1
|
Ma F, Zhang G, Zhang J, Luo X, Liao L, Wang H, Tang X, Yi Z. Isoprenoid emissions from Schima superba and Cunninghamia lanceolata: Their responses to elevated temperature by two warming facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172669. [PMID: 38677435 DOI: 10.1016/j.scitotenv.2024.172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Isoprenoids (including isoprene (ISO) and monoterpenes (MTs)) are the majority of biogenic volatile organic compounds (BVOCs) which are important carbon-containing secondary metabolites biosynthesized by organisms, especially plant in terrestrial ecosystem. Results of the warming effects on isoprenoid emissions vary within species and warming facilities, and thus conclusions remain controversial. In this study, two typical subtropical tree species seedlings of Schima superba and Cunninghamia lanceolata were cultivated under three conditions, namely no warming (CK) and two warming facilities (with infrared radiators (IR) and heating wires (HW)) in open top chamber (OTC), and the isoprenoid emissions were measured with preconcentor-GC-MS system after warming for one, two and four months. The results showed that the isoprenoid emissions from S. superba and C. lanceolata exhibited uniformity in response to two warming facilities. IR and HW both stimulated isoprenoid emissions in two plants after one month of treatment, with increased ratios of 16.3 % and 72.5 % for S. superba, and 2.47 and 5.96 times for C. lanceolata. However, the emissions were suppressed after four months, with more pronounced effect for HW. The variation in isoprenoid emissions was primarily associated with the levels of Pn, Tr, monoterpene synthase (MTPS) activity. C. lanceolata predominantly released MTs (mainly α-pinene, α-terpene, γ-terpene, and limonene), with 39.7 % to 99.6 % of the total isoprenoid but ISO was only a very minor constituent. For S. superba, MTs constituted 24.7 % to 96.1 % of total isoprenoid. It is noteworthy that HW generated a greater disturbance to physiology activity in plants. Our study provided more comprehensive and more convincing support for integrating temperature-elevation experiments of different ecosystems and assessing response and adaptation of forest carbon cycle to global warming.
Collapse
Affiliation(s)
- Fangyuan Ma
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Geye Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Junchuan Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xinyue Luo
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lulu Liao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, Guangdong 511443, China
| | - Xinghao Tang
- Fujian Academy of Forestry Science, Fuzhou 350012, China
| | - Zhigang Yi
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
2
|
Cai Y, Xu H, Xu C, Zuo Z. Adjusting function of camphor on primary metabolism in Cinnamomum camphora stressed by high temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111956. [PMID: 38101618 DOI: 10.1016/j.plantsci.2023.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Cinnamomum camphora has great economic value for its wide utilization in traditional medicine and furniture material, and releases lots of monoterpenes to tolerate high temperature. To uncover the adjusting function of monoterpenes on primary metabolism and promoting their utilization as anti-high temperature agents, the photosynthetic capacities, primary metabolite levels, cell ultrastructure and associated gene expression were surveyed in C. camphora when it was blocked monoterpene biosynthesis with fosmidomycin (Fos) and fumigated with camphor (a typical monoterpene in the plant) under high temperature (Fos+38 °C+camphor). Compared with the control (28 °C), high temperature at 38 °C decreased the starch content and starch grain size, and increased the fructose, glucose, sucrose and soluble sugar content. Meanwhile, high temperature also raised the lipid content, with the increase of lipid droplet size and numbers. These variations were further intensified in Fos+ 38 °C treatment. Compared with Fos+ 38 °C treatment, Fos+ 38 °C+camphor treatment improved the starch accumulation by promoting 4 gene expression in starch biosynthesis, and lowered the sugar content by suppressing 3 gene expression in pentose phosphate pathway and promoting 15 gene expression in glycolysis and tricarboxylic acid cycle. Meanwhile, Fos+ 38 °C+camphor treatment also lowered the lipid content, which may be caused by the down-regulation of 2 genes in fatty acid formation and up-regulation of 4 genes in fatty acid decomposition. Although Fos+ 38 °C+camphor treatment improved the photosynthetic capacities in contrast to Fos+ 38 °C treatment, it cannot explain the variations of these primary metabolite levels. Therefore, camphor should adjust related gene expression to maintain the primary metabolism in C. camphora tolerating high temperature.
Collapse
Affiliation(s)
- Yuyan Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China; Shanghai Baoshan District Forestry Station, Shanghai 200940, China
| | - Haozhe Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
| | - Chenyi Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Cai Y, Xu C, Zheng T, Zuo Z. Thermal protection function of camphor on Cinnamomum camphora cell membrane by acting as a signaling molecule. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107672. [PMID: 37004435 DOI: 10.1016/j.plaphy.2023.107672] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/19/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Isoprenoids serve important functions in protecting plant membranes against high temperature. Cinnamomum camphora is an excellent economic tree species, and releases plenty of monoterpenes. To uncover the protective mechanism of monoterpenes on the membrane system for promoting their development and utilization as anti-high temperature agents, the membrane permeability, cell ultrastructure, membrane lipid variations and related gene expression were investigated in C. camphora fumigated with camphor, one of the main monoterpenes in the plant, after fosmidomycin (Fos) blocking the monoterpene biosynthesis under high temperature (Fos+38 °C + C). High temperature at 38 °C caused the rupture of plasma as well as chloroplast and mitochondrion membranes, deformation of chloroplasts and mitochondria, and electrolyte leakage in C. camphora. High temperature with Fos treatment (Fos+38 °C) aggravated the damage, while camphor fumigation (Fos+38 °C + C) showed alleviating effects. High temperature at 38 °C disturbed the membrane lipid equilibrium by reducing the levels of 14 phosphatidylcholine, 8 phosphatidylglycerol and 6 phosphatidylethanolamine molecules, and increasing the levels of 8 phosphatidic acid, 4 diacylglycerol, 5 phosphatidylinositol, 16 sphingomyelin and 5 ceramide phosphoethanolamine molecules. Fos+38 °C treatment primarily exhibited intensifying effects on the disturbance, while these membrane lipid levels in Fos+38 °C + C5 (5 μM camphor) treatment exhibited variation tendencies to the control at 28 °C. This should result from the expression alterations of the genes related with phospholipid biosynthesis, fatty acid metabolism, and sphingolipid metabolism. It can be speculated that camphor can maintain membrane lipid stabilization in C. camphora under high temperature by acting as a signaling molecule.
Collapse
Affiliation(s)
- Yuyan Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chenyi Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
4
|
Fang J, Tan X, Yang Z, Shen W, Peñuelas J. Contrasting terpene emissions from canopy and understory vegetation in response to increases in nitrogen deposition and seasonal changes in precipitation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120800. [PMID: 36473640 DOI: 10.1016/j.envpol.2022.120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Given global change and shifts in climate are expected to increase BVOC emissions, the quantification of links between environmental conditions, plant physiology, and terpene emission dynamics is required to improve model predictions of ecosystem responses to increasing nitrogen deposition and changes in precipitation regimes. Here, we conducted a two-factor field experiment in sub-tropical forest plots to determine effects of N addition (N), precipitation change (PC), and NP (N and PC combined treatment) on wet and dry season terpene emissions and leaf photosynthetic parameters from canopy and understory species. Changes of β-ocimene and sabinene under PC and NP in the wet season (0.4-5.6-fold change) were the largest contributor to changes in total terpene emissions. In the dry season, the standardized total terpene emission rate was enhanced by 144.9% under N addition and 185.7% under PC for the understory species, while the total terpene emission rate was lower under NP than N addition and PC, indicating that N addition tended to moderate increases in PC-induced understory total terpene emissions. In the wet season, the total terpene emission rate under N and PC was close to ambient conditions for the canopy species, while the total terpene emission rate was enhanced by 54.6% under NP, indicating that N and PC combined treatment had an additive effect on canopy total terpene emissions. Total terpene emission rates increased with rates of net leaf photosynthesis (Pn) and transpiration (Tr) and there was a decoupling between terpene emission rates and Pn under NP, indicating that complex effects between PC and N decreased the regularity of single-factor effects. We recommend that N and PC interaction effects are included in models for the prediction of terpene emissions, particularly from canopy vegetation during the wet season as a major source of forest ecosystem terpene emissions.
Collapse
Affiliation(s)
- Jianbo Fang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangping Tan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ziyin Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Josep Peñuelas
- CREAF, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Catalonia, Spain; CSIC, Global Ecology Unit CREAF - CSIC-UAB, Bellaterra, Barcelona, 08193, Catalonia, Spain
| |
Collapse
|
5
|
Xu C, Wang B, Luo Q, Ma Y, Zheng T, Wang Y, Cai Y, Zuo Z. The uppermost monoterpenes improving Cinnamomum camphora thermotolerance by serving signaling functions. FRONTIERS IN PLANT SCIENCE 2022; 13:1072931. [PMID: 36589079 PMCID: PMC9800025 DOI: 10.3389/fpls.2022.1072931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/28/2022] [Indexed: 05/23/2023]
Abstract
Terpenes serve important functions in enhancing plant thermotolerance. Cinnamomum camphora mainly has eucalyptol (EuL), camphor (CmR), linalool (LnL) and borneol (BeL) chemotypes basing on the uppermost monoterpenes. To reveal the thermotolerance mechanisms of these uppermost monoterpenes (eucalyptol, camphor, linalool, and borneol) in C. camphora, we surveyed the ROS metabolism and photosynthesis in the 4 chemotypes fumigated with the corresponding uppermost monoterpene after fosmidomycin (Fos) inhibiting monoterpene synthesis under high temperature at 38°C (Fos+38°C+monoterpene), and investigated the related gene expression in EuL and CmR. Meanwhile, the thermotolerance differences among the 4 uppermost monoterpenes were analyzed. In contrast to normal temperature (28°C), ROS levels and antioxidant enzyme activities in the 4 chemotypes increased under 38°C, and further increased in the treatment with Fos inhibiting monoterpene synthesis at 38°C (Fos+38°C), which may be caused by the alterations in expression of the genes related with non-enzymatic and enzymatic antioxidant formation according to the analyses in EuL and CmR. Compared with Fos+38°C treatment, Fos+38°C+monoterpene treatments lowered ROS levels and antioxidant enzyme activities for the increased non-enzymatic antioxidant gene expression and decreased enzymatic antioxidant gene expression, respectively. High temperature at 38°C reduced the chlorophyll and carotenoid content as well as photosynthetic abilities, which may result from the declined expression of the genes associated with photosynthetic pigment biosynthesis, light reaction, and carbon fixation. Fos+38°C treatment aggravated the reduction. In contrast to Fos+38°C treatment, Fos+38°C+monoterpene treatments increased photosynthetic pigment content and improved photosynthetic abilities by up-regulating related gene expression. Among the 4 uppermost monoterpenes, camphor showed strong abilities in lowering ROS and maintaining photosynthesis, while eucalyptol showed weak abilities. This was consistent with the recovery effects of the gene expression in the treatments with camphor and eucalyptol fumigation. Therefore, the uppermost monoterpenes can enhance C. camphora thermotolerance as signaling molecules, and may have differences in the signaling functions.
Collapse
Affiliation(s)
- Chenyi Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Bin Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Qingyun Luo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Yuandan Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Yingying Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Yuyan Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Chiral monoterpenes reveal forest emission mechanisms and drought responses. Nature 2022; 609:307-312. [PMID: 36071188 PMCID: PMC9452298 DOI: 10.1038/s41586-022-05020-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 06/23/2022] [Indexed: 11/08/2022]
Abstract
Monoterpenes (C10H16) are emitted in large quantities by vegetation to the atmosphere (>100 TgC year-1), where they readily react with hydroxyl radicals and ozone to form new particles and, hence, clouds, affecting the Earth's radiative budget and, thereby, climate change1-3. Although most monoterpenes exist in two chiral mirror-image forms termed enantiomers, these (+) and (-) forms are rarely distinguished in measurement or modelling studies4-6. Therefore, the individual formation pathways of monoterpene enantiomers in plants and their ecological functions are poorly understood. Here we present enantiomerically separated atmospheric monoterpene and isoprene data from an enclosed tropical rainforest ecosystem in the absence of ultraviolet light and atmospheric oxidation chemistry, during a four-month controlled drought and rewetting experiment7. Surprisingly, the emitted enantiomers showed distinct diel emission peaks, which responded differently to progressive drying. Isotopic labelling established that vegetation emitted mainly de novo-synthesized (-)-α-pinene, whereas (+)-α-pinene was emitted from storage pools. As drought progressed, the source of (-)-α-pinene emissions shifted to storage pools, favouring cloud formation. Pre-drought mixing ratios of both α-pinene enantiomers correlated better with other monoterpenes than with each other, indicating different enzymatic controls. These results show that enantiomeric distribution is key to understanding the underlying processes driving monoterpene emissions from forest ecosystems and predicting atmospheric feedbacks in response to climate change.
Collapse
|
7
|
Gomes Alves E, Taylor T, Robin M, Pinheiro Oliveira D, Schietti J, Duvoisin Júnior S, Zannoni N, Williams J, Hartmann C, Gonçalves JFC, Schöngart J, Wittmann F, Piedade MTF. Seasonal shifts in isoprenoid emission composition from three hyperdominant tree species in central Amazonia. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:721-733. [PMID: 35357064 DOI: 10.1111/plb.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Volatile isoprenoids regulate plant performance and atmospheric processes, and Amazon forests comprise the dominant source to the global atmosphere. Still, there is a poor understanding of how isoprenoid emission capacities vary in response to ecophysiological and environmental controls in Amazonian ecosystems. We measured isoprenoid emission capacities of three Amazonian hyperdominant tree species - Protium hebetatum, Eschweilera grandiflora, Eschweilera coriacea - across seasons and along a topographic and edaphic environmental gradient in the central Amazon. From wet to dry season, both photosynthesis and isoprene emission capacities strongly declined, while emissions increased among the heavier isoprenoids: monoterpenes and sesquiterpenes. Plasticity across habitats was most evident in P. hebetatum, which emitted sesquiterpenes only in the dry season, at rates that significantly increased along the hydro-topographic gradient from white sands (shallow root water access) to uplands (deep water table). We suggest that emission composition shifts are part of a plastic response to increasing abiotic stress (e.g. heat and drought) and reduced photosynthetic supply of substrates for isoprenoid synthesis. Our comprehensive measurements suggest that more emphasis should be placed on other isoprenoids, besides isoprene, in the context of abiotic stress responses. Shifting emission compositions have implications for atmospheric responses because of the strong variation in reactivity among isoprenoid compounds.
Collapse
Affiliation(s)
- E Gomes Alves
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
- Climate and Environment Department, National Institute of Amazonian Research, Manaus, Brazil
| | - T Taylor
- Biology Department, University of Miami, Coral Gables, FL, USA
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - M Robin
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
- Ecology Department, National Institute of Amazonian Research, Manaus, Brazil
| | - D Pinheiro Oliveira
- Climate and Environment Department, National Institute of Amazonian Research, Manaus, Brazil
| | - J Schietti
- Ecology Department, National Institute of Amazonian Research, Manaus, Brazil
- Biology Department, Federal University of Amazonas, Manaus, Brazil
| | | | - N Zannoni
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - J Williams
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - C Hartmann
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - J F C Gonçalves
- Coordination of Environmental Dynamics, National Institute of Amazonian Research, Manaus, Brazil
| | - J Schöngart
- Coordination of Environmental Dynamics, National Institute of Amazonian Research, Manaus, Brazil
| | - F Wittmann
- Department of Wetland Ecology, Karlsruhe Institute of Technology, Rastatt, Germany
| | - M T F Piedade
- Coordination of Environmental Dynamics, National Institute of Amazonian Research, Manaus, Brazil
| |
Collapse
|
8
|
Chen YJ, Huang YL, Chen YH, Chang ST, Yeh TF. Biogenic Volatile Organic Compounds and Protein Expressions of Chamaecyparis formosensis and Chamaecyparis obtusa var. formosana Leaves under Different Light Intensities and Temperatures. PLANTS 2022; 11:plants11121535. [PMID: 35736687 PMCID: PMC9231097 DOI: 10.3390/plants11121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Both Chamaecyparis formosensis and C. obtusa var. formosana are representative cypresses of high economic value in Taiwan, the southernmost subtropical region where cypresses are found. Both species show differences of their habitats. To find out the effects of environmental factors on the CO2 assimilation rate and the biogenic volatile organic compound (BVOC) emission of both species, saplings from both species were grown under different light intensity and temperature regimes. The results indicated that the net CO2 assimilation rates and total BVOC emission rates of both species increased with increasing light intensity. C. formosensis showed a higher magnitude of change, but C. obtusa var. formosana had considerably increased sesquiterpenoid and diterpenoid emission in BVOC under high light intensity. Both species grown under higher temperatures had significantly lower BVOC emission rates. Proteomic analyses revealed that compared to C. formosensis saplings, C. obtusa var. formosana saplings had less differentially expressed proteins in terms of protein species and fold changes in response to the growth conditions. These proteins participated mainly in photosynthesis, carbon metabolism, amino acid and protein processing, signal transduction, and stress mechanisms. These proteins might be the major regulatory factors affecting BVOC emission of these two species under different environments.
Collapse
Affiliation(s)
- Ying-Ju Chen
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.C.); (Y.-L.H.); (Y.-H.C.)
- Division of Forest Chemistry, Taiwan Forestry Research Institute, Taipei 10070, Taiwan
| | - Ya-Lun Huang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.C.); (Y.-L.H.); (Y.-H.C.)
| | - Yu-Han Chen
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.C.); (Y.-L.H.); (Y.-H.C.)
| | - Shang-Tzen Chang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.C.); (Y.-L.H.); (Y.-H.C.)
- Correspondence: (S.-T.C.); (T.-F.Y.)
| | - Ting-Feng Yeh
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.C.); (Y.-L.H.); (Y.-H.C.)
- Correspondence: (S.-T.C.); (T.-F.Y.)
| |
Collapse
|
9
|
Mu Z, Llusià J, Zeng J, Zhang Y, Asensio D, Yang K, Yi Z, Wang X, Peñuelas J. An Overview of the Isoprenoid Emissions From Tropical Plant Species. FRONTIERS IN PLANT SCIENCE 2022; 13:833030. [PMID: 35668805 PMCID: PMC9163954 DOI: 10.3389/fpls.2022.833030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Terrestrial vegetation is the largest contributor of isoprenoids (a group of biogenic volatile organic compounds (BVOCs)) to the atmosphere. BVOC emission data comes mostly from temperate regions, and less is known about BVOC emissions from tropical vegetation, even though it is estimated to be responsible for >70% of BVOC emissions. This review summarizes the available data and our current understanding of isoprenoid emissions from tropical plant species and the spatial and temporal variation in emissions, which are strongly species-specific and regionally variable. Emission models lacking foliar level data for tropical species need to revise their parameters to account for seasonal and diurnal variation due to differences in dependencies on temperature and light of emissions from plants in other ecosystems. More experimental information and determining how emission capacity varies during foliar development are warranted to account for seasonal variations more explicitly.
Collapse
Affiliation(s)
- Zhaobin Mu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Joan Llusià
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Jianqiang Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Dolores Asensio
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Kaijun Yang
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Zhigang Yi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| |
Collapse
|
10
|
Yang W, Cao J, Wu Y, Kong F, Li L. Review on plant terpenoid emissions worldwide and in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147454. [PMID: 34000546 DOI: 10.1016/j.scitotenv.2021.147454] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 05/21/2023]
Abstract
Biogenic volatile organic compounds (BVOCs), particularly terpenoids, can significantly drive the formation of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere, as well as directly or indirectly affect global climate change. Understanding their emission mechanisms and the current progress in emission measurements and estimations are essential for the accurate determination of emission characteristics, as well as for evaluating their roles in atmospheric chemistry and climate change. This review summarizes the mechanisms of terpenoid synthesis and release, biotic and abiotic factors affecting their emissions, development of emission observation techniques, and emission estimations from hundreds of published papers. We provide a review of the main observations and estimations in China, which contributes a significant proportion to the total global BVOC emissions. The review suggests the need for further research on the comprehensive effects of environmental factors on terpenoid emissions, especially soil moisture and nitrogen content, which should be quantified in emission models to improve the accuracy of estimation. In China, it is necessary to conduct more accurate measurements for local plants in different regions using the dynamic enclosure technique to establish an accurate local emission rate database for dominant tree species. This will help improve the accuracy of both national and global emission inventories. This review provides a comprehensive understanding of terpenoid emissions as well as prospects for detailed research to accurately describe terpenoid emission characteristics worldwide and in China.
Collapse
Affiliation(s)
- Weizhen Yang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Cao
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
11
|
Jamloki A, Bhattacharyya M, Nautiyal MC, Patni B. Elucidating the relevance of high temperature and elevated CO 2 in plant secondary metabolites (PSMs) production. Heliyon 2021; 7:e07709. [PMID: 34430728 PMCID: PMC8371220 DOI: 10.1016/j.heliyon.2021.e07709] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 11/15/2022] Open
Abstract
Plant secondary metabolites (PSMs) are plant products that are discontinuously distributed throughout the plant kingdom. These secondary compounds have various chemical groups and are named according to their chemical constituents. For their ability to defend biotic and abiotic stresses they are considered as plants' defensive compounds. These metabolites take part in plant protection from insects, herbivores, and extreme environmental conditions. They are indirectly involved in plants’ growth and development. Secondary metabolites are also used by people in the form of medicines, pharmaceuticals, agrochemicals, colors, fragrances, flavorings, food additives, biopesticides, and drugs development. However, the increase in atmospheric temperature by several anthropogenic activities majorly by the combustion of hydrocarbons is a great issue now. On the other hand, climate change leaves an impact on the quality and quantity of plant secondary metabolites. It is measured that several greenhouse gases (GHGs) are present in the atmosphere, like Chlorofluorocarbons (CFCs), nitrous oxides (NOx), Carbon dioxide (CO2), Methane (CH4) and Ozone (O3), etc. CO2, the major greenhouse gas is essential for photosynthesis. On the other hand, CO2 plays a significant role in the up-regulation of atmospheric temperature. Plants produce various types of primary metabolites such as carbohydrates, proteins, fats, membrane lipids, nucleic acids, and chlorophyll as well as a variety of secondary metabolites from photosynthesis. The high temperature in the atmosphere creates heat stress for plants. As a matter of fact many morphological, physiological and biochemical changes occur in the plant. The high temperature invariably elicits the production of several secondary metabolites within plants. Various strategies have been universally documented to improve the production of PSMs. With this objective, the focus of the current review is to further investigate and discuss futuristic scenarios the effect of elevated CO2 and high temperature on PSMs production which may perhaps beneficial for pharmaceutical industries, biotechnology industries, and also in climate change researches.
Collapse
Affiliation(s)
- Abhishek Jamloki
- High Altitude Plant Physiology Research Centre (HAPPRC), H.N.B. Garhwal University, Post Box: 14, Srinagar Garhwal, 246174, Uttarakhand, India
| | - Malini Bhattacharyya
- High Altitude Plant Physiology Research Centre (HAPPRC), H.N.B. Garhwal University, Post Box: 14, Srinagar Garhwal, 246174, Uttarakhand, India
| | - M C Nautiyal
- High Altitude Plant Physiology Research Centre (HAPPRC), H.N.B. Garhwal University, Post Box: 14, Srinagar Garhwal, 246174, Uttarakhand, India
| | - Babita Patni
- High Altitude Plant Physiology Research Centre (HAPPRC), H.N.B. Garhwal University, Post Box: 14, Srinagar Garhwal, 246174, Uttarakhand, India
| |
Collapse
|
12
|
Bertamini M, Faralli M, Varotto C, Grando MS, Cappellin L. Leaf Monoterpene Emission Limits Photosynthetic Downregulation under Heat Stress in Field-Grown Grapevine. PLANTS 2021; 10:plants10010181. [PMID: 33478116 PMCID: PMC7835969 DOI: 10.3390/plants10010181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Rising temperature is among the most remarkably stressful phenomena induced by global climate changes with negative impacts on crop productivity and quality. It has been previously shown that volatiles belonging to the isoprenoid family can confer protection against abiotic stresses. In this work, two Vitis vinifera cv. 'Chardonnay' clones (SMA130 and INRA809) differing due to a mutation (S272P) of the DXS gene encoding for 1-deoxy-D-xylulose-5-phosphate (the first dedicated enzyme of the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway) and involved in the regulation of isoprenoids biosynthesis were investigated in field trials and laboratory experiments. Leaf monoterpene emission, chlorophyll fluorescence and gas-exchange measurements were assessed over three seasons at different phenological stages and either carried out in in vivo or controlled conditions under contrasting temperatures. A significant (p < 0.001) increase in leaf monoterpene emission was observed in INRA809 when plants were experiencing high temperatures and over two experiments, while no differences were recorded for SMA130. Significant variation was observed for the rate of leaf CO2 assimilation under heat stress, with INRA809 maintaining higher photosynthetic rates and stomatal conductance values than SMA130 (p = 0.003) when leaf temperature increased above 30 °C. At the same time, the maximum photochemical quantum yield of PSII (Fv/Fm) was affected by heat stress in the non-emitting clone (SMA130), while the INRA809 showed a significant resilience of PSII under elevated temperature conditions. Consistent data were recorded between field seasons and temperature treatments in controlled environment conditions, suggesting a strong influence of monoterpene emission on heat tolerance under high temperatures. This work provides further insights on the photoprotective role of isoprenoids in heat-stressed Vitis vinifera, and additional studies should focus on unraveling the mechanisms underlying heat tolerance on the monoterpene-emitter grapevine clone.
Collapse
Affiliation(s)
- Massimo Bertamini
- Center Agriculture Food Environment (C3A), University of Trento, Via. E. Mach 1, 38010 San Michele all’Adige, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
- Correspondence: (M.B.); (M.F.)
| | - Michele Faralli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
- Correspondence: (M.B.); (M.F.)
| | - Claudio Varotto
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
| | - Maria Stella Grando
- Center Agriculture Food Environment (C3A), University of Trento, Via. E. Mach 1, 38010 San Michele all’Adige, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
| | - Luca Cappellin
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (C.V.); (L.C.)
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
13
|
Raber AG, Peachey-Stoner RJ, Cessna SG, Siderhurst MS. Headspace GC-MS analysis of differences in intra- and interspecific Terpene profiles of Picea pungens Engelm. and P. abies (L.) Karst. PHYTOCHEMISTRY 2021; 181:112541. [PMID: 33099223 DOI: 10.1016/j.phytochem.2020.112541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Conifer terpenes mediate a number of ecological roles such as deterring herbivory and allelopathic (plant-plant) communication. These terpenes also effect air quality and climate models and are used in chemotaxonomic studies. Herein we report on variation in both intra- and interspecific spruce terpenes using static headspace gas chromatography mass spectrometry (HS-GC-MS) and principal component analysis (PCA) of 'fingerprint' volatile profiles. Samples of blue spruce (Picea pungens), Norway spruce (P. abies), and cedar of Lebanon (Cedrus libani), an outgroup control, were analyzed by HS-GC-MS using both chiral and achiral GC columns. Headspace sampling parameters, temperature and heating time, were optimized to maximize detected terpenes. PCA of terpene 'fingerprint' profiles showed differences by species, by individual trees, but perhaps surprisingly not by environmental conditions. Analysis of blue and Norway spruce over several months show that volatile emissions remained remarkably constant unlike cedar of Lebanon, which showed a much greater variation in volatile profiles. Branches and buds from both spruces were found to release greater amounts of terpenes than samples of needles. The enantiomeric compositions of seven chiral monoterpenes were found to be largely similar between the three conifers with the exception of (-)-α-pinene, which was the dominant enantiomer released by Norway spruce and cedar of Lebanon, while (+)-α-pinene slightly predominated in blue spruce. While not the primary focus of this work, we believe this constitutes the first report on the enantiomeric composition of terpenes in cedar of Lebanon.
Collapse
Affiliation(s)
- Alexandra G Raber
- Department of Chemistry, Eastern Mennonite University, 1200 Park Road, Harrisonburg, VA, 22802, USA
| | - Reuben J Peachey-Stoner
- Department of Chemistry, Eastern Mennonite University, 1200 Park Road, Harrisonburg, VA, 22802, USA
| | - Stephen G Cessna
- Department of Chemistry, Eastern Mennonite University, 1200 Park Road, Harrisonburg, VA, 22802, USA
| | - Matthew S Siderhurst
- Department of Chemistry, Eastern Mennonite University, 1200 Park Road, Harrisonburg, VA, 22802, USA.
| |
Collapse
|
14
|
Rodrigues TB, Baker CR, Walker AP, McDowell N, Rogers A, Higuchi N, Chambers JQ, Jardine KJ. Stimulation of isoprene emissions and electron transport rates as key mechanisms of thermal tolerance in the tropical species Vismia guianensis. GLOBAL CHANGE BIOLOGY 2020; 26:5928-5941. [PMID: 32525272 DOI: 10.1111/gcb.15213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis, but high surface temperatures suppress this absorption while promoting isoprene emissions. While mechanistic isoprene emission models predict a tight coupling to photosynthetic electron transport (ETR) as a function of temperature, direct field observations of this phenomenon are lacking in the tropics and are necessary to assess the impact of a warming climate on global isoprene emissions. Here we demonstrate that in the early successional species Vismia guianensis in the central Amazon, ETR rates increased with temperature in concert with isoprene emissions, even as stomatal conductance (gs ) and net photosynthetic carbon fixation (Pn ) declined. We observed the highest temperatures of continually increasing isoprene emissions yet reported (50°C). While Pn showed an optimum value of 32.6 ± 0.4°C, isoprene emissions, ETR, and the oxidation state of PSII reaction centers (qL ) increased with leaf temperature with strong linear correlations for ETR (ƿ = 0.98) and qL (ƿ = 0.99) with leaf isoprene emissions. In contrast, other photoprotective mechanisms, such as non-photochemical quenching, were not activated at elevated temperatures. Inhibition of isoprenoid biosynthesis repressed Pn at high temperatures through a mechanism that was independent of stomatal closure. While extreme warming will decrease gs and Pn in tropical species, our observations support a thermal tolerance mechanism where the maintenance of high photosynthetic capacity under extreme warming is assisted by the simultaneous stimulation of ETR and metabolic pathways that consume the direct products of ETR including photorespiration and the biosynthesis of thermoprotective isoprenoids. Our results confirm that models which link isoprene emissions to the rate of ETR hold true in tropical species and provide necessary "ground-truthing" for simulations of the large predicted increases in tropical isoprene emissions with climate warming.
Collapse
Affiliation(s)
- Tayana B Rodrigues
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
| | - Christopher R Baker
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Nate McDowell
- Earth System Analysis and Modeling, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Niro Higuchi
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
| | - Jeffrey Q Chambers
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kolby J Jardine
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
15
|
Yáñez-Serrano AM, Bourtsoukidis E, Alves EG, Bauwens M, Stavrakou T, Llusià J, Filella I, Guenther A, Williams J, Artaxo P, Sindelarova K, Doubalova J, Kesselmeier J, Peñuelas J. Amazonian biogenic volatile organic compounds under global change. GLOBAL CHANGE BIOLOGY 2020; 26:4722-4751. [PMID: 32445424 DOI: 10.1111/gcb.15185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Biogenic volatile organic compounds (BVOCs) play important roles at cellular, foliar, ecosystem and atmospheric levels. The Amazonian rainforest represents one of the major global sources of BVOCs, so its study is essential for understanding BVOC dynamics. It also provides insights into the role of such large and biodiverse forest ecosystem in regional and global atmospheric chemistry and climate. We review the current information on Amazonian BVOCs and identify future research priorities exploring biogenic emissions and drivers, ecological interactions, atmospheric impacts, depositional processes and modifications to BVOC dynamics due to changes in climate and land cover. A feedback loop between Amazonian BVOCs and the trends of climate and land-use changes in Amazonia is then constructed. Satellite observations and model simulation time series demonstrate the validity of the proposed loop showing a combined effect of climate change and deforestation on BVOC emission in Amazonia. A decreasing trend of isoprene during the wet season, most likely due to forest biomass loss, and an increasing trend of the sesquiterpene to isoprene ratio during the dry season suggest increasing temperature stress-induced emissions due to climate change.
Collapse
Affiliation(s)
- Ana M Yáñez-Serrano
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| | - Efstratios Bourtsoukidis
- Atmospheric Chemistry and Multiphase Chemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
| | - Eliane G Alves
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Maite Bauwens
- Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
| | | | - Joan Llusià
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| | - Iolanda Filella
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Jonathan Williams
- Atmospheric Chemistry and Multiphase Chemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
| | - Paulo Artaxo
- Instituto de Física, Universidade de Sao Paulo, São Paulo, Brazil
| | - Katerina Sindelarova
- Faculty of Mathematics and Physics, Department of Atmospheric Physics, Charles University, Prague, Czechia
| | - Jana Doubalova
- Faculty of Mathematics and Physics, Department of Atmospheric Physics, Charles University, Prague, Czechia
- Modelling and Assessment Department, Czech Hydrometeorological Institute, Prague, Czechia
| | - Jürgen Kesselmeier
- Atmospheric Chemistry and Multiphase Chemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| |
Collapse
|
16
|
Hara M. Potential use of essential oils to enhance heat tolerance in plants. ACTA ACUST UNITED AC 2020; 75:225-231. [PMID: 32755102 DOI: 10.1515/znc-2019-0233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022]
Abstract
Isothiocyanates, monoterpenes, and leaf volatiles that are components of essential oils induce the expression of heat shock protein genes in plant systems. Here, the modes of heat shock responses induced by the essential oil compounds and their heat-tolerance-enhancing activities are described. Traditionally, green manure produced from essential-oil-containing plants has been used because such manure is thought to have beneficial effects in fertilizing, allelopathic, antibacterial, and animal-repellent activities. In addition to these effects, stress (especially heat stress)-tolerance-enhancing activities can be expected. Biostimulants containing such essential oils may be able to maintain the yield and quality of crops under increasing ambient temperatures. In this review, chemicals that enhance the heat tolerance of plants are designated as heat tolerance enhancers (HTLEs). Some essential oil compounds can be categorized as HTLEs available for biostimulants.
Collapse
Affiliation(s)
- Masakazu Hara
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka, Shizuoka 422-8529, Japan, Phone: +81-54-238-5134, Fax: +81-54-238-5134
| |
Collapse
|
17
|
Jardine KJ, Zorzanelli RF, Gimenez BO, Oliveira Piva LRD, Teixeira A, Fontes CG, Robles E, Higuchi N, Chambers JQ, Martin ST. Leaf isoprene and monoterpene emission distribution across hyperdominant tree genera in the Amazon basin. PHYTOCHEMISTRY 2020; 175:112366. [PMID: 32278887 DOI: 10.1016/j.phytochem.2020.112366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 05/26/2023]
Abstract
Tropical forests are acknowledged to be the largest global source of isoprene (C5H8) and monoterpenes (C10H16) emissions, with current synthesis studies suggesting few tropical species emit isoprenoids (20-38%) and do so with highly variable emission capacities, including within the same genera. This apparent lack of a clear phylogenetic thread has created difficulties both in linking isoprenoid function with evolution and for the development of accurate biosphere-atmosphere models. Here, we present a systematic emission study of "hyperdominant" tree species in the Amazon Basin. Across 162 individuals, distributed among 25 botanical families and 113 species, isoprenoid emissions were widespread among both early and late successional species (isoprene: 61.9% of the species; monoterpenes: 15.0%; both isoprene and monoterpenes: 9.7%). The hyperdominant species (69) across the top five most abundant genera, which make up about 50% of all individuals in the Basin, had a similar abundance of isoprenoid emitters (isoprene: 63.8%; monoterpenes: 17.4%; both 11.6%). Among the abundant genera, only Pouteria had a low frequency of isoprene emitting species (15.8% of 19 species). In contrast, Protium, Licania, Inga, and Eschweilera were rich in isoprene emitting species (83.3% of 12 species, 61.1% of 18 species, 100% of 8 species, and 100% of 12 species, respectively). Light response curves of individuals in each of the five genera showed light-dependent, photosynthesis-linked emission rates of isoprene and monoterpenes. Importantly, in every genus, we observed species with light-dependent isoprene emissions together with monoterpenes including β-ocimene. These observations support the emerging view of the evolution of isoprene synthases from β-ocimene synthases. Our results have important implications for understanding isoprenoid function-evolution relationships and the development of more accurate Earth System Models.
Collapse
Affiliation(s)
- Kolby J Jardine
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, One Cyclotron Rd, building 64-241, Berkeley, CA, 94720, USA; National Institute for Amazon Research (INPA), Department of Forest Management, Ave. Andre Araujo, 2936, Manaus, AM, 69.080-97, Brazil.
| | - Raquel F Zorzanelli
- Federal University of Espírito Santo (UFES), Ave. Governador Lindemberg, nº 316, Centro, Jerônimo, Monteiro, ES, 29.550-000, Brazil
| | - Bruno O Gimenez
- National Institute for Amazon Research (INPA), Department of Forest Management, Ave. Andre Araujo, 2936, Manaus, AM, 69.080-97, Brazil
| | | | - Andrea Teixeira
- National Institute for Amazon Research (INPA), Department of Forest Management, Ave. Andre Araujo, 2936, Manaus, AM, 69.080-97, Brazil
| | - Clarissa G Fontes
- College of Biological Sciences, University of Minnesota, 100 Ecology 1987 Upper Buford Circle, St. Paul, MN, 55108, USA
| | - Emily Robles
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, One Cyclotron Rd, building 64-241, Berkeley, CA, 94720, USA; College of Natural Resources, University of California Berkeley, 260 Mulford Hall, Berkeley, CA, 94720, USA
| | - Niro Higuchi
- National Institute for Amazon Research (INPA), Department of Forest Management, Ave. Andre Araujo, 2936, Manaus, AM, 69.080-97, Brazil
| | - Jeffrey Q Chambers
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, One Cyclotron Rd, building 64-241, Berkeley, CA, 94720, USA; Department of Geography, University of California Berkeley, 507 McCone Hall #4740, Berkeley, CA, 94720, USA
| | - Scot T Martin
- School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
18
|
Jardine KJ, Zorzanelli RF, Gimenez BO, Robles E, de Oliveira Piva LR. Development of a portable leaf photosynthesis and volatile organic compounds emission system. MethodsX 2020; 7:100880. [PMID: 32322545 PMCID: PMC7169044 DOI: 10.1016/j.mex.2020.100880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/23/2020] [Indexed: 11/30/2022] Open
Abstract
Understanding how plant carbon metabolism responds to environmental variables such as light is central to understanding ecosystem carbon cycling and the production of food, biofuels, and biomaterials. Here, we couple a portable leaf photosynthesis system to an autosampler for volatile organic compounds (VOCs) to enable field observations of net photosynthesis simultaneously with emissions of VOCs as a function of light. Following sample collection, VOCs are analyzed using automated thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). An example is presented from a banana plant in the central Amazon with a focus on the response of photosynthesis and the emissions of eight individual monoterpenes to light intensity. Our observations reveal that banana leaf emissions represent a 1.1 +/- 0.1% loss of photosynthesis by carbon. Monoterpene emissions from banana are dominated by trans-β-ocimene, which accounts for up to 57% of total monoterpene emissions at high light. We conclude that the developed system is ideal for the identification and quantification of VOC emissions from leaves in parallel with CO2 and water fluxes.The system therefore permits the analysis of biological and environmental sensitivities of carbon metabolism in leaves in remote field locations, resulting in the emission of hydrocarbons to the atmosphere.•A field-portable system is developed for the identification and quantification of VOCs from leaves in parallel with leaf physiological measurements including photosynthesis and transpiration.•The system will enable the characterization of carbon and energy allocation to the biosynthesis and emission of VOCs linked with photosynthesis (e.g. isoprene and monoterpenes) and their biological and environmental sensitivities (e.g. light, temperature, CO2).•Allow the development of more accurate mechanistic global VOC emission models linked with photosynthesis, improving our ability to predict how forests will respond to climate change. It is our hope that the presented system will contribute with critical data towards these goals across Earth's diverse tropical forests.
Collapse
Affiliation(s)
- Kolby J. Jardine
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, One Cyclotron Rd, building 84-155, Berkeley, CA 94720, USA
- National Institute for Amazon Research, Department of Forest Management, Ave. Andre Araujo 2936, Manaus, AM 69.080-97, Brazil
| | - Raquel F. Zorzanelli
- Federal University of Espírito Santo, Ave. Governador Lindemberg, n° 316, Centro, Jerônimo Monteiro, ES 29.550-000, Brazil
| | - Bruno O. Gimenez
- National Institute for Amazon Research, Department of Forest Management, Ave. Andre Araujo 2936, Manaus, AM 69.080-97, Brazil
| | - Emily Robles
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, One Cyclotron Rd, building 84-155, Berkeley, CA 94720, USA
- College of Natural Resources, University of California Berkeley, 260 Mulford Hall, Berkeley, CA, 94720, USA
| | - Luani Rosa de Oliveira Piva
- Federal University of Paraná, Department of Forest Sciences, Ave. Prefeito Lothário Meissner 632, Curitiba, PR 80210-170, Brazil
| |
Collapse
|
19
|
Tang T, Li CH, Li DS, Jing SX, Hua J, Luo SH, Liu Y, Li SH. Peltate glandular trichomes of Colquhounia vestita harbor diterpenoid acids that contribute to plant adaptation to UV radiation and cold stresses. PHYTOCHEMISTRY 2020; 172:112285. [PMID: 32035325 DOI: 10.1016/j.phytochem.2020.112285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 05/11/2023]
Abstract
Plant glandular trichomes (GTs) are adaptive epidermal structures that synthesize and accumulate diverse specialized metabolites well-known as defense chemicals against biotic attacks, but their roles against abiotic challenges including UV radiation and cold climates remain largely unexplored. Colquhounia vestita Wall is a Chinese-Himalayan Lamiaceae plant with dense peltate and capitate GTs on its leaf and stem surfaces under a scanning electron microscope. Three diterpenoid acids, including a clerodane 5-epi-hardwickiic acid and two labdanes polyalthic acid and E-communic acid, were identified from the peltate GTs of C. vestita through laser microdissection coupled with UPLC-MS/MS. Under UV radiation and cold stresses, the major GT component polyalthic acid increased the biomass of Arabidopsis thaliana seedlings and decreased their malondialdehyde content. Furthermore, polyalthic acid promoted photosynthetic efficiency and the expression of genes encoding peroxidative enzymes under UV radiation, and stimulated Ca2+ elevation and the expression of calmodulin binding transcription activator gene CAMTA3 and two downstream cold-responsive genes CBF3 and RD29A under cold stress. Therefore, polyalthic acid in GTs is likely to endow the plant with enhanced tolerance to UV radiation and cold stresses, which extends the current understanding of the function of GT compounds in plant adaptation to abiotic environments.
Collapse
Affiliation(s)
- Ting Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Chun-Huan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - De-Sen Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China.
| |
Collapse
|
20
|
Chen YJ, Lin CY, Hsu HW, Yeh CY, Chen YH, Yeh TF, Chang ST. Seasonal variations in emission rates and composition of terpenoids emitted from Chamaecyparis formosensis (Cupressaceae) of different ages. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:405-414. [PMID: 31408844 DOI: 10.1016/j.plaphy.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Chamaecyparis formosensis (Cupressaceae) is among the most precious endemic conifers in Taiwan. Field study was conducted on seasonal variations in emission rates and compositions of terpenoids from this tree species of two different ages. A total of 21 terpenoids were detected, of which there were 13 monoterpenoids (MTs), 4 sesquiterpenoids (STs), and 4 diterpenoids (DTs). MTs dominated the emissions in both saplings and adult trees and produced more than 80% of terpene emissions. Contrasting seasonal pattern between saplings and adult trees was found. Total actual emissions from saplings were higher in cold seasons (range, 64.40 ± 13.18 to 140.74 ± 18.90 ng g-1 h-1) than in warm seasons (range, 55.63 ± 15.84 to 63.48 ± 11.85 ng g-1 h-1). Photosynthetically active radiation (PAR) was found to be the most important factor affecting terpene emissions from saplings. On the contrary, higher emissions were found in warm seasons for adult trees (range, 101.49 ± 12.29 to 181.35 ± 80.15 ng g-1 h-1), and the emissions were mainly in response to temperature. Some compounds in C. formosensis of both ages (e.g., β-myrcene, α-terpinene, trans-β-ocimene, terpinen-4-ol, α-cedrene and trans-β-farnesene) showed comparably higher contents in cold seasons. Results presented here provide important fundamental information for better understanding of forest bathing and estimating air quality in Taiwan.
Collapse
Affiliation(s)
- Ying-Ju Chen
- School of Forest and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan; Division of Forest Chemistry, Taiwan Forestry Research Institute, Taipei, 10070, Taiwan
| | - Chun-Ya Lin
- School of Forest and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Huai-Wan Hsu
- Division of Forest Chemistry, Taiwan Forestry Research Institute, Taipei, 10070, Taiwan
| | - Chen-Ying Yeh
- Division of Forest Chemistry, Taiwan Forestry Research Institute, Taipei, 10070, Taiwan
| | - Yu-Han Chen
- School of Forest and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan
| | - Ting-Feng Yeh
- School of Forest and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan.
| | - Shang-Tzen Chang
- School of Forest and Resource Conservation, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
21
|
Guidolotti G, Pallozzi E, Gavrichkova O, Scartazza A, Mattioni M, Loreto F, Calfapietra C. Emission of constitutive isoprene, induced monoterpenes, and other volatiles under high temperatures in Eucalyptus camaldulensis: A 13 C labelling study. PLANT, CELL & ENVIRONMENT 2019; 42:1929-1938. [PMID: 30663094 DOI: 10.1111/pce.13521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Eucalypts are major emitters of biogenic volatile organic compounds (BVOCs), especially volatile isoprenoids. Emissions and incorporation of 13 C in BVOCs were measured in Eucalyptus camaldulensis branches exposed to rapid heat stress or progressive temperature increases, in order to detect both metabolic processes and their dynamics. Isoprene emission increased and photosynthesis decreased with temperatures rising from 30°C to 45°C, and an increasing percentage of unlabelled carbon was incorporated into isoprene in heat-stressed leaves. Intramolecular labelling was also incomplete in isoprene emitted by heat-stressed leaves, suggesting increasing contribution of respiratory (and possibly also photorespiratory) carbon. At temperature above 45°C, a drop of isoprene emission was mirrored by the appearance of unlabelled monoterpenes, green leaf volatiles, methanol, and ethanol, indicating that the emission of stored volatiles was mainly induced by cellular damage. Emission of partially labelled acetaldehyde was also observed at very high temperatures, suggesting a double source of carbon, with a large unlabelled component likely transported from roots and associated to the surge of transpiration at very high temperatures. Eucalypt plantations cover large areas worldwide, and our findings may dramatically change forecast and modelling of future BVOC emissions at planetary level, especially considering climate warming and frequent heat waves.
Collapse
Affiliation(s)
- Gabriele Guidolotti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Monterotondo Scalo, 01500, Italy
| | - Emanuele Pallozzi
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Monterotondo Scalo, 01500, Italy
| | - Olga Gavrichkova
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, 05010, Italy
- Department of Landscape Design and Sustainable Ecosystems, Agrarian-technological Institute, RUDN University, Moscow, 117198, Russia
| | - Andrea Scartazza
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Pisa, 56124, Italy
| | - Michele Mattioni
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, 05010, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences (DISBA), National Research Council of Italy (CNR), Rome, 00185, Italy
| | - Carlo Calfapietra
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Porano, 05010, Italy
| |
Collapse
|
22
|
Piva LRDO, Jardine KJ, Gimenez BO, de Oliveira Perdiz R, Menezes VS, Durgante FM, Cobello LO, Higuchi N, Chambers JQ. Volatile monoterpene 'fingerprints' of resinous Protium tree species in the Amazon rainforest. PHYTOCHEMISTRY 2019; 160:61-70. [PMID: 30711572 DOI: 10.1016/j.phytochem.2019.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Volatile terpenoid resins represent a diverse group of plant defense chemicals involved in defense against herbivory, abiotic stress, and communication. However, their composition in tropical forests remains poorly characterized. As a part of tree identification, the 'smell' of damaged trunks is widely used, but is highly subjective. Here, we analyzed trunk volatile monoterpene emissions from 15 species of the genus Protium in the central Amazon. By normalizing the abundances of 28 monoterpenes, 9 monoterpene 'fingerprint' patterns emerged, characterized by a distinct dominant monoterpene. While 4 of the 'fingerprint' patterns were composed of multiple species, 5 were composed of a single species. Moreover, among individuals of the same species, 6 species had a single 'fingerprint' pattern, while 9 species had two or more 'fingerprint' patterns among individuals. A comparison of 'fingerprints' between 2015 and 2017 from 15 individuals generally showed excellent agreement, demonstrating a strong dependence on species identity, but not time of collection. The results are consistent with a previous study that found multiple divergent copies of monoterpene synthase enzymes in Protium. We conclude that the monoterpene 'fingerprint' database has important implications for constraining Protium species identification and phylogenetic relationships and enhancing understanding of physiological and ecological functions of resins and their potential commercial applications.
Collapse
Affiliation(s)
- Luani R de O Piva
- Department of Forest Sciences, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Kolby J Jardine
- Department of Forest Management, National Institute for Amazon Research, Manaus, AM, Brazil; Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Bruno O Gimenez
- Department of Forest Management, National Institute for Amazon Research, Manaus, AM, Brazil.
| | | | - Valdiek S Menezes
- Department of Forest Management, National Institute for Amazon Research, Manaus, AM, Brazil.
| | - Flávia M Durgante
- Department of Forest Management, National Institute for Amazon Research, Manaus, AM, Brazil.
| | - Leticia O Cobello
- Department of Forest Management, National Institute for Amazon Research, Manaus, AM, Brazil.
| | - Niro Higuchi
- Department of Forest Management, National Institute for Amazon Research, Manaus, AM, Brazil.
| | - Jeffrey Q Chambers
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Geography, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
23
|
Hamachi A, Nisihara M, Saito S, Rim H, Takahashi H, Islam M, Uemura T, Ohnishi T, Ozawa R, Maffei ME, Arimura GI. Overexpression of geraniol synthase induces heat stress susceptibility in Nicotiana tabacum. PLANTA 2019; 249:235-249. [PMID: 30478473 DOI: 10.1007/s00425-018-3054-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Transgenic tobacco plants overexpressing the monoterpene alcohol geraniol synthase exhibit hypersensitivity to thermal stress, possibly due to suppressed sugar metabolism and transcriptional regulation of genes involved in thermal stress tolerance. Monoterpene alcohols function in plant survival strategies, but they may cause self-toxicity to plants due to their hydrophobic and highly reactive properties. To explore the role of these compounds in plant stress responses, we assessed transgenic tobacco plants overexpressing the monoterpene alcohol geraniol synthase (GES plants). Growth, morphology and photosynthetic efficiency of GES plants were not significantly different from those of control plants (wild-type and GUS-transformed plants). While GES plants' direct defenses against herbivores or pathogens were similar to those of control plants, their indirect defense (i.e., attracting herbivore enemy Nesidiocoris tenuis) was stronger compared to that of control plants. However, GES plants were susceptible to cold stress and even more susceptible to extreme heat stress (50 °C), as shown by decreased levels of sugar metabolites, invertase activity and its products (Glc and Fru), and leaf starch granules. Moreover, GES plants showed decreased transcription levels of the WRKY33 transcription factor gene and an aquaporin gene (PIP2). The results of this study show that GES plants exhibit enhanced indirect defense ability against herbivores, but conversely, GES plants exhibit hypersensitivity to heat stress due to suppressed sugar metabolism and gene regulation for thermal stress tolerance.
Collapse
Affiliation(s)
- Ashita Hamachi
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Masahiro Nisihara
- Iwate Biotechnology Research Center, Kitakami, Iwate, 024-0003, Japan
| | - Shiori Saito
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Hojun Rim
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | | | - Monirul Islam
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello15/A, I-10135, Turin, Italy
| | - Takuya Uemura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Toshiyuki Ohnishi
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu, 520-2113, Japan
| | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello15/A, I-10135, Turin, Italy
| | - Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| |
Collapse
|
24
|
Holopainen JK, Virjamo V, Ghimire RP, Blande JD, Julkunen-Tiitto R, Kivimäenpää M. Climate Change Effects on Secondary Compounds of Forest Trees in the Northern Hemisphere. FRONTIERS IN PLANT SCIENCE 2018; 9:1445. [PMID: 30333846 PMCID: PMC6176061 DOI: 10.3389/fpls.2018.01445] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/12/2018] [Indexed: 05/09/2023]
Abstract
Plant secondary compounds (PSCs), also called secondary metabolites, have high chemical and structural diversity and appear as non-volatile or volatile compounds. These compounds may have evolved to have specific physiological and ecological functions in the adaptation of plants to their growth environment. PSCs are produced by several metabolic pathways and many PSCs are specific for a few plant genera or families. In forest ecosystems, full-grown trees constitute the majority of plant biomass and are thus capable of producing significant amounts of PSCs. We summarize older literature and review recent progress in understanding the effects of abiotic and biotic factors on PSC production of forest trees and PSC behavior in forest ecosystems. The roles of different PSCs under stress and their important role in protecting plants against abiotic and biotic factors are also discussed. There was strong evidence that major climate change factors, CO2 and warming, have contradictory effects on the main PSC groups. CO2 increases phenolic compounds in foliage, but limits terpenoids in foliage and emissions. Warming decreases phenolic compounds in foliage but increases terpenoids in foliage and emissions. Other abiotic stresses have more variable effects. PSCs may help trees to adapt to a changing climate and to pressure from current and invasive pests and pathogens. Indirect adaptation comes via the effects of PSCs on soil chemistry and nutrient cycling, the formation of cloud condensation nuclei from tree volatiles and by CO2 sequestration into PSCs in the wood of living and dead forest trees.
Collapse
Affiliation(s)
- Jarmo K. Holopainen
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Virpi Virjamo
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Rajendra P. Ghimire
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - James D. Blande
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland, Joensuu, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
25
|
Sampaio Filho IDJ, Jardine KJ, de Oliveira RCA, Gimenez BO, Cobello LO, Piva LRDO, Candido LA, Higuchi N, Chambers JQ. Below versus above Ground Plant Sources of Abscisic Acid (ABA) at the Heart of Tropical Forest Response to Warming. Int J Mol Sci 2018; 19:E2023. [PMID: 30002274 PMCID: PMC6073271 DOI: 10.3390/ijms19072023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022] Open
Abstract
Warming surface temperatures and increasing frequency and duration of widespread droughts threaten the health of natural forests and agricultural crops. High temperatures (HT) and intense droughts can lead to the excessive plant water loss and the accumulation of reactive oxygen species (ROS) resulting in extensive physical and oxidative damage to sensitive plant components including photosynthetic membranes. ROS signaling is tightly integrated with signaling mechanisms of the potent phytohormone abscisic acid (ABA), which stimulates stomatal closure leading to a reduction in transpiration and net photosynthesis, alters hydraulic conductivities, and activates defense gene expression including antioxidant systems. While generally assumed to be produced in roots and transported to shoots following drought stress, recent evidence suggests that a large fraction of plant ABA is produced in leaves via the isoprenoid pathway. Thus, through stomatal regulation and stress signaling which alters water and carbon fluxes, we highlight the fact that ABA lies at the heart of the Carbon-Water-ROS Nexus of plant response to HT and drought stress. We discuss the current state of knowledge of ABA biosynthesis, transport, and degradation and the role of ABA and other isoprenoids in the oxidative stress response. We discuss potential variations in ABA production and stomatal sensitivity among different plant functional types including isohydric/anisohydric and pioneer/climax tree species. We describe experiments that would demonstrate the possibility of a direct energetic and carbon link between leaf ABA biosynthesis and photosynthesis, and discuss the potential for a positive feedback between leaf warming and enhanced ABA production together with reduced stomatal conductance and transpiration. Finally, we propose a new modeling framework to capture these interactions. We conclude by discussing the importance of ABA in diverse tropical ecosystems through increases in the thermotolerance of photosynthesis to drought and heat stress, and the global importance of these mechanisms to carbon and water cycling under climate change scenarios.
Collapse
Affiliation(s)
- Israel de Jesus Sampaio Filho
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Kolby Jeremiah Jardine
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Building 64-241, Berkeley, CA 94720, USA.
| | | | - Bruno Oliva Gimenez
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Leticia Oliveira Cobello
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Luani Rosa de Oliveira Piva
- Federal University of Paraná (UFPR), Ave. Pref. Lothario Meissner 632, Campus III, Forest Sciences Department, Curitiba, PR 80210-170, Brazil.
| | - Luiz Antonio Candido
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Niro Higuchi
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
| | - Jeffrey Quintin Chambers
- National Institute for Amazon Research (INPA), Ave. Andre Araujo 2936, Campus II, Building LBA, Manaus, AM 69080-97, Brazil.
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Building 64-241, Berkeley, CA 94720, USA.
| |
Collapse
|
26
|
Neeman EM, Avilés Moreno JR, Huet TR. The gas phase structure of α-pinene, a main biogenic volatile organic compound. J Chem Phys 2017; 147:214305. [DOI: 10.1063/1.5003726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Elias M. Neeman
- University of Lille, CNRS, UMR 8523–PhLAM–Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Juan Ramón Avilés Moreno
- University of Lille, CNRS, UMR 8523–PhLAM–Physique des Lasers Atomes et Molécules, F-59000 Lille, France
- Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, E-41013 Seville, Spain
| | - Thérèse R. Huet
- University of Lille, CNRS, UMR 8523–PhLAM–Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
27
|
Hara M, Yamauchi N, Sumita Y. Monoterpenes induce the heat shock response in Arabidopsis. ACTA ACUST UNITED AC 2017; 73:177-184. [DOI: 10.1515/znc-2017-0116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/27/2017] [Indexed: 11/15/2022]
Abstract
Abstract
Monoterpenes are common constituents of essential oils produced by plants. Although it has been reported that monoterpenes enhanced the heat tolerance of plants, the mechanism has not been elucidated. Here, we tested whether 13 monoterpenes promoted the heat shock response (HSR) in Arabidopsis. To assess the HSR-inducing activity of monoterpenes, we produced transgenic Arabidopsis, which has the β-glucuronidase gene driven by the promoter of a small heat shock protein (HSP17.6C-CI) gene. Results indicated that two monocyclic and four bicyclic monoterpenes showed HSR-inducing activities using the reporter gene system. In particular, (−)-perillaldehyde, which is a monocyclic monoterpene, demonstrated the most potent HSR-inducing activity. (−)-Perillaldehyde significantly inhibited the reduction of chlorophyll content by heat shock in Arabidopsis seedlings. Our previous study indicated that chemical HSR inducers such as geldanamycin and sanguinarine inhibited the activity of plant chaperones in vitro. (−)-Perillaldehyde also inhibited chaperone activity, indicating that it might promote the expression of heat shock protein genes by inhibiting chaperones in the plant cell.
Collapse
Affiliation(s)
- Masakazu Hara
- Research Institute of Green Science and Technology , Shizuoka University , 836 Ohya , Shizuoka 422-8529 , Japan , Phone: +81-54-238-5134, Fax: +81-54-238-5134
| | - Naoya Yamauchi
- Research Institute of Green Science and Technology , Shizuoka University , 836 Ohya , Shizuoka 422-8529 , Japan
| | - Yoshiki Sumita
- Research Institute of Green Science and Technology , Shizuoka University , 836 Ohya , Shizuoka 422-8529 , Japan
| |
Collapse
|