National University, Canberra, Australia
| | - Maurizio Mencuccini
- Ecological and Forestry Applications Research Centre (CREAF), Barcelona, Bellaterra, Spain
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
3
|
Jupa R, Pokorná K. Bark wounding triggers gradual embolism spreading in two diffuse-porous tree species. TREE PHYSIOLOGY 2024; 44:tpad132. [PMID: 37930242 PMCID: PMC10849750 DOI: 10.1093/treephys/tpad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Xylem transport is essential for the growth, development and survival of vascular plants. Bark wounding may increase the risk of xylem transport failure by tension-driven embolism. However, the consequences of bark wounding for xylem transport are poorly understood. Here, we examined the impacts of the bark wounding on embolism formation, leaf water potential and gas exchange in the terminal branches of two diffuse-porous tree species (Acer platanoides L. and Prunus avium L.). The effects of bark removal were examined on field-grown mature trees exposed to increased evaporative demands on a short-term and longer-term basis (6 h vs 6 days after bark wounding). Bark removal of 30% of branch circumference had a limited effect on the xylem hydraulic conductivity when embolized vessels were typically restricted to the last annual ring near the bark wound. Over the 6-day exposure, the non-conductive xylem area had significantly increased in the xylem tissue underneath the bark wound (from 22-29% to 51-52% of the last annual ring area in the bark wound zone), pointing to gradual yet relatively limited embolism spreading to deeper xylem layers over time. In both species, the bark removal tended to result in a small but non-significant increase in the percent loss of hydraulic conductivity compared with control intact branches 6 days after bark wounding (from 6 to 8-10% in both species). The bark wounding had no significant effects on midday leaf water potential, CO2 assimilation rates, stomatal conductance and water-use efficiency of the leaves of the current-year shoot, possibly due to limited impacts on xylem transport. The results of this study demonstrate that bark wounding induces limited but gradual embolism spreading. However, the impacts of bark wounding may not significantly limit water delivery to distal organs and leaf gas exchange at the scale of several days.
Collapse
Affiliation(s)
- Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| | - Kamila Pokorná
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czech Republic
| |
Collapse
|
4
|
Roth-Nebelsick A, Konrad W. Modeling and Analyzing Xylem Vulnerability to Embolism as an Epidemic Process. Methods Mol Biol 2024; 2722:17-34. [PMID: 37897597 DOI: 10.1007/978-1-0716-3477-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Xylem vulnerability to embolism can be quantified by "vulnerability curves" (VC) that are obtained by subjecting wood samples to increasingly negative water potential and monitoring the progressive loss of hydraulic conductivity. VC are typically sigmoidal, and various approaches are used to fit the experimentally obtained VC data for extracting benchmark data of vulnerability to embolism. In addition to such empirical methods, mechanistic approaches to calculate embolism propagation are epidemic modeling and network theory. Both describe the transmission of "objects" (in this case, the transmission of gas) between interconnected elements. In network theory, a population of interconnected elements is described by graphs in which objects are represented by vertices or nodes and connections between these objections as edges linking the vertices. A graph showing a population of interconnected xylem conduits represents an "individual" wood sample that allows spatial tracking of embolism propagation. In contrast, in epidemic modeling, the transmission dynamics for a population that is subdivided into infection-relevant groups is calculated by an equation system. For this, embolized conduits are considered to be "infected," and the "infection" is the transmission of gas from embolized conduits to their still water-filled neighbors. Both approaches allow for a mechanistic simulation of embolism propagation.
Collapse
Affiliation(s)
| | - Wilfried Konrad
- Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Institute of Botany, Technical University of Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Zhang XM, Xia Y, Li JT, Shi XQ, Liu LX, Tang M, Tang J, Sun W, Wen ZR, Yi Y. Assessing inter-intraspecific variability of leaf vulnerability to embolism for 10 alpine Rhododendron species growing in Southwestern China. PHYSIOLOGIA PLANTARUM 2024; 176:e14211. [PMID: 38351399 DOI: 10.1111/ppl.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
Alpine Rhododendron species are prominent constituents and renowned ornamental plants in alpine ecosystems. Consequently, evaluating the genetic variation in embolism resistance within the genus Rhododendron and predicting their adaptability to future climate change is important. Nevertheless, the assessment of embolism resistance in Rhododendron species remains limited. This investigation aimed to examine leaf vulnerability to embolism across ten alpine Rhododendron species, which are frequently employed as ornamental species in Rhododendron forests in Southwest China. The study analyzed the correlation between embolism resistance and various morphological traits, while also conducting water control experiments to evaluate the relationship between embolism resistance and drought resistance. The outcomes indicated pronounced variations in leaf vulnerability to embolism among species, as reflected by the water potential at 50% of embolized pixels (P50 ). Furthermore, the leaf P50 exhibited a significant positive correlation with vessel diameter (D) (R2 = 0.44, P = 0.03) and vessel wall span (b) (R2 = 0.64, P = 0.005), while displaying a significant negative correlation with vessel reinforcement ((t/b)2 ) (R2 = 0.67, P = 0.004). These findings underscore the reliability of selecting species based on embolism vulnerability to preserve the diversity of alpine ecosystems and foster resilience to climate change.
Collapse
Affiliation(s)
- Xi-Min Zhang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Ying Xia
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Jie-Ting Li
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Xiao-Qian Shi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Lun-Xian Liu
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Ming Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Jing Tang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Zhi-Rui Wen
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang, China
| | - Yin Yi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang, China
| |
Collapse
|
6
|
Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S. Functional xylem characteristics associated with drought-induced embolism in angiosperms. THE NEW PHYTOLOGIST 2022; 236:2019-2036. [PMID: 36039697 DOI: 10.1111/nph.18447] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.
Collapse
Affiliation(s)
- Frederic Lens
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
- Leiden University, Institute of Biology Leiden, Plant Sciences, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
| | - Giovanni Bortolami
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Sylvain Delzon
- University of Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| |
Collapse
|
7
|
Dória LC, Sonsin-Oliveira J, Rossi S, Marcati CR. Functional trade-offs in volume allocation to xylem cell types in 75 species from the Brazilian savanna Cerrado. ANNALS OF BOTANY 2022; 130:445-456. [PMID: 35863898 PMCID: PMC9486921 DOI: 10.1093/aob/mcac095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/20/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Xylem is a crucial tissue for plant survival, performing the functions of water transport, mechanical support and storage. Functional trade-offs are a result of the different assemblages of xylem cell types within a certain wood volume. We assessed how the volume allocated to different xylem cell types can be associated with wood functional trade-offs (hydraulics, mechanical and storage) in species from the Cerrado, the Brazilian savanna. We also assessed the xylem anatomical characters linked to wood density across species. METHODS We analysed cross-sections of branches collected from 75 woody species belonging to 42 angiosperm families from the Cerrado. We estimated the wood volume fraction allocated to different cell types and performed measurements of vessel diameter and wood density. KEY RESULTS The largest volume of wood is allocated to fibres (0.47), followed by parenchyma (0.33) and vessels (0.20). Wood density is positively correlated to cell wall (fibre and vessel wall), and negatively to the fractions of fibre lumen and gelatinous fibres. We observed a trade-off between hydraulics (vessel diameter) and mechanics (cell wall fraction), and between mechanics and storage (parenchyma fraction). The expected positive functional relationships between hydraulics (vessel diameter) and water and carbohydrate storage (parenchyma and fibre lumen fractions) were not detected, though larger vessels are linked to a larger wood volume allocated to gelatinous fibres. CONCLUSIONS Woody species from the Cerrado show evidence of functional trade-offs between water transport, mechanical support and storage. Gelatinous fibres might be potentially linked to water storage and release by their positive relationship to increased vessel diameter, thus replacing the functional role of parenchyma and fibre lumen cells. Species can profit from the increased mechanical strength under tension provided by the presence of gelatinous fibres, avoiding expensive investments in high wood density.
Collapse
Affiliation(s)
| | - Julia Sonsin-Oliveira
- Departamento de Biologia Vegetal, Programa de Pós-Graduação em Botânica, Instituto de Ciências Biológicas, Universidade de Brasilia (UnB), Brasília, DF, Brazil
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Carmen Regina Marcati
- Departamento de Ciência Florestal, Solos e Ambiente, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agronômicas, Avenida Universitária, Botucatu, SP, Brazil
| |
Collapse
|
8
|
Barigah TS, Gyenge JE, Barreto F, Rozenberg P, Fernández ME. Narrow vessels cavitate first during a simulated drought in Eucalyptus camaldulensis. PHYSIOLOGIA PLANTARUM 2021; 173:2081-2090. [PMID: 34523145 DOI: 10.1111/ppl.13556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Establishing drying-limits for mortality of different tree species and understanding the anatomical and physiological traits involved is crucial to predict forests' responses to climate change. The xylem of Eucalyptus camaldulensis presents a complex of solitary vessels surrounded by different imperforate tracheary elements and parenchyma that influence, in a poorly known way, its hydraulic functioning. We aimed at describing the dynamics of embolism propagation in this type of xylem, seeking any vessel-size pattern, and unraveling the threshold of xylem embolism leading to nonrecovery after drought in E. camaldulensis. We assigned potted saplings to a protracted water-stress for 70 days. We relied on colorimetric and hydraulic methods to test for links between xylem anatomy and embolism propagation in the main stem. On average, the occurrence of embolism was randomly distributed in the stem xylem, but the probability of embolized vessels was higher than predicted by chance in the narrowest vessels of individuals that experienced low to moderate water-stress. The saplings could recover from severe water-stress if their percentage loss of conductance (PLC) was <77%, but not when the PLC was ˃ 85%. We concluded that, contrary to results reported for most species, the narrowest vessels are the most vulnerable to cavitation in E. camaldulensis, suggesting a lack of tradeoff between xylem efficiency and safety (in response to drought) at the tissue level. These results challenge the well-established paradigm of the effect of vessel size on cavitation, which states that the widest conduits are the most vulnerable to both freeze-thaw and drought-induced cavitation.
Collapse
Affiliation(s)
| | - Javier Enrique Gyenge
- CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- INTA, Instituto Nacional de Tecnología Agropecuaria, Ecología Forestal, UEDD INTA-CONICET IPADS, Tandil, Argentina
| | - Florencia Barreto
- CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - María Elena Fernández
- CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- INTA, Instituto Nacional de Tecnología Agropecuaria, Ecología Forestal, UEDD INTA-CONICET IPADS, Tandil, Argentina
| |
Collapse
|
9
|
Feng F, Losso A, Tyree M, Zhang S, Mayr S. Cavitation fatigue in conifers: a study on eight European species. PLANT PHYSIOLOGY 2021; 186:1580-1590. [PMID: 33905499 PMCID: PMC8260135 DOI: 10.1093/plphys/kiab170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
After drought-induced embolism and repair, tree xylem may be weakened against future drought events (cavitation fatigue). As there are few data on cavitation fatigue in conifers available, we quantified vulnerability curves (VCs) after embolism/repair cycles on eight European conifer species. We induced 50% and 100% loss of conductivity (LC) with a cavitron, and analyzed VCs. Embolism repair was obtained by vacuum infiltration. All species demonstrated complete embolism repair and a lack of any cavitation fatigue after 50% LC . After 100% LC, European larch (Larix decidua), stone pine (Pinus cembra), Norway spruce (Picea abies), and silver fir (Abies alba) remained unaffected, while mountain pine (Pinus mugo), yew (Taxus baccata), and common juniper (Juniperus communis) exhibited 0.4-0.9 MPa higher vulnerability to embolism. A small cavitation fatigue observed in Scots pine (Pinus sylvestris) was probably biased by incomplete embolism repair, as indicated by a correlation of vulnerability shifts and conductivity restoration. Our data demonstrate that cavitation fatigue in conifers is species-specific and depends on the intensity of preceding LC. The lack of fatigue effects after moderate LC, and relevant effects in only three species after high LC, indicate that conifers are relatively resistant against cavitation fatigue. This is remarkable considering the complex and delicate conifer pit architecture and may be important considering climate change projections.
Collapse
Affiliation(s)
- Feng Feng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
- Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan, Shaanxi 711600, China
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Innsbruck 6020, Austria
| | - Melvin Tyree
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
- Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan, Shaanxi 711600, China
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
10
|
Chen YJ, Maenpuen P, Zhang YJ, Barai K, Katabuchi M, Gao H, Kaewkamol S, Tao LB, Zhang JL. Quantifying vulnerability to embolism in tropical trees and lianas using five methods: can discrepancies be explained by xylem structural traits? THE NEW PHYTOLOGIST 2021; 229:805-819. [PMID: 32929748 DOI: 10.1111/nph.16927] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/18/2020] [Indexed: 05/21/2023]
Abstract
Vulnerability curves (VCs) describe the loss of hydraulic conductance against increasing xylem tension, providing valuable insights about the response of plant water transport to water stress. Techniques to construct VCs have been developed and modified continuously, but controversies continue. We compared VCs constructed using the bench-top dehydration (BD), air-injection-flow (AI), pneumatic-air-discharge (PAD), optical (OP) and X-ray-computed microtomography (MicroCT) methods for tropical trees and lianas with contrasting vessel lengths. The PAD method generated highly vulnerable VCs, the AI method intermediate VCs, whereas the BD, OP and MicroCT methods produced comparable and more resistant VCs. Vessel-length and diameter accounted for the overestimation ratio of vulnerability estimated using the AI but not the PAD method. Compared with directly measured midday embolism levels, the PAD and AI methods substantially overestimated embolism, whereas the BD, MicroCT and OP methods provided more reasonable estimations. Cut-open vessels, uncertainties in maximum air volume estimations, sample-length effects, tissue cracks and shrinkage together may impede the reliability of the PAD method. In conclusion, we validate the BD, OP and MicroCT methods for tropical plants, whereas the PAD and AI need further mechanistic testing. Therefore, applications of VCs in estimating plant responses to drought need to be cautious.
Collapse
Affiliation(s)
- Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan, 653300, China
| | - Phisamai Maenpuen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Kallol Barai
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Masatoshi Katabuchi
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Hui Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sasiwimol Kaewkamol
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lian-Bin Tao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
11
|
Rodríguez-Robles U, Arredondo JT, Huber-Sannwald E, Yépez EA, Ramos-Leal JA. Coupled plant traits adapted to wetting/drying cycles of substrates co-define niche multidimensionality. PLANT, CELL & ENVIRONMENT 2020; 43:2394-2408. [PMID: 32633032 DOI: 10.1111/pce.13837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Theories attempting to explain species coexistence in plant communities have argued in favour of species' capacities to occupy a multidimensional niche with spatial, temporal and biotic axes. We used the concept of hydrological niche segregation to learn how ecological niches are structured both spatially and temporally and whether small scale humidity gradients between adjacent niches are the main factor explaining water partitioning among tree species in a highly water-limited semiarid forest ecosystem. By combining geophysical methods, isotopic ecology, plant ecophysiology and anatomical measurements, we show how coexisting pine and oak species share, use and temporally switch between diverse spatially distinct niches by employing a set of functionally coupled plant traits in response to changing environmental signals. We identified four geospatial niches that turned into nine, when considering the temporal dynamics of the wetting/drying cycles in the substrate and the particular plant species adaptations to garner, transfer, store and use water. Under water scarcity, pine and oak exhibited water use segregation from different niches, yet under maximum drought when oak trees crossed physiological thresholds, niche overlap occurred. The identification of niches and mechanistic understanding of when and how species use them will help unify theories of plant coexistence and competition.
Collapse
Affiliation(s)
- Ulises Rodríguez-Robles
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, San Luís Potosí, Mexico
- Departamento de Ecología y Recursos Naturales. Centro Universitario de la Costa Sur, Universidad de Guadalajara, Autlán de Navarro, Mexico
| | - J Tulio Arredondo
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, San Luís Potosí, Mexico
| | - Elisabeth Huber-Sannwald
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, San Luís Potosí, Mexico
| | - Enrico A Yépez
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - José Alfreso Ramos-Leal
- División de Geociencias Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica, San Luís Potosí, Mexico
| |
Collapse
|
12
|
Leaf Habit and Stem Hydraulic Traits Determine Functional Segregation of Multiple Oak Species along a Water Availability Gradient. FORESTS 2020. [DOI: 10.3390/f11080894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Oaks are a dominant woody plant genus in the northern hemisphere that occupy a wide range of habitats and are ecologically diverse. We implemented a functional trait approach that included nine functional traits related to leaves and stems in order to explain the species coexistence of 21 oak species along a water availability gradient in a temperate forest in Mexico. This particular forest is characterized as a biodiversity hotspot, with many oak species including some endemics. Our main aim was to investigate whether the different oak species had specific trait associations that allow them to coexist along an environmental gradient at regional scale. First, we explored trait covariation and determined the main functional dimensions in which oaks were segregated. Second, we explored how environmental variation has selected for restricted functional dimensions that shape oak distributions along the gradient, regardless of their leaf life span or phylogeny (section level). Third, we quantified the niche overlap between the oak functional spaces at different levels. The analyzed species showed three functional dimensions of trait variation: a primary axis related to the leaf economic spectrum, which corresponds to the segregation of the species according to leaf habit; a second axis that reflects the stem hydraulic properties and corresponds to species segregation followed by phylogenetic segregation, reflecting some degree of trait conservatism, and a third axis, represented mainly by leaf area and plant height, that corresponds to species segregation. Finally, our findings indicated that the functional space measured with leaf traits and stem traits such as hydraulic capacity was integrally linked to niche differentiation. This linkage suggests that the earliest mechanism of species segregation was related to habitat suitability and that the stem hydraulic trade-off reflects differences between phylogenetic sections; these traits may promote coexistence between distantly related oak species.
Collapse
|
13
|
Zhao H, Jiang Z, Ma J, Cai J. What causes the differences in cavitation resistance of two shrubs? Wood anatomical explanations and reliability testing of vulnerability curves. PHYSIOLOGIA PLANTARUM 2020; 169:156-168. [PMID: 31828790 DOI: 10.1111/ppl.13059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Relationships between xylem anatomical traits and cavitation resistance have always been a major content of plant hydraulics. To know how plants cope with drought, it is extremely important to acquire detailed knowledge about xylem anatomical traits and assess the cavitation resistance accurately. This study aims to increase our knowledge in the methods determining cavitation resistance and xylem anatomical traits. We selected a semi-ring-porous species, Hippophae rhamnoides L., and a diffuse-porous species, Corylus heterophylla F., to clarify the reasons for the difference in cavitation resistance based on detailed xylem anatomical traits and reliable vulnerability curves (VCs). Both Cavitron and bench dehydration (BD) were used to construct VCs. Xylem anatomical traits, including pit membrane ultrastructure of these two species, were determined. The VCs obtained by the two different techniques were of different types for H. rhamnoides, its Cavitron VCs might be unreliable because of open-vessel artifacts. On the basis of BD VCs, H. rhamnoides showed higher cavitation resistance than C. heterophylla, and this is attributed to its low vessel connectivity as well as non-porous and thicker pit membranes.
Collapse
Affiliation(s)
- Han Zhao
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Zaimin Jiang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jin Ma
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
14
|
Peng G, Yang D, Liang Z, Li J, Tyree MT. An improved centrifuge method for determining water extraction curves and vulnerability curves in the long-vessel species Robinia pseudoacacia. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4865-4876. [PMID: 31056686 PMCID: PMC6760279 DOI: 10.1093/jxb/erz206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/26/2019] [Indexed: 05/29/2023]
Abstract
Significant improvements to the centrifuge water-extraction method of measuring the percentage loss volume of water (PLV) and corresponding vulnerability curves (VCs) are reported. Cochard and Sperry rotors are both incapable of measuring the VCs of species with long vessels because of premature embolism induced by hypothetical nanoparticles that can be drawn into segments during flow measurement. In contrast, water extraction pushes nanoparticles out of the sample. This study focuses on a long-vessel species, Robinia pseudoacacia, for which many VCs have been constructed by different methods, and the daily water relations have been quantified. PLV extraction curves have dual Weibull curves, and this paper focuses on the second Weibull curve because it involves the extraction of water from vessels, as proven by staining methods. We demonstrate an improved water extraction method after evaporation correction that has accuracy to within 0.5%, shows good agreement with two traditional methods that are slower and less accurate, and is immune to nanoparticle artefacts. Using Poiseuille's Law and the geometry of vessels, we argue that the percentage loss of conductivity (PLC) equals 2PLV-PLV2 in a special case where all vessels, regardless of size, have the same vulnerability curve. In this special case, this equation predicts the data reasonably well.
Collapse
Affiliation(s)
- Guoquan Peng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Dongmei Yang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Zhao Liang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Junhui Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Melvin T Tyree
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
- Center for Nano- and Micro-Mechanics, Engineering Mechanics, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Plavcová L, Gallenmüller F, Morris H, Khatamirad M, Jansen S, Speck T. Mechanical properties and structure-function trade-offs in secondary xylem of young roots and stems. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3679-3691. [PMID: 31301134 DOI: 10.1093/jxb/erz286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/27/2019] [Indexed: 05/26/2023]
Abstract
Bending and torsional properties of young roots and stems were measured in nine woody angiosperms. The variation in mechanical parameters was correlated to wood anatomical traits and analysed with respect to the other two competing functions of xylem (namely storage and hydraulics). Compared with stems, roots exhibited five times greater flexibility in bending and two times greater flexibility in torsion. Lower values of structural bending and structural torsional moduli (Estr and Gstr, respectively) of roots compared with stems were associated with the presence of thicker bark and a greater size of xylem cells. Across species, Estr and Gstr were correlated with wood density, which was mainly driven by the wall thickness to lumen area ratio of fibres. Higher fractions of parenchyma did not translate directly into a lower wood density and reduced mechanical stiffness in spite of parenchyma cells having thinner, and in some cases less lignified, cell walls than fibres. The presence of wide, partially non-lignified rays contributed to low values of Estr and Gstr in Clematis vitalba. Overall, our results demonstrate that higher demands for mechanical stability in self-supporting stems put a major constraint on xylem structure, whereas root xylem can be designed with a greater emphasis on both storage and hydraulic functions.
Collapse
Affiliation(s)
- Lenka Plavcová
- University of Hradec Králové, Department of Biology, Faculty of Science, Rokitanského, Hradec Králové, Czech Republic
| | - Friederike Gallenmüller
- Plant Biomechanics Group Freiburg, Botanic Garden of the Albert-Ludwigs-University of Freiburg, Faculty of Biology, Schänzlestrasse, Freiburg, Germany
| | - Hugh Morris
- Laboratory for Applied Wood Materials, Empa - Swiss Federal Laboratories for Materials Testing and Research, St Gallen, Switzerland
| | - Mohammad Khatamirad
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee, Ulm, Germany
| | - Thomas Speck
- Plant Biomechanics Group Freiburg, Botanic Garden of the Albert-Ludwigs-University of Freiburg, Faculty of Biology, Schänzlestrasse, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Freiburg, Germany
| |
Collapse
|
16
|
Pan R, Tyree MT. How does water flow from vessel to vessel? Further investigation of the tracheid bridge concept. TREE PHYSIOLOGY 2019; 39:1019-1031. [PMID: 30825311 DOI: 10.1093/treephys/tpz015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Hydraulic safety and efficiency have become the central concept of the interpretation of the structure and function of vessels and their interconnections. Plants form an appropriate xylem network structure to maintain a balance of hydraulic safety vs efficiency. The term 'tracheid bridge' is used to describe a possible pathway of water transport between neighboring vessels via tracheids, and this pathway could also provide increased safety against embolisms. However, the only physiological study of such a structure thus far has been in Hippophae rhamnoides Linn. To test the function of tracheid bridges, this research examined four species that have relatively long and solitary vessels, which are two of the criteria for efficient tracheid bridges. Tracheids contributed less than 2.2% of the total conductance of the vessels in these species, but in theory, tracheids could serve as very efficient transport connector pathways that may or may not make direct vessel-to-vessel contact via pit fields between adjacent vessels. In some species, tracheid bridges may represent the dominant pathway for water flow between vessels, whereas in other species, tracheid bridges may be sub-dominant or virtually nil. Broader searches of woody taxa are needed to reveal the functional importance of tracheid bridges in vascular plants.
Collapse
Affiliation(s)
- Ruihua Pan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Melvin T Tyree
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
17
|
Yin P, Meng F, Liu Q, An R, Cai J, Du G. A comparison of two centrifuge techniques for constructing vulnerability curves: insight into the 'open-vessel' artifact. PHYSIOLOGIA PLANTARUM 2019; 165:701-710. [PMID: 29602179 DOI: 10.1111/ppl.12738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/16/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
A vulnerability curve (VC) describes the extent of xylem cavitation resistance. Centrifuges have been used to generate VCs for decades via static- and flow-centrifuge methods. Recently, the validity of the centrifuge techniques has been questioned. Researchers have hypothesized that the centrifuge techniques might yield unreliable VCs due to the open-vessel artifact. However, other researchers reject this hypothesis. The focus of the dispute is centered on whether exponential VCs are more reliable when the static-centrifuge method is used rather than the flow-centrifuge method. To further test the reliability of the centrifuge technique, two centrifuges were manufactured to simulate the static- and flow-centrifuge methods. VCs of three species with open vessels of known lengths were constructed using the two centrifuges. The results showed that both centrifuge techniques produced invalid VCs for Robinia because the water flow through stems under mild tension in centrifuges led to an increasing loss of water conductivity. In addition, the injection of water in the flow-centrifuge exacerbated the loss of water conductivity. However, both centrifuge techniques yielded reliable VCs for Prunus, regardless of the presence of open vessels in the tested samples. We conclude that centrifuge techniques can be used in species with open vessels only when the centrifuge produces a VC that matches the bench-dehydration VC.
Collapse
Affiliation(s)
- Pengxian Yin
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Feng Meng
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui An
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guangyuan Du
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
18
|
Mrad A, Domec JC, Huang CW, Lens F, Katul G. A network model links wood anatomy to xylem tissue hydraulic behaviour and vulnerability to cavitation. PLANT, CELL & ENVIRONMENT 2018; 41:2718-2730. [PMID: 30071137 DOI: 10.1111/pce.13415] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 05/06/2023]
Abstract
Plant xylem response to drought is routinely represented by a vulnerability curve (VC). Despite the significance of VCs, the connection between anatomy and tissue-level hydraulic response to drought remains a subject of inquiry. We present a numerical model of water flow in flowering plant xylem that combines current knowledge on diffuse-porous anatomy and embolism spread to explore this connection. The model produces xylem networks and uses different parameterizations of intervessel connection vulnerability to embolism spread: the Young-Laplace equation and pit membrane stretching. Its purpose is upscaling processes occurring on the microscopic length scales, such as embolism propagation through pit membranes, to obtain tissue-scale hydraulics. The terminal branch VC of Acer glabrum was successfully reproduced relying only on real observations of xylem tissue anatomy. A sensitivity analysis shows that hydraulic performance and VC shape and location along the water tension axis are heavily dependent on anatomy. The main result is that the linkage between pit-scale and vessel-scale anatomical characters, along with xylem network topology, affects VCs significantly. This work underscores the importance of stepping up research related to the three-dimensional network structure of xylem tissues. The proposed model's versatility makes it an important tool to explore similar future questions.
Collapse
Affiliation(s)
- Assaad Mrad
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Jean-Christophe Domec
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Bordeaux Sciences Agro, UMR 1391 INRA-ISPA, 33175, Gradignan Cedex, France
| | - Cheng-Wei Huang
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131-0001
| | - Frederic Lens
- Naturalis Biodiversity Center, Leiden University, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - Gabriel Katul
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
19
|
Tng DYP, Apgaua DMG, Ishida YF, Mencuccini M, Lloyd J, Laurance WF, Laurance SGW. Rainforest trees respond to drought by modifying their hydraulic architecture. Ecol Evol 2018; 8:12479-12491. [PMID: 30619559 PMCID: PMC6308889 DOI: 10.1002/ece3.4601] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Increased drought is forecasted for tropical regions, with severe implications for the health and function of forest ecosystems. How mature forest trees will respond to water deficit is poorly known. We investigated wood anatomy and leaf traits in lowland tropical forest trees after 24 months of experimental rainfall exclusion. Sampling sun-exposed young canopy branches from target species, we found species-specific systematic variation in hydraulic-related wood anatomy and leaf traits in response to drought stress. Relative to controls, drought-affected individuals of different tree species variously exhibited trait measures consistent with increasing hydraulic safety. These included narrower or less vessels, reduced vessel groupings, lower theoretical water conductivities, less water storage tissue and more abundant fiber in their wood, and more occluded vessels. Drought-affected individuals also had thinner leaves, and more negative pre-dawn or mid-day leaf water potentials. Future studies examining both wood and leaf hydraulic traits should improve the representation of plant hydraulics within terrestrial ecosystem and biosphere models, and help fine-tune predictions of how future climate changes will affect tropical forests globally.
Collapse
Affiliation(s)
- David Y. P. Tng
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and EngineeringJames Cook UniversitySmithfieldQueenslandAustralia
- Instituto de BiologiaUniversidade Federal da BahiaSalvadorBahiaBrazil
| | - Deborah M. G. Apgaua
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and EngineeringJames Cook UniversitySmithfieldQueenslandAustralia
| | - Yoko F. Ishida
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and EngineeringJames Cook UniversitySmithfieldQueenslandAustralia
| | - Maurizio Mencuccini
- ICREAPg. Lluís CompanysBarcelonaSpain
- CREAFUniversidad Autonoma de BarcelonaBarcelonaSpain
| | - Jon Lloyd
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and EngineeringJames Cook UniversitySmithfieldQueenslandAustralia
- Department of Life SciencesImperial College LondonAscotUK
- Faculdade de Filosofia, Ciencias e Letras de Ribeirao PretoUniversidade de Sao PauloRibeirao PretoBrazil
| | - William F. Laurance
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and EngineeringJames Cook UniversitySmithfieldQueenslandAustralia
| | - Susan G. W. Laurance
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and EngineeringJames Cook UniversitySmithfieldQueenslandAustralia
| |
Collapse
|
20
|
Lobo A, Torres-Ruiz JM, Burlett R, Lemaire C, Parise C, Francioni C, Truffaut L, Tomášková I, Hansen JK, Kjær ED, Kremer A, Delzon S. Assessing inter- and intraspecific variability of xylem vulnerability to embolism in oaks. FOREST ECOLOGY AND MANAGEMENT 2018; 424:53-61. [PMID: 29910530 PMCID: PMC5997172 DOI: 10.1016/j.foreco.2018.04.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The genus Quercus comprises important species in forestry not only for their productive value but also for their ability to withstand drought. Hence an evaluation of inter- and intraspecific variation in drought tolerance is important for selecting the best adapted species and provenances for future afforestation. The presence of long vessels makes it difficult to assess xylem vulnerability to embolism in oak. Thanks to the development of an in situ flow centrifuge equipped with a large rotor, we quantified (i) the between species variability of embolism resistance in four native and two exotic species of oaks in Europe and (ii) the within species variability in Quercus petraea. Embolism resistance varied significantly among species, with the pressure inducing 50% loss of hydraulic conductivity (P50 ) ranging between - 7.0 and -4.2 MPa. Species native to the Mediterranean region were more resistant than pan-European species. In contrast, intraspecific variability in embolism resistance in Q. petraea was low within provenances and null among provenances. A positive correlation between P50 and vessel diameter among the six oak species indicates that the more embolism resistant species had narrower xylem vessels. However, this tradeoff between hydraulic efficiency and safety was not observed between Q. petraea provenances.
Collapse
Affiliation(s)
- Albin Lobo
- Department of Geosciences and Natural Resource Management (IGN), University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | | | | | | | | | | | | | - Ivana Tomášková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Praha 6 – Suchdol, Czech Republic
| | - Jon Kehlet Hansen
- Department of Geosciences and Natural Resource Management (IGN), University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Erik Dahl Kjær
- Department of Geosciences and Natural Resource Management (IGN), University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | | | | |
Collapse
|
21
|
Barotto AJ, Monteoliva S, Gyenge J, Martinez-Meier A, Fernandez ME. Functional relationships between wood structure and vulnerability to xylem cavitation in races of Eucalyptus globulus differing in wood density. TREE PHYSIOLOGY 2018; 38:243-251. [PMID: 29177476 DOI: 10.1093/treephys/tpx138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Wood density can be considered as a measure of the internal wood structure, and it is usually used as a proxy measure of other mechanical and functional traits. Eucalyptus is one of the most important commercial forestry genera worldwide, but the relationship between wood density and vulnerability to cavitation in this genus has been little studied. The analysis is hampered by, among other things, its anatomical complexity, so it becomes necessary to address more complex techniques and analyses to elucidate the way in which the different anatomical elements are functionally integrated. In this study, vulnerability to cavitation in two races of Eucalyptus globulus Labill. with different wood density was evaluated through Path analysis, a multivariate method that allows evaluation of descriptive models of causal relationship between variables. A model relating anatomical variables with wood properties and functional parameters was proposed and tested. We found significant differences in wood basic density and vulnerability to cavitation between races. The main exogenous variables predicting vulnerability to cavitation were vessel hydraulic diameter and fibre wall fraction. Fibre wall fraction showed a direct impact on wood basic density and the slope of vulnerability curve, and an indirect and negative effect over the pressure imposing 50% of conductivity loss (P50) through them. Hydraulic diameter showed a direct negative effect on P50, but an indirect and positive influence over this variable through wood density on one hand, and through maximum hydraulic conductivity (ks max) and slope on the other. Our results highlight the complexity of the relationship between xylem efficiency and safety in species with solitary vessels such as Eucalyptus spp., with no evident compromise at the intraspecific level.
Collapse
Affiliation(s)
- Antonio José Barotto
- Instituto de Fisiología vegetal (INFIVE), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, CC 31 (1900) La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Silvia Monteoliva
- Instituto de Fisiología vegetal (INFIVE), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, CC 31 (1900) La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Javier Gyenge
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- INTA, EEA Balcarce-Oficina Tandil, CC 370 (7000) Tandil, Argentina
| | | | - María Elena Fernandez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- INTA, EEA Balcarce-Oficina Tandil, CC 370 (7000) Tandil, Argentina
| |
Collapse
|
22
|
Sebastian‐Azcona J, Hacke UG, Hamann A. Adaptations of white spruce to climate: strong intraspecific differences in cold hardiness linked to survival. Ecol Evol 2018; 8:1758-1768. [PMID: 29435250 PMCID: PMC5792524 DOI: 10.1002/ece3.3796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 12/11/2017] [Indexed: 02/02/2023] Open
Abstract
Understanding local adaptation of tree populations to climate allows the development of assisted migration guidelines as a tool for forest managers to address climate change. Here, we study the relationship among climate, a wide range of physiological traits, and field performance of selected white spruce provenances originating from throughout the species range. Tree height, survival, cold hardiness, hydraulic, and wood anatomical traits were measured in a 32-year-old common garden trial, located in the center of the species range. Provenance performance included all combinations of high versus low survival and growth, with the most prevalent population differentiation for adaptive traits observed in cold hardiness. Cold hardiness showed a strong association with survival and was associated with cold winter temperatures at the site of seed origin. Tree height was mostly explained by the length of the growing season at the origin of the seed source. Although population differentiation was generally weak in wood anatomical and hydraulic traits, within-population variation was substantial in some traits, and a boundary analysis revealed that efficient water transport was associated with vulnerable xylem and low wood density, indicating that an optimal combination of high water transport efficiency and high cavitation resistance is not possible. Our results suggest that assisted migration prescriptions may be advantageous under warming climate, but pronounced trade-offs between survival and cold hardiness require a careful consideration of the distances of these transfers.
Collapse
Affiliation(s)
| | - Uwe G Hacke
- Department of Renewable ResourcesUniversity of AlbertaEdmontonABCanada
| | - Andreas Hamann
- Department of Renewable ResourcesUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
23
|
Knipfer T, Cuneo IF, Earles JM, Reyes C, Brodersen CR, McElrone AJ. Storage Compartments for Capillary Water Rarely Refill in an Intact Woody Plant. PLANT PHYSIOLOGY 2017; 175:1649-1660. [PMID: 29042460 PMCID: PMC5717732 DOI: 10.1104/pp.17.01133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/14/2017] [Indexed: 05/02/2023]
Abstract
Water storage is thought to play an integral role in the maintenance of whole-plant water balance. The contribution of both living and dead cells to water storage can be derived from rehydration and water-release curves on excised plant material, but the underlying tissue-specific emptying/refilling dynamics remain unclear. Here, we used x-ray computed microtomography to characterize the refilling of xylem fibers, pith cells, and vessels under both excised and in vivo conditions in Laurus nobilis In excised stems supplied with water, water uptake exhibited a biphasic response curve, and x-ray computed microtomography images showed that high water storage capacitance was associated with fiber and pith refilling as driven by capillary forces: fibers refilled more rapidly than pith cells, while vessel refilling was minimal. In excised stems that were sealed, fiber and pith refilling was associated with vessel emptying, indicating a link between tissue connectivity and water storage. In contrast, refilling of fibers, pith cells, and vessels was negligible in intact saplings over two time scales, 24 h and 3 weeks. However, those compartments did refill slowly when the shoot was covered to prevent transpiration. Collectively, our data (1) provide direct evidence that storage compartments for capillary water refill in excised stems but rarely under in vivo conditions, (2) highlight that estimates of capacitance from excised samples should be interpreted with caution, as certain storage compartments may not be utilized in the intact plant, and (3) question the paradigm that fibers play a substantial role in daily discharge/recharge of stem capacitance in an intact tree.
Collapse
Affiliation(s)
- Thorsten Knipfer
- Department of Viticulture and Enology, University of California, Davis, California 95616
| | - Italo F Cuneo
- School of Agronomy, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - J Mason Earles
- Department of Viticulture and Enology, University of California, Davis, California 95616
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511
| | - Clarissa Reyes
- Department of Viticulture and Enology, University of California, Davis, California 95616
| | - Craig R Brodersen
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California, Davis, California 95616
- U.S. Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, California 95618
| |
Collapse
|
24
|
Venturas MD, Sperry JS, Hacke UG. Plant xylem hydraulics: What we understand, current research, and future challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:356-389. [PMID: 28296168 DOI: 10.1111/jipb.12534] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/09/2017] [Indexed: 05/22/2023]
Abstract
Herein we review the current state-of-the-art of plant hydraulics in the context of plant physiology, ecology, and evolution, focusing on current and future research opportunities. We explain the physics of water transport in plants and the limits of this transport system, highlighting the relationships between xylem structure and function. We describe the great variety of techniques existing for evaluating xylem resistance to cavitation. We address several methodological issues and their connection with current debates on conduit refilling and exponentially shaped vulnerability curves. We analyze the trade-offs existing between water transport safety and efficiency. We also stress how little information is available on molecular biology of cavitation and the potential role of aquaporins in conduit refilling. Finally, we draw attention to how plant hydraulic traits can be used for modeling stomatal responses to environmental variables and climate change, including drought mortality.
Collapse
Affiliation(s)
- Martin D Venturas
- Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA
| | - John S Sperry
- Department of Biology, University of Utah, 257 S 1400E, Salt Lake City, UT, 84112, USA
| | - Uwe G Hacke
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
25
|
Hacke UG, Spicer R, Schreiber SG, Plavcová L. An ecophysiological and developmental perspective on variation in vessel diameter. PLANT, CELL & ENVIRONMENT 2017; 40:831-845. [PMID: 27304704 DOI: 10.1111/pce.12777] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 05/05/2023]
Abstract
Variation in xylem vessel diameter is one of the most important parameters when evaluating plant water relations. This review provides a synthesis of the ecophysiological implications of variation in lumen diameter together with a summary of our current understanding of vessel development and its endogenous regulation. We analyzed inter-specific variation of the mean hydraulic vessel diameter (Dv ) across biomes, intra-specific variation of Dv under natural and controlled conditions, and intra-plant variation. We found that the Dv measured in young branches tends to stay below 30 µm in regions experiencing winter frost, whereas it is highly variable in the tropical rainforest. Within a plant, the widest vessels are often found in the trunk and in large roots; smaller diameters have been reported for leaves and small lateral roots. Dv varies in response to environmental factors and is not only a function of plant size. Despite the wealth of data on vessel diameter variation, the regulation of diameter is poorly understood. Polar auxin transport through the vascular cambium is a key regulator linking foliar and xylem development. Limited evidence suggests that auxin transport is also a determinant of vessel diameter. The role of auxin in cell expansion and in establishing longitudinal continuity during secondary growth deserve further study.
Collapse
Affiliation(s)
- Uwe G Hacke
- University of Alberta, Department of Renewable Resources, Edmonton, AB T6G 2E3, Canada
| | - Rachel Spicer
- Connecticut College, Department of Botany, New London, CT 06320, USA
| | - Stefan G Schreiber
- University of Alberta, Department of Renewable Resources, Edmonton, AB T6G 2E3, Canada
| | - Lenka Plavcová
- University of Hradec Králové, Department of Biology, Rokitanského 62, Hradec Králové, 500 03, Czech Republic
- Charles University, Department of Experimental Plant Biology, Viničná 5, Prague, 128 44, Czech Republic
| |
Collapse
|
26
|
Barotto AJ, Fernandez ME, Gyenge J, Meyra A, Martinez-Meier A, Monteoliva S. First insights into the functional role of vasicentric tracheids and parenchyma in eucalyptus species with solitary vessels: do they contribute to xylem efficiency or safety? TREE PHYSIOLOGY 2016; 36:1485-1497. [PMID: 27614358 DOI: 10.1093/treephys/tpw072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/18/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
The relationship between hydraulic specific conductivity (ks) and vulnerability to cavitation (VC) with size and number of vessels has been studied in many angiosperms. However, few of the studies link other cell types (vasicentric tracheids (VT), fibre-tracheids, parenchyma) with these hydraulic functions. Eucalyptus is one of the most important genera in forestry worldwide. It exhibits a complex wood anatomy, with solitary vessels surrounded by VT and parenchyma, which could serve as a good model to investigate the functional role of the different cell types in xylem functioning. Wood anatomy (several traits of vessels, VT, fibres and parenchyma) in conjunction with maximum ks and VC was studied in adult trees of commercial species with medium-to-high wood density (Eucalyptus globulus Labill., Eucalyptus viminalis Labill. and Eucalyptus camaldulensis Dehnh.). Traits of cells accompanying vessels presented correlations with functional variables suggesting that they contribute to both increasing connectivity between adjacent vessels-and, therefore, to xylem conduction efficiency-and decreasing the probability of embolism propagation into the tissue, i.e., xylem safety. All three species presented moderate-to-high resistance to cavitation (mean P50 values = -2.4 to -4.2 MPa) with no general trade-off between efficiency and safety at the interspecific level. The results in these species do not support some well-established hypotheses of the functional meaning of wood anatomy.
Collapse
Affiliation(s)
- Antonio José Barotto
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Diagonal 113 469, (1900) La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, (C1033AAJ) CABA, Argentina
| | - María Elena Fernandez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, (C1033AAJ) CABA, Argentina
- INTA, EEA Balcarce-Oficina Tandil, Gral. Martín Rodríguez 370, (7000) Tandil, Argentina
| | - Javier Gyenge
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, (C1033AAJ) CABA, Argentina
- INTA, EEA Balcarce-Oficina Tandil, Gral. Martín Rodríguez 370, (7000) Tandil, Argentina
| | - Ariel Meyra
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, (C1033AAJ) CABA, Argentina
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB-UNLP-CONICET), Calle 59 789, (1900) La Plata, Argentina
| | | | - Silvia Monteoliva
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Diagonal 113 469, (1900) La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, (C1033AAJ) CABA, Argentina
| |
Collapse
|
27
|
Li S, Feifel M, Karimi Z, Schuldt B, Choat B, Jansen S. Leaf gas exchange performance and the lethal water potential of five European species during drought. TREE PHYSIOLOGY 2016; 36:179-92. [PMID: 26614785 DOI: 10.1093/treephys/tpv117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/05/2015] [Indexed: 05/04/2023]
Abstract
Establishing physiological thresholds to drought-induced mortality in a range of plant species is crucial in understanding how plants respond to severe drought. Here, five common European tree species were selected (Acer campestre L., Acer pseudoplatanus L., Carpinus betulus L., Corylus avellana L. and Fraxinus excelsior L.) to study their hydraulic thresholds to mortality. Photosynthetic parameters during desiccation and the recovery of leaf gas exchange after rewatering were measured. Stem vulnerability curves and leaf pressure-volume curves were investigated to understand the hydraulic coordination of stem and leaf tissue traits. Stem and root samples from well-watered and severely drought-stressed plants of two species were observed using transmission electron microscopy to visualize mortality of cambial cells. The lethal water potential (ψlethal) correlated with stem P99 (i.e., the xylem water potential at 99% loss of hydraulic conductivity, PLC). However, several plants that were stressed beyond the water potential at 100% PLC showed complete recovery during the next spring, which suggests that the ψlethal values were underestimated. Moreover, we observed a 1 : 1 relationship between the xylem water potential at the onset of embolism and stomatal closure, confirming hydraulic coordination between leaf and stem tissues. Finally, ultrastructural changes in the cytoplasm of cambium tissue and mortality of cambial cells are proposed to provide an alternative approach to investigate the point of no return associated with plant death.
Collapse
Affiliation(s)
- Shan Li
- Institute for Systematic Botany and Ecology, Ulm University, D-89081 Ulm, Germany
| | - Marion Feifel
- Institute for Systematic Botany and Ecology, Ulm University, D-89081 Ulm, Germany
| | - Zohreh Karimi
- Institute for Systematic Botany and Ecology, Ulm University, D-89081 Ulm, Germany Department of Biology, Faculty of Science, Golestan University, 36154 Gorgan, Iran
| | - Bernhard Schuldt
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, D-37077 Göttingen, Germany
| | - Brendan Choat
- University of Western Sydney, Hawkesbury Institute for the Environment, Richmond, NSW 2753, Australia
| | - Steven Jansen
- Institute for Systematic Botany and Ecology, Ulm University, D-89081 Ulm, Germany
| |
Collapse
|
28
|
Pan R, Geng J, Cai J, Tyree MT. A comparison of two methods for measuring vessel length in woody plants. PLANT, CELL & ENVIRONMENT 2015; 38:2519-2526. [PMID: 26084355 DOI: 10.1111/pce.12566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/16/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
Vessel lengths are important to plant hydraulic studies, but are not often reported because of the time required to obtain measurements. This paper compares the fast dynamic method (air injection method) with the slower but traditional static method (rubber injection method). Our hypothesis was that the dynamic method should yield a larger mean vessel length than the static method. Vessel length was measured by both methods in current year stems of Acer, Populus, Vitis and Quercus representing short- to long-vessel species. The hypothesis was verified. The reason for the consistently larger values of vessel length is because the dynamic method measures air flow rates in cut open vessels. The Hagen-Poiseuille law predicts that the air flow rate should depend on the product of number of cut open vessels times the fourth power of vessel diameter. An argument is advanced that the dynamic method is more appropriate because it measures the length of the vessels that contribute most to hydraulic flow. If all vessels had the same vessel length distribution regardless of diameter, then both methods should yield the same average length. This supports the hypothesis that large-diameter vessels might be longer than short-diameter vessels in most species.
Collapse
Affiliation(s)
- Ruihua Pan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Geng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Melvin T Tyree
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
29
|
Feng F, Ding F, Tyree MT. Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements. PLANT PHYSIOLOGY 2015; 168:144-55. [PMID: 25786827 PMCID: PMC4424019 DOI: 10.1104/pp.114.256271] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/17/2015] [Indexed: 05/17/2023]
Abstract
Both drought and freezing-thawing of stems induce a loss of hydraulic conductivity (percentage loss of conductivity [PLC]) in woody plants. Drought-induced PLC is often accompanied by physical damage to pit membranes, causing a shift in vulnerability curves (cavitation fatigue). Hence, if cavitated stems are flushed to remove embolisms, the next vulnerability curve is different (shifted to lower tensions). The 84K poplar (Populus alba × Populus glandulosa) clone has small vessels that should be immune from frost-induced PLC, but results demonstrated that freezing-thawing in combination with tension synergistically increased PLC. Frost fatigue has already been defined, which is similar to cavitation fatigue but induced by freezing. Frost fatigue caused a transition from a single to a dual Weibull curve, but drought-fatigued stems had single Weibull curves shifted to lower tensions. Studying the combined impact of tension plus freezing on fatigue provided evidence that the mechanism of frost fatigue may be the extra water tension induced by freezing or thawing while spinning stems in a centrifuge rather than direct ice damage. A hypothesis is advanced that tension is enhanced as ice crystals grow or melt during the freeze or thaw event, respectively, causing a nearly identical fatigue event to that induced by drought.
Collapse
Affiliation(s)
- Feng Feng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Ding
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Melvin T Tyree
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
Wang R, Zhang L, Zhang S, Cai J, Tyree MT. Water relations of Robinia pseudoacacia L.: do vessels cavitate and refill diurnally or are R-shaped curves invalid in Robinia? PLANT, CELL & ENVIRONMENT 2014; 37:2667-2678. [PMID: 24588635 DOI: 10.1111/pce.12315] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
Since 2005, an unresolved debate has questioned whether R-shaped vulnerability curves (VCs) might be an artefact of the centrifuge method of measuring VCs. VCs with R-shape show loss of stem conductivity from approximately zero tension, and if true, this suggests that some plants either refill embolized vessels every night or function well with a high percentage of vessels permanently embolized. The R-shaped curves occur more in species with vessels greater than half the length of the segments spun in a centrifuge. Many have hypothesized that the embolism is seeded by agents (bubbles or particles) entering the stem end and travelling towards the axis of rotation in long vessels, causing premature cavitation. VCs were measured on Robinia pseudoacacia L. by three different techniques to yield three different VCs; R-shaped: Cavitron P50 = 0.30 MPa and S-shaped: air injection P50 = 1.48 MPa and bench top dehydration P50 = 3.57 MPa. Stem conductivity measured in the Cavitron was unstable and is a function of vessel length when measured repeatedly with constant tension, and this observation is discussed in terms of stability of air bubbles drawn into cut-open vessels during repeated Cavitron measurement of conductivity; hence, R-shaped curves measured in a Cavitron are probably invalid.
Collapse
Affiliation(s)
- Ruiqing Wang
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | | | | | | | | |
Collapse
|
31
|
Martin-StPaul NK, Longepierre D, Huc R, Delzon S, Burlett R, Joffre R, Rambal S, Cochard H. How reliable are methods to assess xylem vulnerability to cavitation? The issue of 'open vessel' artifact in oaks. TREE PHYSIOLOGY 2014; 34:894-905. [PMID: 25074860 DOI: 10.1093/treephys/tpu059] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Three methods are in widespread use to build vulnerability curves (VCs) to cavitation. The bench drying (BD) method is considered as a reference because embolism and xylem pressure are measured on large branches dehydrating in the air, in conditions similar to what happens in nature. Two other methods of embolism induction have been increasingly used. While the Cavitron (CA) uses centrifugal force to induce embolism, in the air injection (AI) method embolism is induced by forcing pressurized air to enter a stem segment. Recent studies have suggested that the AI and CA methods are inappropriate in long-vesselled species because they produce a very high-threshold xylem pressure for embolism (e.g., P50) compared with what is expected from (i) their ecophysiology in the field (native embolism, water potential and stomatal response to xylem pressure) and (ii) the P50 obtained with the BD method. However, other authors have argued that the CA and AI methods may be valid because they produce VCs similar to the BD method. In order to clarify this issue, we assessed VCs with the three above-mentioned methods on the long-vesselled Quercus ilex L. We showed that the BD VC yielded threshold xylem pressure for embolism consistent with in situ measurements of native embolism, minimal water potential and stomatal conductance. We therefore concluded that the BD method provides a reliable estimate of the VC for this species. The CA method produced a very high P50 (i.e., less negative) compared with the BD method, which is consistent with an artifact related to the vessel length. The VCs obtained with the AI method were highly variable, producing P50 ranging from -2 to -8.2 MPa. This wide variability was more related to differences in base diameter among samples than to differences in the length of samples. We concluded that this method is probably subject to an artifact linked to the distribution of vessel lengths within the sample. Overall, our results indicate that the CA and the AI should be used with extreme caution on long-vesselled species. Our results also highlight that several criteria may be helpful to assess the validity of a VC.
Collapse
Affiliation(s)
- N K Martin-StPaul
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE-IRD, 1919 route de Mende 34293 Montpellier Cedex 5, France Laboratoire Ecologie Systématique et Evolution CNRS, Orsay F-91405, France
| | - D Longepierre
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE-IRD, 1919 route de Mende 34293 Montpellier Cedex 5, France
| | - R Huc
- INRA UR629, Ecologie des Forêts Méditerranéennes (URFM), Domaine Saint Paul Site Agroparc, 84194 Avignon Cedex 9, France
| | - S Delzon
- INRA, UMR 1202 BIOGECO, F-33610 Cestas, France Université de Bordeaux, UMR 1202 BIOGECO, F-33610 Cestas, France
| | - R Burlett
- INRA, UMR 1202 BIOGECO, F-33610 Cestas, France Université de Bordeaux, UMR 1202 BIOGECO, F-33610 Cestas, France
| | - R Joffre
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE-IRD, 1919 route de Mende 34293 Montpellier Cedex 5, France
| | - S Rambal
- CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE-IRD, 1919 route de Mende 34293 Montpellier Cedex 5, France Universidade Federal de Lavras, Departamento de Biologia, CP 3037, CEP 37200-000, Lavras, MG, Brazil
| | - H Cochard
- INRA, UMR 547 PIAF, F-63100 Clermont-Ferrand, France Université Blaise Pascal, UMR 547 PIAF, F-63177 Aubière, France
| |
Collapse
|
32
|
Rockwell FE, Wheeler JK, Holbrook NM. Cavitation and its discontents: opportunities for resolving current controversies. PLANT PHYSIOLOGY 2014; 164:1649-60. [PMID: 24501002 PMCID: PMC3982731 DOI: 10.1104/pp.113.233817] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/02/2014] [Indexed: 05/18/2023]
Abstract
Cavitation has long been recognized as a key constraint on the structure and functional integrity of the xylem. Yet, recent results call into question how well we understand cavitation in plants. Here, we consider embolism formation in angiosperms at two scales. The first focuses on how air-seeding occurs at the level of pit membranes, raising the question of whether capillary failure is an appropriate physical model. The second addresses methodological uncertainties that affect our ability to infer the formation of embolism and its reversal in plant stems. Overall, our goal is to open up fresh perspectives on the structure-function relationships of xylem.
Collapse
Affiliation(s)
- Fulton E. Rockwell
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 (F.E.R.); and
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 (J.K.W., N.M.H.)
| | - James K. Wheeler
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 (F.E.R.); and
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 (J.K.W., N.M.H.)
| | | |
Collapse
|