1
|
Su L, Lv A, Wen W, Fan N, You X, Gao L, Zhou P, Shi F, An Y. MsMYB206-MsMYB450-MsHY5 complex regulates alfalfa tolerance to salt stress via regulating flavonoid biosynthesis during the day and night cycles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17216. [PMID: 39706170 DOI: 10.1111/tpj.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Flavonoids are the major secondary metabolites participating in many biological processes of plants. Although flavonoid biosynthesis has been extensively studied, its regulatory mechanisms during the day and night cycles remain poorly understood. In this study, three proteins, MsMYB206, MsMYB450, and MsHY5, were found to interact with each other, in which MsMYB206 directly transactivated two flavonoid biosynthetic genes, MsFLS and MsF3'H. The expression patterns of MsMYB206, MsMYB450, MsFLS, and MsF3'H were fully consistent at regular intervals across day/night cycles that were higher at night than in the daytime. On the contrary, both gene expression levels and protein contents of MsHY5 increased in the daytime but decreased at night, and the lower expression of MsHY5 at night led to strengthened interaction between MsMYB206 and MsMYB450. The MsMYB206-overexpression plants were more salt-tolerant and their flavonoid contents were higher than the WT during the day/night cycles. This study revealed one mechanism interpreting the fluctuating flavonoid contents during day/night cycles regulated by the MsMYB206/MsMYB450/MsHY5-MsFLS/MsF3'H module that also contributed to salt tolerance in alfalfa.
Collapse
Affiliation(s)
- Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Aimin Lv
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Fan
- College of life science, Yulin University, Yulin, China
| | - Xiangkai You
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fengling Shi
- College of Grassland and Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Hohhot, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
2
|
Li T, Fang K, Tie Y, Lu Y, Lei Y, Li W, Zheng T, Yao X. NAC transcription factor ATAF1 negatively modulates the PIF-regulated hypocotyl elongation under a short-day photoperiod. PLANT, CELL & ENVIRONMENT 2024; 47:3253-3265. [PMID: 38736429 DOI: 10.1111/pce.14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
Day length modulates hypocotyl elongation in seedlings to optimize their overall fitness. Variations in cell growth-associated genes are regulated by several transcription factors. However, the specific transcription factors through which the plant clock increases plant fitness are still being elucidated. In this study, we identified the no apical meristem, Arabidopsis thaliana-activating factor (ATAF-1/2), and cup-shaped cotyledon (NAC) family transcription factor ATAF1 as a novel repressor of hypocotyl elongation under a short-day (SD) photoperiod. Variations in day length profoundly affected the transcriptional and protein levels of ATAF1. ATAF1-deficient mutant exhibited increased hypocotyl length and cell growth-promoting gene expression under SD conditions. Moreover, ATAF1 directly targeted and repressed the expression of the cycling Dof factor 1/5 (CDF1/5), two key transcription factors involved in hypocotyl elongation under SD conditions. Additionally, ATAF1 interacted with and negatively modulated the effects of phytochrome-interacting factor (PIF), thus inhibiting PIF-promoted gene expression and hypocotyl elongation. Taken together, our results revealed ATAF1-PIF as a crucial pair modulating the expression of key transcription factors to facilitate plant growth during day/night cycles under fluctuating light conditions.
Collapse
Affiliation(s)
- Taotao Li
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China
| | - Ke Fang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yu Tie
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China
| | - Yuxin Lu
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China
| | - Yuxin Lei
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China
| | - Weijian Li
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China
| | - Ting Zheng
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xiuhong Yao
- Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China
| |
Collapse
|
3
|
Yoshinari A, Isoda R, Yagi N, Sato Y, Lindeboom JJ, Ehrhardt DW, Frommer WB, Nakamura M. Near-infrared imaging of phytochrome-derived autofluorescence in plant nuclei. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1699-1712. [PMID: 38509728 DOI: 10.1111/tpj.16699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/06/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Capturing images of the nuclear dynamics within live cells is an essential technique for comprehending the intricate biological processes inherent to plant cell nuclei. While various methods exist for imaging nuclei, including combining fluorescent proteins and dyes with microscopy, there is a dearth of commercially available dyes for live-cell imaging. In Arabidopsis thaliana, we discovered that nuclei emit autofluorescence in the near-infrared (NIR) range of the spectrum and devised a non-invasive technique for the visualization of live cell nuclei using this inherent NIR autofluorescence. Our studies demonstrated the capability of the NIR imaging technique to visualize the dynamic behavior of nuclei within primary roots, root hairs, and pollen tubes, which are tissues that harbor a limited number of other organelles displaying autofluorescence. We further demonstrated the applicability of NIR autofluorescence imaging in various other tissues by incorporating fluorescence lifetime imaging techniques. Nuclear autofluorescence was also detected across a wide range of plant species, enabling analyses without the need for transformation. The nuclear autofluorescence in the NIR wavelength range was not observed in animal or yeast cells. Genetic analysis revealed that this autofluorescence was caused by the phytochrome protein. Our studies demonstrated that nuclear autofluorescence imaging can be effectively employed not only in model plants but also for studying nuclei in non-model plant species.
Collapse
Affiliation(s)
- Akira Yoshinari
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
- Institute of Advanced Research, Nagoya University, Nagoya, 464-0814, Japan
| | - Reika Isoda
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Noriyoshi Yagi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| | - Jelmer J Lindeboom
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
- Department of Biology, Stanford University, Stanford, California, 94305, USA
| | - Wolf B Frommer
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
- Institute for Molecular Physiology, Düsseldorf, 40225, Germany
| | - Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Japan
| |
Collapse
|
4
|
Huang M, Xu H, Zhou Q, Xiao J, Su Y, Wang M. The nutritional profile of chia seeds and sprouts: tailoring germination practices for enhancing health benefits-a comprehensive review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38622873 DOI: 10.1080/10408398.2024.2337220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Chia seeds have gained significant attention due to their unique composition and potential health benefits, including high dietary fibers, omega-3 fatty acids, proteins, and phenolic compounds. These components contribute to their antioxidant, anti-inflammatory effects, as well as their ability to improve glucose metabolism and dyslipidemia. Germination is recognized as a promising strategy to enhance the nutritional value and bioavailability of chia seeds. Chia seed sprouts have been found to exhibit increased essential amino acid content, elevated levels of dietary fiber and total phenols, and enhanced antioxidant capability. However, there is limited information available concerning the dynamic changes of bioactive compounds during the germination process and the key factors influencing these alterations in biosynthetic pathways. Additionally, the influence of various processing conditions, such as temperature, light exposure, and duration, on the nutritional value of chia seed sprouts requires further investigation. This review aims to provide a comprehensive analysis of the nutritional profile of chia seeds and the dynamic changes that occur during germination. Furthermore, the potential for tailored germination practices to produce chia sprouts with personalized nutrition, targeting specific health needs, is also discussed.
Collapse
Affiliation(s)
- Manting Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Yuting Su
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Hughes CL, An Y, Maloof JN, Harmer SL. Light quality-dependent roles of REVEILLE proteins in the circadian system. PLANT DIRECT 2024; 8:e573. [PMID: 38481435 PMCID: PMC10936234 DOI: 10.1002/pld3.573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/25/2024] [Accepted: 02/10/2024] [Indexed: 03/17/2024]
Abstract
Several closely related Myb-like activator proteins are known to have partially redundant functions within the plant circadian clock, but their specific roles are not well understood. To clarify the function of the REVEILLE 4, REVEILLE 6, and REVEILLE 8 transcriptional activators, we characterized the growth and clock phenotypes of CRISPR-Cas9-generated single, double, and triple rve mutants. We found that these genes act synergistically to regulate flowering time, redundantly to regulate leaf growth, and antagonistically to regulate hypocotyl elongation. We previously reported that increasing intensities of monochromatic blue and red light have opposite effects on the period of triple rve468 mutants. Here, we further examined light quality-specific phenotypes of rve mutants and report that rve468 mutants lack the blue light-specific increase in expression of some circadian clock genes observed in wild type. To investigate the basis of these blue light-specific circadian phenotypes, we examined RVE protein abundances and degradation rates in blue and red light and found no significant differences between these conditions. We next examined genetic interactions between RVE genes and ZEITLUPE and ELONGATED HYPOCOTYL5, two factors with blue light-specific functions in the clock. We found that the RVEs interact additively with both ZEITLUPE and ELONGATED HYPOCOTYL5 to regulate circadian period, which suggests that neither of these factors are required for the blue light-specific differences that we observed. Overall, our results suggest that the RVEs have separable functions in plant growth and circadian regulation and that they are involved in blue light-specific circadian signaling via a novel mechanism.
Collapse
Affiliation(s)
- Cassandra L. Hughes
- Department of Plant BiologyUniversity of California, DavisDavisCaliforniaUSA
| | - Yuyan An
- College of Life SciencesShaanxi Normal UniversityXi'anChina
| | - Julin N. Maloof
- Department of Plant BiologyUniversity of California, DavisDavisCaliforniaUSA
| | - Stacey L. Harmer
- Department of Plant BiologyUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
6
|
Deivanai S, Sng BJR, Van Vu K, Shibu TSM, Jang IC, Ramachandran S. EMS-induced mutagenesis in Choy sum (Brassica chinensis var. parachinensis) and selection for low light tolerance using abiotic stress indices. BMC PLANT BIOLOGY 2023; 23:581. [PMID: 37985970 PMCID: PMC10662144 DOI: 10.1186/s12870-023-04570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Choy Sum (Brassica rapa ssp. chinensis var. parachinensis), grown in a controlled environment, is vulnerable to changes in indoor light quality and displays distinct photo-morphogenesis responses. The scarcity of Choy Sum germplasm for indoor cultivation necessitates the development of new cultivars. Hence, this study attempted to develop mutants through chemical mutagenesis and select low-light-tolerant mutants by using abiotic stress tolerance indices. RESULTS A mutant population of Choy Sum created using 1.5% ethyl methane sulfonate (EMS) at 4 h was manually pollinated to obtain the M2 generation. 154 mutants with reduced hypocotyl length were initially isolated from 3600 M2 seedlings screened under low light (R: FR = 0.5). Five mutants that showed reduced plant height at mature stages were selected and screened directly for shade tolerance in the M3 generation. Principal component analysis based on phenotypic data distinguished the M3 mutants from the wild type. Abiotic stress tolerance indices such as relative stress index (RSI), stress tolerance index (STI), geometric mean productivity (GMP), yield stability index (YSI), and stress resistance index (SRI) showed significant (P < 0.05), and positive associations with leaf yield under shade. M3-12-2 was selected as a shade-tolerant mutant based on high values of STI, YSI, and SRI with low values for tolerance (TOL) and stress susceptibility index (SSI). CONCLUSIONS The results demonstrate that mutation breeding can be used to create dominant mutants in Choy Sum. Furthermore, we show that screening for low light and selection based on abiotic tolerance indices allowed the identification of mutants with high resilience under shade. This method should apply to developing new cultivars in other crop plants that can be suitable for controlled environments with stable yield performance.
Collapse
Affiliation(s)
- Subramanian Deivanai
- School of Applied Sciences, Republic Polytechnic, 9 Woodlands Ave 9, Singapore, 738964 , Singapore.
| | - Benny Jian Rong Sng
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore
| | - Kien Van Vu
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore
| | - Thankaraj Salammal Maria Shibu
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore
| | - Srinivasan Ramachandran
- Temasek Life Sciences Laboratory Limited, Research Link, National University Singapore, Buona Vista, Singapore, 117604, Singapore.
| |
Collapse
|
7
|
Sajib SA, Kandel M, Prity SA, Oukacine C, Gakière B, Merendino L. Role of plastids and mitochondria in the early development of seedlings in dark growth conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1272822. [PMID: 37841629 PMCID: PMC10570830 DOI: 10.3389/fpls.2023.1272822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Establishment of the seedlings is a crucial stage of the plant life cycle. The success of this process is essential for the growth of the mature plant. In Nature, when seeds germinate under the soil, seedlings follow a dark-specific program called skotomorphogenesis, which is characterized by small, non-green cotyledons, long hypocotyl, and an apical hook-protecting meristematic cells. These developmental structures are required for the seedlings to emerge quickly and safely through the soil and gain autotrophy before the complete depletion of seed resources. Due to the lack of photosynthesis during this period, the seed nutrient stocks are the primary energy source for seedling development. The energy is provided by the bioenergetic organelles, mitochondria, and etioplast (plastid in the dark), to the cell in the form of ATP through mitochondrial respiration and etio-respiration processes, respectively. Recent studies suggest that the limitation of the plastidial or mitochondrial gene expression induces a drastic reprogramming of the seedling morphology in the dark. Here, we discuss the dark signaling mechanisms involved during a regular skotomorphogenesis and how the dysfunction of the bioenergetic organelles is perceived by the nucleus leading to developmental changes. We also describe the probable involvement of several plastid retrograde pathways and the interconnection between plastid and mitochondria during seedling development. Understanding the integration mechanisms of organellar signals in the developmental program of seedlings can be utilized in the future for better emergence of crops through the soil.
Collapse
Affiliation(s)
- Salek Ahmed Sajib
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Margot Kandel
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Sadia Akter Prity
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Cylia Oukacine
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Bertrand Gakière
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Livia Merendino
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| |
Collapse
|
8
|
Kupper P, Tullus A, Rohula-Okunev G. Night-time water relations and gas exchange in cut shoots of five boreal dwarf shrub species: impact of soil water availability. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1193-1203. [PMID: 37829697 PMCID: PMC10564692 DOI: 10.1007/s12298-023-01350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023]
Abstract
Recent findings suggest that drought may affect plants' daytime and night-time stomatal regulation differently. However, knowledge of night-time stomatal behaviour in dwarf shrubs growing in boreal ecosystems is lacking. We sampled cut shoots from dwarf shrub species to elucidate their capacity to transpire at night and the effect of drought on stomatal regulation. The shoots' water relations and gas exchange were measured under controlled conditions in a growth chamber. The studied species demonstrated considerable differences in their diurnal water use. The night-time water use percentage of daytime water use (NWU) reached up to 90% in Andromeda polifolia and Vaccinium uliginosum. In Rhododendron tomentosum, Vaccinium myrtillus and Chamaedaphne calyculata, the NWU was 62, 27 and 26%, respectively. The shoots of C. calyculata showed a significant increase (P < 0.001) in the transpiration rate (E) during the night. However, in R. tomentosum, a decrease (P < 0.05) in nightly E was observed. The shoot conductance (g) at the end of the night was lower than daytime g in all studied species, but the difference was not significant for V. uliginosum. Across the species, NWU was negatively related (P < 0.001) to the soil volumetric water content (SWC) in the plant habitat. However, daytime E and g were positively related (P < 0.05) to the habitat SWC. Only in V. myrtillus was night-time E higher (P < 0.05) in dry conditions than in wet conditions. Our results demonstrate high variability in diurnal water relations in dwarf shrubs, which can keep stomata open in the dark even when drought limits daytime g and E.
Collapse
Affiliation(s)
- Priit Kupper
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Arvo Tullus
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Gristin Rohula-Okunev
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
9
|
Perdomo SA, De la Paz E, Del Caño R, Seker S, Saha T, Wang J, Jaramillo-Botero A. Non-invasive in-vivo glucose-based stress monitoring in plants. Biosens Bioelectron 2023; 231:115300. [PMID: 37058961 DOI: 10.1016/j.bios.2023.115300] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Plant stress responses involve a suite of genetically encoded mechanisms triggered by real-time interactions with their surrounding environment. Although sophisticated regulatory networks maintain proper homeostasis to prevent damage, the tolerance thresholds to these stresses vary significantly among organisms. Current plant phenotyping techniques and observables must be better suited to characterize the real-time metabolic response to stresses. This impedes practical agronomic intervention to avoid irreversible damage and limits our ability to breed improved plant organisms. Here, we introduce a sensitive, wearable electrochemical glucose-selective sensing platform that addresses these problems. Glucose is a primary plant metabolite, a source of energy produced during photosynthesis, and a critical molecular modulator of various cellular processes ranging from germination to senescence. The wearable-like technology integrates a reverse iontophoresis glucose extraction capability with an enzymatic glucose biosensor that offers a sensitivity of 22.7 nA/(μM·cm2), a limit of detection (LOD) of 9.4 μM, and a limit of quantification (LOQ) of 28.5 μM. The system's performance was validated by subjecting three different plant models (sweet pepper, gerbera, and romaine lettuce) to low-light and low-high temperature stresses and demonstrating critical differential physiological responses associated with their glucose metabolism. This technology enables non-invasive, non-destructive, real-time, in-situ, and in-vivo identification of early stress response in plants and provides a unique tool for timely agronomic management of crops and improving breeding strategies based on the dynamics of genome-metabolome-phenome relationships.
Collapse
Affiliation(s)
- Sammy A Perdomo
- Omicas Alliance, Pontificia Universidad Javeriana, Cali, 760031, Colombia; Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Ernesto De la Paz
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Rafael Del Caño
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States; Department of Physical Chemistry and Applied Thermodynamics, University of Cordoba, E- 14014, Spain
| | - Sumeyye Seker
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Tamoghna Saha
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States.
| | - Andres Jaramillo-Botero
- Omicas Alliance, Pontificia Universidad Javeriana, Cali, 760031, Colombia; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
10
|
Lu S, Chen Y, Wang S, Han B, Zhao C, Xue P, Zhang Y, Fang H, Wang B, Cao Y. Combined metabolomic and transcriptomic analysis reveals key components of OsCIPK17 overexpression improves drought tolerance in rice. FRONTIERS IN PLANT SCIENCE 2023; 13:1043757. [PMID: 36699859 PMCID: PMC9868928 DOI: 10.3389/fpls.2022.1043757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Oryza Sativa is one of the most important food crops in China, which is easily affected by drought during its growth and development. As a member of the calcium signaling pathway, CBL-interacting protein kinase (CIPK) plays an important role in plant growth and development as well as environmental stress. However, there is no report on the function and mechanism of OsCIPK17 in rice drought resistance. We combined transcriptional and metabonomic analysis to clarify the specific mechanism of OsCIPK17 in response to rice drought tolerance. The results showed that OsCIPK17 improved drought resistance of rice by regulating deep roots under drought stress; Response to drought by regulating the energy metabolism pathway and controlling the accumulation of citric acid in the tricarboxylic acid (TCA) cycle; Our exogenous experiments also proved that OsCIPK17 responds to citric acid, and this process involves the auxin metabolism pathway; Exogenous citric acid can improve the drought resistance of overexpression plants. Our research reveals that OsCIPK17 positively regulates rice drought resistance and participates in the accumulation of citric acid in the TCA cycle, providing new insights for rice drought resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baohua Wang
- *Correspondence: Baohua Wang, ; Yunying Cao,
| | - Yunying Cao
- *Correspondence: Baohua Wang, ; Yunying Cao,
| |
Collapse
|
11
|
Liebers M, Cozzi C, Uecker F, Chambon L, Blanvillain R, Pfannschmidt T. Biogenic signals from plastids and their role in chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7105-7125. [PMID: 36002302 DOI: 10.1093/jxb/erac344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant seeds do not contain differentiated chloroplasts. Upon germination, the seedlings thus need to gain photoautotrophy before storage energies are depleted. This requires the coordinated expression of photosynthesis genes encoded in nuclear and plastid genomes. Chloroplast biogenesis needs to be additionally coordinated with the light regulation network that controls seedling development. This coordination is achieved by nucleus to plastid signals called anterograde and plastid to nucleus signals termed retrograde. Retrograde signals sent from plastids during initial chloroplast biogenesis are also called biogenic signals. They have been recognized as highly important for proper chloroplast biogenesis and for seedling development. The molecular nature, transport, targets, and signalling function of biogenic signals are, however, under debate. Several studies disproved the involvement of a number of key components that were at the base of initial models of retrograde signalling. New models now propose major roles for a functional feedback between plastid and cytosolic protein homeostasis in signalling plastid dysfunction as well as the action of dually localized nucleo-plastidic proteins that coordinate chloroplast biogenesis with light-dependent control of seedling development. This review provides a survey of the developments in this research field, summarizes the unsolved questions, highlights several recent advances, and discusses potential new working modes.
Collapse
Affiliation(s)
- Monique Liebers
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Carolina Cozzi
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Finia Uecker
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Louise Chambon
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Thomas Pfannschmidt
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
12
|
Effect of the Number of Dark Days and Planting Density on the Health-Promoting Phytochemicals and Antioxidant Capacity of Mustard (Brassica juncea) Sprouts. PLANTS 2022; 11:plants11192515. [PMID: 36235381 PMCID: PMC9570650 DOI: 10.3390/plants11192515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023]
Abstract
Mustard is an edible vegetable in the genus Brassica with tender and clean sprouts and short growth cycles that has become a rich source of nutrients required by humans. Here, the effects of dark exposure duration and planting density on the health-promoting phytochemicals and the antioxidant capacity of mustard sprouts were evaluated. The content of soluble sugar, soluble protein, chlorophyll, and carotenoids and the antioxidant capacity of mustard were higher in the two-day dark treatment; the content of indolic glucosinolates was also more affected in the dark day experiment than in the planting density experiment. The soluble sugar, soluble protein, and aliphatic and total glucosinolate levels were higher when sprouts were grown at high densities (6–7 g per tray); however, no significant variation was observed in the content of chlorophyll and carotenoids and the antioxidant capacity. The results of this study show that the optimum cultivation regime for maximizing the concentrations of nutrients of mustard plants is a planting density of 6 g of seeds per tray and a two-day dark treatment.
Collapse
|
13
|
Hand KA, Shabek N. The Role of E3 Ubiquitin Ligases in Chloroplast Function. Int J Mol Sci 2022; 23:9613. [PMID: 36077009 PMCID: PMC9455731 DOI: 10.3390/ijms23179613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
Chloroplasts are ancient organelles responsible for photosynthesis and various biosynthetic functions essential to most life on Earth. Many of these functions require tightly controlled regulatory processes to maintain homeostasis at the protein level. One such regulatory mechanism is the ubiquitin-proteasome system whose fundamental role is increasingly emerging in chloroplasts. In particular, the role of E3 ubiquitin ligases as determinants in the ubiquitination and degradation of specific intra-chloroplast proteins. Here, we highlight recent advances in understanding the roles of plant E3 ubiquitin ligases SP1, COP1, PUB4, CHIP, and TT3.1 as well as the ubiquitin-dependent segregase CDC48 in chloroplast function.
Collapse
Affiliation(s)
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
14
|
Alexandre Moraes T, Mengin V, Peixoto B, Encke B, Krohn N, Höhne M, Krause U, Stitt M. The circadian clock mutant lhy cca1 elf3 paces starch mobilization to dawn despite severely disrupted circadian clock function. PLANT PHYSIOLOGY 2022; 189:2332-2356. [PMID: 35567528 PMCID: PMC9348821 DOI: 10.1093/plphys/kiac226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Many plants, including Arabidopsis (Arabidopsis thaliana), accumulate starch in the daytime and remobilize it to support maintenance and growth at night. Starch accumulation is increased when carbon is in short supply, for example, in short photoperiods. Mobilization is paced to exhaust starch around dawn, as anticipated by the circadian clock. This diel pattern of turnover is largely robust against loss of day, dawn, dusk, or evening clock components. Here, we investigated diel starch turnover in the triple circadian clock mutant lhy cca1 elf3, which lacks the LATE ELONGATED HYPOCOTYL and the CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) dawn components and the EARLY FLOWERING3 (ELF3) evening components of the circadian clock. The diel oscillations of transcripts for the remaining clock components and related genes like REVEILLE and PHYTOCHROME-INTERACING FACTOR family members exhibited attenuated amplitudes and altered peak time, weakened dawn dominance, and decreased robustness against changes in the external light-dark cycle. The triple mutant was unable to increase starch accumulation in short photoperiods. However, it was still able to pace starch mobilization to around dawn in different photoperiods and growth irradiances and to around 24 h after the previous dawn in T17 and T28 cycles. The triple mutant was able to slow down starch mobilization after a sudden low-light day or a sudden early dusk, although in the latter case it did not fully compensate for the lengthened night. Overall, there was a slight trend to less linear mobilization of starch. Thus, starch mobilization can be paced rather robustly to dawn despite a major disruption of the transcriptional clock. It is proposed that temporal information can be delivered from clock components or a semi-autonomous oscillator.
Collapse
Affiliation(s)
| | - Virginie Mengin
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Bruno Peixoto
- Instituto Gulbenkian de Ciência, Oeiras 2780-156,Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras 2780-157,Portugal
| | - Beatrice Encke
- Systematic Botany and Biodiversity, Humboldt University of Berlin, Berlin D-10115, Germany
| | - Nicole Krohn
- Abteilung für Parodontologie und Synoptische Zahnmedizin, Charité Universitätsmedizin, Berlin 14197, Germany
| | - Melanie Höhne
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | | |
Collapse
|
15
|
Hernández‐Verdeja T, Vuorijoki L, Jin X, Vergara A, Dubreuil C, Strand Å. GENOMES UNCOUPLED1 plays a key role during the de-etiolation process in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:188-203. [PMID: 35322876 PMCID: PMC9324965 DOI: 10.1111/nph.18115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 05/25/2023]
Abstract
One of the most dramatic challenges in the life of a plant occurs when the seedling emerges from the soil and exposure to light triggers expression of genes required for establishment of photosynthesis. This process needs to be tightly regulated, as premature accumulation of light-harvesting proteins and photoreactive Chl precursors causes oxidative damage when the seedling is first exposed to light. Photosynthesis genes are encoded by both nuclear and plastid genomes, and to establish the required level of control, plastid-to-nucleus (retrograde) signalling is necessary to ensure correct gene expression. We herein show that a negative GENOMES UNCOUPLED1 (GUN1)-mediated retrograde signal restricts chloroplast development in darkness and during early light response by regulating the transcription of several critical transcription factors linked to light response, photomorphogenesis, and chloroplast development, and consequently their downstream target genes in Arabidopsis. Thus, the plastids play an essential role during skotomorphogenesis and the early light response, and GUN1 acts as a safeguard during the critical step of seedling emergence from darkness.
Collapse
Affiliation(s)
- Tamara Hernández‐Verdeja
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
- Present address:
Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| | - Linda Vuorijoki
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Xu Jin
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Alexander Vergara
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Carole Dubreuil
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| | - Åsa Strand
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversityUmeåSE901 87Sweden
| |
Collapse
|
16
|
Nidhi, Kumar P, Pathania D, Thakur S, Sharma M. Environment-mediated mutagenetic interference on genetic stabilization and circadian rhythm in plants. Cell Mol Life Sci 2022; 79:358. [PMID: 35687153 PMCID: PMC11072124 DOI: 10.1007/s00018-022-04368-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Many mortal organisms on this planet have developed the potential to merge all internal as well as external environmental cues to regulate various processes running inside organisms and in turn make them adaptive to the environment through the circadian clock. This moving rotator controls processes like activation of hormonal, metabolic, or defense pathways, initiation of flowering at an accurate period, and developmental processes in plants to ensure their stability in the environment. All these processes that are under the control of this rotating wheel can be changed either by external environmental factors or by an unpredictable phenomenon called mutation that can be generated by either physical mutagens, chemical mutagens, or by internal genetic interruption during metabolic processes, which alters normal functionality of organisms like innate immune responses, entrainment of the clock, biomass reduction, chlorophyll formation, and hormonal signaling, despite its fewer positive roles in plants like changing plant type, loss of vernalization treatment to make them survivable in different latitudes, and defense responses during stress. In addition, with mutation, overexpression of gene components sometimes supresses mutation effect and promote normal circadian genes abundance in the cell, while sometimes it affects circadian functionality by generating arrhythmicity and shows that not only mutation but overexpression also effects normal functional activities of plant. Therefore, this review mainly summarizes the role of each circadian clock genes in regulating rhythmicity, and shows that how circadian outputs are controlled by mutations as well as overexpression phenomenon.
Collapse
Affiliation(s)
- Nidhi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Pradeep Kumar
- Central University of Himachal Pradesh, Dharmshala, India
| | - Diksha Pathania
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, India.
| |
Collapse
|
17
|
Talloji P, Nehlin L, Hüttel B, Winter N, Černý M, Dufková H, Hamali B, Hanczaryk K, Novák J, Hermanns M, Drexler N, Eifler K, Schlaich N, Brzobohatý B, Bachmair A. Transcriptome, metabolome and suppressor analysis reveal an essential role for the ubiquitin-proteasome system in seedling chloroplast development. BMC PLANT BIOLOGY 2022; 22:183. [PMID: 35395773 PMCID: PMC8991883 DOI: 10.1186/s12870-022-03536-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/15/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Many regulatory circuits in plants contain steps of targeted proteolysis, with the ubiquitin proteasome system (UPS) as the mediator of these proteolytic events. In order to decrease ubiquitin-dependent proteolysis, we inducibly expressed a ubiquitin variant with Arg at position 48 instead of Lys (ubK48R). This variant acts as an inhibitor of proteolysis via the UPS, and allowed us to uncover processes that are particularly sensitive to UPS perturbation. RESULTS Expression of ubK48R during germination leads to seedling death. We analyzed the seedling transcriptome, proteome and metabolome 24 h post ubK48R induction and confirmed defects in chloroplast development. We found that mutations in single genes can suppress seedling lethality, indicating that a single process in seedlings is critically sensitive to decreased performance of the UPS. Suppressor mutations in phototropin 2 (PHOT2) suggest that a contribution of PHOT2 to chloroplast protection is compromised by proteolysis inhibition. CONCLUSIONS Overall, the results reveal protein turnover as an integral part of a signal transduction chain that protects chloroplasts during development.
Collapse
Affiliation(s)
- Prabhavathi Talloji
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Lilian Nehlin
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Bruno Hüttel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Nikola Winter
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Hana Dufková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Bulut Hamali
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
- Present address: Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR, 97331, USA
| | - Katarzyna Hanczaryk
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | - Monika Hermanns
- Institute of Plant Physiology (Bio III), RWTH-Aachen, 52056, Aachen, Germany
| | - Nicole Drexler
- Vienna Biocenter Core Facilities, Electron Microscopy, A-1030, Vienna, Austria
| | - Karolin Eifler
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria
| | - Nikolaus Schlaich
- Institute of Plant Physiology (Bio III), RWTH-Aachen, 52056, Aachen, Germany
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, CZ-61300, Brno, Czech Republic
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max Perutz Labs/Center for Molecular Biology, University of Vienna, A-1030, Vienna, Austria.
| |
Collapse
|
18
|
Wang K, Cai S, Xing Q, Qi Z, Fotopoulos V, Yu J, Zhou J. Melatonin delays dark-induced leaf senescence by inducing miR171b expression in tomato. J Pineal Res 2022; 72:e12792. [PMID: 35174545 DOI: 10.1111/jpi.12792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Melatonin functions in multiple aspects of plant growth, development, and stress response. Nonetheless, the mechanism of melatonin in plant carbon metabolism remains largely unknown. In this study, we investigated the influence of melatonin on the degradation of starch in tomato leaves. Results showed that exogenous melatonin attenuated carbon starvation-induced chlorophyll degradation and leaf senescence. In addition, melatonin delayed leaf starch degradation and inhibited the transcription of starch-degrading enzymes after sunset. Interestingly, melatonin-alleviated symptoms of leaf senescence and starch degradation were compromised when the first key gene for starch degradation, α-glucan water dikinase (GWD), was overexpressed. Furthermore, exogenous melatonin significantly upregulated the transcript levels of several microRNAs, including miR171b. Crucially, the GWD gene was identified as a target of miR171b, and the overexpression of miR171b ameliorated the carbon starvation-induced degradation of chlorophyll and starch, and inhibited the expression of the GWD gene. Taken together, these results demonstrate that melatonin promotes plant tolerance against carbon starvation by upregulating the expression of miR171b, which can directly inhibit GWD expression in tomato leaves.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuyu Cai
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Qufan Xing
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhenyu Qi
- Agricultural Experiment Station, Zhejiang University, Hangzhou, People's Republic of China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, People's Republic of China
| |
Collapse
|
19
|
Sandoval-Ibáñez O, Sharma A, Bykowski M, Borràs-Gas G, Behrendorff JBYH, Mellor S, Qvortrup K, Verdonk JC, Bock R, Kowalewska Ł, Pribil M. Curvature thylakoid 1 proteins modulate prolamellar body morphology and promote organized thylakoid biogenesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2021; 118:e2113934118. [PMID: 34654749 PMCID: PMC8594483 DOI: 10.1073/pnas.2113934118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
The term "de-etiolation" refers to the light-dependent differentiation of etioplasts to chloroplasts in angiosperms. The underlying process involves reorganization of prolamellar bodies (PLBs) and prothylakoids into thylakoids, with concurrent changes in protein, lipid, and pigment composition, which together lead to the assembly of active photosynthetic complexes. Despite the highly conserved structure of PLBs among land plants, the processes that mediate PLB maintenance and their disassembly during de-etiolation are poorly understood. Among chloroplast thylakoid membrane-localized proteins, to date, only Curvature thylakoid 1 (CURT1) proteins were shown to exhibit intrinsic membrane-bending capacity. Here, we show that CURT1 proteins, which play a critical role in grana margin architecture and thylakoid plasticity, also participate in de-etiolation and modulate PLB geometry and density. Lack of CURT1 proteins severely perturbs PLB organization and vesicle fusion, leading to reduced accumulation of the light-dependent enzyme protochlorophyllide oxidoreductase (LPOR) and a delay in the onset of photosynthesis. In contrast, overexpression of CURT1A induces excessive bending of PLB membranes, which upon illumination show retarded disassembly and concomitant overaccumulation of LPOR, though without affecting greening or the establishment of photosynthesis. We conclude that CURT1 proteins contribute to the maintenance of the paracrystalline PLB morphology and are necessary for efficient and organized thylakoid membrane maturation during de-etiolation.
Collapse
Affiliation(s)
- Omar Sandoval-Ibáñez
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
- Max Planck Institute of Molecular Plant Physiology, Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, 14476 Potsdam, Germany
| | - Anurag Sharma
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, PL-02-096 Warsaw, Poland
| | - Guillem Borràs-Gas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
| | - James B Y H Behrendorff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
| | - Silas Mellor
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark
| | - Klaus Qvortrup
- Core Facility for Integrated Microscopy, The Panum Institute, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julian C Verdonk
- Horticulture and Product Physiology, Plant Sciences Group, Wageningen University, 6708 PD Wageningen, The Netherlands
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, 14476 Potsdam, Germany
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, PL-02-096 Warsaw, Poland;
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Copenhagen, Denmark;
| |
Collapse
|
20
|
Oxidative signalling in seed germination and early seedling growth: an emerging role for ROS trafficking and inter-organelle communication. Biochem J 2021; 478:1977-1984. [PMID: 34047788 DOI: 10.1042/bcj20200934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
Underground early development of higher plants includes two distinct developmental processes, seed germination and then skotomorphogenesis, a mechanism which favours elongation of the hypocotyl and helps the seedling to find light. Interestingly, both processes, which are regulated by plant hormones, have been shown to depend on reactive oxygen species metabolism and to be related to mitochondrial retrograde signalling. Here we review the recent outcomes in this field of research and highlight the emerging role of ROS communication between organelles and cell compartments. We point out the role of mitochondria as an environmental and developmental sensor organelle that regulates ROS homeostasis and downstream events and we propose future directions of research that should help better understanding the roles of ROS in germination and seedling emergence.
Collapse
|
21
|
Dhami N, Cazzonelli CI. Short photoperiod attenuates CO 2 fertilization effect on shoot biomass in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:825-834. [PMID: 33967465 PMCID: PMC8055755 DOI: 10.1007/s12298-021-00968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/27/2021] [Accepted: 03/07/2021] [Indexed: 05/09/2023]
Abstract
The level of carbon dioxide (CO2) in the air can affect several traits in plants. Elevated atmospheric CO2 (eCO2) can enhance photosynthesis and increase plant productivity, including biomass, although there are inconsistencies regarding the effects of eCO2 on the plant growth response. The compounding effects of ambient environmental conditions such as light intensity, photoperiod, water availability, and soil nutrient composition can affect the extent to which eCO2 enhances plant productivity. This study aimed to investigate the growth response of Arabidopsis thaliana to eCO2 (800 ppm) under short photoperiod (8/16 h, light/dark cycle). Here, we report an attenuated fertilization effect of eCO2 on the shoot biomass of Arabidopsis plants grown under short photoperiod. The biomass of two-, three-, and four-week-old Arabidopsis plants was increased by 10%, 15%, and 28%, respectively, under eCO2 compared to the ambient CO2 (aCO2, 400 ppm) i.e. control. However, the number of rosette leaves, rosette area, and shoot biomass were similar in mature plants under both CO2 conditions, despite 40% higher photosynthesis in eCO2 exposed plants. The levels of chlorophylls and carotenoids were similar in the fully expanded rosette leaves regardless of the level of CO2. In conclusion, CO2 enrichment moderately increased Arabidopsis shoot biomass at the juvenile stage, whereas the eCO2-induced increment in shoot biomass was not apparent in mature plants. A shorter day-length can limit the source-to-sink resource allocation in a plant in age-dependent manner, hence diminishing the eCO2 fertilization effect on the shoot biomass in Arabidopsis plants grown under short photoperiod.
Collapse
Affiliation(s)
- Namraj Dhami
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
- Present Address: School of Health and Allied Sciences, Pokhara University, Pokhara 30, Kaski, Gandaki 33700 Nepal
| | - Christopher Ian Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
| |
Collapse
|
22
|
Uhrig RG, Echevarría‐Zomeño S, Schlapfer P, Grossmann J, Roschitzki B, Koerber N, Fiorani F, Gruissem W. Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. PLANT, CELL & ENVIRONMENT 2021; 44:821-841. [PMID: 33278033 PMCID: PMC7986931 DOI: 10.1111/pce.13969] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 05/11/2023]
Abstract
Plant growth depends on the diurnal regulation of cellular processes, but it is not well understood if and how transcriptional regulation controls diurnal fluctuations at the protein level. Here, we report a high-resolution Arabidopsis thaliana (Arabidopsis) leaf rosette proteome acquired over a 12 hr light:12 hr dark diurnal cycle and the phosphoproteome immediately before and after the light-to-dark and dark-to-light transitions. We quantified nearly 5,000 proteins and 800 phosphoproteins, of which 288 fluctuated in their abundance and 226 fluctuated in their phosphorylation status. Of the phosphoproteins, 60% were quantified for changes in protein abundance. This revealed six proteins involved in nitrogen and hormone metabolism that had concurrent changes in both protein abundance and phosphorylation status. The diurnal proteome and phosphoproteome changes involve proteins in key cellular processes, including protein translation, light perception, photosynthesis, metabolism and transport. The phosphoproteome at the light-dark transitions revealed the dynamics at phosphorylation sites in either anticipation of or response to a change in light regime. Phosphorylation site motif analyses implicate casein kinase II and calcium/calmodulin-dependent kinases among the primary light-dark transition kinases. The comparative analysis of the diurnal proteome and diurnal and circadian transcriptome established how mRNA and protein accumulation intersect in leaves during the diurnal cycle of the plant.
Collapse
Affiliation(s)
- R. Glen Uhrig
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Pascal Schlapfer
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
| | - Jonas Grossmann
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Bernd Roschitzki
- Functional Genomics Center ZurichUniversity of ZurichZurichSwitzerland
| | - Niklas Koerber
- Institute of Bio‐ and GeosciencesIBG‐2: Plant Sciences, Forschungszentrum Jülich GmbHJülichGermany
| | - Fabio Fiorani
- Institute of Bio‐ and GeosciencesIBG‐2: Plant Sciences, Forschungszentrum Jülich GmbHJülichGermany
| | - Wilhelm Gruissem
- Department of BiologyInstitute of Molecular Plant Biology, ETH ZurichZurichSwitzerland
- Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
23
|
Lopes-Oliveira PJ, Oliveira HC, Kolbert Z, Freschi L. The light and dark sides of nitric oxide: multifaceted roles of nitric oxide in plant responses to light. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:885-903. [PMID: 33245760 DOI: 10.1093/jxb/eraa504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Light drives photosynthesis and informs plants about their surroundings. Regarded as a multifunctional signaling molecule in plants, nitric oxide (NO) has been repeatedly demonstrated to interact with light signaling cascades to control plant growth, development and metabolism. During early plant development, light-triggered NO accumulation counteracts negative regulators of photomorphogenesis and modulates the abundance of, and sensitivity to, plant hormones to promote seed germination and de-etiolation. In photosynthetically active tissues, NO is generated at distinct rates under light or dark conditions and acts at multiple target sites within chloroplasts to regulate photosynthetic reactions. Moreover, changes in NO concentrations in response to light stress promote plant defenses against oxidative stress under high light or ultraviolet-B radiation. Here we review the literature on the interaction of NO with the complicated light and hormonal signaling cascades controlling plant photomorphogenesis and light stress responses, focusing on the recently identified molecular partners and action mechanisms of NO in these events. We also discuss the versatile role of NO in regulating both photosynthesis and light-dependent stomatal movements, two key determinants of plant carbon gain. The regulation of nitrate reductase (NR) by light is highlighted as vital to adjust NO production in plants living under natural light conditions.
Collapse
Affiliation(s)
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Brazil
| |
Collapse
|
24
|
Michael TP, Ernst E, Hartwick N, Chu P, Bryant D, Gilbert S, Ortleb S, Baggs EL, Sree KS, Appenroth KJ, Fuchs J, Jupe F, Sandoval JP, Krasileva KV, Borisjuk L, Mockler TC, Ecker JR, Martienssen RA, Lam E. Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control. Genome Res 2021; 31:225-238. [PMID: 33361111 PMCID: PMC7849404 DOI: 10.1101/gr.266429.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022]
Abstract
Rootless plants in the genus Wolffia are some of the fastest growing known plants on Earth. Wolffia have a reduced body plan, primarily multiplying through a budding type of asexual reproduction. Here, we generated draft reference genomes for Wolffia australiana (Benth.) Hartog & Plas, which has the smallest genome size in the genus at 357 Mb and has a reduced set of predicted protein-coding genes at about 15,000. Comparison between multiple high-quality draft genome sequences from W. australiana clones confirmed loss of several hundred genes that are highly conserved among flowering plants, including genes involved in root developmental and light signaling pathways. Wolffia has also lost most of the conserved nucleotide-binding leucine-rich repeat (NLR) genes that are known to be involved in innate immunity, as well as those involved in terpene biosynthesis, while having a significant overrepresentation of genes in the sphingolipid pathways that may signify an alternative defense system. Diurnal expression analysis revealed that only 13% of Wolffia genes are expressed in a time-of-day (TOD) fashion, which is less than the typical ∼40% found in several model plants under the same condition. In contrast to the model plants Arabidopsis and rice, many of the pathways associated with multicellular and developmental processes are not under TOD control in W. australiana, where genes that cycle the conditions tested predominantly have carbon processing and chloroplast-related functions. The Wolffia genome and TOD expression data set thus provide insight into the interplay between a streamlined plant body plan and optimized growth.
Collapse
Affiliation(s)
- Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Evan Ernst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Nolan Hartwick
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Philomena Chu
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Douglas Bryant
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Sarah Gilbert
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
| | - Erin L Baggs
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye, Kerala 671316, India
| | | | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
| | - Florian Jupe
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Justin P Sandoval
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Ljudmylla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben 06466, Germany
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Joseph R Ecker
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Robert A Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| |
Collapse
|
25
|
Zhu W, Han H, Liu A, Guan Q, Kang J, David L, Dufresne C, Chen S, Tian J. Combined ultraviolet and darkness regulation of medicinal metabolites in Mahonia bealei revealed by proteomics and metabolomics. J Proteomics 2020; 233:104081. [PMID: 33352312 DOI: 10.1016/j.jprot.2020.104081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
Roots of Mahonia bealei have been used as traditional Chinese medicine with antibacterial, antioxidant and anti-inflammatory properties due to its high alkaloid content. Previously, we reported that alkaloid and flavonoid contents in the M. bealei leaves could be increased by the combined ultraviolet B and dark treatment (UV+D). To explore the underlying metabolic pathways and networks, proteomic and metabolomic analyses of the M. bealei leaves were conducted. Proteins related to tricarboxylic acid cycle, transport and signaling varied greatly under the UV + D. Among them, calmodulin involved in calcium signaling and ATP-binding cassette transporter involved in transport of berberine were increased. Significantly changed metabolites were overrepresented in phenylalanine metabolism, nitrogen metabolism, phenylpropanoid, flavonoid and alkaloid biosynthesis. In addition, the levels of salicylic acid and gibberellin decreased in the UV group and increased in the UV + D group. These results indicate that multi-hormone crosstalk may regulate the biosynthesis of flavonoids and alkaloids to alleviate oxidative stress caused by the UV + D treatment. Furthermore, protoberberine alkaloids may be induced through calcium signaling crosstalk with reaction oxygen species and transported to leaves. SIGNIFICANCE: Mahonia bealei root and stem, not leaf, were used as traditional medicine for a long history because of the high contents of active components. In the present study, UV-B combined with dark treatments induced the production of alkaloids and flavonoids in the M. bealei leaf, especially protoberberine alkaloids such as berberine. Multi-omics analyses indicated that multi-hormone crosstalk, enhanced tricarboxylic acid cycle and active calcium signaling were involved. The study informs a strategy for utilization of the leaves, and improves understanding of the functions of secondary metabolites in M. bealei.
Collapse
Affiliation(s)
- Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China; Department of Biology, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida Genetics Institute, Gainesville, FL 32610, USA; Changsu Qiushi Technology Co., Ltd, Suzhou 215500, PR China
| | - Haote Han
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Amin Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Qijie Guan
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China; Department of Biology, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida Genetics Institute, Gainesville, FL 32610, USA
| | - Jianing Kang
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida Genetics Institute, Gainesville, FL 32610, USA; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Lisa David
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida Genetics Institute, Gainesville, FL 32610, USA
| | - Craig Dufresne
- Thermo Fisher Scientific, West Palm Beach, FL 33407, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida Genetics Institute, Gainesville, FL 32610, USA; Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
26
|
Duman Z, Hadas-Brandwein G, Eliyahu A, Belausov E, Abu-Abied M, Yeselson Y, Faigenboim A, Lichter A, Irihimovitch V, Sadot E. Short De-Etiolation Increases the Rooting of VC801 Avocado Rootstock. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1481. [PMID: 33153170 PMCID: PMC7693756 DOI: 10.3390/plants9111481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 01/16/2023]
Abstract
Dark-grown (etiolated) branches of many recalcitrant plant species root better than their green counterparts. Here it was hypothesized that changes in cell-wall properties and hormones occurring during etiolation contribute to rooting efficiency. Measurements of chlorophyll, carbohydrate and auxin contents, as well as tissue compression, histological analysis and gene-expression profiles were determined in etiolated and de-etiolated branches of the avocado rootstock VC801. Differences in chlorophyll content and tissue rigidity, and changes in xyloglucan and pectin in cambium and parenchyma cells were found. Interestingly, lignin and sugar contents were similar, suggesting that de-etiolated branches resemble the etiolated ones in this respect. Surprisingly, the branches that underwent short de-etiolation rooted better than the etiolated ones, and only a slight difference in IAA content between the two was observed. Gene-expression profiles revealed an increase in ethylene-responsive transcripts in the etiolated branches, which correlated with enrichment in xyloglucan hydrolases. In contrast, transcripts encoding pectin methylesterase and pectolyases were enriched in the de-etiolated branches. Taken together, it seems that the short de-etiolation period led to fine tuning of the conditions favoring adventitious root formation in terms of auxin-ethylene balance and cell-wall properties.
Collapse
Affiliation(s)
- Zvi Duman
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gal Hadas-Brandwein
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Avi Eliyahu
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Eduard Belausov
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
| | - Mohamad Abu-Abied
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
| | - Yelena Yeselson
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
| | - Adi Faigenboim
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
| | - Amnon Lichter
- The Institute of Post Harvest and Food Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel;
| | - Vered Irihimovitch
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
| | - Einat Sadot
- The Institute of Plant Sciences, The Volcani Center, ARO, 68 HaMaccabim Road, Rishon LeZion 7528809, Israel; (Z.D.); (G.H.-B.); (A.E.); (E.B.); (M.A.-A.); (Y.Y.); (A.F.); (V.I.)
| |
Collapse
|
27
|
Deepika, Ankit, Sagar S, Singh A. Dark-Induced Hormonal Regulation of Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2020; 11:581666. [PMID: 33117413 PMCID: PMC7575791 DOI: 10.3389/fpls.2020.581666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/16/2020] [Indexed: 05/04/2023]
Abstract
The sessile nature of plants has made them extremely sensitive and flexible toward the constant flux of the surrounding environment, particularly light and dark. The light is perceived as a signal by specific receptors which further transduce the information through the signaling intermediates and effector proteins to modulate gene expression. Signal transduction induces changes in hormone levels that alters developmental, physiological and morphological processes. Importance of light for plants growth is well recognized, but a holistic understanding of key molecular and physiological changes governing plants development under dark is awaited. Here, we describe how darkness acts as a signal causing alteration in hormone levels and subsequent modulation of the gene regulatory network throughout plant life. The emphasis of this review is on dark mediated changes in plant hormones, regulation of signaling complex COP/DET/FUS and the transcription factors PIFs which affects developmental events such as apical hook development, elongated hypocotyls, photoperiodic flowering, shortened roots, and plastid development. Furthermore, the role of darkness in shade avoidance and senescence is discussed.
Collapse
Affiliation(s)
| | | | | | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
28
|
Alves FRR, Lira BS, Pikart FC, Monteiro SS, Furlan CM, Purgatto E, Pascoal GB, Andrade SCDS, Demarco D, Rossi M, Freschi L. Beyond the limits of photoperception: constitutively active PHYTOCHROME B2 overexpression as a means of improving fruit nutritional quality in tomato. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2027-2041. [PMID: 32068963 PMCID: PMC7540714 DOI: 10.1111/pbi.13362] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 05/30/2023]
Abstract
Photoreceptor engineering has recently emerged as a means for improving agronomically beneficial traits in crop species. Despite the central role played by the red/far-red photoreceptor phytochromes (PHYs) in controlling fruit physiology, the applicability of PHY engineering for increasing fleshy fruit nutritional content remains poorly exploited. In this study, we demonstrated that the fruit-specific overexpression of a constitutively active GAF domain Tyr252 -to-His PHYB2 mutant version (PHYB2Y252H ) significantly enhances the accumulation of multiple health-promoting antioxidants in tomato fruits, without negative collateral consequences on vegetative development. Compared with the native PHYB2 overexpression, PHYB2Y252H -overexpressing lines exhibited more extensive increments in transcript abundance of genes associated with fruit plastid development, chlorophyll biosynthesis and metabolic pathways responsible for the accumulation of antioxidant compounds. Accordingly, PHYB2Y252H -overexpressing fruits developed more chloroplasts containing voluminous grana at the green stage and overaccumulated carotenoids, tocopherols, flavonoids and ascorbate in ripe fruits compared with both wild-type and PHYB2-overexpressing lines. The impacts of PHYB2 or PHYB2Y252H overexpression on fruit primary metabolism were limited to a slight promotion in lipid biosynthesis and reduction in sugar accumulation. Altogether, these findings indicate that mutation-based adjustments in PHY properties represent a valuable photobiotechnological tool for tomato biofortification, highlighting the potential of photoreceptor engineering for improving quality traits in fleshy fruits.
Collapse
Affiliation(s)
- Frederico Rocha Rodrigues Alves
- Departamento de BotânicaUniversidade de São PauloSão PauloSPBrazil
- Departamento de BotânicaUniversidade Federal de GoiásGoiásGOBrazil
| | | | | | | | | | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição ExperimentalUniversidade de São PauloSão PauloSPBrazil
| | - Grazieli Benedetti Pascoal
- Departamento de Alimentos e Nutrição ExperimentalUniversidade de São PauloSão PauloSPBrazil
- Curso de Graduação em NutriçãoUniversidade Federal de UberlândiaMinas GeraisMGBrazil
| | | | - Diego Demarco
- Departamento de BotânicaUniversidade de São PauloSão PauloSPBrazil
| | - Magdalena Rossi
- Departamento de BotânicaUniversidade de São PauloSão PauloSPBrazil
| | - Luciano Freschi
- Departamento de BotânicaUniversidade de São PauloSão PauloSPBrazil
| |
Collapse
|
29
|
Hernández-Verdeja T, Vuorijoki L, Strand Å. Emerging from the darkness: interplay between light and plastid signaling during chloroplast biogenesis. PHYSIOLOGIA PLANTARUM 2020; 169:397-406. [PMID: 32222991 DOI: 10.1111/ppl.13100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 05/17/2023]
Abstract
Chloroplast biogenesis is a highly complex process that requires carefully coordinated communication between the nucleus and the chloroplast to integrate light signaling and information about the state of the plastid through retrograde signals. Most studies on plastid development have been performed using dark-grown seedlings and have focused on the transition from etioplast to chloroplast in response to light. Some advances are now also being made to understand the transition directly from proplastids to chloroplasts as it occurs in the shoot apical meristems. Recent reports have highlighted the importance of repressive mechanisms to block premature chloroplast development in dark, both at the transcriptional and post-transcriptional level. A group of new proteins with dual plastid and nuclear localization were shown to take part in the light triggered degradation of PHYTOCHROME INTERACTING FACTORs (PIFs) in the nucleus and thereby release the suppression of the nuclear photosynthesis associated genes. These dually localized proteins are also required to activate transcription of photosynthesis genes in the plastid in response to light, emphasizing the close link between the nucleus and the plastids during early light response. Furthermore, development of a fully functional chloroplast requires a plastid signal but the nature of this signal(s) is still unknown. GENOMES UNCOUPLED1 (GUN1) is a plastid protein pivotal for retrograde signal(s) during early seedling development, and recent reports have revealed multiple interactors of GUN1 from different plastid processes. These new GUN1 interactors could reveal the true molecular function of the enigmatic character, GUN1, under naturally occurring adverse growth conditions.
Collapse
Affiliation(s)
- Tamara Hernández-Verdeja
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| | - Linda Vuorijoki
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
30
|
Xiao L, Jiang S, Huang P, Chen F, Wang X, Cheng Z, Miao Y, Liu L, Searle I, Liu C, Wu XX, Fu YF, Chen Q, Zhang XM. Two Nucleoporin98 homologous genes jointly participate in the regulation of starch degradation to repress senescence in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:292. [PMID: 32586274 PMCID: PMC7318766 DOI: 10.1186/s12870-020-02494-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/15/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Starch is synthesized during daylight for temporary storage in leaves and then degraded during the subsequent night to support plant growth and development. Impairment of starch degradation leads to stunted growth, even senescence and death. The nuclear pore complex is involved in many cellular processes, but its relationship with starch degradation has been unclear until now. We previously identified that two Nucleoporin98 genes (Nup98a and Nup98b) redundantly regulate flowering via the CONSTANS (CO)-independent pathway in Arabidopsis thaliana. The double mutant also shows severe senescence phenotypes. RESULTS We find that Nucleoporin 98 participates in the regulation of sugar metabolism in leaves and is also involved in senescence regulation in Arabidopsis. We show that Nup98a and Nup98b function redundantly at different stages of starch degradation. The nup98a-1 nup98b-1 double mutant accumulates more starch, showing a severe early senescence phenotype compared to wild type plants. The expression of marker genes related to starch degradation is impaired in the nup98a-1 nup98b-1 double mutant, and marker genes of carbon starvation and senescence express their products earlier and in higher abundance than in wild type plants, suggesting that abnormalities in energy metabolism are the main cause of senescence in the double mutant. Addition of sucrose to the growth medium rescues early senescence phenotypes of the nup98a-1 nup98b-1 mutant. CONCLUSIONS Our results provide evidence for a novel role of the nuclear pore complex in energy metabolism related to growth and development, in which Nup98 functions in starch degradation to control growth regulation in Arabidopsis.
Collapse
Affiliation(s)
- Long Xiao
- Key Laboratory of Soybean Biology, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Shanshan Jiang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Nandajie 12, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Penghui Huang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Nandajie 12, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Fulu Chen
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Nandajie 12, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Xu Wang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Nandajie 12, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Zhiyuan Cheng
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Nandajie 12, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Yuchen Miao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Liangyu Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Iain Searle
- School of Biological Sciences, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Chunyan Liu
- Key Laboratory of Soybean Biology, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Xiao-Xia Wu
- Key Laboratory of Soybean Biology, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Yong-Fu Fu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Nandajie 12, Zhongguancun, Haidian District, Beijing, 100081, China.
| | - Qingshan Chen
- Key Laboratory of Soybean Biology, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Xiao-Mei Zhang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Nandajie 12, Zhongguancun, Haidian District, Beijing, 100081, China
| |
Collapse
|
31
|
Sosa Alderete LG, Flor S, Lucangioli S, Agostini E. Impact of phenol on the glycerophospholipid turnover and potential role of circadian clock in the plant response against this pollutant in tobacco hairy roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:411-420. [PMID: 32283507 DOI: 10.1016/j.plaphy.2020.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Glycerophospholipids (GPLs) from cell membranes (CM) are a proper source for the synthesis of lipid messengers able to activate signal pathways that will define the plant survival under changing and stressful environmental conditions. Little is known about how GPLs metabolism (GPLsM) is regulated and the effects of phenol treatment on GPLs composition. In this work, we studied the effects of phenol both on GPLs turnover and on the expression of GPLsM-related genes potentially regulated by the circadian clock, using tobacco hairy root cultures (HRC). Phenol decreased the total PC levels and increased PE, PG and CL levels in the dark phase. Different molecular species of PC and PE showed the same trend than the total PC and PE upon phenol treatment. Besides, significant differences in the expression of all studied genes related to GPLsM were found. NtCCT2 expression was affected at all analyzed times while NtPECT1 and NtAAPT1 showed similar expression patterns. NtCDS1, NtPGPS2 and NtCLS genes showed significant and differential expression profiles both in untreated and treated HRC. PECT1 and NtPGPS2 genes seem to conserve a circadian expression profile mainly in untreated HRC. However, phenol was able to modify the GPLs composition and the expression of genes related to GPLs synthesis. The GPLs modification could be explained by the up-regulation of NtPECT1, NtAAPT1 and NtCLS genes during the dark phase, suggesting for being a crucial moment for HRC to trigger an adaptive response against this organic pollutant.
Collapse
Affiliation(s)
- Lucas G Sosa Alderete
- Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Departamento de Biología Molecular, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sabrina Flor
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigación Científica y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia Lucangioli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigación Científica y Técnicas (CONICET), Buenos Aires, Argentina
| | - Elizabeth Agostini
- Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Departamento de Biología Molecular, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
32
|
Burko Y, Seluzicki A, Zander M, Pedmale UV, Ecker JR, Chory J. Chimeric Activators and Repressors Define HY5 Activity and Reveal a Light-Regulated Feedback Mechanism. THE PLANT CELL 2020; 32:967-983. [PMID: 32086365 PMCID: PMC7145465 DOI: 10.1105/tpc.19.00772] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/17/2020] [Accepted: 02/19/2020] [Indexed: 05/20/2023]
Abstract
The first exposure to light marks a crucial transition in plant development. This transition relies on the transcription factor HY5 controlling a complex downstream growth program. Despite its importance, its function in transcription remains unclear. Previous studies have generated lists of thousands of potential target genes and competing models of HY5 transcription regulation. In this work, we carry out detailed phenotypic and molecular analysis of constitutive activator and repressor HY5 fusion proteins. Using this strategy, we were able to filter out large numbers of genes that are unlikely to be direct targets, allowing us to eliminate several proposed models of HY5's mechanism of action. We demonstrate that the primary activity of HY5 is promoting transcription and that this function relies on other, likely light-regulated, factors. In addition, this approach reveals a molecular feedback loop via the COP1/SPA E3 ubiquitin ligase complex, suggesting a mechanism that maintains low HY5 in the dark, primed for rapid accumulation to reprogram growth upon light exposure. Our strategy is broadly adaptable to the study of transcription factor activity. Lastly, we show that modulating this feedback loop can generate significant phenotypic diversity in both Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum).
Collapse
Affiliation(s)
- Yogev Burko
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Adam Seluzicki
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Mark Zander
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Ullas V Pedmale
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Joseph R Ecker
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
33
|
Armarego-Marriott T, Sandoval-Ibañez O, Kowalewska Ł. Beyond the darkness: recent lessons from etiolation and de-etiolation studies. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1215-1225. [PMID: 31854450 PMCID: PMC7031072 DOI: 10.1093/jxb/erz496] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/29/2019] [Indexed: 05/06/2023]
Abstract
The state of etiolation is generally defined by the presence of non-green plastids (etioplasts) in plant tissues that would normally contain chloroplasts. In the commonly used dark-grown seedling system, etiolation is coupled with a type of growth called skotomorphogenesis. Upon illumination, de-etiolation occurs, marked by the transition from etioplast to chloroplast, and, at the seedling level, a switch to photomorphogenic growth. Etiolation and de-etiolation systems are therefore important for understanding both the acquisition of photosynthetic capacity during chloroplast biogenesis and plant responses to light-the most relevant signal in the life and growth of the organism. In this review, we discuss recent discoveries (within the past 2-3 years) in the field of etiolation and de-etiolation, with a particular focus on post-transcriptional processes and ultrastructural changes. We further discuss ambiguities in definitions of the term 'etiolation', and benefits and biases of common etiolation/de-etiolation systems. Finally, we raise several open questions and future research possibilities.
Collapse
Affiliation(s)
| | | | - Łucja Kowalewska
- Faculty of Biology, Department of Plant Anatomy and Cytology, University of Warsaw, Warszawa, Poland
| |
Collapse
|
34
|
Hearn TJ, Webb AAR. Recent advances in understanding regulation of the Arabidopsis circadian clock by local cellular environment. F1000Res 2020; 9. [PMID: 32047621 PMCID: PMC6993837 DOI: 10.12688/f1000research.21307.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks have evolved to synchronise an organism’s physiology with the environmental rhythms driven by the Earth’s rotation on its axis. Over the past two decades, many of the genetic components of the
Arabidopsis thaliana circadian oscillator have been identified. The interactions between these components have been formulized into mathematical models that describe the transcriptional translational feedback loops of the oscillator. More recently, focus has turned to the regulation and functions of the circadian clock. These studies have shown that the system dynamically responds to environmental signals and small molecules. We describe advances that have been made in discovering the cellular mechanisms by which signals regulate the circadian oscillator of Arabidopsis in the context of tissue-specific regulation.
Collapse
Affiliation(s)
- Timothy J Hearn
- Department of Plant Sciences, University of Cambridge, Downing Site, Cambridge, CB2 3EA, UK.,Research Department of Cell and Developmental Biology, Rockefeller Building, University College London, London, WC1E 6DE, UK.,Academic Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Downing Site, Cambridge, CB2 3EA, UK
| |
Collapse
|
35
|
Breitler JC, Djerrab D, Leran S, Toniutti L, Guittin C, Severac D, Pratlong M, Dereeper A, Etienne H, Bertrand B. Full moonlight-induced circadian clock entrainment in Coffea arabica. BMC PLANT BIOLOGY 2020; 20:24. [PMID: 31941456 PMCID: PMC6961272 DOI: 10.1186/s12870-020-2238-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/03/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND It is now well documented that moonlight affects the life cycle of invertebrates, birds, reptiles, and mammals. The lunisolar tide is also well-known to alter plant growth and development. However, although plants are known to be very photosensitive, few studies have been undertaken to explore the effect of moonlight on plant physiology. RESULTS Here for the first time we report a massive transcriptional modification in Coffea arabica genes under full moonlight conditions, particularly at full moon zenith and 3 h later. Among the 3387 deregulated genes found in our study, the main core clock genes were affected. CONCLUSIONS Moonlight also negatively influenced many genes involved in photosynthesis, chlorophyll biosynthesis and chloroplast machinery at the end of the night, suggesting that the full moon has a negative effect on primary photosynthetic machinery at dawn. Moreover, full moonlight promotes the transcription of major rhythmic redox genes and many heat shock proteins, suggesting that moonlight is perceived as stress. We confirmed this huge impact of weak light (less than 6 lx) on the transcription of circadian clock genes in controlled conditions mimicking full moonlight.
Collapse
Affiliation(s)
- J-C Breitler
- CIRAD, UMR IPME, F-34398, Montpellier, France.
- UMR IPME, Univ. Montpellier, CIRAD, IRD, F-34394, Montpellier, France.
- INECOL, Clúster BioMimic, 34394, Xalapa Enríquez, Ver, Mexico.
| | - D Djerrab
- CIRAD, UMR IPME, F-34398, Montpellier, France
- UMR IPME, Univ. Montpellier, CIRAD, IRD, F-34394, Montpellier, France
| | - S Leran
- CIRAD, UMR IPME, F-34398, Montpellier, France
- UMR IPME, Univ. Montpellier, CIRAD, IRD, F-34394, Montpellier, France
| | - L Toniutti
- CIRAD, UMR IPME, F-34398, Montpellier, France
- UMR IPME, Univ. Montpellier, CIRAD, IRD, F-34394, Montpellier, France
| | - C Guittin
- UMR IPME, Univ. Montpellier, CIRAD, IRD, F-34394, Montpellier, France
| | - D Severac
- CNRS, Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, Cedex 34, Montpellier, France
| | - M Pratlong
- CNRS, Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, Cedex 34, Montpellier, France
| | - A Dereeper
- UMR IPME, Univ. Montpellier, CIRAD, IRD, F-34394, Montpellier, France
| | - H Etienne
- CIRAD, UMR IPME, F-34398, Montpellier, France
- UMR IPME, Univ. Montpellier, CIRAD, IRD, F-34394, Montpellier, France
| | - B Bertrand
- CIRAD, UMR IPME, F-34398, Montpellier, France
- UMR IPME, Univ. Montpellier, CIRAD, IRD, F-34394, Montpellier, France
| |
Collapse
|
36
|
Abstract
The circadian oscillator is a complex network of interconnected feedback loops that regulates a wide range of physiological processes. Indeed, variation in clock genes has been implicated in an array of plant environmental adaptations, including growth regulation, photoperiodic control of flowering, and responses to abiotic and biotic stress. Although the clock is buffered against the environment, maintaining roughly 24-h rhythms across a wide range of conditions, it can also be reset by environmental cues such as acute changes in light or temperature. These competing demands may help explain the complexity of the links between the circadian clock network and environmental response pathways. Here, we discuss our current understanding of the clock and its interactions with light and temperature-signaling pathways. We also describe different clock gene alleles that have been implicated in the domestication of important staple crops.
Collapse
Affiliation(s)
- Nicky Creux
- Department of Plant Biology, University of California, Davis, California 95616, USA
| | - Stacey Harmer
- Department of Plant Biology, University of California, Davis, California 95616, USA
| |
Collapse
|
37
|
Al-Hijab L, Gregg A, Davies R, Macdonald H, Ladomery M, Wilson I. Abscisic acid induced a negative geotropic response in dark-incubated Chlamydomonas reinhardtii. Sci Rep 2019; 9:12063. [PMID: 31427663 PMCID: PMC6700132 DOI: 10.1038/s41598-019-48632-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/06/2019] [Indexed: 12/27/2022] Open
Abstract
The phytohormone abscisic acid (ABA) plays a role in stresses that alter plant water status and may also regulate root gravitropism and hydrotropism. ABA also exists in the aquatic algal progenitors of land plants, but other than its involvement in stress responses, its physiological role in these microorganisms remains elusive. We show that exogenous ABA significantly altered the HCO3- uptake of Chamydomonas reinhardtii in a light-intensity-dependent manner. In high light ABA enhanced HCO3- uptake, while under low light uptake was diminished. In the dark, ABA induced a negative geotropic movement of the algae to an extent dependent on the time of sampling during the light/dark cycle. The algae also showed a differential, light-dependent directional taxis response to a fixed ABA source, moving horizontally towards the source in the light and away in the dark. We conclude that light and ABA signal competitively in order for algae to position themselves in the water column to minimise photo-oxidative stress and optimise photosynthetic efficiency. We suggest that the development of this response mechanism in motile algae may have been an important step in the evolution of terrestrial plants and that its retention therein strongly implicates ABA in the regulation of their relevant tropisms.
Collapse
Affiliation(s)
- Layla Al-Hijab
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Adam Gregg
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Rhiannon Davies
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Heather Macdonald
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Michael Ladomery
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom
| | - Ian Wilson
- University of the West of England, Bristol; Department of Applied Sciences, Faculty of Health and Applied Sciences; Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, United Kingdom.
| |
Collapse
|
38
|
Hoang QTN, Han YJ, Kim JI. Plant Phytochromes and their Phosphorylation. Int J Mol Sci 2019; 20:ijms20143450. [PMID: 31337079 PMCID: PMC6678601 DOI: 10.3390/ijms20143450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Extensive research over several decades in plant light signaling mediated by photoreceptors has identified the molecular mechanisms for how phytochromes regulate photomorphogenic development, which includes degradation of phytochrome-interacting factors (PIFs) and inactivation of COP1-SPA complexes with the accumulation of master transcription factors for photomorphogenesis, such as HY5. However, the initial biochemical mechanism for the function of phytochromes has not been fully elucidated. Plant phytochromes have long been known as phosphoproteins, and a few protein phosphatases that directly interact with and dephosphorylate phytochromes have been identified. However, there is no report thus far of a protein kinase that acts on phytochromes. On the other hand, plant phytochromes have been suggested as autophosphorylating serine/threonine protein kinases, proposing that the kinase activity might be important for their functions. Indeed, the autophosphorylation of phytochromes has been reported to play an important role in the regulation of plant light signaling. More recently, evidence that phytochromes function as protein kinases in plant light signaling has been provided using phytochrome mutants displaying reduced kinase activities. In this review, we highlight recent advances in the reversible phosphorylation of phytochromes and their functions as protein kinases in plant light signaling.
Collapse
Affiliation(s)
- Quyen T N Hoang
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
39
|
Kim J. Sugar metabolism as input signals and fuel for leaf senescence. Genes Genomics 2019; 41:737-746. [PMID: 30879182 DOI: 10.1007/s13258-019-00804-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 12/27/2022]
Abstract
Senescence in plants is an active and acquired developmental process that occurs at the last developmental stage during the life cycle of a plant. Leaf senescence is a relatively slow process, which is characterized by loss of photosynthetic activity and breakdown of macromolecules, to compensate for reduced energy production. Sugars, major photosynthetic assimilates, are key substrates required for cellular respiration to produce intermediate sources of energy and reducing power, which are known to be essential for the maintenance of cellular processes during senescence. In addition, sugars play roles as signaling molecules to facilitate a wide range of developmental processes as metabolic sensors. However, the roles of sugar during the entire period of senescence remain fragmentary. The purpose of the present review was to examine and explore changes in production, sources, and functions of sugars during leaf senescence. Further, the review explores the current state of knowledge on how sugars mediate the onset or progression of leaf senescence. Progress in the area would facilitate the determination of more sophisticated ways of manipulating the senescence process in plants and offer insights that guide efforts to maintain nutrients in leafy plants during postharvest storage.
Collapse
Affiliation(s)
- Jeongsik Kim
- Faculty of Science Education, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
40
|
Welkie DG, Rubin BE, Diamond S, Hood RD, Savage DF, Golden SS. A Hard Day's Night: Cyanobacteria in Diel Cycles. Trends Microbiol 2019; 27:231-242. [PMID: 30527541 PMCID: PMC6377297 DOI: 10.1016/j.tim.2018.11.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022]
Abstract
Cyanobacteria are photosynthetic prokaryotes that are influential in global geochemistry and are promising candidates for industrial applications. Because the livelihood of cyanobacteria is directly dependent upon light, a comprehensive understanding of metabolism in these organisms requires taking into account the effects of day-night transitions and circadian regulation. These events synchronize intracellular processes with the solar day. Accordingly, metabolism is controlled and structured differently in cyanobacteria than in heterotrophic bacteria. Thus, the approaches applied to engineering heterotrophic bacteria will need to be revised for the cyanobacterial chassis. Here, we summarize important findings related to diurnal metabolism in cyanobacteria and present open questions in the field.
Collapse
Affiliation(s)
- David G Welkie
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin E Rubin
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Spencer Diamond
- Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA 94720, USA
| | - Rachel D Hood
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - David F Savage
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Susan S Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Jia PF, Xue Y, Li HJ, Yang WC. LOT regulates TGN biogenesis and Golgi structure in plants. PLANT SIGNALING & BEHAVIOR 2019; 14:e1573100. [PMID: 30688137 PMCID: PMC6422381 DOI: 10.1080/15592324.2019.1573100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 06/02/2023]
Abstract
Trans-Golgi Network (TGN) is an essential organelle in eukaryotic cells. It acts not only as the sorting station of trafficking cargoes, but also as a signaling hub. In plant cells, TGN simultaneously takes the role of early endosome (EE) and contributes to the endocytic recycling. We recently characterized the first Golgi-localized protein Loss of TGNs (LOT) that is critical for TGN biogenesis and demonstrated its role during pollen tube growth in Arabidopsis. We also showed that the homozygous lot plant is dwarf and smaller than the wild type plant. As LOT is a single-copy gene and shows ubiquitous expression pattern, knowledge of its role in vegetative tissues, besides the pollen, is important for understanding the regulation of TGN/EE dynamics and signaling in plant development. Here, in this short communication, we present data to show that LOT also regulates TGN formation and Golgi structure in root meristem cells, and is critical for the elongation of hypocotyl and stamen filament.
Collapse
Affiliation(s)
- Peng-Fei Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yong Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Collage of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Collage of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Bourbousse C, Barneche F, Laloi C. Plant Chromatin Catches the Sun. FRONTIERS IN PLANT SCIENCE 2019; 10:1728. [PMID: 32038692 PMCID: PMC6992579 DOI: 10.3389/fpls.2019.01728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/09/2019] [Indexed: 05/08/2023]
Abstract
Plants use solar radiation as energy source for photosynthesis. They also take advantage of the information provided by the varying properties of sunlight, such as wavelength, orientation, and periodicity, to trigger physiological and developmental adaptations to a changing environment. After more than a century of research efforts in plant photobiology, multiple light signaling pathways converging onto chromatin-based mechanisms have now been identified, which in some instances play critical roles in plant phenotypic plasticity. In addition to locus-specific changes linked to transcription regulation, light signals impact higher-order chromatin organization. Here, we summarize current knowledge on how light can affect the global composition and the spatial distribution of chromatin domains. We introduce emerging questions on the functional links between light signaling and the epigenome, and further discuss how different chromatin regulatory layers may interconnect during plant adaptive responses to light.
Collapse
Affiliation(s)
- Clara Bourbousse
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- *Correspondence: Clara Bourbousse, ; Fredy Barneche,
| | - Fredy Barneche
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- *Correspondence: Clara Bourbousse, ; Fredy Barneche,
| | - Christophe Laloi
- Aix Marseille Univ, CEA, CNRS, BIAM, Luminy Génétique et Biophysique des Plantes, Marseille, France
| |
Collapse
|
43
|
Suter PM. [Thoughts about Light and Sleep]. PRAXIS 2019; 108:139-143. [PMID: 30722742 DOI: 10.1024/1661-8157/a003175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thoughts about Light and Sleep Abstract. Many aspects of health and disease are mainly determined by the constant change between light and darkness during a solar day. The resulting physiological rhythms correspond to the circadian rhythm, which was one of the most central drivers in the evolution of humans. However, over the last 20-30 years, these natural rhythms of the change of light and darkness are being increasingly ignored by modern societies. It is well known that these rhythms are modulators of many physiological pathways and any desynchronization or misalignment will activate different pathophysiological pathways, which contribute to the risk of chronic diseases. Light pollution by widespread illumination of our environment and the night sky and uncontrolled man-made use of any light source plays a key role in the pathogenesis of sleep disturbances. Blue light exposure in the evening from any artificial light source (especially from electronic device screens) is of special relevance in this context. In this article a few key facts concerning light, sleep and diseases are presented. We should by all means account for the effects of light and darkness and stop any further light pollution.
Collapse
Affiliation(s)
- Paolo M Suter
- 1 Medizinische Poliklinik, Klinik und Poliklinik für Innere Medizin, Universitätsspital Zürich
| |
Collapse
|
44
|
Izumi M, Ishida H. An additional role for chloroplast proteins-an amino acid reservoir for energy production during sugar starvation. PLANT SIGNALING & BEHAVIOR 2018; 14:1552057. [PMID: 30507341 PMCID: PMC6351091 DOI: 10.1080/15592324.2018.1552057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Autophagy is an evolutionarily conserved system that degrades intracellular components including proteins and organelles, and is important in the adaptive response to starvation in various eukaryotic organisms. Plant chloroplasts convert light energy into chemical energy and assimilate atmospheric carbon dioxide (CO2) for carbohydrate production through photosynthesis reactions. We previously described an autophagy process for chloroplast degradation, during which a portion of chloroplasts are mobilized into the vacuole via autophagic vesicles termed Rubisco-containing bodies. Our recent study demonstrated that the activation of autophagy in photoassimilate-limited leaves is required for the production of free amino acids (AAs) as an alternative energy source. The catabolism of free branched-chain amino acids (BCAAs) is particularly important for survival under starvation conditions. These recent findings suggest an additional role for chloroplasts as a reservoir of AA when photosynthetic energy production is limited.
Collapse
Affiliation(s)
- Masanori Izumi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Hiroyuki Ishida
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
45
|
Nassrallah A, Rougée M, Bourbousse C, Drevensek S, Fonseca S, Iniesto E, Ait-Mohamed O, Deton-Cabanillas AF, Zabulon G, Ahmed I, Stroebel D, Masson V, Lombard B, Eeckhout D, Gevaert K, Loew D, Genovesio A, Breyton C, De Jaeger G, Bowler C, Rubio V, Barneche F. DET1-mediated degradation of a SAGA-like deubiquitination module controls H2Bub homeostasis. eLife 2018; 7:37892. [PMID: 30192741 PMCID: PMC6128693 DOI: 10.7554/elife.37892] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
DE-ETIOLATED 1 (DET1) is an evolutionarily conserved component of the ubiquitination machinery that mediates the destabilization of key regulators of cell differentiation and proliferation in multicellular organisms. In this study, we provide evidence from Arabidopsis that DET1 is essential for the regulation of histone H2B monoubiquitination (H2Bub) over most genes by controlling the stability of a deubiquitination module (DUBm). In contrast with yeast and metazoan DUB modules that are associated with the large SAGA complex, the Arabidopsis DUBm only comprises three proteins (hereafter named SGF11, ENY2 and UBP22) and appears to act independently as a major H2Bub deubiquitinase activity. Our study further unveils that DET1-DDB1-Associated-1 (DDA1) protein interacts with SGF11 in vivo, linking the DET1 complex to light-dependent ubiquitin-mediated proteolytic degradation of the DUBm. Collectively, these findings uncover a signaling path controlling DUBm availability, potentially adjusting H2Bub turnover capacity to the cell transcriptional status.
Collapse
Affiliation(s)
- Amr Nassrallah
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Martin Rougée
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Sud, Orsay, France
| | - Clara Bourbousse
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Sud, Orsay, France
| | - Stephanie Drevensek
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sandra Fonseca
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Elisa Iniesto
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Ouardia Ait-Mohamed
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Anne-Flore Deton-Cabanillas
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Gerald Zabulon
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Ikhlak Ahmed
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - David Stroebel
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vanessa Masson
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie PSL Research University, 75005 Paris, France
| | - Berangere Lombard
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie PSL Research University, 75005 Paris, France
| | - Dominique Eeckhout
- Department of Plant Systems Biology, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium.,VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Damarys Loew
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie PSL Research University, 75005 Paris, France
| | - Auguste Genovesio
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cecile Breyton
- Université Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
| | - Geert De Jaeger
- Department of Plant Systems Biology, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Chris Bowler
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vicente Rubio
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Fredy Barneche
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
46
|
Achkar NP, Cho SK, Poulsen C, Arce AL, Re DA, Giudicatti AJ, Karayekov E, Ryu MY, Choi SW, Harholt J, Casal JJ, Yang SW, Manavella PA. A Quick HYL1-Dependent Reactivation of MicroRNA Production Is Required for a Proper Developmental Response after Extended Periods of Light Deprivation. Dev Cell 2018; 46:236-247.e6. [PMID: 30016624 DOI: 10.1016/j.devcel.2018.06.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 03/14/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
Abstract
Light is the most influential environmental stimulus for plant growth. In response to deficient light, plants reprogram their development to adjust their growth in search for a light source. A fine reprogramming of gene expression orchestrates this adaptive trait. Here we show that plants alter microRNA (miRNA) biogenesis in response to light transition. When plants suffer an unusual extended period of light deprivation, the miRNA biogenesis factor HYPONASTIC LEAVES 1 (HYL1) is degraded but an inactive pool of phosphorylated protein remains stable inside the nucleus. Degradation of HYL1 leads to the release of gene silencing, triggering a proper response to dark and shade. Upon light restoration, a quick dephosphorylation of HYL1 leads to the reactivation of miRNA biogenesis and a switch toward a developmental program that maximizes the light uptake. Our findings define a unique and fast regulatory mechanism controlling the plant silencing machinery during plant light response.
Collapse
Affiliation(s)
- Natalia P Achkar
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL-FBCB), Santa Fe 3000, Argentina
| | - Seok Keun Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | - Agustin L Arce
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL-FBCB), Santa Fe 3000, Argentina
| | - Delfina A Re
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL-FBCB), Santa Fe 3000, Argentina
| | - Axel J Giudicatti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL-FBCB), Santa Fe 3000, Argentina
| | - Elizabeth Karayekov
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires 1417, Argentina
| | - Moon Young Ryu
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Suk Won Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jesper Harholt
- Carlsberg Research Laboratory, Copenhagen V 1799, Denmark
| | - Jorge J Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires 1417, Argentina; Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires 1405, Argentina
| | - Seong Wook Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL-FBCB), Santa Fe 3000, Argentina.
| |
Collapse
|
47
|
Gommers CMM, Monte E. Seedling Establishment: A Dimmer Switch-Regulated Process between Dark and Light Signaling. PLANT PHYSIOLOGY 2018; 176:1061-1074. [PMID: 29217596 PMCID: PMC5813566 DOI: 10.1104/pp.17.01460] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/03/2017] [Indexed: 05/18/2023]
Abstract
A balance between dark and light signaling directs seedling establishment through integrating internal and environmental information.
Collapse
Affiliation(s)
- Charlotte M M Gommers
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Elena Monte
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| |
Collapse
|
48
|
Xin X, Chen W, Wang B, Zhu F, Li Y, Yang H, Li J, Ren D. Arabidopsis MKK10-MPK6 mediates red-light-regulated opening of seedling cotyledons through phosphorylation of PIF3. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:423-439. [PMID: 29244171 PMCID: PMC5853512 DOI: 10.1093/jxb/erx418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/31/2017] [Indexed: 05/21/2023]
Abstract
Photomorphogenesis is an important process in which seedlings emerge from soil and begin autotrophic growth. Mechanisms of photomorphogenesis include light signal perception, signal transduction, and the modulation of expression of light-responsive genes, ultimately leading to cellular and developmental changes. Phytochrome-interacting factors (PIFs) play negative regulatory roles in photomorphogenesis. Light-induced activation of phytochromes triggers rapid phosphorylation and degradation of PIFs, but the kinases responsible for the phosphorylation of PIFs are largely unknown. Here, we show that Arabidopsis MPK6 is a kinase involved in phosphorylating PIF3 and regulating red light-induced cotyledon opening, a crucial process during seedling photomorphogenesis. MPK6 was activated by red light, and the cotyledon opening angle in red light was reduced in mpk6 seedlings. MKK10, a MAPKK whose function is currently unclear, appears to act as a kinase upstream of MPK6 in regulating cotyledon opening. Activation of MPK6 by MKK10 led to the phosphorylation of PIF3 and accelerated its turnover in transgenic seedlings. Accordingly, the overexpression of PIF3 suppressed MKK10-induced cotyledon opening. MKK10 and MPK6 function downstream of phyB in regulating seedling cotyledon opening in red light. Therefore, the MKK10-MPK6 cascade appears to mediate the regulation of red-light-controlled seedling photomorphogenesis via a mechanism that might involve the phosphorylation of PIF3.
Collapse
Affiliation(s)
- Xiaoyun Xin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Wenhao Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Bo Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Fan Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
- Collaborative Innovation Center of Crop Stress Biology, China
- Correspondence:
| |
Collapse
|
49
|
Mengin V, Pyl ET, Alexandre Moraes T, Sulpice R, Krohn N, Encke B, Stitt M. Photosynthate partitioning to starch in Arabidopsis thaliana is insensitive to light intensity but sensitive to photoperiod due to a restriction on growth in the light in short photoperiods. PLANT, CELL & ENVIRONMENT 2017; 40:2608-2627. [PMID: 28628949 DOI: 10.1111/pce.13000] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 05/18/2023]
Abstract
Photoperiod duration can be predicted from previous days, but irradiance fluctuates in an unpredictable manner. To investigate how allocation to starch responds to changes in these two environmental variables, Arabidopsis Col-0 was grown in a 6 h and a 12 h photoperiod at three different irradiances. The absolute rate of starch accumulation increased when photoperiod duration was shortened and when irradiance was increased. The proportion of photosynthate allocated to starch increased strongly when photoperiod duration was decreased but only slightly when irradiance was decreased. There was a small increase in the daytime level of sucrose and twofold increases in glucose, fructose and glucose 6-phosphate at a given irradiance in short photoperiods compared to long photoperiods. The rate of starch accumulation correlated strongly with sucrose and glucose levels in the light, irrespective of whether these sugars were responding to a change in photoperiod or irradiance. Whole plant carbon budget modelling revealed a selective restriction of growth in the light period in short photoperiods. It is proposed that photoperiod sensing, possibly related to the duration of the night, restricts growth in the light period in short photoperiods, increasing allocation to starch and providing more carbon reserves to support metabolism and growth in the long night.
Collapse
Affiliation(s)
- Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Eva-Theresa Pyl
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | | | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- NUI Galway, Plant Systems Biology Laboratory, Plant and AgriBiosciences Research Centre, School of Natural Sciences, Galway, H91 TK33, Ireland
| | - Nicole Krohn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Beatrice Encke
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
50
|
PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:E6695-E6702. [PMID: 28739888 DOI: 10.1073/pnas.1706226114] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Light and temperature are major environmental factors that coordinately control plant growth and survival. However, how plants integrate light and temperature signals to better adapt to environmental stresses is poorly understood. PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), a key transcription factor repressing photomorphogenesis, has been shown to play a pivotal role in mediating plants' responses to various environmental signals. In this study, we found that PIF3 functions as a negative regulator of Arabidopsis freezing tolerance by directly binding to the promoters of C-REPEAT BINDING FACTOR (CBF) genes to down-regulate their expression. In addition, two F-box proteins, EIN3-BINDING F-BOX 1 (EBF1) and EBF2, directly target PIF3 for 26S proteasome-mediated degradation. Consistently, ebf1 and ebf2 mutants were more sensitive to freezing than were the wild type, and the pif3 mutation suppressed the freezing-sensitive phenotype of ebf1 Furthermore, cold treatment promoted the degradation of EBF1 and EBF2, leading to increased stability of the PIF3 protein and reduced expression of the CBF genes. Together, our study uncovers an important role of PIF3 in Arabidopsis freezing tolerance by negatively regulating the expression of genes in the CBF pathway.
Collapse
|