1
|
Zhang C, Jiang L, Qian J, Yu G, Qing H, Li L, Fu J. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in petunia and identification of the putative candidate member involved in floral volatile benzenoids/phenylpropanoids metabolism. Gene 2025; 938:149150. [PMID: 39667713 DOI: 10.1016/j.gene.2024.149150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
The basic helix-loop-helix (bHLH) family, a prominent group of transcription factors, is involved in plant growth, development, and secondary metabolic processes. Petunia (Petunia hybrida), a beloved and widely cultivated garden flower, boasts a diverse array of varieties, some of which exude a captivating fragrance that has garnered immense popularity. The aromatic allure of petunias primarily stems from the presence of volatile benzenoids/phenylpropanoids, the principal floral scent compounds. But whether bHLH transcription factors regulate petunia floral scent compound synthesis is not clear. In this study, we sought to screen the putative candidate member of bHLH which can be involved in the biosynthesis of benzenoids/phenylpropanoids by examining 63 members of the petunia bHLH gene family. Phylogenetic analysis of the 63 petunia bHLH proteins them into 16 subgroups. Almost all bHLH members contained alkaline/helix-loop-helix domains. Based on the reported RNA sequencing data of P. hybrida 'Mitchell', 30 assembled sequences were mapped to the bHLH genes of P. axillaris. Further qRT-PCR assays suggested that PhbHLH19 might be the putative candidate member in the biosynthesis of benzenoids/phenylpropanoids. PhbHLH19 showed higher expression levels in the petal limb but was lowly expressed at the bud stage, with a rapid increase in the expression level when flowers opened. The expression of PhbHLH19 displayed a significant positive correlation with that of PhPAL2, and the yeast one-hybrid assay verified that PhbHLH19 can bind to the promoter of PhPAL2. Moreover, a dual-luciferase assay proved the transcriptional activation of PhbHLH19 on PhPAL2. These findings suggested that PhbHLH19 might be a putative candidate in the regulation of benzenoid/phenylpropanoid synthesis by activating PhPAL2 expression.
Collapse
Affiliation(s)
- Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China.
| | - Lingli Jiang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Jieyu Qian
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Guo Yu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Hongsheng Qing
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Li Li
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China
| | - Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
2
|
Huang XQ, Yahyaa M, Kongala PR, Maoz I, Dudareva N, Ibdah M. Biosynthesis of elemicin and isoelemicin in Daucus carota leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39693218 DOI: 10.1111/tpj.17201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Volatile phenylpropenes comprise one of the largest groups of plant phenylalanine-derived volatiles that not only possess ecological roles but also exhibit numerous pharmacological activities. Despite their wide distribution in the plant kingdom, biosynthesis of only a small subset of these compounds has been discovered. Here, we elucidated yet unknown steps in the biosynthesis of isoelemicin and elemicin using carrot (Daucus carota subsp. sativus), which produces a wide spectrum of volatile phenylpropenes, as a model system. Comparative transcriptomic analysis combined with metabolic profiling of two carrot cultivars producing different spectrums and levels of phenylpropene compounds revealed that biosynthesis of isoelemicin and elemicin could proceed via the (iso)eugenol-independent pathway, which diverges from the lignin biosynthetic pathway after sinapyl alcohol. Moreover, in planta results showed that two different NADPH-dependent reductases, a newly identified 5-methoxy isoeugenol synthase (DcMIS) and previously characterized (iso)eugenol synthase (DcE(I)GS1), both of which use sinapyl acetate as a substrate, are responsible for the biosynthesis of immediate precursors of isoelemicin and elemicin, respectively. In contrast to penultimate reactions, the final steps in the formation of these phenylpropenes are catalyzed by the same newly characterized methyltransferase, S-adenosyl-l-methionine:5-methoxy(iso)eugenol O-methyltransferase, that methylates the para-hydroxyl group of their respective precursors, thus completing the (iso)eugenol-independent route for the biosynthesis of isoelemicin and elemicin.
Collapse
Affiliation(s)
- Xing-Qi Huang
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Mosaab Yahyaa
- Newe Yaar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay, 30095, Israel
| | - Prasada Rao Kongala
- Newe Yaar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay, 30095, Israel
| | - Itay Maoz
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, Indiana, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, USA
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, P. O. Box 1021, Ramat Yishay, 30095, Israel
| |
Collapse
|
3
|
Pinto-Zevallos DM, Blande JD. Challenges of climate change and air pollution for volatile-mediated plant-parasitoid signalling. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101290. [PMID: 39471911 DOI: 10.1016/j.cois.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Herbivore-induced plant volatiles (HIPVs) are reliable cues that parasitoids can use to locate host patches. Interactions mediated by plant volatile organic compounds (VOCs) are vulnerable to disturbance by predicted climate change and air pollution scenarios. Abiotic stress-induced VOCs may act as false signals to parasitoids. Air pollutants can disrupt signalling by degrading HIPVs at different rates and preventing the perception of olfactory signals by reducing the sensitivity of olfactory receptors or by occluding insect sensillae. As essential components of biological control programmes, efforts should be made to assess how different parasitoid species respond and adapt to HIPVs in predicted scenarios. Since providing parasitoid food sources is a promising practice for boosting biological control, parasitoid-flower interactions deserve attention.
Collapse
Affiliation(s)
- Delia M Pinto-Zevallos
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, PL 1627, 70211 Kuopio, Finland.
| | - James D Blande
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, PL 1627, 70211 Kuopio, Finland
| |
Collapse
|
4
|
Grennan AK, Murphy KC, Fowler M, Bengtson A, Turner J, Horan L, Fitzpatrick J, Desilets L. Floral Volatile Organic Compounds of Mitchella repens (Rubiaceae). PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e70022. [PMID: 39678448 PMCID: PMC11646444 DOI: 10.1002/pei3.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Mitchella repens (partridgeberry; family Rubiaceae) is a creeping, understory plant native to eastern North America. The twinned, tubular flowers of this distylous plant are bright white and produce volatile organic compounds (VOCs). Partridgeberry has intermorph incompatibility and thus requires pollinators to move pollen from one morph to the other. Despite partridgeberry being a common member of forest communities, little is known about its pollination syndrome. Using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) analysis the floral VOCs were identified, with the four predominant molecules being α-pinene, camphene, D-limonene, and verbenone. The VOC profile contained 27 molecules consisting mostly of monoterpenes. Two independent sample t-tests confirmed that each morph produced statistically similar floral VOC profiles (p > 0.1). Additionally, two of the predominant VOC molecules, α-pinene and D-limonene, were measured throughout the 5-day flowering cycle. Simple linear regressions of these compound levels versus days after flowering (DAF) confirmed that α-pinene and D-limonene both decreased with flower age. Insect visits were observed to correlate with α-pinene and D-limonene concentrations, peaking at 1-2 DAF and then declining through 5 DAF.
Collapse
Affiliation(s)
- Aleel K. Grennan
- Biology DepartmentWorcester State UniversityWorcesterMassachusettsUSA
| | | | - Mary Fowler
- Mathematics DepartmentWorcester State UniversityWorcesterMassachusettsUSA
| | - Adam Bengtson
- Chemistry DepartmentWorcester State UniversityWorcesterMassachusettsUSA
| | - Jay Turner
- Chemistry DepartmentWorcester State UniversityWorcesterMassachusettsUSA
| | - Lucas Horan
- Biology DepartmentWorcester State UniversityWorcesterMassachusettsUSA
| | - Julia Fitzpatrick
- Biology DepartmentWorcester State UniversityWorcesterMassachusettsUSA
| | - Logan Desilets
- Biology DepartmentWorcester State UniversityWorcesterMassachusettsUSA
| |
Collapse
|
5
|
Ma B, Li ZY, Li RC, Xu MC, Wang ZQ, Leng PS, Hu ZH, Wu J. Functional Analysis of PsHMGR1 and PsTPS1 Related to Floral Terpenoids Biosynthesis in Tree Peony. Int J Mol Sci 2024; 25:12247. [PMID: 39596312 PMCID: PMC11594739 DOI: 10.3390/ijms252212247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Tree peony (Paeonia suffruticosa), as a popular ornamental plant worldwide, has a unique floral fragrance, and it is important in the pollination, ornamental, food, and fragrance product industries. However, the underlying molecular mechanisms for the synthesis of floral fragrance terpenoids in tree peony are not well understood, constraining their exploitation. P. suffruticosa 'Oukan' produces strong floral fragrance terpenoids with high ornamental value and excellent stress resistance and is considered a valuable model for studying tree peony floral fragrance formation. Based on transcriptome data analysis, the PsHMGR1 and PsTPS1 genes associated with floral terpene synthesis were cloned. Then, PsHMGR1 and PsTPS1 were functionally characterized by amino acid sequence analysis, multiple sequence alignment, phylogenetic tree construction, qRT-PCR, and transgenic assay. PsHMGR1 contains two transmembrane structures and a conserved HMG-CoA_reductase_class I domain, and PsTPS1 belongs to TPS-a subfamily. The qRT-PCR analysis showed that the expression levels of PsHMGR1 and PsTPS1 increased and then decreased at different flower development stages, and both were significantly higher in flowers than in roots, stems, and leaves. In addition, the linalool content in PsHMGR1 transgenic lines was significantly higher than that of WT. Germacrene D, which was not found in WT, was detected in the flowers of PsTPS1 transgenic lines. These results indicate that PsHMGR1 and PsTPS1 promote terpene synthesis in plants and provide ideas for the molecular mechanism of enhancing terpene synthesis in tree peony floral fragrance.
Collapse
Affiliation(s)
- Bo Ma
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
| | - Zi-Yao Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
| | - Rong-Chen Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
| | - Mei-Chen Xu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
| | - Zhen-Quan Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
| | - Ping-Sheng Leng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| | - Zeng-Hui Hu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
- Ancient Tree Health and Culture Engineering Technology Research Center, National Forestry and Grassland Administration, Beijing 102206, China
| | - Jing Wu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (B.M.); (Z.-Y.L.); (R.-C.L.); (M.-C.X.); (Z.-Q.W.); (P.-S.L.)
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| |
Collapse
|
6
|
Chen X, Zhang X, Li Y, Tian X, Tian X, Zhao H, Xuan Z, Xue K, Li Y, Lin W. Molecular mechanisms underlying floral fragrance in Camellia japonica 'High Fragrance': a time-course assessment. FRONTIERS IN PLANT SCIENCE 2024; 15:1461442. [PMID: 39600898 PMCID: PMC11588446 DOI: 10.3389/fpls.2024.1461442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Camellia japonica 'High Fragrance' is a camellia hybrid known for its unique and intense floral scent. The current understanding of the dynamic changes in its fragrance and the underlying mechanisms are still limited. This study employed a combination of metabolomic and transcriptomic approaches to reveal the characteristics of the metabolites involved in the remarkable fragrance of this camellia and their biosynthetic mechanisms along three flower developmental stages (flower bud, initial bloom, and full bloom). Among the 349 detected volatile organic compounds (VOCs), the majority were terpenes (57, 16.33%) and esters (53, 15.19%). Of these, 136 VOCs exhibited differential accumulation over time. Transcriptomic data from floral organs at different flowering stages identified 56,303 genes, with 13,793 showing significant differential expression. KEGG enrichment analysis revealed 57, 91, and 33 candidate differential genes related to the biosynthesis of terpenes, phenylpropanoids, and fatty acid derivatives, respectively. This indicates that terpenes, esters, and their related synthetic genes might play a crucial role in the formation of 'High Fragrance' characteristics. During the entire flowering process, the majority of genes exhibited an elevated expression pattern, which correlated with the progressive accumulation of VOCs. Interestingly, the expression patterns of the differentially expressed genes in the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways, associated with terpene synthesis, showed opposite trends. A transcriptional-metabolic regulatory network linking terpenoid compounds, related synthetic enzymes, and potential transcription factors could be outlined for 'High Fragrance' camellia, thus providing a theoretical basis for further exploring these events and breeding more fragrant camellias.
Collapse
Affiliation(s)
- Xuemei Chen
- Foshan Institute of Forestry (Foshan Botanical Garden), Foshan, China
| | - Xueping Zhang
- Foshan Institute of Forestry (Foshan Botanical Garden), Foshan, China
| | - Yongquan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueqin Tian
- Foshan Institute of Forestry (Foshan Botanical Garden), Foshan, China
| | - Xueyi Tian
- Foshan Institute of Forestry (Foshan Botanical Garden), Foshan, China
| | - Hongjie Zhao
- Foshan Institute of Forestry (Foshan Botanical Garden), Foshan, China
| | - Zuying Xuan
- Foshan Institute of Forestry (Foshan Botanical Garden), Foshan, China
| | - Kena Xue
- Foshan Institute of Forestry (Foshan Botanical Garden), Foshan, China
| | - Yongjuan Li
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Lin
- Foshan Institute of Forestry (Foshan Botanical Garden), Foshan, China
| |
Collapse
|
7
|
Zulfiqar A, Azhar BJ, Shakeel SN, Thives Santos W, Barry TD, Ozimek D, DeLong K, Angelovici R, Greenham K, Schenck CA, Schaller GE. Molecular basis for thermogenesis and volatile production in the titan arum. PNAS NEXUS 2024; 3:pgae492. [PMID: 39544499 PMCID: PMC11563039 DOI: 10.1093/pnasnexus/pgae492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The titan arum (Amorphophallus titanum), commonly known as the corpse flower, produces the largest unbranched inflorescence in the world. Its rare blooms last only a few days and are notable both for their burst of thermogenic activity and for the odor of rotting flesh by which they attract pollinators. Studies on the titan arum can therefor lend insight into the mechanisms underlying thermogenesis as well as the production of sulfur-based volatiles, about which little is known in plants. Here, we made use of transcriptome and metabolite analyses to uncover underlying mechanisms that enable thermogenesis and volatile production in the titan arum. The ability to perform thermogenesis correlated with the expression of genes involved in bypass steps for the mitochondrial electron transport chain, in particular alternative oxidase expression, and through our analysis is placed within the context of sugar transport and metabolism. The major odorants produced by the titan arum are dimethyl disulfide and dimethyl trisulfide, and we identified pathways for sulfur transport and metabolism that culminate in the production of methionine, which our analysis identifies as the amino acid substrate for production of these odorants. Putrescine, derived from arginine, was identified as an additional and previously unrecognized component of the titan arum's odor. Levels of free methionine and putrescine were rapidly depleted during thermogenesis, consistent with roles in production of the titan arum's odor. Models for how tissues of the titan arum contribute to thermogenesis and volatile production are proposed.
Collapse
Affiliation(s)
- Alveena Zulfiqar
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
- Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan
| | - Beenish J Azhar
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
- Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan
| | - Samina N Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
- Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan
| | - William Thives Santos
- Division of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Theresa D Barry
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Dana Ozimek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Kim DeLong
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Ruthie Angelovici
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Kathleen Greenham
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Craig A Schenck
- Division of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
8
|
Zhang W, Zhu Z, Li G, Chen S, Chen F, Chen F, Jiang Y. Molecular and biochemical basis of interspecific variations in the organ-specific synthesis of floral terpenes between the domesticated cultivars and their wild relatives in Chrysanthemum. Int J Biol Macromol 2024; 281:136202. [PMID: 39366608 DOI: 10.1016/j.ijbiomac.2024.136202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Terpenoids, as the main components of the floral scent, exhibit interspecific variations and spatial specificity in Chrysanthemum genus. Here, we selected two primary species as the ancestors of C. morifolium along with two classic cultivars to investigate the influence of domestication on the variations in emission and production of floral terpenoids. The results indicated that the wild relatives emitted and accumulated higher levels of terpenoids in their disc florets and phyllaries & receptacles compared to the cultivars. Six gene modules associated with terpenoid production in three floral organs were characterized through WGCNA. Furthermore, 28 terpene synthase (TPS) genes were identified from both wild relatives and cultivars by comparative transcriptome database. In vitro enzymatic activity assay revealed that several products of monoterpenoids (α-pinene and α-terpinene) and sesquiterpenoids (β-farnesene, α-copaene and γ-curcumene), were commonly catalyzed by TPSs identified from wild relatives and cultivars. Nevertheless, we found that β-myrcene, β-elemene, β-cadinene and β-caryophyllene were predominantly produced by TPSs in the wild relatives, while d-limonene and β-copaene were specifically catalyzed by TPSs in the cultivars. It was also observed that the expression of the CiLSTPS3 gene could be associated with the emission and accumulation of β-caryophyllene in floral scent. Overall, the complex biochemical functions of TPSs, along with their varying expression patterns, significantly contribute to the interspecific variations of floral terpenoids in the Chrysanthemum genus. Our findings provide new insights into the molecular and biochemical mechanisms underlying the impact of domestication on the production of floral terpenoids in Chrysanthemum.
Collapse
Affiliation(s)
- Wanbo Zhang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zonghui Zhu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Sumei Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Yifan Jiang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Datta S, Paul S, Ballabh L, Mitra A. Histochemical and molecular analyses reveal an insight into the scent volatiles synthesis and emission in ephemeral flowers of Murraya paniculata (L.) Jack. PLANTA 2024; 260:119. [PMID: 39422757 DOI: 10.1007/s00425-024-04552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
MAIN CONCLUSION Temporal histolocalization of floral volatiles in the petal epidermis of Murraya paniculata was found to be linked with the coordinated expression of candidate genes and successive accumulation of an internal pool of volatiles. Murraya paniculata (Rutaceae) is known for its highly fragrant ephemeral flowers that emit volatiles to attract nocturnal pollinators. To unfold the patterns of volatile emission in relation to floral life-span, we studied time-course accumulation and emission rate of scent volatiles at six timepoints of floral maturation, at an interval of 4 h starting from the bud stage to the senescence stage on the next day. This study revealed the maximum emission rate of scent volatiles at the anthesis stage at 18:00 h. This finding correlates well with the maximum accumulation of volatiles in the internal pool of the flowers at this stage. The key volatiles detected in both emitted and internal pools were benzaldehyde, benzeneacetaldehyde, linalool, caryophyllene, germacrene-D and α-farnesene. In addition, the internal pool also contained substantial amounts of indole, scopoletin, caffeine and osthole. To histochemically localize the temporal accumulation of major volatile groups in the epidermal cells, petal cross sections were stained with NaDi and ferric chloride to visualize terpenes and phenolics, respectively, under light microscope. Histolocalization studies showed a higher accumulation of terpenes at 14:00 h and 18:00 h, which subsequently was reduced as senescence approached. Significant phenolics in the abaxial and adaxial layers of the petal epidermis accumulated at 18:00 h and at the early senescence (06:00 h) stages. Furthermore, temporal localization of active shikimate dehydrogenase (SKDH) protein through in-gel activity assay demonstrated higher enzymatic activities at anthesis (18:00 h) and fully bloomed (02:00 h) stages, supporting the findings of higher accumulation of phenolic volatiles at 18:00 h and 06:00 h stages. Expression analysis of major candidate genes of floral scent volatiles pathway supported the hypothesis that the emission rate of floral fragrance reached its maximum at the anthesis (18:00 h) stage. In contrast, biosynthesis of scent compounds started at the bud (14:00 h) stage itself as indicated by the RT-PCR semi-quantitative estimation. As flowers of M. paniculata attract multiple pollinator species, this study could also serve as a springboard for pollination biology in Rutaceae, which includes important fruit crops.
Collapse
Affiliation(s)
- Sinjini Datta
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Shobhon Paul
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Lopamudra Ballabh
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India.
| |
Collapse
|
10
|
Guo X, Yang Q, Cheng L, Hu G, Liu Z, Lan Y, Cheng Y. Metabolome and Transcriptome Combined Reveal the Main Floral Volatile Compounds and Key Regulatory Genes of Castanea mollissima. PLANTS (BASEL, SWITZERLAND) 2024; 13:2865. [PMID: 39458813 PMCID: PMC11511371 DOI: 10.3390/plants13202865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Chestnut (Castanea mollissima) is an economically important forest tree species, and its flowers possess functions such as repelling mosquitoes, killing bacteria, and clearing heat. However, the regulatory mechanisms of floral volatile organic compounds (VOCs) in chestnut are still unclear. This study analyzed the contents of major volatile compounds and related gene expression levels in chestnut flowers during the initial flowering stage (IFS) and full-flowering stage (FFS) using metabolomics and transcription techniques. In total, 926 volatile compounds were detected, mainly terpenes, heterocyclic compounds, and esters. Acetylenone, styrene, and β-pinene had contents that exceeded 5% in FFS chestnut flowers. In total, 325 differential metabolites between the IFS and FFS were significantly (p < 0.05) enriched in the biosynthetic pathways of sesquiterpenes and triterpenes, as well as the ethylbenzene metabolic pathway. In total, 31 differentially expressed genes (DEGs) were related to terpenoid biosynthesis. There were only two DEGs related to the ethylbenzene metabolic pathway. In summary, we identified the volatile components of chestnut flowers and analyzed the changes in the contents of major volatile compounds in the flowers and the expression patterns of the related genes. The research results are helpful for understanding the regulation of VOCs in chestnut flowers.
Collapse
Affiliation(s)
- Xiaomeng Guo
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China;
- College of Forestry, Shenyang Agriculture University, Shenyang 110866, China;
| | - Qianyu Yang
- College of Forestry, Shenyang Agriculture University, Shenyang 110866, China;
| | - Lili Cheng
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
| | - Guanglong Hu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
| | - Zhao Liu
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China;
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yanping Lan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
| | - Yunhe Cheng
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
| |
Collapse
|
11
|
Zhou L, Wu S, Chen Y, Huang R, Cheng B, Mao Q, Liu T, Liu Y, Zhao K, Pan H, Yu C, Gao X, Luo L, Zhang Q. Multi-omics analyzes of Rosa gigantea illuminate tea scent biosynthesis and release mechanisms. Nat Commun 2024; 15:8469. [PMID: 39349447 PMCID: PMC11443146 DOI: 10.1038/s41467-024-52782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Rose is an important ornamental crop cultivated globally for perfume production. However, our understanding of the mechanisms underlying scent production and molecular breeding for fragrance is hindered by the lack of a reference genome for tea roses. We present the first complete telomere-to-telomere (T2T) genome of Rosa gigantea, with high quality (QV > 60), including detailed characterization of the structural features of repetitive regions. The expansion of genes associated with phenylpropanoid biosynthesis may account for the unique tea scent. We uncover the release rhythm of aromatic volatile organic compounds and their gene regulatory networks through comparative genomics and time-ordered gene co-expression networks. Analyzes of eugenol homologs demonstrate how plants attract pollinators using specialized phenylpropanoids in specific tissues. This study highlights the conservation and utilization of genetic diversity from wild endangered species through multi-omics approaches, providing a scientific foundation for enhancing rose fragrance via de novo domestication.
Collapse
Affiliation(s)
- Lijun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Sihui Wu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yunyi Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Runhuan Huang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Bixuan Cheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qingyi Mao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tinghan Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yuchen Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China.
| | - Le Luo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
12
|
de Brito Machado D, Felisberto JS, Queiroz GAD, Guimarães EF, Ramos YJ, Moreira DDL. From Leaves to Reproductive Organs: Chemodiversity and Chemophenetics of Essential Oils as Important Tools to Evaluate Piper mollicomum Kunth Chemical Ecology Relevance in the Neotropics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2497. [PMID: 39273981 PMCID: PMC11397322 DOI: 10.3390/plants13172497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
Piper mollicomum Kunth (Piperaceae) plays a vital role in the preservation of the Brazilian Atlantic Forest by contributing to the regeneration of deforested areas. Recent scientific investigations have analyzed the chemical constituents and seasonal dynamics of essential oils (EO) from various Piper L. species, highlighting the need to elucidate their chemical-ecological interactions. This study aims to expand the chemical-ecological knowledge of this important taxon in neotropical forests, using P. mollicomum as a model. The methodologies employed include the collection of plant material, EO extraction by hydrodistillation, analysis of EO by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC-FID), recording the frequency of visits by potential pollinators and microclimatic variables, and by conducting calculations of chemodiversity and chemophenetic indices. Chemical analyses indicated that the diversity of EO and environmental factors are linked to the activities of potential pollinators. In the Tijuca Forest, P. mollicomum revealed significant interactions between its volatile constituents and microclimatic variables, showing that the chemodiversity of the leaves and reproductive organs correlates with pollinator visitation. Additionally, a notable difference in chemical evenness was observed between these vegetative structures. The chemophenetic indices by Ramos and Moreira also revealed correlations with chemical diversity.
Collapse
Affiliation(s)
- Daniel de Brito Machado
- Graduate Program in Plant Biology, Institute of Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Rio de Janeiro Botanical Garden Research Institute, Botanical Garden of Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Jéssica Sales Felisberto
- Graduate Program in Plant Biology, Institute of Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Rio de Janeiro Botanical Garden Research Institute, Botanical Garden of Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - George Azevedo de Queiroz
- West Zone Campus, State University of Rio de Janeiro, Rua Manuel Caldeira de Alvarenga, Rio de Janeiro 23070-200, Brazil
| | - Elsie Franklin Guimarães
- Rio de Janeiro Botanical Garden Research Institute, Botanical Garden of Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Ygor Jessé Ramos
- Graduate Program in Plant Biology, Institute of Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Earth's Pharmacy Laboratory, School of Pharmacy, Federal University of Bahia, Salvador 40170-215, Brazil
| | - Davyson de Lima Moreira
- Graduate Program in Plant Biology, Institute of Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Rio de Janeiro Botanical Garden Research Institute, Botanical Garden of Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
- Oswaldo Cruz Foundation, Farmanguinhos, Manguinhos, Rio de Janeiro 21041-250, Brazil
| |
Collapse
|
13
|
Guo Y, Chen X, Li J, Wang Q, Zhang S, Liu N, Zhang Y, Zhang T. Single-cell RNA sequencing reveals a high-resolution cell atlas of petals in Prunus mume at different flowering development stages. HORTICULTURE RESEARCH 2024; 11:uhae189. [PMID: 39247887 PMCID: PMC11377181 DOI: 10.1093/hr/uhae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/05/2024] [Indexed: 09/10/2024]
Abstract
Prunus mume (mei), a traditional ornamental plant in China, is renowned for its fragrant flowers, primarily emitted by its petals. However, the cell types of mei petals and where floral volatile synthesis occurs are rarely reported. The study used single-cell RNA sequencing to characterize the gene expression landscape in petals of P. mume 'Fenhong Zhusha' at budding stage (BS) and full-blooming stage (FS). Six major cell types of petals were identified: epidermal cells (ECs), parenchyma cells (PCs), xylem parenchyma cells, phloem parenchyma cells, xylem vessels and fibers, and sieve elements and companion cells complex. Cell-specific marker genes in each cell type were provided. Floral volatiles from mei petals were measured at four flowering development stages, and their emissions increased from BS to FS, and decreased at the withering stage. Fifty-eight differentially expressed genes (DEGs) in benzenoid/phenylpropanoid pathway were screened using bulk RNA-seq data. Twenty-eight DEGs expression increased from BS to FS, indicating that they might play roles in floral volatile synthesis in P. mume, among which PmBAHD3 would participate in benzyl acetate synthesis. ScRNA-seq data showed that 27 DEGs mentioned above were expressed variously in different cell types. In situ hybridization confirmed that PmPAL2, PmCAD1, PmBAHD3,5, and PmEGS1 involved in floral volatile synthesis in mei petals are mainly expressed in EC, PC, and most vascular tissues, consistent with scRNA-seq data. The result indicates that benzyl acetate and eugenol, the characteristic volatiles in mei, are mostly synthesized in these cell types. The first petal single-cell atlas was constructed, offering new insights into the molecular mechanism of floral volatile synthesis.
Collapse
Affiliation(s)
- Yuhong Guo
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiling Chen
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinhong Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qi Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangyu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nuoxuan Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tengxun Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Jiang Y, Wang J, Han Y, Wang B, Lei C, Sam FE, Li J, Ma T, Zhang B, Feng L. Transcriptome and metabolite profiles reveal the role of benzothiadiazole in controlling isoprenoid synthesis and berry ripening in chardonnay grapes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106041. [PMID: 39277368 DOI: 10.1016/j.pestbp.2024.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 09/17/2024]
Abstract
Benzothiadiazole (BTH) regulates grape development, ripening, volatiles, and phenolics. This study used metabolomics and transcriptomics to understand how exogenous BTH affects Chardonnay grapes' maturation and synthesis of isoprenoids. A 0.37 mM BTH solution was sprayed during the swelling and veraison stages, and then the ripe grapes were analyzed. Our results show that BTH application significantly increased levels of important isoprenoids such as free terpinen-4-ol, bound linalool, and 8'-apo-β-carotenal. Additionally, BTH was found to modulate several signaling pathways, including those involved in ethylene biosynthesis, salicylic acid synthesis, the abscisic acid pathway, and sugar metabolism, by regulating the expression of genes like VvACO4, VvTAR, VvPLD, VvTIP1-1, VvSTKs, VvPK, VvSUC2, VvGST4, and VvSTS. BTH also promoted grapevine resistance by up-regulating the expression of VvHSP20, VvGOLS4, VvOLP, and VvPR-10. Furthermore, BTH affected isoprenoids biosynthesis by regulating the expression of VvTPS35 and VvMYB24. Moreover, 13 hub genes in the MEgreen module were identified as crucial for the biosynthesis of isoprenoids. BTH application during the swelling stage remarkably promoted isoprenoid biosynthesis more effectively than veraison. Our study provides insights into the molecular mechanisms underlying BTH-induced regulation of grape development and offers a promising approach for enhancing the quality and resistance of grapes.
Collapse
Affiliation(s)
- Yumei Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jianfeng Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuqi Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bo Wang
- Technical Center of Lanzhou Customs, Lanzhou 730000, China
| | - Chunni Lei
- Technical Center of Lanzhou Customs, Lanzhou 730000, China
| | - Faisal Eudes Sam
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Jixin Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tengzhen Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bo Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Lidan Feng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
15
|
Xie C, Tian Q, Qiu H, Wang R, Wang L, Yue Y, Yang X. Methylation Modification in Ornamental Plants: Impact on Floral Aroma and Color. Int J Mol Sci 2024; 25:8267. [PMID: 39125834 PMCID: PMC11311783 DOI: 10.3390/ijms25158267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Methylation represents a crucial class of modification that orchestrates a spectrum of regulatory roles in plants, impacting ornamental characteristics, growth, development, and responses to abiotic stress. The establishment and maintenance of methylation involve the coordinated actions of multiple regulatory factors. Methyltransferases play a pivotal role by specifically recognizing and methylating targeted sites, which induces alterations in chromatin structure and gene expression, subsequently influencing the release of volatile aromatic substances and the accumulation of pigments in plant petals. In this paper, we review the regulatory mechanisms of methylation modification reactions and their effects on the changes in aromatic substances and pigments in plant petals. We also explore the potential of methylation modifications to unravel the regulatory mechanisms underlying aroma and color in plant petals. This aims to further elucidate the synthesis, metabolism, and regulatory mechanisms of various methylation modifications related to the aroma and color substances in plant petals, thereby providing a theoretical reference for improving the aroma and color of plant petals.
Collapse
Affiliation(s)
- Chenchen Xie
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qingyin Tian
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hanruo Qiu
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Wang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
16
|
Niu D, Xu L, Lin K. Multitrophic and Multilevel Interactions Mediated by Volatile Organic Compounds. INSECTS 2024; 15:572. [PMID: 39194777 DOI: 10.3390/insects15080572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Plants communicate with insects and other organisms through the release of volatile organic compounds (VOCs). Using Boolean operators, we retrieved 1093 articles from the Web of Science and Scopus databases, selecting 406 for detailed analysis, with approximately 50% focusing on herbivore-induced plant volatiles (HIPVs). This review examines the roles of VOCs in direct and indirect plant defense mechanisms and their influence on complex communication networks within ecosystems. Our research reveals significant functions of VOCs in four principal areas: activating insect antennae, attracting adult insects, attracting female insects, and attracting natural enemies. Terpenoids like α-pinene and β-myrcene significantly alter pest behavior by attracting natural enemies. β-ocimene and β-caryophyllene are crucial in regulating aboveground and belowground interactions. We emphasize the potential applications of VOCs in agriculture for developing novel pest control strategies and enhancing crop resilience. Additionally, we identify research gaps and propose new directions, stressing the importance of comparative studies across ecosystems and long-term observational research to better understand VOCs dynamics. In conclusion, we provide insights into the multifunctionality of VOCs in natural ecosystems, their potential for future research and applications, and their role in advancing sustainable agricultural and ecological practices, contributing to a deeper understanding of their mechanisms and ecological functions.
Collapse
Affiliation(s)
- Dongsheng Niu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Hohhot 010000, China
| |
Collapse
|
17
|
Yang Z, Jin W, Luo Q, Li X, Wei Y, Lin Y. FhMYB108 Regulates the Expression of Linalool Synthase Gene in Freesia hybrida and Arabidopsis. BIOLOGY 2024; 13:556. [PMID: 39194494 DOI: 10.3390/biology13080556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Acting as the most abundant and widely distributed volatile secondary metabolites in plants, terpenoids play crucial roles in diverse physiological regulations and metabolic processes. Terpene synthases play a decisive role in determining the composition and diversity of terpenoids. Though the regulation of terpene synthases has been extensively investigated across various plant species, limited studies have focused on the upstream transcriptional regulation of terpene synthases. In this study, we have identified linalool as the predominant volatile compound that is released gradually from Freesia hybrida flowers throughout flower blooming. In the context of the transcriptome, a typical MYB transcription factor, FhMYB108, was screened based on homologous gene comparison. FhMYB108 is capable of regulating the expression of FhTPS1, and both their expression levels showed gradual increase during flower opening. Moreover, FhMYB108 exerts a stimulatory effect on the transcription of Arabidopsis thaliana AtTPS14, while no significant increase in AtTPS14 expression is observed upon the stabilization of FhMYB108 in A. thaliana. The highly expressed AtMYC2 in A. thaliana could interact with FhMYB108 to suppress the activation of AtTPS14 by FhMYB108. The present study not only elucidates the regulatory mechanism underlying linalool synthesis but also discovers the synergistic effect of MYB and bHLH transcription factors in governing the biosynthesis of volatile terpenoids.
Collapse
Affiliation(s)
- Zhongzhou Yang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
| | - Wei Jin
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
| | - Qi Luo
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
| | - Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
| | - Yunmin Wei
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yunlong Lin
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing 400000, China
| |
Collapse
|
18
|
Pérez-Llorca M, Müller M. Unlocking Nature's Rhythms: Insights into Secondary Metabolite Modulation by the Circadian Clock. Int J Mol Sci 2024; 25:7308. [PMID: 39000414 PMCID: PMC11241833 DOI: 10.3390/ijms25137308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Plants, like many other living organisms, have an internal timekeeper, the circadian clock, which allows them to anticipate photoperiod rhythms and environmental stimuli to optimally adjust plant growth, development, and fitness. These fine-tuned processes depend on the interaction between environmental signals and the internal interactive metabolic network regulated by the circadian clock. Although primary metabolites have received significant attention, the impact of the circadian clock on secondary metabolites remains less explored. Transcriptome analyses revealed that many genes involved in secondary metabolite biosynthesis exhibit diurnal expression patterns, potentially enhancing stress tolerance. Understanding the interaction mechanisms between the circadian clock and secondary metabolites, including plant defense mechanisms against stress, may facilitate the development of stress-resilient crops and enhance targeted management practices that integrate circadian agricultural strategies, particularly in the face of climate change. In this review, we will delve into the molecular mechanisms underlying circadian rhythms of phenolic compounds, terpenoids, and N-containing compounds.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maren Müller
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Jariani P, Shahnejat-Bushehri AA, Naderi R, Zargar M, Naghavi MR. Molecular and Phytochemical Characteristics of Flower Color and Scent Compounds in Dog Rose ( Rosa canina L.). Molecules 2024; 29:3145. [PMID: 38999097 PMCID: PMC11242971 DOI: 10.3390/molecules29133145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 07/14/2024] Open
Abstract
This study delves into the chemical and genetic determinants of petal color and fragrance in Rosa canina L., a wild rose species prized for its pharmacological and cosmetic uses. Comparative analysis of white and dark pink R. canina flowers revealed that the former harbors significantly higher levels of total phenolics (TPC) and flavonoids (TFC), while the latter is distinguished by elevated total anthocyanins (TAC). Essential oils in the petals were predominantly composed of aliphatic hydrocarbons, with phenolic content chiefly constituted by flavonols and anthocyanins. Notably, gene expression analysis showed an upregulation in most genes associated with petal color and scent biosynthesis in white buds compared to dark pink open flowers. However, anthocyanin synthase (ANS) and its regulatory gene RhMYB1 exhibited comparable expression levels across both flower hues. LC-MS profiling identified Rutin, kaempferol, quercetin, and their derivatives as key flavonoid constituents, alongside cyanidin and delphinidin as the primary anthocyanin compounds. The findings suggest a potential feedback inhibition of anthocyanin biosynthesis in white flowers. These insights pave the way for the targeted enhancement of R. canina floral traits through metabolic and genetic engineering strategies.
Collapse
Affiliation(s)
- Parisa Jariani
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
| | - Ali-Akbar Shahnejat-Bushehri
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
| | - Roohangiz Naderi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia
| |
Collapse
|
20
|
Lu H, Zhao H, Zhong T, Chen D, Wu Y, Xie Z. Molecular Regulatory Mechanisms Affecting Fruit Aroma. Foods 2024; 13:1870. [PMID: 38928811 PMCID: PMC11203305 DOI: 10.3390/foods13121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Aroma, an important quality characteristic of plant fruits, is produced by volatile organic compounds (VOCs), mainly terpenes, aldehydes, alcohols, esters, ketones, and other secondary metabolites, in plant cells. There are significant differences in the VOC profile of various fruits. The main pathways involved in the synthesis of VOCs are the terpenoid, phenylalanine, and fatty acid biosynthesis pathways, which involve several key enzyme-encoding genes, transcription factors (TFs), and epigenetic factors. This paper reviews the main synthetic pathways of the main volatile components in fruit, summarizes studies on the regulation of aroma formation by key genes and TFs, summarizes the factors affecting the fruit aroma formation, describes relevant studies on the improvement of fruit flavor quality, and finally proposes potential challenges and prospects for future research directions. This study provides a theoretical basis for the further precise control of fruit aroma quality and variety improvement.
Collapse
Affiliation(s)
- Haifei Lu
- College of Urban Construction, Zhejiang Shuren University, Hangzhou 310015, China; (H.L.); (H.Z.); (T.Z.); (D.C.)
| | - Hongfei Zhao
- College of Urban Construction, Zhejiang Shuren University, Hangzhou 310015, China; (H.L.); (H.Z.); (T.Z.); (D.C.)
| | - Tailin Zhong
- College of Urban Construction, Zhejiang Shuren University, Hangzhou 310015, China; (H.L.); (H.Z.); (T.Z.); (D.C.)
| | - Danwei Chen
- College of Urban Construction, Zhejiang Shuren University, Hangzhou 310015, China; (H.L.); (H.Z.); (T.Z.); (D.C.)
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Zhengwan Xie
- School of Tea and Coffee, Puer University, Puer 665000, China
| |
Collapse
|
21
|
Moore CD, Farman DI, Särkinen T, Stevenson PC, Vallejo-Marín M. Floral scent changes in response to pollen removal are rare in buzz-pollinated Solanum. PLANTA 2024; 260:15. [PMID: 38829528 PMCID: PMC11147924 DOI: 10.1007/s00425-024-04403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/30/2024] [Indexed: 06/05/2024]
Abstract
MAIN CONCLUSION One of seven Solanum taxa studied displayed associations between pollen presence and floral scent composition and volume, suggesting buzz-pollinated plants rarely use scent as an honest cue for foraging pollinators. Floral scent influences the recruitment, learning, and behaviour of floral visitors. Variation in floral scent can provide information on the amount of reward available or whether a flower has been visited recently and may be particularly important in species with visually concealed rewards. In many buzz-pollinated flowers, tubular anthers opening via small apical pores (poricidal anthers) visually conceal pollen and appear similar regardless of pollen quantity within the anther. We investigated whether pollen removal changes floral scent composition and emission rate in seven taxa of buzz-pollinated Solanum (Solanaceae). We found that pollen removal reduced both the overall emission of floral scent and the emission of specific compounds (linalool and farnesol) in S. lumholtzianum. Our findings suggest that in six out of seven buzz-pollinated taxa studied here, floral scent could not be used as a signal by visitors as it does not contain information on pollen availability.
Collapse
Affiliation(s)
- C Douglas Moore
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Dudley I Farman
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Tiina Särkinen
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Philip C Stevenson
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Mario Vallejo-Marín
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36, Uppsala, Sweden
| |
Collapse
|
22
|
Du Z, Tian T, Gao Y, Guan J, Ju F, Bian S, Wang J, Lin X, Wang B, Liao Z, Du Y, Zhang Z, Zhang H. Investigating the spatiotemporal expression of CBTS genes lead to the discovery of tobacco root as a cembranoid-producing organ. FRONTIERS IN PLANT SCIENCE 2024; 15:1341324. [PMID: 38872887 PMCID: PMC11169922 DOI: 10.3389/fpls.2024.1341324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Tobacco cembranoids, known for their anti-insect and antifungal properties, were shown to be mainly present on the surface of leaves and flowers, being biosynthesized by their trichomes. It remains unclear whether they could be biosynthesized in other organs without trichomes. Cembratrien-ol synthases (CBTSs) catalyze the conversion of GGPP to CBT-ols and thus play an important role in cembranoid biosynthesis. This study identified the CBTS family genes in tobacco and examined their spatiotemporal expression patterns. The CBTS genes showed diverse expression patterns in tobacco organs, with the majority highly expressed in leaves and a few highly expressed in flowers. The expression of CBTS genes were also correlated with the development of tobacco plants, and most of them showed the highest expression level at the budding stage. Furthermore, their expression is mediated by the JA (jasmonate) signaling in all tobacco organs. Several CBTS genes were found to be highly expressed in tobacco roots that have no trichomes, which prompted us to determine the cembranoid production in roots and other organs. GC-MS and UPLC assays revealed that cembranoids were produced in all tobacco organs, which was supported by the bioactivity assay results that almost all these CBTS enzymes could catalyze CBT-ol biosyntheis in yeast, and that the content ratio of CBT-ols and CBT-diols in tobacco roots was different to that in leaves. This work sheds insights into the expression profiles of tobacco CBTS genes and provides a feasibility to engineer tobacco roots for industrial production of cembranoids.
Collapse
Affiliation(s)
- Zaifeng Du
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Tian Tian
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yulong Gao
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Jian Guan
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Fuzhu Ju
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Shiquan Bian
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jiahao Wang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiaoyang Lin
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Bingwu Wang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing, China
| | - Yongmei Du
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhongfeng Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Hongbo Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
23
|
Shor E, Vainstein A. Petunia PHYTOCHROME INTERACTING FACTOR 4/5 transcriptionally activates key regulators of floral scent. PLANT MOLECULAR BIOLOGY 2024; 114:66. [PMID: 38816626 PMCID: PMC11139750 DOI: 10.1007/s11103-024-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/09/2024] [Indexed: 06/01/2024]
Abstract
Floral scent emission of petunia flowers is regulated by light conditions, circadian rhythms, ambient temperature and the phytohormones GA and ethylene, but the mechanisms underlying sensitivity to these factors remain obscure. PHYTOCHROME INTERACTING FACTORs (PIFs) have been well studied as components of the regulatory machinery for numerous physiological processes. Acting redundantly, they serve as transmitters of light, circadian, metabolic, thermal and hormonal signals. Here we identified and characterized the phylogenetics of petunia PIF family members (PhPIFs). PhPIF4/5 was revealed as a positive regulator of floral scent: TRV-based transient suppression of PhPIF4/5 in petunia petals reduced emission of volatiles, whereas transient overexpression increased scent emission. The mechanism of PhPIF4/5-mediated regulation of volatile production includes activation of the expression of genes encoding biosynthetic enzymes and a key positive regulator of the pathway, EMISSION OF BENZENOIDS II (EOBII). The PIF-binding motif on the EOBII promoter (G-box) was shown to be needed for this activation. As PhPIF4/5 homologues are sensors of dawn and expression of EOBII also peaks at dawn, the prior is proposed to be part of the diurnal control of the volatile biosynthetic machinery. PhPIF4/5 was also found to transcriptionally activate PhDELLAs; a similar positive effect of PIFs on DELLA expression was further confirmed in Arabidopsis seedlings. The PhPIF4/5-PhDELLAs feedback is proposed to fine-tune GA signaling for regulation of floral scent production.
Collapse
Affiliation(s)
- Ekaterina Shor
- Institute of Plant Sciences, ARO, Volcani Institute, Rishon Lezion, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
24
|
Yang W, Zheng Z, Shi Y, Reynolds AG, Duan C, Lan Y. Volatile phenols in wine: overview of origin, formation, analysis, and sensory expression. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 38766770 DOI: 10.1080/10408398.2024.2354526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Volatile phenols impart particular aromas to wine. Due to their distinctive aroma characteristics and low sensory thresholds, volatile phenols can easily influence and modify the aroma of wine. Since these compounds can be formed in wines in various ways, it is necessary to clarify the possible sources of each volatile phenol to achieve management during the winemaking process. The sources of volatile phenols in wine are divided into berry-derived, fermentation-derived, and oak-derived. The pathways and factors influencing the formation of volatile phenols from each source are then reviewed respectively. In addition, an overview of the sensory impact of volatile phenols is given, both in terms of the aroma these volatile phenols directly bring to the wine and their contribution through aroma interactions. Finally, as an essential basis for exploring the scientific problems of volatile phenols in wine, approaches to quantitation of volatile phenols and their precursors are discussed in detail. With the advancement of analytical techniques, more details on volatile phenols have been discovered. Further exploration is worthwhile to achieve more detailed monitoring and targeted management of volatile phenols in wine.
Collapse
Affiliation(s)
- Weixi Yang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Ziang Zheng
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | | | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| |
Collapse
|
25
|
Balbuena MS, Latorre-Estivalis JM, Farina WM. Identification of chemosensory genes in the stingless bee Tetragonisca fiebrigi. G3 (BETHESDA, MD.) 2024; 14:jkae060. [PMID: 38498593 PMCID: PMC11075565 DOI: 10.1093/g3journal/jkae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/15/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Reception of chemical information from the environment is crucial for insects' survival and reproduction. The chemosensory reception mainly occurs by the antennae and mouth parts of the insect, when the stimulus contacts the chemoreceptors located within the sensilla. Chemosensory receptor genes have been well-studied in some social hymenopterans such as ants, honeybees, and wasps. However, although stingless bees are the most representative group of eusocial bees, little is known about their odorant, gustatory, and ionotropic receptor genes. Here, we analyze the transcriptome of the proboscis and antennae of the stingless bee Tetragonisca fiebrigi. We identified and annotated 9 gustatory and 15 ionotropic receptors. Regarding the odorant receptors, we identified 204, and we were able to annotate 161 of them. In addition, we compared the chemosensory receptor genes of T. fiebrigi with those annotated for other species of Hymenoptera. We found that T. fiebrigi showed the largest number of odorant receptors compared with other bees. Genetic expansions were identified in the subfamilies 9-exon, which was also expanded in ants and paper wasps; in G02A, including receptors potentially mediating social behavior; and in GUnC, which has been related to pollen and nectar scent detection. Our study provides the first report of chemosensory receptor genes in T. fiebrigi and represents a resource for future molecular and physiological research in this and other stingless bee species.
Collapse
Affiliation(s)
- María Sol Balbuena
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—CONICET, CABA C1428EGA, Argentina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA C1428EGA, Argentina
| | - Jose M Latorre-Estivalis
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—CONICET, CABA C1428EGA, Argentina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA C1428EGA, Argentina
| | - Walter M Farina
- Laboratorio de Insectos Sociales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—CONICET, CABA C1428EGA, Argentina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA C1428EGA, Argentina
| |
Collapse
|
26
|
Contreras-Avilés W, Heuvelink E, Marcelis LFM, Kappers IF. Ménage à trois: light, terpenoids, and quality of plants. TRENDS IN PLANT SCIENCE 2024; 29:572-588. [PMID: 38494370 DOI: 10.1016/j.tplants.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
In controlled environment agriculture (CEA), light is used to impact terpenoid production and improve plant quality. In this review we discuss various aspects of light as important regulators of terpenoid production in different plant organs. Spectral quality primarily modifies terpenoid profiles, while intensity and photoperiod influence abundances. The central regulator of light signal transduction elongated hypocotyl 5 (HY5) controls transcriptional regulation of terpenoids under UV, red (R), and blue (B) light. The larger the fraction of R and green (G) light, the more beneficial the effect on monoterpenoid and sesquiterpenoid biosynthesis, and such an effect may depend on the presence of B light. A large fraction of R light is mostly detrimental to tetraterpenoid production. We conclude that light is a promising tool to steer terpenoid production and potentially tailor the quality of plants.
Collapse
Affiliation(s)
- Willy Contreras-Avilés
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands; Plant Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Iris F Kappers
- Plant Physiology, Plant Sciences Group, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands.
| |
Collapse
|
27
|
Hu Q, Zhang Y, Tu Z, Wen S, Wang J, Wang M, Li H. The identification and functional characterization of the LcMCT gene from Liriodendron chinense reveals its potenatial role in carotenoids biosyanthesis. Gene 2024; 902:148180. [PMID: 38253298 DOI: 10.1016/j.gene.2024.148180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Terpenoids are not only important component of plant floral scent, but also indispensable elements in the formation of floral color. The petals of Liriodendron chinense are rich in tetraterpene carotenoids and release large amounts of volatile monoterpene and sesquiterpene compounds during full blooming stage. However, the mechanism of terpenoid synthesis is not clear in L. chinense. In this study, we identified a LcMCT gene and characterized its potential function in carotenoids biosynthesis. A total of 2947 up-regulated differentially expressed genes (DEGs) were discerned from the transcriptomic data of L. chinense petals, with a significant enrichment of DEGs related to plant hormone signal transduction and terpenoid backbone biosynthesis. After comprehensive analysis on these DEGs, the LcMCT gene was selected for subsequent function characterization. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results showed that LcMCT was expressed at the highest level in the petals during full blooming stage, suggesting a possible role in carotenoids biosynthesis and volatile terpenoid biosynthesis. Subcellular localization showed that the LcMCT protein was localized in the chloroplast. Overexpression of LcMCT in Arabidopsis thaliana affected the expression levels of MEP pathway genes. Moreover, the MCT enzyme activity and carotenoids contents in transgenic A. thaliana were increased by 69.27% and 15.57%, respectively. These results suggest that LcMCT promotes the biosynthesis of terpenoid precursors via the MEP pathway. Our work lays a foundation for exploring the mechanism of terpenoid synthesis in L. chinense.
Collapse
Affiliation(s)
- Qinghua Hu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonghua Tu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shaoying Wen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Minxin Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
28
|
Liu M, Ji H, Jiang Q, Liu T, Cao H, Zhang Z. Effects of full shading of clusters from véraison to ripeness on fruit quality and volatile compounds in Cabernet Sauvignon grapes. Food Chem X 2024; 21:101232. [PMID: 38420507 PMCID: PMC10900435 DOI: 10.1016/j.fochx.2024.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Sunlight exposure of grape clusters is frequently reported to influence grape aromas greatly. Among them, the effects of full shading (FS) of clusters on fruit quality and volatile compounds in grape berries has scarcely been investigated. In the present study, the effects of FS from véraison to ripeness on fruit quality and volatile compounds in Cabernet Sauvignon grapes were studied. The results showed that FS treatment reduced fruit size and berry weight, delayed fruit maturity, and decreased the contents of anthocyanins, phenols, and tannins in grape berries. In addition, volatile compounds in grape berries were analyzed, and 55 and 53 volatile compounds were detected in the control (CK) and FS groups, respectively. The results indicated that the concentrations of straight-chain fatty aldehydes, straight-chain fatty alcohols, straight-chain fatty acids, and branched-chain fatty acids, norisoprenoids, and total concentration of volatile compounds were all higher in FS group than in CK group. Specifically, FS treatment had significant promoting effects on the concentrations of β-damascenone, terpineol, 2-ethyl-1-hexanol, and 2-hexenal, and remarkably decreased the concentrations of geranial, benzeneacetaldehyde, neral, and ethyl acetate. Partial least squares-discriminant analysis (PLS-DA) revealed a clear separation between the control (CK) and FS groups, and showed that 2-hexenal and hexanal were the main characteristic aroma compounds in the FS group. Moreover, an increase in the intensity of fruity, herbaceous, floral, and mushroom aromas was recorded in FS grapes. This study provides new insights into the effects of the exclusion of sunlight exposure on volatile compound accumulation in grape berries.
Collapse
Affiliation(s)
- Meiying Liu
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang 261061, China
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongliang Ji
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang 261061, China
| | - Qianqian Jiang
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang 261061, China
| | - Tongyu Liu
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang 261061, China
| | - Hui Cao
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang 261061, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
29
|
Peng Q, Tao W, Yu F, Xiong Q, Nong C, Zhang W, Fan J. Physiological and Biochemical Analysis Revealing the Key Factors Influencing 2-Phenylethanol and Benzyl Alcohol Production in Crabapple Flowers. PLANTS (BASEL, SWITZERLAND) 2024; 13:631. [PMID: 38475477 DOI: 10.3390/plants13050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Floral scent (FS) plays a crucial role in the ecological functions and industrial applications of plants. However, the physiological and metabolic mechanisms underlying FS formation remain inadequately explored. Our investigation focused on elucidating the differential formation mechanisms of 2-phenylethanol (2-PE) and benzyl alcohol (BA) by examining seven related enzyme concentrations and the content of soluble sugar, soluble proteins, carbon (C) and nitrogen (N), as well as the C/N ratio. The findings revealed that the peak content of 2-PE in M. 'Praire Rose' and BA in M. 'Lollipop' occurred during the end flowering stage (S4) and flowering stage (S3) periods, respectively. The enzyme concentration change trends of phenylpyruvate decarboxylase (PDL), phenylacetaldehyde reductase (PAR), soluble protein, C, N, and C/N ratio changes during the S3-S4 period in M. 'Praire Rose' and M. 'Lollipop' were entirely opposite. Correlation and PCA analysis demonstrated that the content of CYP79D73 (a P450) and N, and the C/N ratio were key factors in 2-PE production in M. 'Praire Rose'. The production of BA in M. 'Lollipop' was more influenced by the content of phenylacetaldehyde synthase (PAAS), CYP79D73, and soluble sugar. As CYP79D73 exits oppositely in correlation to 2-PE (M. 'Praire Rose') and BA (M. 'Lollipop'), it is hypothesized that CYP79D73 was postulated as the primary factor contributing to the observed differences of 2-PE (M. 'Praire Rose') and BA (M. 'Lollipop') formation. These results carry significant implications for crabapple aromatic flower breeding and the essential oil industry etc.
Collapse
Affiliation(s)
- Qin Peng
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Wenkai Tao
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Fangyuan Yu
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Qinqin Xiong
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Chunshi Nong
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Wangxiang Zhang
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Junjun Fan
- College of Horticulture, Jinling Institute of Technology, No. 99 Hongjing Avenue, Jiangning District, Nanjing 211169, China
| |
Collapse
|
30
|
Zhao Q, Zhang M, Gu L, Yang Z, Li Y, Luo J, Zhang Y. Transcriptome and volatile compounds analyses of floral development provide insight into floral scent formation in Paeonia lactiflora 'Wu Hua Long Yu'. FRONTIERS IN PLANT SCIENCE 2024; 15:1303156. [PMID: 38434428 PMCID: PMC10904628 DOI: 10.3389/fpls.2024.1303156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Herbaceous peony (Paeonia lactiflora) is a well-known ornamental plant in China, celebrated for its beautiful flowers that can emit fragrances. However, exact molecular mechanisms governing synthesis of floral volatiles within herbaceous peony remain unclear. To address this gap in knowledge, our study focused on analyzing the transcriptome and the levels of floral volatile compounds in P. lactiflora 'Wu Hua Long Yu' at different stages of flower development. Using gas chromatography-mass spectrometry (GC-MS), we obtained eighteen major volatile compounds, with monoterpenes being the dominant components among them. Our transcriptome analysis, based on pooled sequencing data, revealed the most differentially expressed genes (DEGs) existed between stages S1 and S3 of flower development. Among these DEGs, we identified 89 functional genes associated with the synthesis of volatile monoterpenes, with 28 of these genes showing a positive correlation with the release of monoterpenes. Specifically, key regulators of monoterpene synthesis in herbaceous peony appear to be 1-deoxy-D-xylulose 5-phosphate synthase (DXS), geranyl pyrophosphate synthase (GPPS), and terpene synthase (TPS). Additionally, our study identified some transcription factors (TFs) that may be involved in the biosynthesis of monoterpenes. These discoveries offer invaluable illumination into the intricate molecular underpinnings orchestrating the generation of floral fragrances in herbaceous peonies, and they offer a foundation for further research to identify and utilize candidate gene resources for this purpose.
Collapse
Affiliation(s)
- Qian Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Min Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Lina Gu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Zihan Yang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Yuqing Li
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Jianrang Luo
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| |
Collapse
|
31
|
You S, You M, Niu D. Identification of floral volatiles from Fagopyrum esculentum that attract Cotesia vestalis with potentially better biocontrol efficacy against Plutella xylostella. PEST MANAGEMENT SCIENCE 2024; 80:763-775. [PMID: 37774133 DOI: 10.1002/ps.7808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Nectar plants provide extra nourishment for parasitoids, which can utilize floral volatiles to locate nectar-rich flowers. A promising strategy is to screen potential floral species based on the wasps' olfactory preferences for nectar sources, and to ensure their suitability for both natural enemies and targeted pests. Cotesia vestalis (Haliday) is a dominant parasitoid of the oligophagous pest Plutella xylostella, which poses a significant threat to cruciferous vegetables globally. However, the chemical cues in plant-parasitoid complexes mediating Cotesia vestalis to locate nectar food resources and the positive effect of nectar plants on the Cotesia vestalis population are poorly understood. RESULTS The results showed that Fagopyrum esculentum was the most attractive plant that attracted Cotesia vestalis, not Plutella xylostella in 44 flowering plants from 19 families. 1,2-Diethyl benzene and 1,4-diethyl benzene, identified from the floral volatiles from F. esculentum in full bloom, were found to elicit dose-dependent electrophysiological responses and attract Cotesia vestalis adults, demonstrating their potential as semiochemicals. Moreover, the age-stage, two-sex life table revealed that feeding on nectar food increased the efficacy of Cotesia vestalis adults against Plutella xylostella. CONCLUSION In summary, the findings provide insights into the chemical ecology of plant-parasitoid complexes and support the potential use of F. esculentum as insectary plants in habitat manipulation against Plutella xylostella by supplying natural nectar food for the Cotesia vestalis population. Our results suggest an attract and reward strategy based on an attractant for Cotesia vestalis to control Plutella xylostella, or the development of volatile-based artificial food for Cotesia vestalis. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
| | - Dongsheng Niu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests, Fujian Province University, Fuzhou, China
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Biohazard Monitoring and Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Hohhot, China
| |
Collapse
|
32
|
Lo MM, Benfodda Z, Molinié R, Meffre P. Volatile Organic Compounds Emitted by Flowers: Ecological Roles, Production by Plants, Extraction, and Identification. PLANTS (BASEL, SWITZERLAND) 2024; 13:417. [PMID: 38337950 PMCID: PMC10857460 DOI: 10.3390/plants13030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Volatile organic compounds (VOCs) with a large chemical diversity are emitted by plant flowers. These compounds play an important role in the ecology of plants. This review presents the different ecological roles of VOCs present in the odor plumes of plant flowers, such as pollination, defense, adaptation to their environment, and communication with other organisms. The production and accumulation sites of VOCs in plants with their spatial and temporal variations, including environmental issues, are also summarized. To evaluate the qualitative and quantitative chemical composition of VOCs, several methods of extraction and analysis were used. Headspace (HS) sampling coupled with solid phase microextraction (SPME) is now well-developed for the extraction process. Parameters are known, and several fibers are now available to optimize this extraction. Most of the time, SPME is coupled with gas chromatography-mass spectrometry (GC-MS) to determine the structural identification of the VOCs, paying attention to the use of several complementary methods for identification like the use of databases, retention indices, and, when available, comparison with authentic standards analyses. The development of the knowledge on VOCs emitted by flowers is of great importance for plant ecology in the context of environmental and climate changes.
Collapse
Affiliation(s)
- Mame-Marietou Lo
- UPR Détection, Évaluation, Gestion des Risques CHROniques et éMErgents (CHROME), UNIV. NIMES, CEDEX 1, F-30021 Nîmes, France; (M.-M.L.); (Z.B.)
| | - Zohra Benfodda
- UPR Détection, Évaluation, Gestion des Risques CHROniques et éMErgents (CHROME), UNIV. NIMES, CEDEX 1, F-30021 Nîmes, France; (M.-M.L.); (Z.B.)
| | - Roland Molinié
- UMR INRAE 1158 Transfrontaliére BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), UPJV, UFR de Pharmacie, F-80037 Amiens, France;
| | - Patrick Meffre
- UPR Détection, Évaluation, Gestion des Risques CHROniques et éMErgents (CHROME), UNIV. NIMES, CEDEX 1, F-30021 Nîmes, France; (M.-M.L.); (Z.B.)
| |
Collapse
|
33
|
Duan WY, Zhu XM, Zhang SB, Lv YY, Zhai HC, Wei S, Ma PA, Hu YS. Antifungal effects of carvacrol, the main volatile compound in Origanum vulgare L. essential oil, against Aspergillus flavus in postharvest wheat. Int J Food Microbiol 2024; 410:110514. [PMID: 38070224 DOI: 10.1016/j.ijfoodmicro.2023.110514] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/29/2023]
Abstract
Plant volatile organic compounds (VOCs) with antimicrobial activity could potentially be extremely useful fumigants to prevent and control the fungal decay of agricultural products postharvest. In this study, antifungal effects of volatile compounds in essential oils extracted from Origanum vulgare L. against Aspergillus flavus growth were investigated using transcriptomic and biochemical analyses. Carvacrol was identified as the major volatile constituent of the Origanum vulgare L. essential oil, accounting for 66.01 % of the total content. The minimum inhibitory concentrations of carvacrol were 0.071 and 0.18 μL/mL in gas-phase fumigation and liquid contact, respectively. Fumigation with 0.60 μL/mL of carvacrol could completely inhibit A. flavus proliferation in wheat grains with 20 % moisture, showing its potential as a biofumigant. Scanning electron microscopy revealed that carvacrol treatment caused morphological deformation of A. flavus mycelia, and the resulting increased electrolyte leakage indicates damage to the plasma membrane. Confocal laser scanning microscopy confirmed that the carvacrol treatment caused a decrease in mitochondrial membrane potential, reactive oxygen species accumulation, and DNA damage. Transcriptome analysis revealed that differentially expressed genes were mainly associated with fatty acid degradation, autophagy, peroxisomes, the tricarboxylic acid cycle, oxidative phosphorylation, and DNA replication in A. flavus mycelia exposed to carvacrol. Biochemical analyses of hydrogen peroxide and superoxide anion content, and catalase, superoxide dismutase, and glutathione S-transferase activities showed that carvacrol induced oxidative stress in A. flavus, which agreed with the transcriptome results. In summary, this study provides an experimental basis for the use of carvacrol as a promising biofumigant for the prevention of A. flavus contamination during postharvest grain storage.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Xi-Man Zhu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shan Wei
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Ping-An Ma
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
34
|
Li D, Liu L, Li X, Wei G, Cai Y, Sun X, Fan H. DoAP2/ERF89 activated the terpene synthase gene DoPAES in Dendrobium officinale and participated in the synthesis of β-patchoulene. PeerJ 2024; 12:e16760. [PMID: 38250724 PMCID: PMC10800100 DOI: 10.7717/peerj.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Dendrobium officinale Kimura et Migo is a tonic plant that has both ornamental and medicinal properties. Terpenoids are significant and diverse secondary metabolites in plants, and are one of the important natural active ingredients in D. officinale. The AP2/ERF gene family plays a major role in primary and secondary metabolism. However, the AP2/ERF transcription factor family has not been identified in D. officinale, and it is unclear if it is involved in the regulation of terpenoid biosynthesis. This study identified a sesquiterpene synthetase-β-patchoulene synthase (DoPAES) using transcriptome and terpenic metabolic profile analyses. A total of 111 members of the AP2/ERF family were identified through the whole genome of D. officinale. The tissue-specific expression and gene co-expression pattern of the DoAP2/ERF family members were analyzed. The results showed that the expression of DoPAES was highly correlated with the expression of DoAP2/ERF89 and DoAP2/ERF47. The yeast one-hybrid (Y1H) assays and dual-luciferase experiments demonstrated that DoAP2/ERF89 and DoAP2/ERF47 could regulate the expression of DoPAES. The transcriptional regulatory effects were examined using homologous transient expression of DoAP2/ERF89 in protocorms of D. officinale. DoAP2/ERF89 positively regulated the biosynthesis of β-patchoulene. This study showed that DoAP2/ERF89 can bind to the promoter region of DoPAES to control its expression and further regulate the biosynthesis of β-patchoulene in D. officinale. These results provide new insights on the regulation of terpenoid biosynthesis.
Collapse
Affiliation(s)
- Decong Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Lin Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaohong Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Xu Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Honghong Fan
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
35
|
Zheng Y, Chen P, Zheng P, Chen J, Sun B, Liu S. Transcriptomic Insights into the Enhanced Aroma of Guangdong Oolong Dry Tea ( Camellia sinensis cv. Yashixiang Dancong) in Winter. Foods 2024; 13:160. [PMID: 38201188 PMCID: PMC10778534 DOI: 10.3390/foods13010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Winter dry tea (WDT) exhibits a more intense and lasting aroma compared to dry tea from other seasons; however, this conclusion is solely based on sensory outcomes and lacks corroborative theoretical evidence. Our study aimed to analyze the aroma compounds in WDT and investigate the causes behind the formation of WDT's aroma by analyzing the volatile organic compounds (VOCs) in WDT, spring dry tea (SDT), winter fresh leaves (WFLs) and spring fresh leaves (SFLs) by gas chromatography-mass spectrometry (GC-MS), complemented by an analysis of gene expression pertinent to WFLs and SFLs by using transcriptomic analysis. The results revealed a significant increase in total VOCs in WDT compared to SDT, with WDT exhibiting distinct woody aromas as indicated by a higher α-muurolene content. In WFL, the contents of aldehydes and ketones were richer than those in SFL. Notably, the study found that UDP-glycosyltransferase genes in WFLs were significantly up-regulated, potentially promoting the synthesis of terpene glycosides. These terpene glycosides can release terpene aroma compounds during processing, contributing significantly to the intense and lasting aroma of WDT. Overall, this research provides valuable insights into the mechanism behind aroma formation in Guangdong oolong tea harvested during winter.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (P.C.); (P.Z.); (J.C.); (B.S.)
| |
Collapse
|
36
|
Jiang F, Liu D, Dai J, Yang T, Zhang J, Che D, Fan J. Cloning and Functional Characterization of 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase (LiMCT) Gene in Oriental Lily (Lilium 'Sorbonne'). Mol Biotechnol 2024; 66:56-67. [PMID: 37014586 DOI: 10.1007/s12033-023-00729-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
2-C-methyl-D-erythritol-phosphate cytidylyltransferase (MCT) is a key enzyme in the MEP pathway of monoterpene synthesis, catalyzing the generation of 4- (5'-pyrophosphate cytidine)-2-C-methyl-D-erythritol from 2-C-methyl-D-erythritol-4-phosphate. We used homologous cloning strategy to clone gene, LiMCT, in the MEP pathway that may be involved in the regulation of floral fragrance synthesis in the Lilium oriental hybrid 'Sorbonne.' The full-length ORF sequence was 837 bp, encoding 278 amino acids. Bioinformatics analysis showed that the relative molecular weight of LiMCT protein is 68.56 kD and the isoelectric point (pI) is 5.12. The expression pattern of LiMCT gene was found to be consistent with the accumulation sites and emission patterns of floral fragrance monoterpenes in transcriptome data (unpublished). Subcellular localization indicated that the LiMCT protein is located in chloroplasts, which is consistent with the location of MEP pathway genes functioning in plastids to produce isoprene precursors. Overexpression of LiMCT in Arabidopsis thaliana affected the expression levels of MEP and MVA pathway genes, suggesting that overexpression of the LiMCT in A. thaliana affected the metabolic flow of C5 precursors of two different terpene synthesis pathways. The expression of the monoterpene synthase AtTPS14 was elevated nearly fourfold in transgenic A. thaliana compared with the control, and the levels of carotenoids and chlorophylls, the end products of the MEP pathway, were significantly increased in the leaves at full bloom, indicating that LiMCT plays an important role in regulating monoterpene synthesis and in the synthesis of other isoprene-like precursors in transgenic A. thaliana flowers. However, the specific mechanism of LiMCT in promoting the accumulation of isoprene products of the MEP pathway and the biosynthesis of floral monoterpene volatile components needs further investigation.
Collapse
Affiliation(s)
- Fan Jiang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Dongying Liu
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jingqi Dai
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Tao Yang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Daidi Che
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jinping Fan
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
37
|
Lu Z, Wang X, Lin X, Mostafa S, Bao H, Ren S, Cui J, Jin B. Genome-Wide Identification and Characterization of Long Non-Coding RNAs Associated with Floral Scent Formation in Jasmine ( Jasminum sambac). Biomolecules 2023; 14:45. [PMID: 38254645 PMCID: PMC10812929 DOI: 10.3390/biom14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as curial regulators of diverse biological processes in plants. Jasmine (Jasminum sambac) is a world-renowned ornamental plant for its attractive and exceptional flower fragrance. However, to date, no systematic screening of lncRNAs and their regulatory roles in the production of the floral fragrance of jasmine flowers has been reported. In this study, we identified a total of 31,079 novel lncRNAs based on an analysis of strand-specific RNA-Seq data from J. sambac flowers at different stages. The lncRNAs identified in jasmine flowers exhibited distinct characteristics compared with protein-coding genes (PCGs), including lower expression levels, shorter transcript lengths, and fewer exons. Certain jasmine lncRNAs possess detectable sequence conservation with other species. Expression analysis identified 2752 differentially expressed lncRNAs (DE_lncRNAs) and 8002 DE_PCGs in flowers at the full-blooming stage. DE_lncRNAs could potentially cis- and trans-regulate PCGs, among which DE_lincRNAs and their targets showed significant opposite expression patterns. The flowers at the full-blooming stage are specifically enriched with abundant phenylpropanoids and terpenoids potentially contributed by DE_lncRNA cis-regulated PCGs. Notably, we found that many cis-regulated DE_lncRNAs may be involved in terpenoid and phenylpropanoid/benzenoid biosynthesis pathways, which potentially contribute to the production of jasmine floral scents. Our study reports numerous jasmine lncRNAs and identifies floral-scent-biosynthesis-related lncRNAs, which highlights their potential functions in regulating the floral scent formation of jasmine and lays the foundations for future molecular breeding.
Collapse
Affiliation(s)
- Zhaogeng Lu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
| | - Xinwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
| | - Xinyi Lin
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
| | - Salma Mostafa
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Bao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
| | - Shixiong Ren
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
| | - Jiawen Cui
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
| | - Biao Jin
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Z.L.)
| |
Collapse
|
38
|
Skaliter O, Bednarczyk D, Shor E, Shklarman E, Manasherova E, Aravena-Calvo J, Kerzner S, Cna’ani A, Jasinska W, Masci T, Dvir G, Edelbaum O, Rimon B, Brotman Y, Cohen H, Vainstein A. The R2R3-MYB transcription factor EVER controls the emission of petunia floral volatiles by regulating epicuticular wax biosynthesis in the petal epidermis. THE PLANT CELL 2023; 36:174-193. [PMID: 37818992 PMCID: PMC10734618 DOI: 10.1093/plcell/koad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The epidermal cells of petunia (Petunia × hybrida) flowers are the main site of volatile emission. However, the mechanisms underlying the release of volatiles into the environment are still being explored. Here, using cell-layer-specific transcriptomic analysis, reverse genetics by virus-induced gene silencing and clustered regularly interspaced short palindromic repeat (CRISPR), and metabolomics, we identified EPIDERMIS VOLATILE EMISSION REGULATOR (EVER)-a petal adaxial epidermis-specific MYB activator that affects the emission of volatiles. To generate ever knockout lines, we developed a viral-based CRISPR/Cas9 system for efficient gene editing in plants. These knockout lines, together with transient-suppression assays, revealed EVER's involvement in the repression of low-vapor-pressure volatiles. Internal pools and annotated scent-related genes involved in volatile production and emission were not affected by EVER. RNA-Seq analyses of petals of ever knockout lines and EVER-overexpressing flowers revealed enrichment in wax-related biosynthesis genes. Liquid chromatography/gas chromatography-MS analyses of petal epicuticular waxes revealed substantial reductions in wax loads in ever petals, particularly of monomers of fatty acids and wax esters. These results implicate EVER in the emission of volatiles by fine-tuning the composition of petal epicuticular waxes. We reveal a petunia MYB regulator that interlinks epicuticular wax composition and volatile emission, thus unraveling a regulatory layer in the scent-emission machinery in petunia flowers.
Collapse
Affiliation(s)
- Oded Skaliter
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dominika Bednarczyk
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ekaterina Shor
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elena Shklarman
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Javiera Aravena-Calvo
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Shane Kerzner
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alon Cna’ani
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Weronika Jasinska
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tania Masci
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Gony Dvir
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Orit Edelbaum
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ben Rimon
- Department of Ornamental Horticulture and Biotechnology, The Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
39
|
Yue Y, Zhang X, Wang L, He J, Yang S, Li X, Yu Y, Yu R, Fan Y. Identification and Characterization of Jasmonic Acid Methyltransferase Involved in the Formation of Floral Methyl Jasmonate in Hedychium coronarium. PLANTS (BASEL, SWITZERLAND) 2023; 13:8. [PMID: 38202316 PMCID: PMC10780636 DOI: 10.3390/plants13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Hedychium coronarium is a popular ornamental flower in tropical and subtropical areas due to its elegant appearance and inviting fragrance. Methyl jasmonate (MeJA) is one of the volatile compounds in the blooming flowers of H. coronarium. However, the molecular mechanism underlying floral MeJA formation is still unclear in H. coronarium. In this study, a total of 12 SABATH family genes were identified in the genome of H. coronarium, and their encoded proteins range from 366 to 387 amino acids. Phylogenetic analysis revealed seven clades in the SABATH family and a JMT ortholog clade, including two HcSABATH members. Combined with expression profiling of HcSABATH members, HcJMT1 was identified as the top candidate gene for floral MeJA biosynthesis. In vitro enzyme assays showed that HcJMT1 can catalyze the production of MeJA from jasmonic acid. Gene expression analysis indicated that HcJMT1 exhibited the highest expression in the labella and lateral petals, the major sites of MeJA emission. During flower development, the two MeJA isomers, major isomers in the products of the HcJMT1 protein, were released after anthesis, in which stage HcJMT1 displayed high expression. Our results indicated that HcJMT1 is involved in the formation of floral MeJA in H. coronarium.
Collapse
Affiliation(s)
- Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohong Zhang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Jieling He
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Shengnan Yang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
40
|
Cui J, Zhou J, Du W, Guo D, Tang X, Zhao W, Lu M, Yu K, Luo Z, Chen Y, Wang Q, Gao T, Schwab WG, Song C. Distribution of and Temporal Variation in Volatiles in Tea ( Camellia sinensis) Flowers during the Opening Stages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19682-19693. [PMID: 37988651 DOI: 10.1021/acs.jafc.3c02690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Tea (Camellia sinensis) flowers emit a large amount of volatiles that attract pollinators. However, few studies have characterized temporal and spatial variation in tea floral volatiles. To investigate the distribution of volatiles within tea flowers and their variation among opening stages, volatile components from different parts of tea flowers and different opening stages were collected by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. A total of 51 volatile compounds of eight chemical classes were identified in the tea flowers. Volatile compounds were most abundant in tea flowers of the Shuchazao cultivar. Acetophenone, 1-phenylethanol, 2-phenylethanol, and benzyl alcohol were the most abundant volatiles. Terpenes were common in the sepals, and benzoids were common in the stamens. The fatty acid derivatives were mainly distributed in the pistils and receptacles and were less abundant in the petals, sepals, and stamens. During the opening phase of tea flowers, the volatile content increased 12-fold, which mainly stemmed from the increase in benzoids. These results enhance our understanding of the formation of volatiles in tea flowers.
Collapse
Affiliation(s)
- Jilai Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, Henan 464000, People's Republic of China
| | - Jie Zhou
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, Henan 464000, People's Republic of China
| | - Wenkai Du
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Xiaoyan Tang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Wei Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Keke Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Zhengwei Luo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Yushan Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Qiang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Wilfried G Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
41
|
Liu G, Fu J, Wang L, Fang M, Zhang W, Yang M, Yang X, Xu Y, Shi L, Ma X, Wang Q, Chen H, Yu C, Yu D, Chen F, Jiang Y. Diverse O-methyltransferases catalyze the biosynthesis of floral benzenoids that repel aphids from the flowers of waterlily Nymphaea prolifera. HORTICULTURE RESEARCH 2023; 10:uhad237. [PMID: 38156285 PMCID: PMC10753166 DOI: 10.1093/hr/uhad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Nymphaea is a key genus of the ANA grade (Amborellales, Nymphaeales, and Austrobaileyales) of basal flowering plants, which serve as a key model to study the early evolution of floral traits. In this study, we comprehensively investigated the emission, biosynthesis, and biological function of the floral scent in a night-blossoming waterlily Nymphaea prolifera. The headspace volatile collection combined with GC-MS analysis showed that the floral scent of N. prolifera is predominately comprised by methylated benzenoids including anisole, veratrole, guaiacol, and methoxyanisole. Moreover, the emission of these floral benzenoids in N. prolifera exhibited temporal and spatial pattern with circadian rhythm and tissue specificity. By creating and mining transcriptomes of N. prolifera flowers, 12 oxygen methyltransferases (NpOMTs) were functionally identified. By in vitro enzymatic assay, NpOMT3, 6, and 7 could produce anisole and NpOMT5, 7, 9, produce guaiacol, whereas NpOMT3, 6, 9, 11 catalyzed the formation of veratrole. Methoxyanisole was identified as the universal product of all NpOMTs. Expression patterns of NpOMTs provided implication for their roles in the production of the respective benzenoids. Phylogenetic analysis of OMTs suggested a Nymphaea-specific expansion of the OMT family, indicating the evolution of lineage-specific functions. In bioassays, anisole, veratrole, and guaiacol in the floral benzenoids were revealed to play the critical role in repelling waterlily aphids. Overall, this study indicates that the basal flowering plant N. prolifera has evolved a diversity and complexity of OMT genes for the biosynthesis of methylated benzenoids that can repel insects from feeding the flowers. These findings provide new insights into the evolutional mechanism and ecological significance of the floral scent from early-diverged flowering plants.
Collapse
Affiliation(s)
- Guanhua Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianyu Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lingyun Wang
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Zhejiang Province 321000, China
| | - Mingya Fang
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Zhejiang Province 321000, China
| | - Wanbo Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xuemin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Lin Shi
- Provincial Key Laboratory of Characteristic Aquatic Vegetable Breeding and Cultivation, Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery), Zhejiang Province 321000, China
| | - Xiaoying Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Hui Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Cuiwei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Dongbei Yu
- Hangzhou Tianjing Aquatic Botanical Garden, Zhejiang Humanities Landscape Co., Ltd., Hangzhou 310000, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Yifan Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Greenleaf J, Holásková I, Rowen E, Gutensohn M, Turcotte R, Park YL. Arthropods Associated with Invasive Frangula alnus (Rosales: Rhamnaceae): Implications for Invasive Plant and Insect Management. INSECTS 2023; 14:913. [PMID: 38132587 PMCID: PMC10871088 DOI: 10.3390/insects14120913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
The invasive shrub glossy buckthorn (Frangula alnus) has been progressively colonizing the Northeastern United States and Southeastern Canada for more than a century. To determine the dominant arthropod orders and species associated with F. alnus, field surveys were conducted for two years across 16 plots within the Allegheny National Forest, Pennsylvania, USA. Statistical analyses were employed to assess the impact of seasonal variation on insect order richness and diversity. The comprehensive arthropod collection yielded 2845 insects and arachnids, with hemipterans comprising the majority (39.8%), followed by dipterans (22.3%) and arachnids (15.5%). Notably, 16.2% of the hemipterans collected were in the immature stages, indicating F. alnus as a host for development. The two dominant insect species of F. alnus were Psylla carpinicola (Hemiptera: Psyllidae) and Drosophila suzukii (Diptera: Drosophilidae); D. suzukii utilized F. alnus fruits for reproduction. Species richness and diversity exhibited significant variations depending on the phenology of F. alnus. The profiles of volatile compounds emitted from the leaves and flowers of F. alnus were analyzed to identify factors that potentially contribute to the attraction of herbivores and pollinators. The results of our study will advance the development of novel F. alnus management strategies leveraging the insects associated with this invasive species.
Collapse
Affiliation(s)
- Jennifer Greenleaf
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (J.G.); (E.R.); (M.G.); (R.T.)
| | - Ida Holásková
- Office of Statistics and Data Analytics, West Virginia Agricultural and Forestry Experiment Station, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA;
| | - Elizabeth Rowen
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (J.G.); (E.R.); (M.G.); (R.T.)
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (J.G.); (E.R.); (M.G.); (R.T.)
| | - Richard Turcotte
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (J.G.); (E.R.); (M.G.); (R.T.)
- State, Private and Tribal Forestry, USDA Forest Service, Morgantown, WV 26505, USA
| | - Yong-Lak Park
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; (J.G.); (E.R.); (M.G.); (R.T.)
| |
Collapse
|
43
|
Zhou C, Tian C, Wen S, Yang N, Zhang C, Zheng A, Tan J, Jiang L, Zhu C, Lai Z, Lin Y, Guo Y. Multiomics Analysis Reveals the Involvement of JsLHY in Controlling Aroma Production in Jasmine Flowers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930796 DOI: 10.1021/acs.jafc.3c05768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The Jasminum sambac flower is famous for its rich fragrance. However, our knowledge of the regulatory network for its aroma formation remains largely unknown and therefore needs further study. To this end, an integrated analysis of the volatilomics and transcriptomics of jasmine flowers at different flowering stages was performed. The results revealed many candidate transcription factors (TFs) may be involved in regulating the aroma formation of jasmine, among which the MYB-related TF LATE ELONGATED HYPOCOTYL (JsLHY) was identified as a hub gene. Using the DNA affinity purification sequencing method, dual-luciferase reporter, and yeast one-hybrid assays, we demonstrate that JsLHY can bind the gene promoter regions of six aroma-related structural genes (JsBEAT1, JsTPS34, JsCNL6, JsBPBT, JsAAAT5, and Js4CL7) and directly promote their expression. In addition, suppressing JsLHY expression decreased both the expression of JsLHY-bound genes and the content of related VOCs. The present study reveals how JsLHY participates in jasmine aroma formation.
Collapse
Affiliation(s)
- Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengjing Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Niannian Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anru Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayao Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lele Jiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Zhu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, Quanzhou 362400, China
| |
Collapse
|
44
|
Kumari A, Kumar V, Ovadia R, Oren-Shamir M. Phenylalanine in motion: A tale of an essential molecule with many faces. Biotechnol Adv 2023; 68:108246. [PMID: 37652145 DOI: 10.1016/j.biotechadv.2023.108246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Phenylalanine has a unique role in plants as a source of a wide range of specialized metabolites, named phenylpropanoids that contribute to the adjustment of plants to changing developmental and environmental conditions. The profile of these metabolites differs between plants and plant organs. Some of the prominent phenylpropanoids include anthocyanins, phenolic acids, flavonoids, tannins, stilbenes, lignins, glucosinolates and benzenoid phenylpropanoid volatiles. Phenylalanine biosynthesis, leading to increased phenylpropanoid levels, is induced under stress. However, high availability of phenylalanine in plants under non-stressed conditions can be achieved either by genetically engineering plants to overproduce phenylalanine, or by external treatment of whole plants or detached plant organs with phenylalanine solutions. The objective of this review is to portray the many effects that increased phenylalanine availability has in plants under non-stressed conditions, focusing mainly on external applications. These applications include spraying and drenching whole plants with phenylalanine solutions, postharvest treatments by dipping fruit and cut flower stems, and addition of phenylalanine to cell suspensions. The results of these treatments include increased fragrance in flowers, increased aroma and pigmentation in fruit, increased production of health promoting metabolites in plant cell cultures, and increased resistance of plants, pre- and post-harvest, to a wide variety of pathogens. These effects suggest that plants can very efficiently uptake phenylalanine from their roots, leaves, flowers and fruits, translocate it from one organ to the other and between cell compartments, and metabolize it into phenylpropanoids. The mechanisms by which Phe treatment increases plant resistance to pathogens reveal new roles of phenylpropanoids in induction of genes related to the plant immune system. The simplicity of treatments with phenylalanine open many possibilities for industrial use. Many of the phenylalanine-treatment effects on increased resistance to plant pathogens have also been successful in commercial field trials.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel.
| | - Varun Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel.
| | - Rinat Ovadia
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel.
| | - Michal Oren-Shamir
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel.
| |
Collapse
|
45
|
Zeng H, Chen M, Zheng T, Tang Q, Xu H. Metabolomics Analysis Reveals the Accumulation Patterns of Flavonoids and Volatile Compounds in Camellia oleifera Petals with Different Color. Molecules 2023; 28:7248. [PMID: 37959668 PMCID: PMC10650325 DOI: 10.3390/molecules28217248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
To systematically and comprehensively investigate the metabolic characteristics of coloring substances and floral aroma substances in Camellia oleifera petals with different colors, ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) and headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics methods were applied to determine the metabolic profiles of white, candy-pink and dark-red petals. The results revealed that 270 volatile organic compounds were detected, mainly terpenoids, heterocyclic, esters, hydrocarbons, aldehydes, and alcohols, in which phenylethyl alcohol, lilac alcohol, and butanoic acid, 1-methylhexyl ester, hotrienol, alpha-terpineol and 7-Octen-4-ol, 2-methyl-6-methylene-, (S)-, butanoic acid, 2-methyl-, 2-methylbutyl ester, 2,4-Octadienal, (E,E)- could act as the floral scent compounds. A total of 372 flavonoid compounds were identified, and luteolin, kaempferol, cyanidin and peonidin derivatives were considered as the main coloring substances for candy-pink and dark-red petal coloration. In conclusion, this study intuitively and quantitatively exhibited the variations in flower color and floral scent of C. oleifera petal with different colors caused by changes in variations of flavonoids and volatile organic compound composition, and provided useful data for improving the sensory quality and breeding of C. oleifera petals.
Collapse
Affiliation(s)
| | | | - Tao Zheng
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (H.Z.); (M.C.); (Q.T.); (H.X.)
| | | | | |
Collapse
|
46
|
Cai K, Zhao Q, Li H, Zhang Q, Li Y, Han R, Jiang T, Pei X, Zhang L, Zhao X. Deciphering aroma formation during flowering in nectar tree ( Tilia amurensis): insights from integrated metabolome and transcriptome analysis. FORESTRY RESEARCH 2023; 3:24. [PMID: 39526254 PMCID: PMC11524258 DOI: 10.48130/fr-2023-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2024]
Abstract
Tilia amurensis is a significant ornamental and economically-important tree species, known for its fragrant flowers, which are a source of high-quality honey production. However, the regulatory mechanisms involved in aroma formation during flower development in T. amurensis remains limited. The current study revealed the detection of plant hormones at every assessed stage of flower development. Among them, auxin and brassinosteroid contents significantly increased at stage 3, potentially regulating crucial functions during T. amurensis flower development. Moreover, the study examined the levels and change patterns of secondary metabolites and employed a combination of transcriptomics and metabolomics to comprehensively assess essential structural genes implicated in the biosynthesis pathways of terpenoid and phenylpropanoid. A comprehensive set of 89,526 differentially expressed genes (DEGs) was uncovered, including candidate structural genes ACAT, HDS, TPS, 4CL, CAD, and CCOAMT, which are specifically involved in the biosynthesis of terpenoids and phenylpropanoids. Maslinic acid, 2α,3α-dihydroxyursolic acid, and betulinic acid were accumulated in the terpenoid biosynthesis pathway. In contrast, metabolites with differential accumulation, such as phenylalanine, coniferyl alcohol, and cinnamic acid, were specifically enriched in the phenylpropanoid biosynthesis pathway. The C2H2, MYB, and NAC transcription factor families are crucially associated with the terpenoid and phenylpropanoid biosynthesis pathways. Two transcription factors, C2H2-17 and MYB-24, exhibited strong co-expression with structural genes in two networks, and were identified as central regulatory factors. These findings establish a solid groundwork for elucidating the generation of floral fragrance and provide comprehensive genetic and metabolic information for further studies on T. amurensis.
Collapse
Affiliation(s)
- Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qiushuang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hanxi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qinhui Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaona Pei
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Lina Zhang
- School of information technology, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
47
|
Piombino P, Pittari E, Genovese A, Bellincontro A, Failla O, Moio L. Effects of Leaf Removal on Free and Glycoconjugate Aromas of Skins and Pulps of Two Italian Red Grapevine Varieties. Foods 2023; 12:3661. [PMID: 37835314 PMCID: PMC10572986 DOI: 10.3390/foods12193661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Leaf removal is a cultural practice mainly aimed at improving cluster zone microclimates and impacting primary and secondary metabolites, such as volatiles. This research aimed to assess the impact of defoliation on free and glycosylated aromas of a neutral ('Nebbiolo') and a semi-aromatic ('Aleatico') red variety. Defoliation was performed at fruit set (BBCH 71) and, for 'Nebbiolo', also at berries touch (BBCH 81) phenological stages. Skins and pulps were separately analyzed by Solid Phase Extraction-Gas Chromatography/Mass Spectrometry. Results showed that the response to defoliation was variety-dependent. For 'Nebbiolo', especially when performed at the berries' touch stage, defoliation had a significant effect on the accumulation of free volatiles and glycosidic precursors. Differently, free and bound 'Aleatico' volatiles were less impacted by defoliation. Interestingly, in both grapevine varieties, defoliation significantly enhanced the accumulation of aroma precursors in grapes' skins, which is of particular relevance for red wine production and their aging potential. Moreover, results could be helpful for the management of grape quality, as defoliation is currently considered as a strategy to address climate change issues.
Collapse
Affiliation(s)
- Paola Piombino
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, 83100 Avellino, Italy; (E.P.); (L.M.)
| | - Elisabetta Pittari
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, 83100 Avellino, Italy; (E.P.); (L.M.)
| | - Alessandro Genovese
- Division of Food Science and Technology, Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Andrea Bellincontro
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), University of Tuscia, 01100 Viterbo, Italy;
| | - Osvaldo Failla
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy;
| | - Luigi Moio
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, 83100 Avellino, Italy; (E.P.); (L.M.)
| |
Collapse
|
48
|
Yue Y, Wang L, Li M, Liu F, Yin J, Huang L, Zhou B, Li X, Yu Y, Chen F, Yu R, Fan Y. A BAHD acyltransferase contributes to the biosynthesis of both ethyl benzoate and methyl benzoate in the flowers of Lilium oriental hybrid 'Siberia'. FRONTIERS IN PLANT SCIENCE 2023; 14:1275960. [PMID: 37841617 PMCID: PMC10570747 DOI: 10.3389/fpls.2023.1275960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Lily is a popular flower worldwide due to its elegant appearance and pleasant fragrance. Floral volatiles of lily are predominated by monoterpenes and benzenoids. While a number of genes for monoterpene biosynthesis have been characterized, the molecular mechanism underlying floral benzenoid formation in lily remains unclear. Here, we report on the identification and characterization of a novel BAHD acyltransferase gene that contributes to the biosynthesis of two related floral scent benzoate esters, ethyl benzoate and methyl benzoate, in the scented Lilium oriental hybrid 'Siberia'. The emission of both methyl benzoate and ethyl benzoate in L. 'Siberia' was found to be tepal-specific, floral development-regulated and rhythmic. Through transcriptome profiling and bioinformatic analysis, a BAHD acyltransferase gene designated LoAAT1 was identified as the top candidate gene for the production of ethyl benzoate. In vitro enzyme assays and substrate feeding assays provide substantial evidence that LoAAT1 is responsible for the biosynthesis of ethyl benzoate. It was interesting to note that in in vitro enzyme assay, LoAAT1 can also catalyze the formation of methyl benzoate, which is typically formed by the action of benzoic acid methyltransferase (BAMT). The lack of an expressed putative BAMT gene in the flower transcriptome of L. 'Siberia', together with biochemical and expression evidence, led us to conclude that LoAAT1 is also responsible for, or at least contributes to, the biosynthesis of the floral scent compound methyl benzoate. This is the first report that a member of the plant BAHD acyltransferase family contributes to the production of both ethyl benzoate and methyl benzoate, presenting a new mechanism for the biosynthesis of benzoate esters.
Collapse
Affiliation(s)
- Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Manyi Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Fang Liu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Junle Yin
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Lijun Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Bin Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| |
Collapse
|
49
|
Charoimek N, Phusuwan S, Petcharak C, Huanhong K, Prasad SK, Junmahasathien T, Khemacheewakul J, Sommano SR, Sunanta P. Do Abiotic Stresses Affect the Aroma of Damask Roses? PLANTS (BASEL, SWITZERLAND) 2023; 12:3428. [PMID: 37836168 PMCID: PMC10574685 DOI: 10.3390/plants12193428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Roses are popular ornamental plants all over the world. Rosa damascena Mill., also known as the damask rose, is a well-known scented rose species cultivated to produce essential oil. The essential oils obtained are high in volatile organic compounds (VOCs), which are in demand across the pharmaceutical, food, perfume, and cosmetic industries. Citronellol, nonadecane, heneicosane, caryophyllene, geraniol, nerol, linalool, and phenyl ethyl acetate are the most important components of the rose essential oil. Abiotic factors, including as environmental stress and stress generated by agricultural practises, frequently exert a selective impact on particular floral characteristics, hence influencing the overall quality and quantity of rose products. Additionally, it has been observed that the existence of stress exerts a notable impact on the chemical composition and abundance of aromatic compounds present in roses. Therefore, understanding the factors that affect the biosynthesis of VOCs, especially those representing the aroma and scent of rose, as a response to abiotic stress is important. This review provides comprehensive information on plant taxonomy, an overview of the volatolomics involving aromatic profiles, and describes the influence of abiotic stresses on the biosynthesis of the VOCs in damask rose.
Collapse
Affiliation(s)
- Nutthawut Charoimek
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.C.); (T.J.)
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
| | - Sirinun Phusuwan
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (C.P.)
| | - Chaleerak Petcharak
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (C.P.)
| | - Kiattisak Huanhong
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Shashanka K. Prasad
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Taepin Junmahasathien
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.C.); (T.J.)
| | - Julaluk Khemacheewakul
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Division of Food Science and Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Piyachat Sunanta
- Plant Bioactive Compound Laboratory (BAC), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.H.); (S.K.P.); (S.R.S.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
50
|
Wu Y, Li X, Zhang W, Wang L, Li B, Wang S. Aroma profiling of Shine Muscat grape provides detailed insights into the regulatory effect of gibberellic acid and N-(2-chloro-4-pyridinyl)-N-phenylurea applications on aroma quality. Food Res Int 2023; 170:112950. [PMID: 37316003 DOI: 10.1016/j.foodres.2023.112950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023]
Abstract
As plant growth regulators, gibberellic acid (GA3) and CPPU [forchlorfenuron, N-(2-chloro-4-pyridinyl)-N-phenylurea] are widely used in the production of table grapes. However, how these compounds regulate the aroma quality remains unclear. By measuring free and bound aroma compounds in Shine Muscat grapes from eight groups during whole growth period, GA3 and CPPU were both found to significantly promote the synthesis of acyclic monoterpenes and (E)-2-hexenal, and double applications were found to further increase the aroma compound contents. On the other hand, GA3 and CPPU obviously promoted the expansion of berries, and the effect of promoting the synthesis of aroma compounds was largely diminished. In conclusion, free compound concentrations in berry were almost unaffected by GA3 and CPPU. From the perspective of aroma compounds, a highly concerted interplay was observed for terpenes, and bound compounds exhibited higher correlations than those of free compounds. In addition, 17 compounds could be used as markers that indicated the developmental timing of berries.
Collapse
Affiliation(s)
- Yusen Wu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiujie Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenwen Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Bo Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|