1
|
Munir N, Javaid A, Abideen Z, Duarte B, Jarar H, El-Keblawy A, Sheteiwy MS. The potential of zeolite nanocomposites in removing microplastics, ammonia, and trace metals from wastewater and their role in phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1695-1718. [PMID: 38051490 DOI: 10.1007/s11356-023-31185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023]
Abstract
Nanocomposites are emerging as a new generation of materials that can be used to combat water pollution. Zeolite-based nanocomposites consisting of combinations of metals, metal oxides, carbon materials, and polymers are particularly effective for separating and adsorbing multiple contaminants from water. This review presents the potential of zeolite-based nanocomposites for eliminating a range of toxic organic and inorganic substances, dyes, heavy metals, microplastics, and ammonia from water. The review emphasizes that nanocomposites offer enhanced mechanical, catalytic, adsorptive, and porosity properties necessary for sustainable water purification techniques compared to individual composite materials. The adsorption potential of several zeolite-metal/metal oxide/polymer-based composites for heavy metals, anionic/cationic dyes, microplastics, ammonia, and other organic contaminants ranges between approximately 81 and over 99%. However, zeolite substrates or zeolite-amended soil have limited benefits for hyperaccumulators, which have been utilized for phytoremediation. Further research is needed to evaluate the potential of zeolite-based composites for phytoremediation. Additionally, the development of nanocomposites with enhanced adsorption capacity would be necessary for more effective removal of pollutants.
Collapse
Affiliation(s)
- Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Ayesha Javaid
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE.
| | - Bernardo Duarte
- MARE-Marine and Environmental Sciences Centre & ARNET-Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Heba Jarar
- Renewable Energy and Energy Efficiency Research Group, Research Institute for Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, P.O. Box 2727, Sharjah, UAE
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Wang X, Gao F, Li W, Zhou Y. The complete chloroplast genome sequence of Zygophyllum brachypterum (Zygophyllaceae) reveals its distinctive characteristics and evolutionary implication. Mitochondrial DNA B Resour 2023; 8:1351-1355. [PMID: 38213390 PMCID: PMC10783824 DOI: 10.1080/23802359.2023.2288920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/24/2023] [Indexed: 01/13/2024] Open
Abstract
Zygophyllum brachypterum Karelin & Kirilov belongs to Zygophyllaceae and is mainly distributed in the desert regions of Central Asia, Mongolia, and Northwest China. The species is valuable in exploring the adaptations of Zygophyllaceae plants to salt stress in ecological environments. In this study, we report the complete chloroplast (cp) genome of Z. brachypterum. The entire cp genome was 104590 bp in length, with a large single-copy region (LSC, 79170 bp), a small single-copy region (SSC, 16778 bp), and two inverted repeats (IRa/IRb) of 4321 bp each. A total of 106 genes were detected, among which seven were located in the IRs, and 65, 30, and 4 were protein-coding, tRNA, and rRNA genes, respectively. Notably, eleven genes encoding the subunits of NAD(P)H dehydrogenase complex (NDH) were absent. Phylogenetic analysis indicated that Z. brachypterum belonged to Zygophylloideae (Zygophyllaceae). Furthermore, it was closely related to Z. fabago and Z. kansuense.
Collapse
Affiliation(s)
- Xiaoyang Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Beijing Institute of Metrology, Beijing, China
| | - Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Wei Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
3
|
Meng Y, Xiang C, Huo J, Shen S, Tang Y, Wu L. Toxicity effects of zinc supply on growth revealed by physiological and transcriptomic evidences in sweet potato (Ipomoea batatas (L.) Lam). Sci Rep 2023; 13:19203. [PMID: 37932351 PMCID: PMC10628244 DOI: 10.1038/s41598-023-46504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
Zinc toxicity affects crop productivity and threatens food security and human health worldwide. Unfortunately, the accumulation patterns of zinc and the harmful effects of excessive zinc on sweet potato have not been well explored. In the present research, two genotypes of sweet potato varieties with different accumulation patterns of zinc were selected to analyze the effects of excessive zinc on sweet potato via hydroponic and field cultivation experiments. The results indicated that the transfer coefficient was closely related to the zinc concentration in the storage roots of sweet potato. Excessive zinc inhibited the growth of sweet potato plants by causing imbalanced mineral concentrations, destroying the cellular structure and reducing photosynthesis. Furthermore, a total of 17,945 differentially expressed genes were identified in the two genotypes under zinc stress by transcriptomic analysis. Differentially expressed genes involved in the absorption and transport of zinc, defense networks and transcription factors played important roles in the response to zinc stress. In conclusion, this study provides a reference for the selection of sweet potato varieties in zinc contaminated soil and lays a foundation for investigating the tolerance of sweet potato to excessive zinc, which is meaningful for environmental safety and human health.
Collapse
Affiliation(s)
- Yusha Meng
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
- Key Laboratory of Creative Agriculture, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Chao Xiang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jinxi Huo
- Key Laboratory of Creative Agriculture, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Shengfa Shen
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yong Tang
- Key Laboratory of Creative Agriculture, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Liehong Wu
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
4
|
Sunitha kumari K, Devi SP, Ranjithkumar R, Djearamane S, Tey LH, Wong LS, Kayarohanam S, Arumugam N, Almansour AI, Perumal K. Organic Remobilization of zinc and phosphorus availability to plants by application of mineral solubilizing bacteria Pseudomonas aeruginosa. Heliyon 2023; 9:e22128. [PMID: 38053868 PMCID: PMC10694168 DOI: 10.1016/j.heliyon.2023.e22128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023] Open
Abstract
Incessant utilization of chemical fertilizers leads to the accumulation of minerals in the soil, rendering them unavailable to plants. Unaware of the mineral reserves present in the soil, farming communities employ chemical fertilizers once during each cultivation, a practice that causes elevated levels of insoluble minerals within the soil. The use of biofertilizers on the other hand, reduces the impact of chemical fertilizers through the action of microorganisms in the product, which dissolves minerals and makes them readily available for plant uptake, helping to create a sustainable environment for continuous agricultural production. In the current investigation, a field trial employing Arachis hypogaea L was conducted to evaluate the ability of Pseudomonas aeruginosa to enhance plant growth and development by solubilizing minerals present in the soil (such as zinc and phosphorus). A Randomized Complete Block Design (RCBD) included five different treatments as T1: Un inoculated Control; T2: Seeds treated with a liquid formulation of P. aeruginosa; T3: Seeds treated with a liquid formulation of P. aeruginosa and the soil amended with organic manure (farmyard); T4: Soil amended with organic manure (farmyard) alone; T5: Seeds treated with lignite (solid) based formulation of P. aeruginosa were used for the study. Efficacy was determined based on the plant's morphological characters and mineral contents (Zn and P) of plants and soil. Survival of P. aeruginosa in the field was validated using Antibiotic Intrinsic patterns (AIP). The results indicated that the combination treatment of P. aeruginosa liquid formulation and organic fertilizer (farmyard) (T3) produced the highest biometric parameters and mineral (Zn and P) content of the groundnut plants and the soil. This outcome is likely attributed to the mineral solubilizing capability of P. aeruginosa. Furthermore, the presence of farmyard manure increased the metabolic activity of P. aeruginosa by inducing its heterotrophic activity, leading to higher mineral content in T3 soil compared to other soil treatments. The AIP data confirmed the presence of the applied liquid inoculant by exhibiting a similar intrinsic pattern between the in vitro isolate and the isolate obtained from the fields. In summary, the Zn and P solubilization ability of P. aeruginosa facilitates the conversion of soil-unavailable mineral form into a form accessible to plants. It further proposes the utilization of the liquid formulation of P. aeruginosa as a viable solution to mitigate the challenges linked to solid-based biofertilizers and the reliance on mineral-based chemical fertilizers.
Collapse
Affiliation(s)
- K. Sunitha kumari
- Department of Botany, PSGR Krishnammal College for Women, Peelamedu, Coimbatore-641 004, Tamil Nadu, India
| | - S.N. Padma Devi
- Department of Botany, PSGR Krishnammal College for Women, Peelamedu, Coimbatore-641 004, Tamil Nadu, India
| | | | - Sinouvassane Djearamane
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, India
- Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Lai-Hock Tey
- Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800 Malaysia
| | - Saminathan Kayarohanam
- Faculty of Bioeconomics and Health Sciences, Geomatika University Malaysia, Kuala Lumpur 54200, Malaysia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Xu Q, Qiu W, Lin T, Yang Y, Jiang Y. Cadmium tolerance in Elodea canadensis Michx: Subcellular distribution and metabolomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114905. [PMID: 37060802 DOI: 10.1016/j.ecoenv.2023.114905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/23/2022] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
The aquatic plant Elodea canadensis is considered a good candidate for ecotoxicological investigations. Cadmium (Cd) is a widespread contaminant in aquatic systems. In this study, to better elucidate the underlying tolerance mechanism and molecular impact of environmentally relevant Cd concentration in aquatic plants, subcellular distribution, chemical forms, and gas chromatography-mass spectrometry-based non-targeted metabolomics profiles were comprehensively analyzed in E. canadensis subjected to 0 and 10 µM Cd treatment for 5 d. Subcellular fractionation analysis of Cd-containing leaves showed that 67% of Cd was compartmentalized in cell wall followed by the soluble fraction (24 %) and organelles (9 %). The majority of Cd (90 %) was found in the extraction using 1 M NaCl. Metabolomic analysis using unsupervised principal component analyses and a supervised partial least squares discriminant analysis revealed clear differences in metabolic profiles between the two groups, demonstrating the metabolic effects of Cd. The 155 identified compounds altered by Cd were mainly from primary metabolism, including sugars, amino acids, organic acids, and their derivatives. Secondary metabolites such as polyphenols and phenolamides were also detected. The massive up-regulation of metabolites, including trehalose, proline, sarcosine, nicotianamine, putrescine, α-ketoglutaric acid, citric acid, and phytol might represent a detoxification mechanism. These findings highlighted the mechanistic strategies that E. canadensis employs to defend against Cd toxicity.
Collapse
Affiliation(s)
- Qinsong Xu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wenjing Qiu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Tinting Lin
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yeyuping Yang
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China.
| |
Collapse
|
6
|
Chen S. Mechanism of Zn alleviates Cd toxicity in mangrove plants ( Kandelia obovata). FRONTIERS IN PLANT SCIENCE 2023; 13:1035836. [PMID: 36816484 PMCID: PMC9932546 DOI: 10.3389/fpls.2022.1035836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) pollution is very common and serious in mangrove ecosystems in China. Zinc (Zn) has been used to reduce Cd accumulation in plants, and phenolic acid metabolism plays an important role in plant response to stress. In present study, in order to clarify whether Zn alleviates Cd toxicity in mangrove plants through phenolic acid metabolism, the Cd-contaminated Kandelia obovata plants were treated with different concentrations of (0, 80,300, and 400 mg·kg-1) ZnSO4 in a set of pot experiments and the biomass, the contents of Cd, Zn, soluble sugar, chlorophyll and the activities of 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP), l-phenylalanine ammonia-lyase (PAL), shikimic acid dehydrogenase (SKDH), cinnamyl alcohol dehydrogenase (CAD) and polyphenol oxidase (PPO) in the leaves were analyzed. The results showed that Cd contents in the leaves of Kandelia obovata ranged from 0.077 to 0.197 mg·kg-1 under different treatments, and Zn contents ranged from 90.260 to 114.447 mg·kg-1. Low-dose ZnSO4 treatment (80 mg·kg-1) performed significant positive effects on the biomass, phenolic acid metabolism-related enzyme activities, antioxidant capacity, and chlorophyll and soluble sugar contents in the leaves of Cd-contaminated mangrove plants. At the meantime, the addition of low-dose ZnSO4 promoted the biosynthesis of hydroxycinnamic acid, hydroxybenzoic acid, and enhanced the plant antioxidant capacity, thus alleviated Cd toxicity in mangrove plants.
Collapse
|
7
|
Dias EBDS, Camilo YMV, Souza ERBD, Ferri PH. Essential oil variability in Eugenia dysenterica fruits. Nat Prod Res 2023; 37:119-122. [PMID: 34227418 DOI: 10.1080/14786419.2021.1947273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Essential oils (EOs) of Eugenia dysenterica fruits from seven populations were assessed using GC/MS and chemometric analysis. Variations in EOs between populations and three operational chemical units (OCUs), combined with foliar Mn2+ as an environmental variable, indicate that 86.8% of variation in oils was explained by these predictors. Variance partitioning shows that the largest pure contribution was attributed to foliar Mn2+ (13.1%), followed by OCU (11.4%). Populational origin contributed with lowest variance (6.6%).
Collapse
|
8
|
Proteomic Changes in Paspalum fasciculatum Leaves Exposed to Cd Stress. PLANTS 2022; 11:plants11192455. [PMID: 36235321 PMCID: PMC9573290 DOI: 10.3390/plants11192455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
(1) Background: Cadmium is a toxic heavy metal that is widely distributed in water, soil, and air. It is present in agrochemicals, wastewater, battery waste, and volcanic eruptions. Thus, it can be absorbed by plants and enter the trophic chain. P. fasciculatum is a plant with phytoremediation capacity that can tolerate Cd stress, but changes in its proteome related to this tolerance have not yet been identified. (2) Methods: We conducted a quantitative analysis of the proteins present in P. fasciculatum leaves cultivated under greenhouse conditions in mining soils doped with 0 mg kg−1 (control), 30 mg kg−1, or 50 mg kg−1. This was carried out using the label-free shotgun proteomics technique. In this way, we determined the changes in the proteomes of the leaves of these plants, which allowed us to propose some tolerance mechanisms involved in the response to Cd stress. (3) Results: In total, 329 variable proteins were identified between treatments, which were classified into those associated with carbohydrate and energy metabolism; photosynthesis; structure, transport, and metabolism of proteins; antioxidant stress and defense; RNA and DNA processing; and signal transduction. (4) Conclusions: Based on changes in the differences in the leaf protein profiles between treatments, we hypothesize that some proteins associated with signal transduction (Ras-related protein RABA1e), HSPs (heat shock cognate 70 kDa protein 2), growth (actin-7), and cellular development (actin-1) are part of the tolerance response to Cd stress.
Collapse
|
9
|
Sah D, Rai JPN, Ghosh A, Chakraborty M. A review on biosurfactant producing bacteria for remediation of petroleum contaminated soils. 3 Biotech 2022; 12:218. [PMID: 35965658 PMCID: PMC9365905 DOI: 10.1007/s13205-022-03277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022] Open
Abstract
The discharge of potentially toxic petroleum hydrocarbons into the environment has been a matter of concern, as these organic pollutants accumulate in many ecosystems due to their hydrophobicity and low bioavailability. Petroleum hydrocarbons are neurotoxic and carcinogenic organic pollutants, extremely harmful to human and environmental health. Traditional treatment methods for removing hydrocarbons from polluted areas, including various mechanical and chemical strategies, are ineffective and costly. However, many indigenous microorganisms in soil and water can utilise hydrocarbon compounds as sources of carbon and energy and hence, can be employed to degrade hydrocarbon contaminants. Therefore, bioremediation using bacteria that degrade petroleum hydrocarbons is commonly viewed as an environmentally acceptable and effective method. The efficacy of bioremediation can be boosted further by using potential biosurfactant-producing microorganisms, as biosurfactants reduce surface tension, promote emulsification and micelle formation, making hydrocarbons bio-available for microbial breakdown. Further, introducing nanoparticles can improve the solubility of hydrophobic hydrocarbons as well as microbial synthesis of biosurfactants, hence establishing a favourable environment for microbial breakdown of these chemicals. The review provides insights into the role of microbes in the bioremediation of soils contaminated with petroleum hydrocarbons and emphasises the significance of biosurfactants and potential biosurfactant-producing bacteria. The review partly focusses on how nanotechnology is being employed in different critical bioremediation processes.
Collapse
Affiliation(s)
- Diksha Sah
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - J. P. N. Rai
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Ankita Ghosh
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Moumita Chakraborty
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| |
Collapse
|
10
|
Substance Flow Analysis of Zinc in Two Preheater–Precalciner Cement Plants and the Associated Atmospheric Emissions. ATMOSPHERE 2022. [DOI: 10.3390/atmos13010128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atmospheric emission of heavy metals from different anthropogenic sources is a great concern to human beings due to their toxicities. In order to disclose the emission levels and the distribution patterns of zinc (Zn) in the modern cement industry with respect to its low boiling point (~900 °C) comparing to the high-temperature (1450 °C) clinker production process, solid samples representing the input and output flow of Zn during the entire production process in two preheater–precalciner cement plants (CPs) were collected and analyzed. For the first time, it was found that the behaviour of Zn inside different precalciner CPs was similar despite a huge difference in the Zn inputs to the CPs; namely, almost all the Zn input was output in clinker, which was then mixed with different additives and retarder to make cement products. The high-temperature clinkerisation process would incorporate Zn into the aluminosilicate of clinker. As a result, there was no enrichment of Zn during clinker production and the atmospheric emission factor was relatively low at 0.002%, or 1.28–9.39 mg Zn·t−1 clinker. Our result for the atmospheric Zn emissions from CPs was much lower than most previous reports, implying the CPs were not a crucial Zn emission source. However, the higher load of Zn in some raw/alternative materials—like nonferrous smelting slag with a Zn content of ~2%—could greatly increase the content of Zn in clinker and cement products. Therefore, further investigation on the environmental stability of Zn in such Zn-laden cement and concrete should be carried out.
Collapse
|
11
|
Luyckx M, Hausman JF, Sergeant K, Guerriero G, Lutts S. Molecular and Biochemical Insights Into Early Responses of Hemp to Cd and Zn Exposure and the Potential Effect of Si on Stress Response. FRONTIERS IN PLANT SCIENCE 2021; 12:711853. [PMID: 34539703 PMCID: PMC8446647 DOI: 10.3389/fpls.2021.711853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
With the intensification of human activities, plants are more frequently exposed to heavy metals (HM). Zinc (Zn) and cadmium (Cd) are frequently and simultaneously found in contaminated soils, including agronomic soils contaminated by the atmospheric fallout near smelters. The fiber crop Cannabis sativa L. is a suitable alternative to food crops for crop cultivation on these soils. In this study, Cd (20 μM) and Zn (100 μM) were shown to induce comparable growth inhibition in C. sativa. To devise agricultural strategies aimed at improving crop yield, the effect of silicon (Si; 2 mM) on the stress tolerance of plants was considered. Targeted gene expression and proteomic analysis were performed on leaves and roots after 1 week of treatment. Both Cd- and Zn-stimulated genes involved in proline biosynthesis [pyrroline-5-carboxylate reductase (P5CR)] and phenylpropanoid pathway [phenylalanine ammonia-lyase (PAL)] but Cd also specifically increased the expression of PCS1-1 involved in phytochelatin (PC) synthesis. Si exposure influences the expression of numerous genes in a contrasting way in Cd- and Zn-exposed plants. At the leaf level, the accumulation of 122 proteins was affected by Cd, whereas 47 proteins were affected by Zn: only 16 proteins were affected by both Cd and Zn. The number of proteins affected due to Si exposure (27) alone was by far lower, and 12 were not modified by heavy metal treatment while no common protein seemed to be modified by both CdSi and ZnSi treatment. It is concluded that Cd and Zn had a clear different impact on plant metabolism and that Si confers a specific physiological status to stressed plants, with quite distinct impacts on hemp proteome depending on the considered heavy metal.
Collapse
Affiliation(s)
- Marie Luyckx
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute – Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-François Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute – Agronomy (ELI-A), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Yasmin R, Hussain S, Rasool MH, Siddique MH, Muzammil S. Isolation, Characterization of Zn Solubilizing Bacterium ( Pseudomonas protegens RY2) and its Contribution in Growth of Chickpea ( Cicer arietinum L) as Deciphered by Improved Growth Parameters and Zn Content. Dose Response 2021; 19:15593258211036791. [PMID: 34421440 PMCID: PMC8375356 DOI: 10.1177/15593258211036791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Zinc is an essential micronutrient required for optimum plant growth. Zinc-solubilizing bacteria convert applied inorganic zinc to available forms that could be used by plants. Research design: In present study, experiments were conducted to isolate, characterize, and evaluate Zn solubilization potential of different bacteria. Results: Among 10 isolated strains, Pseudomonas protegens (RY2, MF351762) was found to be the most promising strain having zinc-solubilizing potential on 4 different insoluble zinc sources. In quantitative assay, Zn solubilization by RY2 was significantly higher than other strains at different incubation time. P. protegens RY2 was selected (based on zinc solubilizing and plant growth promoting activities like P solubilization and ACC deaminase) for plant experiments. Meanwhile, available Zn release rate in soil was determined at day 10 of incubation. Chickpea seeds were inoculated with RY2 strain and ZnO is used as zinc source. Growth parameters and quantifying zinc content of shoot and root using atomic absorption spectrophotometer were determined. Enhanced shoot and root dry weights and lengths were observed in chickpea plants compared to control. Maximum increase of 44%, 67%, and 75% in T2 (Soil + RY2), T5 (Soil + ZnO + RY2), and T7 (Soil + manure + ZnO + RY2), respectively, was found in shoot length compared to control (T1). Conclusion: The study indicated that zinc-solubilizing RY2 strain possesses potential for enhanced Zn in soil so it would allow reduced inorganic Zn application.
Collapse
Affiliation(s)
- Riffat Yasmin
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Hussnain Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
13
|
Luyckx M, Hausman JF, Blanquet M, Guerriero G, Lutts S. Silicon reduces cadmium absorption and increases root-to-shoot translocation without impacting growth in young plants of hemp (Cannabis sativa L.) on a short-term basis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37963-37977. [PMID: 33728605 DOI: 10.1007/s11356-021-12912-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Textile hemp (Cannabis sativa L.) is a non-edible multipurpose crop suitable for fiber production and/or phytoremediation on moderately heavy metal-contaminated soils. Experiments were conducted in nutrient solution to assess the short-term impact of silicon (Si), a well-known beneficial element, on plants exposed to 20 μM cadmium (Cd) in nutrient solution. Cd decreased plant growth and affected photosynthesis through non-stomatal effects. Cd translocation factor was higher than 1, confirming the interest of hemp for phytoextraction purposes. Additional Si did not improve plant growth after 1 week of treatment but decreased Cd accumulation in all organs and improved water use efficiency through a decrease in transpiration rate. Si had only marginal impact on Cd distribution among organs. It increased glutathione and phytochelatin synthesis allowing the plants to efficiently cope with oxidative stress through the improvement of Cd sequestration on thiol groups in the roots. Si may thus have a fast impact on the plant behavior before the occurrence of plant growth stimulation.
Collapse
Affiliation(s)
- Marie Luyckx
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute (Agronomy), Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Jean-François Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Hautcharage, Luxembourg
| | - Mathilde Blanquet
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute (Agronomy), Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Hautcharage, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute (Agronomy), Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
14
|
Abstract
This review highlights the most recent updated information available about Zn phytotoxicity at physiological, biochemical and molecular levels, uptake mechanisms as well as excess Zn homeostasis in plants. Zinc (Zn) is a natural component of soil in terrestrial environments and is a vital element for plant growth, as it performs imperative functions in numerous metabolic pathways. However, potentially noxious levels of Zn in soils can result in various alterations in plants like reduced growth, photosynthetic and respiratory rate, imbalanced mineral nutrition and enhanced generation of reactive oxygen species. Zn enters into soils through various sources, such as weathering of rocks, forest fires, volcanoes, mining and smelting activities, manure, sewage sludge and phosphatic fertilizers. The rising alarm in environmental facet, as well as, the narrow gap between Zn essentiality and toxicity in plants has drawn the attention of the scientific community to its effects on plants and crucial role in agricultural sustainability. Hence, this review focuses on the most recent updates about various physiological and biochemical functions perturbed by high levels of Zn, its mechanisms of uptake and transport as well as molecular aspects of surplus Zn homeostasis in plants. Moreover, this review attempts to understand the mechanisms of Zn toxicity in plants and to present novel perspectives intended to drive future investigations on the topic. The findings will further throw light on various mechanisms adopted by plants to cope with Zn stress which will be of great significance to breeders for enhancing tolerance to Zn contamination.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Botany, Akal University, Bathinda, 151302, Punjab, India
| | - Neera Garg
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
15
|
Doble PA, de Vega RG, Bishop DP, Hare DJ, Clases D. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging in Biology. Chem Rev 2021; 121:11769-11822. [PMID: 34019411 DOI: 10.1021/acs.chemrev.0c01219] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elemental imaging gives insight into the fundamental chemical makeup of living organisms. Every cell on Earth is comprised of a complex and dynamic mixture of the chemical elements that define structure and function. Many disease states feature a disturbance in elemental homeostasis, and understanding how, and most importantly where, has driven the development of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) as the principal elemental imaging technique for biologists. This review provides an outline of ICP-MS technology, laser ablation cell designs, imaging workflows, and methods of quantification. Detailed examples of imaging applications including analyses of cancers, elemental uptake and accumulation, plant bioimaging, nanomaterials in the environment, and exposure science and neuroscience are presented and discussed. Recent incorporation of immunohistochemical workflows for imaging biomolecules, complementary and multimodal imaging techniques, and image processing methods is also reviewed.
Collapse
Affiliation(s)
- Philip A Doble
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Raquel Gonzalez de Vega
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - David P Bishop
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Dominic J Hare
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia.,School of BioSciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David Clases
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| |
Collapse
|
16
|
Zhou X, Feng X, Bi X, Li X, Wang Q, Li S, He T, Li Z. Partitioning behaviors of zinc in eight coal-fired power plants with different fueled coals and air pollution control devices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21599-21609. [PMID: 33411308 DOI: 10.1007/s11356-020-11524-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Emissions from coal-fired power plants (CFPPs) have a negative impact on the environment and metals are one of the categories of substances that have received considerable attention. In the present study, atmospheric zinc (Zn) emissions from eight CFPPs with different kinds of boilers and air pollution control devices (APCDs) in Guizhou Province, Southwest China, were investigated as well as the partitioning of this metal among boilers and APCDs. During the investigation of a CFPP, samples were taken of input and output materials during the same period. Our results give a Zn content of 32-165 mg kg-1 for feed coal, 52-237 mg kg-1 for bottom ash, 108-725 mg kg-1 for fly ash, 1.2-6.0 mg kg-1 for limestone, 1.6-7.3 mg kg-1 for gypsum, and 1.39-7.06 μg Nm-3 for stack gas. Most of the zinc content in the feed coal goes with the flue gas after combustion and amounts to 94.2-96.1% and 60.5-78.1% for pulverized coal-fired boilers (PC) and circulating fluidized bed boilers (CFB), respectively. Based on input Zn, a larger share (80.8-96.4%) ends up the captured fly ash of PC boilers than the case of CFB boilers (66.1-73.6%). In turn, a minor portion is captured into the flue gas desulfurization gypsum, while we found a maximum of 0.05‰ is emitted into the atmosphere. The atmospheric emission factors (EMFs) of Zn for the eight CFPPs are 7.55-57.22 mg ton-1 coal, 4.17-22.75 μg (kWh)-1, or 0.39-2.36 g TJ-1 using different benchmarks. Overall, the calculated emission factors here are distinctively low with the upgrading of APCDs in recent years. An estimation of 1276 ± 1047 kg year-1 (range: 498-3777 kg year-1) of Zn is emitted into the atmosphere from the CFPPs of Guizhou Province in 2017 by coupling the EMFs obtained from this study and the coal consumption by this category of power plants.
Collapse
Affiliation(s)
- Xian Zhou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- School of Resources and Environment, Zunyi Normal College, Zunyi, 563006, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xiangyang Bi
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Xinyu Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingfeng Wang
- School of Resources and Environment, Zunyi Normal College, Zunyi, 563006, China
| | - Shan Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Zhonggen Li
- School of Resources and Environment, Zunyi Normal College, Zunyi, 563006, China.
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
17
|
Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111118. [PMID: 32741760 DOI: 10.1016/j.jenvman.2020.111118] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 05/06/2023]
Abstract
The concept of soil health refers to specific soil properties and the ability to support and sustain crop growth and productivity, while maintaining long-term environmental quality. The key components of healthy soil are high populations of organisms that promote plant growth, such as the plant growth promoting rhizobacteria (PGPR). PGPR plays multiple beneficial and ecological roles in the rhizosphere soil. Among the roles of PGPR in agroecosystems are the nutrient cycling and uptake, inhibition of potential phytopathogens growth, stimulation of plant innate immunity, and direct enhancement of plant growth by producing phytohormones or other metabolites. Other important roles of PGPR are their environmental cleanup capacities (soil bioremediation). In this work, we review recent literature concerning the diverse mechanisms of PGPR in maintaining healthy conditions of agricultural soils, thus reducing (or eliminating) the toxic agrochemicals dependence. In conclusion, this review provides comprehensive knowledge on the current PGPR basic mechanisms and applications as biocontrol agents, plant growth stimulators and soil rhizoremediators, with the final goal of having more agroecological practices for sustainable agriculture.
Collapse
Affiliation(s)
- Zobia Khatoon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Suiliang Huang
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Mazhar Rafique
- Department of Soil Science, The University of Haripur, 22630, KPK, Pakistan
| | - Ali Fakhar
- Department of Soil Science, Sindh Agricultural University, Tandojam, Pakistan
| | | | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolas de Hidalgo, 58030, Morelia, Mexico.
| |
Collapse
|
18
|
Effect of Wastewater Irrigation on Photosynthesis, Growth, and Anatomical Features of Two Wheat Cultivars (Triticum aestivum L.). WATER 2020. [DOI: 10.3390/w12020607] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The wastewater from the Razi petrochemical complex contains high levels of salts and heavy metals. In the present research, the effects of different wastewater dilution levels (0, 25%, 50%, and 100%) were studied on two wheat cultivars—Chamran and Behrang. The wastewater contained high levels of NH4+, NO3-, PO43-, and SO42-, and Mg, Ca, K, Na, Cu, Zn, Fe, M, and Ni. The toxic levels of mineral elements in the wastewater resulted in a significant decline in the K, P, Si, and Zn content of leaves. Irrigation with the wastewater resulted in a significant reduction in photosynthetic characteristics including chlorophyll fluorescence (Fv/Fm and PIABS), intercellular CO2, net photosynthesis, water use efficiency, and photosynthetic pigments. The reduction in photosynthesis was followed by a significant decrease in the carbohydrate content and, subsequently, plant height, leaf area, and grain yield. Increasing the wastewater concentration reduced leaf thickness and root diameter, accounting for the decrease in xylem and phloem vessels, the root cortical parenchyma, and mesophyll thickness. The bulliform cell size increased under wastewater treatment, which may suggest induction of a defense system against water loss through leaf rolling. Based on the observed negative effect of wastewater on physiology, morphology, anatomy, and yield of two wheat cultivars, reusing wastewater with high levels of total suspended solids and salts for irrigation cannot be approved for wheat crops.
Collapse
|
19
|
Wang J, Jiang X, Zhao C, Fang Z, Jiao P. Transcriptomic and metabolomic analysis reveals the role of CoA in the salt tolerance of Zygophyllum spp. BMC PLANT BIOLOGY 2020; 20:9. [PMID: 31906853 PMCID: PMC6945424 DOI: 10.1186/s12870-019-2226-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Zygophyllum is an important medicinal plant, with notable properties such as resistance to salt, alkali, and drought, as well as tolerance of poor soils and shifting sand. However, the response mechanism of Zygophyllum spp. to abiotic stess were rarely studied. RESULTS Here, we aimed to explore the salt-tolerance genes of Zygophyllum plants by transcriptomic and metabolic approaches. We chose Z. brachypterum, Z. obliquum and Z. fabago to screen for salt tolerant and sensitive species. Cytological observation showed that both the stem and leaf of Z. brachypterum were significantly thicker than those of Z. fabago. Then, we treated these three species with different concentrations of NaCl, and found that Z. brachypterum exhibited the highest salt tolerance (ST), while Z. fabago was the most sensitive to salt (SS). With the increase of salt concentration, the CAT, SOD and POD activity, as well as proline and chlorophyll content in SS decreased significantly more than in ST. After salt treatment, the proportion of open stomata in ST decreased significantly more than in SS, although there was no significant difference in stomatal number between the two species. Transcriptomic analysis identified a total of 11 overlapping differentially expressed genes (DEGs) in the leaves and roots of the ST and SS species after salt stress. Two branched-chain-amino-acid aminotransferase (BCAT) genes among the 11 DEGs, which were significantly enriched in pantothenate and CoA biosynthesis, as well as the valine, leucine and isoleucine biosynthesis pathways, were confirmed to be significantly induced by salt stress through qRT-PCR. Furthermore, overlapping differentially abundant metabolites showed that the pantothenate and CoA biosynthesis pathways were significantly enriched after salt stress, which was consistent with the KEGG pathways enriched according to transcriptomics. CONCLUSIONS In our study, transcriptomic and metabolomic analysis revealed that BCAT genes may affect the pantothenate and CoA biosynthesis pathway to regulate the salt tolerance of Zygophyllum species, which may constitute a newly identified signaling pathway through which plants respond to salt stress.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, 843300, China
- College of Life Sciences, Tarim University, Alar, 843300, China
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, China
| | - Xi Jiang
- College of Plant Sciences, Tarim University, Alar, 843300, China
| | - Chufeng Zhao
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhongming Fang
- College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Peipei Jiao
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, 843300, China.
- College of Life Sciences, Tarim University, Alar, 843300, China.
| |
Collapse
|
20
|
Li J, Zhao Q, Xue B, Wu H, Song G, Zhang X. Arsenic and nutrient absorption characteristics and antioxidant response in different leaves of two ryegrass (Lolium perenne) species under arsenic stress. PLoS One 2019; 14:e0225373. [PMID: 31774844 PMCID: PMC6881006 DOI: 10.1371/journal.pone.0225373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/03/2019] [Indexed: 11/18/2022] Open
Abstract
Arsenic (As), a heavy metal element, causes soil environmental concerns in many parts of the world, and ryegrass has been considered as an effective plant species for bioremediation of heavy metal pollution including As. This study was designed to investigate As content, nutrient absorption and antioxidant enzyme activity associated with As tolerance in the mature leaves, expanded leaves and emerging leaves of perennial ryegrass (Lolium perenne) and annual ryegrass (Lolium multiflorum) under 100 mg·kg-1 As treatment. The contents of As, calcium (Ca), magnesium (Mg), manganese (Mn) in the leaves of both ryegrass species were greatest in the mature leaves and least in the emerging leaves. The nitrogen (N), phosphorus (P), potassium (K) contents of both ryegrass species were greatest in the emerging leaves and least in the mature leaves. The As treatment reduced biomass more in the mature leaves and expanded leaves relative to the emerging leaves for annual ryegrass and reduced more in emerging leaves relative to the mature and expanded leaves for perennial ryegrass. Perennial ryegrass had higher As content than annual ryegrass in all three kinds of leaves. The As treatment increased hydrogen peroxide (H2O2) in expanded leaves of two ryegrass species, relative to the control. The As treatment increased the ascorbate peroxidase (APX) activity in the expanded leaves of perennial ryegrass and the mature leaves of annual ryegrass, the catalase (CAT) activity in the mature and expanded leaves of perennial ryegrass and the emerging leaves of annual ryegrass, relative to the control. The As treatment reduced peroxidase (POD) activity in all three kinds of leaves of annual ryegrass and superoxide dismutase (SOD) activity in expanded leaves of perennial ryegrass, relative to the control. The results of this study suggest that As tolerance may vary among different ages of leaf and reactive oxygen species (ROS) and antioxidant enzyme activity may be associated with As tolerance in the ryegrass.
Collapse
Affiliation(s)
- Jinbo Li
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Qian Zhao
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Bohan Xue
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Hongyan Wu
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Guilong Song
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| | - Xunzhong Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
21
|
Hajihashemi S, Noedoost F, Hedayatzadeh F. Characterization of Brassica napus responses to diluted and undiluted industrial wastewater. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1469-1482. [PMID: 31736549 PMCID: PMC6825095 DOI: 10.1007/s12298-019-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Rising water scarcity, together with increased industrial wastewater production, suggests reusing of wastewater for plant irrigation. The wastewater from Razi petrochemical complex contained different salts and heavy metals. Variation in Brassica napus responses to wastewater irrigation has recommended appropriate levels of mineral nutrients in diluted wastewater that stimulated plant growth, and toxic levels of salts in undiluted wastewater that restricted plant growth. The undiluted wastewater irrigation significantly decreased chlorophyll fluorescence, along with photosynthetic capacity, while wastewater dilution mitigated its adverse effect. High levels of salts in undiluted wastewater induced an imbalance in plant mineral nutrients, which was evidenced with increased lipid peroxidation and reduced plant growth. On the contrary to adverse effects of undiluted wastewater on plant performance, the diluted wastewater, especially at 50% level, behaved as a fertilizer which increased leaf mineral nutrients, photosynthetic capacity, morphological and anatomical features of plant, but decreased lipid peroxidation. In relation to improvement in photosynthetic capacity, a significant increase was achieved in stomatal traits in plants irrigated with half-strength wastewater. In conclusion, due to the nutrition values of wastewater, it can be suggested to irrigate plants with diluted wastewater with the aim of improving crop productivity and saving freshwater sources.
Collapse
Affiliation(s)
- Shokoofeh Hajihashemi
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-63616 Iran
| | - Fariba Noedoost
- Plant Biology Department, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Khuzestan, 47189-63616 Iran
| | - Fariba Hedayatzadeh
- Environmental Science Department, Faculty of Natural Resources and Environment, Malayer, Iran
| |
Collapse
|
22
|
Halophyte Common Ice Plants: A Future Solution to Arable Land Salinization. SUSTAINABILITY 2019. [DOI: 10.3390/su11216076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The problems associated with the salinization of soils and water bodies and the increasing competition for scarce freshwater resources are increasing. Current attempts to adapt to these conditions through sustainable agriculture involves searching for new highly salt-tolerant crops, and wild species that have potential as saline crops are particularly suitable. The common ice plant (Mesembryanthemum crystallinum L.) is an edible halophyte member of the Aizoaceae family, which switches from C3 photosynthesis to crassulacean acid metabolism (CAM) when exposed to salinity or water stress. The aim of this review was to examine the potential of using the ice plant in both the wild and as a crop, and to describe its ecology and morphology, environmental and agronomic requirements, and physiology. The antioxidant properties and mineral composition of the ice plant are also beneficial to human health and have been extensively examined.
Collapse
|
23
|
Zhou M, Engelmann T, Lutts S. Salinity modifies heavy metals and arsenic absorption by the halophyte plant species Kosteletzkya pentacarpos and pollutant leaching from a polycontaminated substrate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109460. [PMID: 31349103 DOI: 10.1016/j.ecoenv.2019.109460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Phytomanagement of polycontaminated soils is challenging, especially in areas simultaneously affected by salinity. The wetland halophyte plant species Kosteletzkya pentacarpos was cultivated in a column device allowing leachate harvest, on a polycontaminated spiked soil containing Cd (6.5 mg kg-1 DW), As (75 mg kg-1 DW), Zn (200 mg kg-1 DW) and Pb (300 mg kg-1 DW) and irrigated with salt water (final soil electrical conductivity 5.0 ms cm-1). Salinity increased Cd bioavailability in the soil and Cd accumulation in the shoots while it had an opposite effect on As. Salinity did not modify Pb and Zn bioavailability and accumulation. Cultivating plants on the polluted soil drastically reduced the volume of leachate. In all cases, salinity reduced the total amounts of heavy metals removed by the leachate and significantly increased the proportion of Cd and Zn removed by the plants. Heavy metal contamination induced a decrease in shoot dry weight and an increase in malondialdehyde (an indicator of oxidative stress); both symptoms were alleviated by the additional presence of NaCl but this positive impact was not related to increase in protecting phytochelatins synthesis. It is concluded i) that bioavailability estimated by the 0.01M CaCl2 extraction procedure is not fully relevant from the heavy metal mobility, ii) that salinity decreased heavy metal percolation, especially in soils cultivated with K. pentacarpos and iii) that salinity improves plant tolerance to heavy metals in K. pentacarpos and that this species is a promising plant material for phytoremediation of polycontaminated soils.
Collapse
Affiliation(s)
- Mingxi Zhou
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Thibaut Engelmann
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
24
|
Tananonchai A, Sampanpanish P, Chanpiwat P, Tancharakorn S, Sukkha U. Effect of EDTA and NTA on cadmium distribution and translocation in Pennisetum purpureum Schum cv. Mott. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9851-9860. [PMID: 30737718 DOI: 10.1007/s11356-018-04103-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
The primary objective of this research was to investigate the cadmium (Cd) distribution in Pennisetum purpurem (Napier grass) in the presence of 30 mg/L of Cd and different types and concentrations of chelating agents (ethylenediaminetetraacetic acid disodium dihydrate (EDTA), nitrilotriacetic acid (NTA), and EDTA-NTA mixtures). Plant samples were collected every 15 d during a 105-d experimental period. Accumulation of Cd in each part of the plant was determined using atomic absorption spectrometer (AAS), and the distribution of Cd was determined by laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) and synchrotron radiation micro X-ray fluorescence (SR-micro-XRF). The highest concentrations of Cd accumulation of 889 ± 53 mg kg-1 in the underground part (roots) and 265 ± 26 mg kg-1 in the aboveground part (stems and leaves) in the presence of 1:1 M ratio of Cd:EDTA after 30 d of exposure were observed. Plants grown in the presence of either NTA or EDTA-NTA mixtures showed significant lower Cd accumulation levels. The LA-ICP-MS analysis showed that Cd was primarily accumulated in the aboveground part (stems and leaves), especially in the xylem and intercalary meristem. In addition, translocation factor was very low. Thus, P. purpurem could be considered as a candidate plant for cadmium phytostabilization.
Collapse
Affiliation(s)
- Aekkacha Tananonchai
- Interdisciplinary Program in Environmental Science, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pantawat Sampanpanish
- Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.
- Research Program of Toxic Substance Management in the Mining Industry, Center of Excellence on Hazardous Substance Management, Bangkok, 10330, Thailand.
- Research Unit of Green Mining Management, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Penradee Chanpiwat
- Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Program of Toxic Substance Management in the Mining Industry, Center of Excellence on Hazardous Substance Management, Bangkok, 10330, Thailand
- Research Unit of Green Mining Management, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somchai Tancharakorn
- Synchrotron Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Usa Sukkha
- Synchrotron Light Research Institute, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
25
|
Fei L, Xu P, Dong Q, Mo Q, Wang Z. Young leaf protection from cadmium accumulation and regulation of nitrilotriacetic acid in tall fescue (Festuca arundinacea) and Kentucky bluegrass (Poa pratensis). CHEMOSPHERE 2018; 212:124-132. [PMID: 30144673 DOI: 10.1016/j.chemosphere.2018.08.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/26/2018] [Accepted: 08/16/2018] [Indexed: 05/09/2023]
Abstract
Phytoextraction efficiency of cadmium (Cd) contaminated soil mainly depended upon the mechanism of plants in absorption, translocation, distribution, and detoxification of Cd. A pot experiment was designed to investigate Cd distribution and accumulation among the different leaves of tall fescue (Festuca arundinacea) and Kentucky bluegrass (Poa pratensis) and its regulation by Nitrilotriacetic acid (NTA), a biodegradable chelating agent. The results showed that Cd concentrations in the senescent and dead leaves were 3.2 and 5.3 fold of that in the emerging leaves of tall fescue, and 19.3 and 25.1 fold of that in the emerging leaves of Kentucky bluegrass, respectively. The lower Cd concentrations were maintained in the emerging and mature leaves to avoid Cd toxicity. In the emerging and mature leaves, Cd was mainly accumulated in the vascular bundles and epidermis. No Cd dithizonate color was observed in the mesophyll tissues of Kentucky bluegrass and only minor Cd was observed in the mesophyll tissues of tall fescue. In the senescent leaves, Cd dithizonate complexes were located in the protoplasts and cell walls of all leaf tissues. NTA greatly promoted Cd translocation and distribution to the senescent and dead leaves of tall fescue, but no significant effect was observed in Kentucky bluegrass. Our results indicate that a young leaf protection mechanism might be involved in their Cd hypertolerance. The Cd preferential accumulation could lead a novel phytoextraction strategy by the continuously harvesting the senescent and dead leaves of tall fescue and Kentucky bluegrass.
Collapse
Affiliation(s)
- Ling Fei
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China; Zhuhai College of Jilin University, Zhuhai, Guangdong, 519041, PR China
| | - PeiXian Xu
- Shanghai Administrative & Directive Station for Afforestation, Shanghai, 200020, PR China
| | - Qin Dong
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China
| | - Qi Mo
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China
| | - ZhaoLong Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, PR China.
| |
Collapse
|
26
|
Zhou MX, Dailly H, Renard ME, Han RM, Lutts S. NaCl impact on Kosteletzkya pentacarpos seedlings simultaneously exposed to cadmium and zinc toxicities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17444-17456. [PMID: 29656355 DOI: 10.1007/s11356-018-1865-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Data regarding NaCl impact on halophyte plant species exposed to a polymetallic contamination remain scarce. Seedlings of the salt marsh species Kosteletzkya pentacarpos were simultaneously exposed to cadmium (10 μM) and zinc (100 μM) in the absence or presence of 50 mM NaCl. Heavy metal exposure reduced plant growth and increased Cd and Zn concentrations in all organs. Cd and Zn accumulation reduced net photosynthesis in relation to stomatal closure, decreased in chlorophyll concentration and alteration in chlorophyll fluorescence-related parameters. Salinity reduced Cd and Zn bioaccumulation and translocation, with a higher impact on Cd than Zn. It mitigated the deleterious impact of heavy metals on photosynthetic parameters. NaCl reduced the heavy metal-induced oxidative stress assessed by malondialdehyde, carbonyl, and H2O2 concentration. Subcellular distribution revealed that Cd mainly accumulated in the cell walls, but NaCl increased it in the cytosol fraction in the leaf and in the metal-rich granule fraction in the roots. It had no impact on Zn subcellular distribution. The additional NaCl contributed to a higher sequestration of Cd on phytochelatins and stimulated glutathione synthesis. The positive impact of NaCl on K. pentacarpos response to polymetallic pollution made this species a promising candidate for revegetation of heavy metal-contaminated salt areas.
Collapse
Affiliation(s)
- Ming-Xi Zhou
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 Bte 7.07.1 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Hélène Dailly
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 Bte 7.07.1 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Marie-Eve Renard
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 Bte 7.07.1 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Rui-Ming Han
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 Bte 7.07.1 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
27
|
López-Orenes A, Dias MC, Ferrer MÁ, Calderón A, Moutinho-Pereira J, Correia C, Santos C. Different mechanisms of the metalliferous Zygophyllum fabago shoots and roots to cope with Pb toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1319-1330. [PMID: 29086176 DOI: 10.1007/s11356-017-0505-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 10/17/2017] [Indexed: 05/25/2023]
Abstract
Lead (Pb) remains classified as a priority pollutant. Zygophyllum fabago is considered an early colonizer of heavy metal-polluted soils under semiarid conditions, but physiological mechanisms underlying this colonizing capacity remain unclear. In order to characterize Z. fabago plants' performance on Pb-contaminated soils, we evaluated how Pb influenced root and shoot growth, carbon metabolism, and oxidative status. For that, 30-day-old seedlings from one population colonizing a mine tailing ("Mercader") at Murcia (southeast Spain) were exposed to 500-μM Pb(NO3)2 for 1 week. Results showed that this high dose of Pb induced no plant mortality nor senescence, though promoting plant nanism. Besides the efficiency of roots to accumulate Pb, shoots also demonstrate a high efficiency to translocate and accumulate this metal. Pb exposure decreased Zn uptake to the aerial part and reduced net photosynthetic rate (A), RuBisCO activity, chlorophyll, and soluble sugar contents in shoots. Moreover, in shoots, Pb exposure increased the levels of O2- and decreased antioxidant capacity, culminating with a loss of cell membrane integrity (electrolyte leakage) and increased protein oxidation. Compared to controls, exposed roots had less Mn and Zn levels, and despite the rise in H2O2 levels, they were able to modulate non-protein thiols presenting a robust defense capacity. This capacity may support the roots' ability to maintain cell membrane integrity (electrolyte leakage) with regard to control. Principal component analysis (PCA) contributed to elucidate how this species adjusts physiological mechanisms to cope with Pb toxicity, showing that roots and shoots evolved different antioxidant defenses, which demonstrates the importance of organ specificity in the response of Z. fabago to heavy metals.
Collapse
Affiliation(s)
- Antonio López-Orenes
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain.
- Department of Chemistry, QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Maria Celeste Dias
- Department of Chemistry, QOPNA, University of Aveiro, 3810-193, Aveiro, Portugal
- Centre for Functional Ecology (CEF), Department of Life Science, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - María Ángeles Ferrer
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - Antonio Calderón
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203, Cartagena, Spain
| | - José Moutinho-Pereira
- Department of Biology and Environment, Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801, Vila Real, Portugal
| | - Carlos Correia
- Department of Biology and Environment, Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801, Vila Real, Portugal
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, LAQV/REQUIMTE, University of Porto, Campo Alegre, Porto, Portugal
| |
Collapse
|
28
|
Pongrac P, Serra TS, Castillo-Michel H, Vogel-Mikuš K, Arčon I, Kelemen M, Jenčič B, Kavčič A, Villafort Carvalho MT, Aarts MGM. Cadmium associates with oxalate in calcium oxalate crystals and competes with calcium for translocation to stems in the cadmium bioindicator Gomphrena claussenii. Metallomics 2018; 10:1576-1584. [DOI: 10.1039/c8mt00149a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cd binds to oxalate crystals, where it replaces Ca in the vacuoles of a bioindicator plant Gomphrena clausenii.
Collapse
Affiliation(s)
- Paula Pongrac
- Biotechnical Faculty
- University of Ljubljana
- SI-1000 Ljubljana
- Slovenia
- Jožef Stefan Institute
| | - Tânia S. Serra
- Laboratory of Genetics
- Wageningen University and Research
- 6708 PB Wageningen
- The Netherlands
| | | | - Katarina Vogel-Mikuš
- Biotechnical Faculty
- University of Ljubljana
- SI-1000 Ljubljana
- Slovenia
- Jožef Stefan Institute
| | - Iztok Arčon
- Jožef Stefan Institute
- SI-1000 Ljubljana
- Slovenia
- University of Nova Gorica
- SI-5000 Nova Gorica
| | | | | | - Anja Kavčič
- Biotechnical Faculty
- University of Ljubljana
- SI-1000 Ljubljana
- Slovenia
| | | | - Mark G. M. Aarts
- Laboratory of Genetics
- Wageningen University and Research
- 6708 PB Wageningen
- The Netherlands
| |
Collapse
|
29
|
Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S. Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat. Front Microbiol 2017; 8:2593. [PMID: 29312265 PMCID: PMC5743011 DOI: 10.3389/fmicb.2017.02593] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
Zinc is an imperative micronutrient required for optimum plant growth. Zinc solubilizing bacteria are potential alternatives for zinc supplementation and convert applied inorganic zinc to available forms. This study was conducted to screen zinc solubilizing rhizobacteria isolated from wheat and sugarcane, and to analyze their effect on wheat growth and development. Fourteen exo-polysaccharides producing bacterial isolates of wheat were identified and characterized biochemically as well as on the basis of 16S rRNA gene sequences. Along these, 10 identified sugarcane isolates were also screened for zinc solubilizing ability on five different insoluble zinc sources. Out of 24, five strains, i.e., EPS 1 (Pseudomonas fragi), EPS 6 (Pantoea dispersa), EPS 13 (Pantoea agglomerans), PBS 2 (E. cloacae) and LHRW1 (Rhizobium sp.) were selected (based on their zinc solubilizing and PGP activities) for pot scale plant experiments. ZnCO3 was used as zinc source and wheat seedlings were inoculated with these five strains, individually, to assess their effect on plant growth and development. The effect on plants was analyzed based on growth parameters and quantifying zinc content of shoot, root and grains using atomic absorption spectroscopy. Plant experiment was performed in two sets. For first set of plant experiments (harvested after 1 month), maximum shoot and root dry weights and shoot lengths were noted for the plants inoculated with Rhizobium sp. (LHRW1) while E. cloacae (PBS 2) increased both shoot and root lengths. Highest zinc content was found in shoots of E. cloacae (PBS 2) and in roots of P. agglomerans (EPS 13) followed by zinc supplemented control. For second set of plant experiment, when plants were harvested after three months, Pantoea dispersa (EPS 6), P. agglomerans (EPS 13) and E. cloacae (PBS 2) significantly increased shoot dry weights. However, significant increase in root dry weights and maximum zinc content was recorded for Pseudomonas fragi (EPS 1) inoculated plants, isolated from wheat rhizosphere. While maximum zinc content for roots was quantified in the control plants indicating the plant's inability to transport zinc to grains, supporting accelerated bioavailability of zinc to plant grains with zinc solubilizing rhizobacteria.
Collapse
Affiliation(s)
- Sana Kamran
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Izzah Shahid
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Deeba N. Baig
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, Government College Township, Lahore, Pakistan
| | - Kauser A. Malik
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Samina Mehnaz
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
30
|
Li R, Li J, Cui L, Wu Y, Fu H, Chen J, Chen M. Atmospheric emissions of Cu and Zn from coal combustion in China: Spatio-temporal distribution, human health effects, and short-term prediction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:724-734. [PMID: 28780412 DOI: 10.1016/j.envpol.2017.05.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 05/03/2023]
Abstract
China has become the largest coal consumer and important emitter of trace metals in the world. A multiple-year inventory of atmospheric copper (Cu) and zinc (Zn) emissions from coal combustion in 30 provinces of China and 4 economic sectors (power plant, industry sector, residential sector, and others) for the period of 1995-2014 has been calculated. The results indicated that the total emissions of Cu and Zn increased from 5137.70 t and 11484.16 t in 1995-7099.24 t and 14536.61 t in 2014, at an annual average growth rate of 1.90% and 1.33%, respectively. The industrial sector ranked as the leading source, followed by power plants, the residential use, and other sectors. The emissions of Cu and Zn were predominantly concentrated in the northern and eastern regions of China due to the enormous consumption of coal by the industrial and the power sectors. The emissions of Cu and Zn were closely associated with mortality and life expectancy (LE) on the basis of multiple regression analysis. Spatial econometric models suggested that Cu and Zn emissions displayed significantly positive relevance with mortality, while they exhibited negative correlation with LE. The influence of the Cu emission peaked in the north of China for both mortality and LE, while the impacts of the Zn emission on mortality and LE reached a maximum value in Xinjiang Province. The results of the grey prediction model suggested that the Cu emission would decrease to 5424.73 t, whereas the Zn emissions could reach 17402.13 t in 2020. Analysis of more specific data are imperative in order to estimate the emissions of both metals, to assess their human health effects, and then to adopt effective measures to prevent environmental pollution.
Collapse
Affiliation(s)
- Rui Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Junlin Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Lulu Cui
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Yu Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Mindong Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
31
|
Pardo T, Bernal MP, Clemente R. Phytostabilisation of severely contaminated mine tailings using halophytes and field addition of organic and inorganic amendments. CHEMOSPHERE 2017; 178:556-564. [PMID: 28351014 DOI: 10.1016/j.chemosphere.2017.03.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
Phytostabilisation strategies have proven to be an efficient remediation option for mine tailings, but the adequate plant species and amendments have to be carefully selected. A remediation experiment was carried out at the semi-field level in tailings (pH 3.2, ≈1100, 4700 and 5000 mg kg-1 of As, Pb and Zn, respectively) from the mining district of La Unión-Cartagena (SE Spain). A red mud derivative (Fe/Al oxides), its combination with compost, and hydrated lime (Ca hydroxide) were applied in field plots of 0.25 m2. After four months of field stabilisation, tailings were transferred unaltered to a plant growth facility, and Atriplex halimus and Zygophyllum fabago (halophytes) were sown. Three months later, trace element (TE) solubility, plant accumulation and chemical speciation in the tailings pore water were studied. In unamended tailings, soluble TEs concentrations were very high (e.g., 40 mg Zn l-1), the dominant species being free ions and SO42-- complexes (>70%). The addition of amendments increased tailings pH (6.7-7), reduced TEs solubility and extractability (>80-99%) and changed the dominant species of soluble Al, Cu, Pb and Zn to hydroxides and/or organo-metallic complexes, but increased slightly the extractable As and soluble Tl concentrations. Plants were able to grow only in amended tailings, and both species presented low levels of Al, As, Cd and Zn. Therefore, the use of combined red mud derivative and compost and halophytes was shown to be a good phytostabilisation strategy, although the dose applied must be carefully chosen in order to avoid possible solubilisation of As and Tl.
Collapse
Affiliation(s)
- T Pardo
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, PO Box 164, 30100, Murcia, Spain
| | - M P Bernal
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, PO Box 164, 30100, Murcia, Spain
| | - R Clemente
- Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, PO Box 164, 30100, Murcia, Spain.
| |
Collapse
|
32
|
Guo Q, Meng L, Zhang YN, Mao PC, Tian XX, Li SS, Zhang L. Antioxidative systems, metal ion homeostasis and cadmium distribution in Iris lactea exposed to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:50-55. [PMID: 28110045 DOI: 10.1016/j.ecoenv.2016.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Iris lactea is a perennial halophyte and is tolerant to Cd. However, the mechanisms underlying this Cd tolerance are still poorly understood. In this study, morphological, physiological and biochemical responses of I. lactea to a 21 d exposure to different concentrations of Cd (0-150mgL-1) were investigated. I. lactea plants showed no toxicity symptoms except for a small reduction in growth at 100 and 150mgL-1 Cd, along with the enhancement of H2O2 and MDA content in comparison to the control. The activities of SOD and POD were significantly enhanced and Ca accumulated with increasing Cd concentrations. Moreover, most Cd was retained in roots and only a small amount was transported to the shoots with increasing external Cd concentrations. Cd content had a negative correlation with content of K, Fe, Zn, and Mn and a positive correlation with Mg content in shoots and roots, which had no influence on these contents of mineral nutrients in shoots and chlorophyll levels with the increase of Cd concentrations. The Cd translocation factors were always less than 1 and bioaccumulation factors ranged from 3.43 to 15.6 across all treatments, suggesting that I. lactea might be effectively used in phytostabilization of Cd contaminated soils. Overall, the findings suggest that I. lactea could reduce photoinhibition and oxidative damage and maintain metal ion homeostasis in plant tissue by limiting translocation of Cd from roots to shoots and enhancing induction of antioxidant enzyme activities, thereby improving its Cd tolerance.
Collapse
Affiliation(s)
- Qiang Guo
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Lin Meng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China.
| | - Ya-Nan Zhang
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Pei-Chun Mao
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Xiao-Xia Tian
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Shan-Shan Li
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Lin Zhang
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| |
Collapse
|
33
|
Farzadfar S, Zarinkamar F, Hojati M. Magnesium and manganese affect photosynthesis, essential oil composition and phenolic compounds of Tanacetum parthenium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:207-217. [PMID: 28092849 DOI: 10.1016/j.plaphy.2017.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/01/2017] [Accepted: 01/01/2017] [Indexed: 05/18/2023]
Abstract
The accumulation of plant defense metabolites is closely associated with the concentration of nutrient elements, yet data related to the interactive effects of two nutrients on the deployment of phenolics and terpenoids are scare. In the present study, the interaction between magnesium (Mg) and manganese (Mn) on nutrient uptake, photosynthesis, oxidative status and the accumulation of phenolics and terpenoids in the leaves of feverfew plants grown at different concentrations of Mg and Mn was investigated. Nutrient uptake and photosynthesis were associated with the amount of applied Mg but could be modified by the concentration of Mn. Phenolic biosynthetic enzymes and individual phenolics were not only induced by Mg, but their levels were also dependent on the Mn supply. Additionally, the proportion of monoterpenes was enhanced by a deficiency of Mg rather than an excess of Mn. Deprivation of Mg also decreased the proportion of sesquiterpenes in the essential oil. Therefore, it appears that a high Mg and a low Mn supply lead to a marked shift from monoterpene to sesquiterpene production. Phenolic compounds also differentially accumulated under varying Mg and Mn concentrations. These results suggest a profound effect of the combined supply of Mg and Mn on the biosynthesis of terpenes and phenolics.
Collapse
Affiliation(s)
- Soudeh Farzadfar
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Zarinkamar
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mostafa Hojati
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
López-Orenes A, Bueso MC, Conesa HM, Calderón AA, Ferrer MA. Seasonal changes in antioxidative/oxidative profile of mining and non-mining populations of Syrian beancaper as determined by soil conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:437-447. [PMID: 27750140 DOI: 10.1016/j.scitotenv.2016.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Soil pollution by heavy metals/metalloids (HMMs) is a problem worldwide. To prevent dispersion of contaminated particles by erosion, the maintenance of a vegetative cover is needed. Successful plant establishment in multi-polluted soils can be hampered not only by HMM toxicities, but also by soil nutrient deficiencies and the co-occurrence of abiotic stresses. Some plant species are able to thrive under these multi-stress scenarios often linked to marked fluctuations in environmental factors. This study aimed to investigate the metabolic adjustments involved in Zygophyllum fabago acclimative responses to conditions prevailing in HMM-enriched mine-tailings piles, during Mediterranean spring and summer. To this end, fully expanded leaves, and rhizosphere soil, of three contrasting mining and non-mining populations of Z. fabago grown spontaneously in south-eastern Spain were sampled in two consecutive years. Approximately 50 biochemical, physiological and edaphic parameters were examined, including leaf redox components, primary and secondary metabolites, endogenous levels of salicylic acid, and physicochemical properties of soil (fertility parameters and total concentration of HMMs). Multivariate data analysis showed a clear distinction in antioxidative/oxidative profiles between and within the populations studied. Levels of chlorophylls, proteins and proline characterized control plants whereas antioxidant capacity and C- and S-based antioxidant compounds were biomarkers of mining plants. Seasonal variations were characterized by higher levels of alkaloids and PAL and soluble peroxidase activities in summer, and by soluble sugars and hydroxycinnamic acids in spring irrespective of the population considered. Although the antioxidant systems are subjected to seasonal variations, the way and the intensity with which every population changes its antioxidative/oxidative profile seem to be determined by soil conditions. In short, Z. fabago displays a high physiological plasticity that allow it to successfully shift its metabolism to withstand the multiple stresses that plants must cope with in mine tailings piles under Mediterranean climatic conditions.
Collapse
Affiliation(s)
- Antonio López-Orenes
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - María C Bueso
- Department of Applied Mathematics and Statistics, Universidad Politécnica de Cartagena, Campus Muralla del Mar, Doctor Fleming s/n, ETSII, 30202 Cartagena, Murcia, Spain
| | - Héctor M Conesa
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - Antonio A Calderón
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain
| | - María A Ferrer
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain.
| |
Collapse
|
35
|
Zidar P, Kos M, Vogel-Mikuš K, van Elteren JT, Debeljak M, Žižek S. Impact of ionophore monensin on performance and Cu uptake in earthworm Eisenia andrei exposed to copper-contaminated soil. CHEMOSPHERE 2016; 161:119-126. [PMID: 27424053 DOI: 10.1016/j.chemosphere.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/17/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Exposure of beneficial soil organisms to chemical mixtures is of great concern and can result in unexpected deleterious consequences. We investigated the effects of concurrent soil contamination with monensin, a veterinary pharmaceutical and feed additive, and copper, on earthworm copper uptake and reproductive success. The animals were exposed for 14 or 28 days to both substances and the results showed that the Cu body burden of earthworms increases in the presence of monensin. The harmful effects of Cu on earthworm cocoon production were considerably higher when monensin was also present in the soil. To localise the copper in earthworm tissues, histological staining was performed using two different dyes (rubeanic acid and 5-4-(p-dimethylaminobenzylidene)-rhodanine). Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to quantify the Cu levels in the tissues. Cu was found predominantly in the gut wall. The Cu content in the body wall was at least ten times lower compared to the gut, but was proportional to the level of soil contamination. Concurrent soil contamination with monensin and copper resulted in higher earthworm Cu levels and in decreased reproductive success of these important soil decomposers.
Collapse
Affiliation(s)
- Primož Zidar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia.
| | - Monika Kos
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia
| | - Katarina Vogel-Mikuš
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia
| | - Johannes Teun van Elteren
- Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Marta Debeljak
- Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Suzana Žižek
- Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| |
Collapse
|
36
|
Cheng M, Wang P, Kopittke PM, Wang A, Sale PWG, Tang C. Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5041-50. [PMID: 27385767 PMCID: PMC5014155 DOI: 10.1093/jxb/erw270] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nitrogen fertilization could improve the efficiency of Cd phytoextraction in contaminated soil and thus shorten the remediation time. However, limited information is available on the effect of N form on Cd phytoextraction and associated mechanisms in plants. This study examined the effect of N form on Cd accumulation, translocation, and speciation in Carpobrotus rossii and Solanum nigrum Plants were grown in nutrient solution with 5-15 μM Cd in the presence of 1000 µM NH4 (+) or NO3 (-) Plant growth and Cd uptake were measured, and Cd speciation was analyzed using synchrotron-based X-ray absorption spectroscopy. Shoot Cd accumulation was 30% greater with NH4 (+) than NO3 (-) supply. Carpobrotus rossii accumulated three times more Cd than S. nigrum. However, Cd speciation in the plants was not influenced by N form, but it did vary with species and tissues. In C. rossii, up to 91% of Cd was bound to S-containing ligands in all tissues except the xylem sap where 87-95% were Cd-OH complexes. Furthermore, the proportion of Cd-S in shoots was substantially lower in S. nigrum (44-69%) than in C. rossii (60-91%). It is concluded that the application of NH4 (+) (instead of NO3 (-)) increased shoot Cd accumulation by increasing uptake and translocation, rather than changing Cd speciation, and is potentially an effective approach for increasing Cd phytoextraction.
Collapse
Affiliation(s)
- Miaomiao Cheng
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Victoria 3086, Australia
| | - Peng Wang
- School of Agriculture and Food Sciences, The University of Queensland, Queensland 4072, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, Queensland 4072, Australia
| | - Anan Wang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Victoria 3086, Australia
| | - Peter W G Sale
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Victoria 3086, Australia
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Victoria 3086, Australia
| |
Collapse
|
37
|
Bing H, Wu Y, Zhou J, Liang J, Wang J, Yang Z. Mobility and eco-risk of trace metals in soils at the Hailuogou Glacier foreland in eastern Tibetan Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5721-5732. [PMID: 26581692 DOI: 10.1007/s11356-015-5592-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
The concentrations and fractions of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in soils collected from Hailuogou Glacier foreland in eastern Tibetan Plateau were analyzed to decipher their mobility, and their eco-risk was assessed combined with multiple environmental indices. The concentrations of Cd were more than ten times higher than its local background in the O horizon and nearly three times higher in the A horizon. The concentrations of Pb and Zn were relatively high in the O horizon, whereas that of Cu increased with soil depth. The main fractions of metals in the surface horizons were reducible and acid-soluble for Cd, oxidizable and residual for Cu, reducible and oxidizable for Pb, and reducible and residual for Zn. The metal mobility generally followed the order of Cd > Pb > Zn > Cu in the O horizon and Cd > Pb > Cu > Zn in the A horizon. Sorption and complexation by soil organic matters imparted an important effect on the mobilization and transformation of Cd, Pb, and Zn in the soils. The oxidizable Cu fraction in the soils showed significant correlation with organic matters, and soil pH mainly modulated the acid-soluble and reducible Cu fractions. The concentrations and other environmental indices including contamination factor, enrichment factor, geoaccumulation index, and risk assessment index revealed that Cd reached high contamination and very high eco-risk, Pb had medium contamination but low eco-risk, Zn showed low contamination and low eco-risk, and Cu was not contaminated in the soils. The data indicated that Cd was the priority to concern in the soils of Hailuogou Glacier catchment.
Collapse
Affiliation(s)
- Haijian Bing
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 9#, Block 4, Renminnan Road, Chengdu, 610041, China
| | - Yanhong Wu
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 9#, Block 4, Renminnan Road, Chengdu, 610041, China.
| | - Jun Zhou
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 9#, Block 4, Renminnan Road, Chengdu, 610041, China
| | - Jianhong Liang
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 9#, Block 4, Renminnan Road, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jipeng Wang
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 9#, Block 4, Renminnan Road, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zijiang Yang
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 9#, Block 4, Renminnan Road, Chengdu, 610041, China
| |
Collapse
|
38
|
Shakeel M, Rais A, Hassan MN, Hafeez FY. Root Associated Bacillus sp. Improves Growth, Yield and Zinc Translocation for Basmati Rice (Oryza sativa) Varieties. Front Microbiol 2015; 6:1286. [PMID: 26635754 PMCID: PMC4649038 DOI: 10.3389/fmicb.2015.01286] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022] Open
Abstract
Plant associated rhizobacteria prevailing in different agro-ecosystems exhibit multiple traits which could be utilized in various aspect of sustainable agriculture. Two hundred thirty four isolates were obtained from the roots of basmati-385 and basmati super rice varieties growing in clay loam and saline soil at different locations of Punjab (Pakistan). Out of 234 isolates, 27 were able to solubilize zinc (Zn) from different Zn ores like zinc phosphate [Zn3 (PO4)2], zinc carbonate (ZnCO3) and zinc oxide (ZnO). The strain SH-10 with maximum Zn solubilization zone of 24 mm on Zn3 (PO4)2ore and strain SH-17 with maximum Zn solubilization zone of 14–15 mm on ZnO and ZnCO3ores were selected for further studies. These two strains solubilized phosphorous (P) and potassium (K) in vitro with a solubilization zone of 38–46 mm and 47–55 mm respectively. The strains also suppressed economically important rice pathogens Pyricularia oryzae and Fusarium moniliforme by 22–29% and produced various biocontrol determinants in vitro. The strains enhanced Zn translocation toward grains and increased yield of basmati-385 and super basmati rice varieties by 22–49% and 18–47% respectively. The Zn solubilizing strains were identified as Bacillus sp. and Bacillus cereus by 16S rRNA gene analysis.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - Afroz Rais
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - Muhammad Nadeem Hassan
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| | - Fauzia Yusuf Hafeez
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Pakistan
| |
Collapse
|
39
|
Research progressing of present contamination of Cd in soil and restoration method. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11859-015-1116-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Bankaji I, Caçador I, Sleimi N. Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13058-69. [PMID: 25925143 DOI: 10.1007/s11356-015-4414-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/19/2015] [Indexed: 05/22/2023]
Abstract
Environmental pollution by trace metal elements (TMEs) is a serious problem worldwide, increasing in parallel with the development of human technology. The present research aimed to examine the response of halophytic species Suaeda fruticosa to oxidative stress posed by combined abiotic stresses. Plants have been grown for 1 month with an irrigation solution supplemented with 200 mM NaCl and 400 μM Cd(2+) or 400 μM Cu(2+). The level of glutathione (GSH), phytochelatins (PCs), and antioxidant enzyme activities [ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and catalase (CAT)] as well as lipid peroxidation was studied to see the stress exerted by the TME and the level of tolerance and detoxification strategy adopted by S. fruticosa. Relative growth rate (RGR) decreased under Cd(2+) stress in this species, whereas Cu(2+) did not have any impact on S. fruticosa performance. Cd(2+) or Cu(2+) enhanced malondialdehyde, suggesting reactive oxygen species-induced disruption of membrane integrity and oxidative stress in S. fruticosa. On the other hand, the activities of the antioxidant enzymes CAT, APX, and GPX diminished and mineral nutrition was disturbed by metal stress. S. fruticosa was able to synthesize PCs in response to TME toxicity. However, data indicate that GSH levels underwent a significant decrease in roots and leaves of S. fruticosa stressed by Cd(2+) or Cu(2+). The GSH depletion accompanied by the increase of phytochelatin concentration suggests the involvement of GSH in the synthesis of phytochelatins.
Collapse
Affiliation(s)
- I Bankaji
- UR: Matériaux, Nanomatériaux et Ecosystèmes, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Jarzouna, Bizerte, Tunisia,
| | | | | |
Collapse
|
41
|
Limbeck A, Galler P, Bonta M, Bauer G, Nischkauer W, Vanhaecke F. Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal Bioanal Chem 2015; 407:6593-617. [PMID: 26168964 PMCID: PMC4545187 DOI: 10.1007/s00216-015-8858-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 01/29/2023]
Abstract
Laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) is a widely accepted method for direct sampling of solid materials for trace elemental analysis. The number of reported applications is high and the application range is broad; besides geochemistry, LA-ICP-MS is mostly used in environmental chemistry and the life sciences. This review focuses on the application of LA-ICP-MS for quantification of trace elements in environmental, biological, and medical samples. The fundamental problems of LA-ICP-MS, such as sample-dependent ablation behavior and elemental fractionation, can be even more pronounced in environmental and life science applications as a result of the large variety of sample types and conditions. Besides variations in composition, the range of available sample states is highly diverse, including powders (e.g., soil samples, fly ash), hard tissues (e.g., bones, teeth), soft tissues (e.g., plants, tissue thin-cuts), or liquid samples (e.g., whole blood). Within this article, quantification approaches that have been proposed in the past are critically discussed and compared regarding the results obtained in the applications described. Although a large variety of sample types is discussed within this article, the quantification approaches used are similar for many analytical questions and have only been adapted to the specific questions. Nevertheless, none of them has proven to be a universally applicable method.
Collapse
Affiliation(s)
- Andreas Limbeck
- Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria,
| | | | | | | | | | | |
Collapse
|
42
|
Lucini L, Bernardo L. Comparison of proteome response to saline and zinc stress in lettuce. FRONTIERS IN PLANT SCIENCE 2015; 6:240. [PMID: 25932029 PMCID: PMC4399213 DOI: 10.3389/fpls.2015.00240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/25/2015] [Indexed: 05/05/2023]
Abstract
Zinc salts occurring in soils can exert an osmotic stress toward plants. However, being zinc a heavy metal, some more specific effects on plant metabolisms can be forecast. In this work, lettuce has been used as a model to investigate salt and zinc stresses at proteome level through a shotgun tandem MS proteomic approach. The effect of zinc stress in lettuce, in comparison with NaCl stress, was evaluated to dissect between osmotic/oxidative stress related effects, from those changes specifically related to zinc. The analysis of proteins exhibiting a fold change of 3 as minimum (on log 2 normalized abundances), revealed the involvement of photosynthesis (via stimulation of chlorophyll synthesis and enhanced role of photosystem I) as well as stimulation of photophosphorylation. Increased glycolytic supply of energy substrates and ammonium assimilation [through formation of glutamine synthetase (GS)] were also induced by zinc in soil. Similarly, protein metabolism (at both transcriptional and ribosomal level), heat shock proteins, and proteolysis were affected. According to their biosynthetic enzymes, hormones appear to be altered by both the treatment and the time point considered: ethylene biosynthesis was enhanced, while production of abscisic acid was up-regulated at the earlier time point to decrease markedly and gibberellins were decreased at the later one. Besides aquaporin PIP2 synthesis, other osmotic/oxidative stress related compounds were enhanced under zinc stress, i.e., proline, hydroxycinnamic acids, ascorbate, sesquiterpene lactones, and terpenoids biosynthesis. Although the proteins involved in the response to zinc stress and to salinity were substantially the same, their abundance changed between the two treatments. Lettuce response to zinc was more prominent at the first sampling point, yet showing a faster adaptation than under NaCl stress. Indeed, lettuce plants showed an adaptation after 30 days of stress, in a more pronounced way in the case of zinc.
Collapse
Affiliation(s)
- Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro CuorePiacenza, Italy
| | | |
Collapse
|
43
|
Shimotohno A, Sotta N, Sato T, De Ruvo M, Marée AFM, Grieneisen VA, Fujiwara T. Mathematical modeling and experimental validation of the spatial distribution of boron in the root of Arabidopsis thaliana identify high boron accumulation in the tip and predict a distinct root tip uptake function. PLANT & CELL PHYSIOLOGY 2015; 56:620-30. [PMID: 25670713 PMCID: PMC4387314 DOI: 10.1093/pcp/pcv016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 01/26/2015] [Indexed: 05/02/2023]
Abstract
Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots.
Collapse
Affiliation(s)
- Akie Shimotohno
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan These authors contributed equally to this work
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan These authors contributed equally to this work
| | - Takafumi Sato
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Micol De Ruvo
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Genetica e Biologia Molecolare, Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Athanasius F M Marée
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Verônica A Grieneisen
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK These authors contributed equally to this work.
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan These authors contributed equally to this work.
| |
Collapse
|
44
|
Hann S, Dernovics M, Koellensperger G. Elemental analysis in biotechnology. Curr Opin Biotechnol 2015; 31:93-100. [DOI: 10.1016/j.copbio.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/23/2014] [Indexed: 01/25/2023]
|
45
|
Lutts S, Lefèvre I. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? ANNALS OF BOTANY 2015; 115:509-28. [PMID: 25672360 PMCID: PMC4332614 DOI: 10.1093/aob/mcu264] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/01/2014] [Accepted: 12/10/2014] [Indexed: 05/15/2023]
Abstract
BACKGROUND Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity. SCOPE Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas. CONCLUSIONS Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments.
Collapse
Affiliation(s)
- Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV) - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 4-5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, France and Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Isabelle Lefèvre
- Groupe de Recherche en Physiologie végétale (GRPV) - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 4-5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, France and Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 37005 České Budějovice, Czech Republic Groupe de Recherche en Physiologie végétale (GRPV) - Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain, 4-5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, France and Institute of Plant Molecular Biology, Biology Centre CAS, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
46
|
López-Orenes A, Martínez-Pérez A, Calderón AA, Ferrer MA. Pb-induced responses in Zygophyllum fabago plants are organ-dependent and modulated by salicylic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:57-66. [PMID: 25240264 DOI: 10.1016/j.plaphy.2014.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
Zygophyllum fabago is a promising species for restoring heavy metal (HM) polluted soils, although the mechanisms involved in HM tolerance in this non-model plant remain largely unknown. This paper analyses the extent to which redox-active compounds and enzymatic antioxidants in roots, stems and leaves are responsible for Pb tolerance in a metallicolous ecotype of Z. fabago and the possible influence of salicylic acid (SA) pretreatment (24 h, 0.5 mM SA) in the response to Pb stress. SA pretreatment reduced both the accumulation of Pb in roots and even more so the concentration of Pb in aerial parts of the plants, although a similar drop in the content of chlorophylls and in the maximum quantum yield of photosystem II was observed in both Pb- and SA-Pb-treated plants. Pb increased the endogenous free SA levels in all organs and this response was enhanced in root tissues upon SA pretreatment. Generally, Pb induced a reduction in catalase, ascorbate peroxidase and glutathione reductase specific activities, whereas dehydroascorbate reductase was increased in all organs of control plants. SA pretreatment enhanced the Pb-induced H2O2 accumulation in roots by up-regulating Fe-superoxide dismutase isoenzymes. Under Pb stress, the GSH redox ratio remained highly reduced in all organs while the ascorbic acid redox ratio dropped in leaf tissues where a rise in lipid peroxidation products and electrolyte leakage was observed. Finally, an organ-dependent accumulation of proline and β-carboline alkaloids was found, suggesting these nitrogen-redox-active compounds could play a role in the adaptation strategies of this species to Pb stress.
Collapse
Affiliation(s)
- Antonio López-Orenes
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - Ascensión Martínez-Pérez
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - Antonio A Calderón
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - María A Ferrer
- Department of Agricultural Science and Technology, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain.
| |
Collapse
|
47
|
Amari T, Ghnaya T, Debez A, Taamali M, Ben Youssef N, Lucchini G, Sacchi GA, Abdelly C. Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: Metal accumulation, nutrient status and photosynthetic activity. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1634-44. [PMID: 25171515 DOI: 10.1016/j.jplph.2014.06.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 05/23/2023]
Abstract
Saline soils often constitute sites of accumulation of industrial and urban wastes contaminated by heavy metals. Halophytes, i.e. native salt-tolerant species, could be more suitable for heavy metal phytoextraction from saline areas than glycophytes, most frequently used so far. In the framework of this approach, we assess here the Ni phytoextraction potential in the halophyte Mesembryanthemum crystallinum compared with the model species Brassica juncea. Plants were hydroponically maintained for 21 days at 0, 25, 50, and 100μM NiCl2. Nickel addition significantly restricted the growth activity of both species, and to a higher extent in M. crystallinum, which did not, however, show Ni-related toxicity symptoms on leaves. Interestingly, photosynthesis activity, chlorophyll content and photosystem II integrity assessed by chlorophyll fluorescence were less impacted in Ni-treated M. crystallinum as compared to B. juncea. The plant mineral nutrition was differently affected by NiCl2 exposure depending on the element, the species investigated and even the organ. In both species, roots were the preferential sites of Ni(2+) accumulation, but the fraction translocated to shoots was higher in B. juncea than in M. crystallinum. The relatively good tolerance of M. crystallinum to Ni suggests that this halophyte species could be used in the phytoextraction of moderately polluted saline soils.
Collapse
Affiliation(s)
- Taoufik Amari
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050 Hammam-lif, Tunisia
| | - Tahar Ghnaya
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050 Hammam-lif, Tunisia.
| | - Ahmed Debez
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050 Hammam-lif, Tunisia
| | - Manel Taamali
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050 Hammam-lif, Tunisia
| | - Nabil Ben Youssef
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050 Hammam-lif, Tunisia
| | - Giorgio Lucchini
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050 Hammam-lif, Tunisia
| |
Collapse
|
48
|
Bioimaging mass spectrometry of trace elements – recent advance and applications of LA-ICP-MS: A review. Anal Chim Acta 2014; 835:1-18. [DOI: 10.1016/j.aca.2014.04.048] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 01/03/2023]
|