1
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Branch HA, Moxley DR, Angert AL. Regional differences in leaf evolution facilitate photosynthesis following severe drought. THE NEW PHYTOLOGIST 2024; 243:2457-2469. [PMID: 39021265 DOI: 10.1111/nph.19963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
Characterizing physiological and anatomical changes that underlie rapid evolution following climatic perturbation can broaden our understanding of how climate change is affecting biodiversity. It can also provide evidence of cryptic adaptation despite stasis at higher levels of biological organization. Here, we compared evolutionary changes in populations of Mimulus cardinalis from historically different climates in the north and south of the species' range following an exceptional drought. We grew seeds produced from predrought ancestral plants alongside peak-drought descendants in a common glasshouse and exposed them to wet and dry conditions. Before the drought, northern ancestral populations expressed traits contributing to drought escape, while southern ancestral populations expressed drought avoidance. Following the drought, both regions evolved to reduce water loss and maintain photosynthesis in dry treatments (drought avoidance), but via different anatomical alterations in stomata, trichomes, and palisade mesophyll. Additionally, southern populations lost the ability to take advantage of wet conditions. These results reveal rapid evolution towards drought avoidance at an anatomical level following an exceptional drought, but suggest that differences in the mechanisms between regions incur different trade-offs. This sheds light on the importance of characterizing underlying mechanisms for downstream life-history and macromorphological traits.
Collapse
Affiliation(s)
- Haley A Branch
- Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Dylan R Moxley
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Amy L Angert
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
3
|
Salesse‐Smith CE, Lochocki EB, Doran L, Haas BE, Stutz SS, Long SP. Greater mesophyll conductance and leaf photosynthesis in the field through modified cell wall porosity and thickness via AtCGR3 expression in tobacco. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2504-2517. [PMID: 38687118 PMCID: PMC11331791 DOI: 10.1111/pbi.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
Mesophyll conductance (gm) describes the ease with which CO2 passes from the sub-stomatal cavities of the leaf to the primary carboxylase of photosynthesis, Rubisco. Increasing gm is suggested as a means to engineer increases in photosynthesis by increasing [CO2] at Rubisco, inhibiting oxygenation and accelerating carboxylation. Here, tobacco was transgenically up-regulated with Arabidopsis Cotton Golgi-related 3 (CGR3), a gene controlling methylesterification of pectin, as a strategy to increase CO2 diffusion across the cell wall and thereby increase gm. Across three independent events in tobacco strongly expressing AtCGR3, mesophyll cell wall thickness was decreased by 7%-13%, wall porosity increased by 75% and gm measured by carbon isotope discrimination increased by 28%. Importantly, field-grown plants showed an average 8% increase in leaf photosynthetic CO2 uptake. Up-regulating CGR3 provides a new strategy for increasing gm in dicotyledonous crops, leading to higher CO2 assimilation and a potential means to sustainable crop yield improvement.
Collapse
Affiliation(s)
- Coralie E. Salesse‐Smith
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Edward B. Lochocki
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Lynn Doran
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Benjamin E. Haas
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Samantha S. Stutz
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Stephen P. Long
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Departments of Plant Biology and of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
4
|
Zhuang H, Li Z, Wang M, Liu B, Chu Y, Lin Z. Effects of microplastics and combined pollution of polystyrene and di-n-octyl phthalate on photosynthesis of cucumber (Cucumis sativus L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174426. [PMID: 38969123 DOI: 10.1016/j.scitotenv.2024.174426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Photosynthesis provides carbon sources and energy for crop growth and development, and the widespread presence of microplastics and plastic plasticisers in agricultural soils affects crop photosynthesis, but the mechanism of the effect is not clear. This study aims to investigate the effects of different microplastics and plasticizers on cucumber photosynthesis. Using polyvinyl chloride (PVC), polyethylene (PE), polystyrene (PS), and di-n-octyl phthalate (DOP) as representative microplastics and plasticizers, we assessed their impact on cucumber photosynthesis. Our results reveal significant alterations in key parameters: intercellular CO2 concentration (Ci) and transpiration rate (Tr) increased across all treatments, whereas stomatal limit value (Ls) and water use efficiency (WUE) decreased. Notably, PS + DOP treatment led to a significant reduction in the maximum efficiency of photosystem II (Fv/Fm) and ATP accumulation. Furthermore, PE and PS + DOP treatments decreased lycopene and ɛ-carotene synthesis rates, as well as abscisic acid (ABA) accumulation. All treatments inhibited the conversion of β-carotene into strigolactone (SL) and decreased chlorophyll synthesis rates, with PS + DOP exhibiting the most severe impact. Regarding chlorophyll degradation pathways, PVC and PE treatments reduced chlorophyll decomposition rates, whereas DOP with PS promoted degradation. PE and PS treatments also impaired light energy capture, electron transport, and the structural stability of photosystems I and II, as well as photosynthetic capacity and NADPH and ATP synthesis rates. Our findings underscore the differential impacts of microplastics and plasticizers on cucumber photosynthesis, with PS + DOP having the most detrimental effect. These results shed light on the complex interactions between microplastics and plant physiology, highlighting the urgent need for mitigation strategies in agricultural practices to safeguard crop productivity and environmental sustainability.
Collapse
Affiliation(s)
- Haoran Zhuang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhenxia Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan 453003, China.
| | - Menglin Wang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Bo Liu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yiwen Chu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ziyu Lin
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan 453003, China
| |
Collapse
|
5
|
Sloan J, Wang S, Ngai QY, Xiao Y, Armand J, Wilson MJ, Zhu X, Fleming AJ. Conserved cellular patterning in the mesophyll of rice leaves. PLANT DIRECT 2023; 7:e549. [PMID: 38054113 PMCID: PMC10695703 DOI: 10.1002/pld3.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
The mesophyll cells of grass leaves, such as rice, are traditionally viewed as displaying a relatively uniform pattern, in contrast to the clear distinctions of palisade and spongy layers in typical eudicot leaves. This quantitative analysis of mesophyll cell size and shape in rice leaves reveals that there is an inherent pattern in which cells in the middle layer of the mesophyll are larger and less circular and have a distinct orientation of their long axis compared to mesophyll cells in other layers. Moreover, this pattern was observed in a range of rice cultivars and species. The significance of this pattern with relation to potential photosynthetic function and the implication of the widespread use of middle layer mesophyll cells as typical of the rice leaf have been investigated and discussed.
Collapse
Affiliation(s)
- Jen Sloan
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Saranrat Wang
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Qi Yang Ngai
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Yi Xiao
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana ChampaignUrbanaILUSA
| | - Jodie Armand
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Matthew J. Wilson
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Xin‐Guang Zhu
- Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Andrew J. Fleming
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
6
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
7
|
Abstract
When microscopy meets modelling the exciting concept of a 'virtual leaf' is born. The goal of a 'virtual leaf' is to capture complex physiology in a virtual environment, resulting in the capacity to run experiments computationally. One example of a 'virtual leaf' application is capturing 3D anatomy from volume microscopy data and estimating where water evaporates in the leaf and the proportions of apoplastic, symplastic and gas phase water transport. The same 3D anatomy could then be used to improve established 3D reaction-diffusion models, providing a better understanding of the transport of CO2 across the stomata, through the airspace and across the mesophyll cell wall. This viewpoint discusses recent progress that has been made in transitioning from a bulk leaf approach to a 3D understanding of leaf physiology, in particular, the movement of CO2 and H2O within the leaf.
Collapse
|
8
|
Xiao Y, Sloan J, Hepworth C, Fradera‐Soler M, Mathers A, Thorley R, Baillie A, Jones H, Chang T, Chen X, Yaapar N, Osborne CP, Sturrock C, Mooney SJ, Fleming AJ, Zhu X. Defining the scope for altering rice leaf anatomy to improve photosynthesis: a modelling approach. THE NEW PHYTOLOGIST 2023; 237:441-453. [PMID: 36271620 PMCID: PMC10099902 DOI: 10.1111/nph.18564] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Leaf structure plays an important role in photosynthesis. However, the causal relationship and the quantitative importance of any single structural parameter to the overall photosynthetic performance of a leaf remains open to debate. In this paper, we report on a mechanistic model, eLeaf, which successfully captures rice leaf photosynthetic performance under varying environmental conditions of light and CO2 . We developed a 3D reaction-diffusion model for leaf photosynthesis parameterised using a range of imaging data and biochemical measurements from plants grown under ambient and elevated CO2 and then interrogated the model to quantify the importance of these elements. The model successfully captured leaf-level photosynthetic performance in rice. Photosynthetic metabolism underpinned the majority of the increased carbon assimilation rate observed under elevated CO2 levels, with a range of structural elements making positive and negative contributions. Mesophyll porosity could be varied without any major outcome on photosynthetic performance, providing a theoretical underpinning for experimental data. eLeaf allows quantitative analysis of the influence of morphological and biochemical properties on leaf photosynthesis. The analysis highlights a degree of leaf structural plasticity with respect to photosynthesis of significance in the context of attempts to improve crop photosynthesis.
Collapse
Affiliation(s)
- Yi Xiao
- Center of Excellence for Molecular Plant Science, Institute of Plant Physiology and EcologyCASShanghai200032China
| | - Jen Sloan
- Plants, Photosynthesis and Soil, BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Chris Hepworth
- Plants, Photosynthesis and Soil, BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Marc Fradera‐Soler
- Division of Agriculture and Environmental Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Andrew Mathers
- Division of Agriculture and Environmental Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Rachel Thorley
- Plants, Photosynthesis and Soil, BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Alice Baillie
- Plants, Photosynthesis and Soil, BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Hannah Jones
- Plants, Photosynthesis and Soil, BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Tiangen Chang
- Center of Excellence for Molecular Plant Science, Institute of Plant Physiology and EcologyCASShanghai200032China
| | - Xingyuan Chen
- Pacific Northwest National LaboratoryRichlandWA99354USA
| | - Nazmin Yaapar
- Department of Crop Science, Faculty of AgricultureUniversiti Putra Malaysia43400SerdangMalaysia
| | - Colin P. Osborne
- Plants, Photosynthesis and Soil, BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Craig Sturrock
- Division of Agriculture and Environmental Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Sacha J. Mooney
- Division of Agriculture and Environmental Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Andrew J. Fleming
- Plants, Photosynthesis and Soil, BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Xin‐Guang Zhu
- Center of Excellence for Molecular Plant Science, Institute of Plant Physiology and EcologyCASShanghai200032China
| |
Collapse
|
9
|
Wang Y, Wang Y, Tang Y, Zhu XG. Stomata conductance as a goalkeeper for increased photosynthetic efficiency. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102310. [PMID: 36376162 DOI: 10.1016/j.pbi.2022.102310] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
100-120 words. References should not be included. Abbreviations should be avoided as far as possible. Low stomatal conductance (gs) poses a major constraint for improving photosynthetic efficiency for greater yield. Options at the molecular, leaf, canopy, and even the whole plant scales can be developed to enhance gs for greater light and water use efficiencies. Among these, many genes regulating stomatal development and stomatal movement have been discovered and manipulated to increase light and water use efficiencies under well-watered, drought, or facility agriculture conditions with the manual-controlled growth environmental. Optimization of canopy conductance to increase whole plant photosynthesis with full consideration of the heterogeneities in gs, microclimates and leaf ontology inside the canopy represents a largely uncharted area to improve crop efficiency.
Collapse
Affiliation(s)
- Yin Wang
- College of Urban and Environmental Sciences, Peking University, China
| | - Yizhou Wang
- College of Agriculture and Biotechnology, Zhejiang University, China
| | - Yanhong Tang
- College of Urban and Environmental Sciences, Peking University, China
| | - Xin-Guang Zhu
- Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|
10
|
Knauer J, Cuntz M, Evans JR, Niinemets Ü, Tosens T, Veromann‐Jürgenson L, Werner C, Zaehle S. Contrasting anatomical and biochemical controls on mesophyll conductance across plant functional types. THE NEW PHYTOLOGIST 2022; 236:357-368. [PMID: 35801854 PMCID: PMC9804998 DOI: 10.1111/nph.18363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/30/2022] [Indexed: 06/06/2023]
Abstract
Mesophyll conductance (gm ) limits photosynthesis by restricting CO2 diffusion between the substomatal cavities and chloroplasts. Although it is known that gm is determined by both leaf anatomical and biochemical traits, their relative contribution across plant functional types (PFTs) is still unclear. We compiled a dataset of gm measurements and concomitant leaf traits in unstressed plants comprising 563 studies and 617 species from all major PFTs. We investigated to what extent gm limits photosynthesis across PFTs, how gm relates to structural, anatomical, biochemical, and physiological leaf properties, and whether these relationships differ among PFTs. We found that gm imposes a significant limitation to photosynthesis in all C3 PFTs, ranging from 10-30% in most herbaceous annuals to 25-50% in woody evergreens. Anatomical leaf traits explained a significant proportion of the variation in gm (R2 > 0.3) in all PFTs except annual herbs, in which gm is more strongly related to biochemical factors associated with leaf nitrogen and potassium content. Our results underline the need to elucidate mechanisms underlying the global variability of gm . We emphasise the underestimated potential of gm for improving photosynthesis in crops and identify modifications in leaf biochemistry as the most promising pathway for increasing gm in these species.
Collapse
Affiliation(s)
- Jürgen Knauer
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
- Climate Science CentreCSIRO Oceans and AtmosphereCanberraACT2601Australia
- Max Planck Institute for Biogeochemistry07745JenaGermany
| | - Matthias Cuntz
- AgroParisTech, UMR SilvaINRAE, Université de Lorraine54000NancyFrance
| | - John R. Evans
- ARC Centre of Excellence for Translational PhotosynthesisResearch School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental SciencesEstonian University of Life Sciences51006TartuEstonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental SciencesEstonian University of Life Sciences51006TartuEstonia
| | | | | | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry07745JenaGermany
| |
Collapse
|
11
|
Zhu XG, Hasanuzzaman M, Jajoo A, Lawson T, Lin R, Liu CM, Liu LN, Liu Z, Lu C, Moustakas M, Roach T, Song Q, Yin X, Zhang W. Improving photosynthesis through multidisciplinary efforts: The next frontier of photosynthesis research. FRONTIERS IN PLANT SCIENCE 2022; 13:967203. [PMID: 36247611 PMCID: PMC9563237 DOI: 10.3389/fpls.2022.967203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/18/2022] [Indexed: 06/07/2023]
Affiliation(s)
- Xin-Guang Zhu
- Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Anjana Jajoo
- School of Biotechnology, Devi Ahilya University, Indore, India
| | - Tracy Lawson
- School of Life Science, University of Essex, Colchester, United Kingdom
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chun-Ming Liu
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Congming Lu
- School of Life Sciences, Shandong Agricultural University, Taian, China
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Roach
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Qingfeng Song
- Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyou Yin
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, Netherlands
| | - Wangfeng Zhang
- Department of Agronomy, Shihezi University, Shihezi, China
| |
Collapse
|
12
|
Using synthetic biology to improve photosynthesis for sustainable food production. J Biotechnol 2022; 359:1-14. [PMID: 36126804 DOI: 10.1016/j.jbiotec.2022.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Photosynthesis is responsible for the primary productivity and maintenance of life on Earth, boosting biological activity and contributing to the maintenance of the environment. In the past, traditional crop improvement was considered sufficient to meet food demands, but the growing demand for food coupled with climate change has modified this scenario over the past decades. However, advances in this area have not focused on photosynthesis per se but rather on fixed carbon partitioning. In short, other approaches must be used to meet an increasing agricultural demand. Thus, several paths may be followed, from modifications in leaf shape and canopy architecture, improving metabolic pathways related to CO2 fixation, the inclusion of metabolic mechanisms from other species, and improvements in energy uptake by plants. Given the recognized importance of photosynthesis, as the basis of the primary productivity on Earth, we here present an overview of the latest advances in attempts to improve plant photosynthetic performance. We focused on points considered key to the enhancement of photosynthesis, including leaf shape development, RuBisCO reengineering, Calvin-Benson cycle optimization, light use efficiency, the introduction of the C4 cycle in C3 plants and the inclusion of other CO2 concentrating mechanisms (CCMs). We further provide compelling evidence that there is still room for further improvements. Finally, we conclude this review by presenting future perspectives and possible new directions on this subject.
Collapse
|
13
|
Momayyezi M, Borsuk AM, Brodersen CR, Gilbert ME, Théroux‐Rancourt G, Kluepfel DA, McElrone AJ. Desiccation of the leaf mesophyll and its implications for CO 2 diffusion and light processing. PLANT, CELL & ENVIRONMENT 2022; 45:1362-1381. [PMID: 35141930 PMCID: PMC9314819 DOI: 10.1111/pce.14287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 05/09/2023]
Abstract
Leaves balance CO2 and radiative absorption while maintaining water transport to maximise photosynthesis. Related species with contrasting leaf anatomy can provide insights into inherent and stress-induced links between structure and function for commonly measured leaf traits for important crops. We used two walnut species with contrasting mesophyll anatomy to evaluate these integrated exchange processes under non-stressed and drought conditions using a combination of light microscopy, X-ray microCT, gas exchange, hydraulic conductance, and chlorophyll distribution profiles through leaves. Juglans regia had thicker palisade mesophyll, higher fluorescence in the palisade, and greater low-mesophyll porosity that were associated with greater gas-phase diffusion (gIAS ), stomatal and mesophyll (gm ) conductances and carboxylation capacity. More and highly-packed mesophyll cells and bundle sheath extensions (BSEs) in Juglans microcarpa led to higher fluorescence in the spongy and in proximity to the BSEs. Both species exhibited drought-induced reductions in mesophyll cell volume, yet the associated increases in porosity and gIAS were obscured by declines in biochemical activity that decreased gm . Inherent differences in leaf anatomy between the species were linked to differences in gas exchange, light absorption and photosynthetic capacity, and drought-induced changes in leaf structure impacted performance via imposing species-specific limitations to light absorption, gas exchange and hydraulics.
Collapse
Affiliation(s)
- Mina Momayyezi
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Aleca M. Borsuk
- School of the EnvironmentYale UniversityNew HavenConnecticutUSA
| | | | | | | | | | - Andrew J. McElrone
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCaliforniaUSA
- USDA‐ARSCrops Pathology and Genetics Research UnitDavisCaliforniaUSA
| |
Collapse
|
14
|
Lei Z, Liu F, Wright IJ, Carriquí M, Niinemets Ü, Han J, Jia M, Atwell BJ, Cai X, Zhang W, Zhou Z, Zhang Y. Comparisons of photosynthetic and anatomical traits between wild and domesticated cotton. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:873-885. [PMID: 34153103 DOI: 10.1093/jxb/erab293] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Mesophyll conductance (gm) is a crucial leaf trait contributing to the photosynthetic rate (AN). Plant domestication typically leads to an enhancement of AN that is often associated with profound anatomical modifications, but it is unclear which of these structural alterations influence gm. We analyzed the implication of domestication on leaf anatomy and its effect on gm in 26 wild and 31 domesticated cotton genotypes (Gossypium sp.) grown under field conditions. We found that domesticated genotypes had higher AN but similar gm to wild genotypes. Consistent with this, domestication did not translate into significant differences in the fraction of mesophyll occupied by intercellular air spaces (fias) or mesophyll and chloroplast surface area exposed to intercellular air space (Sm/S and Sc/S, respectively). However, leaves of domesticated genotypes were significantly thicker, with larger but fewer mesophyll cells with thinner cell walls. Moreover, domesticated genotypes had higher cell wall conductance (gcw) but smaller cytoplasmic conductance (gcyt) than wild genotypes. It appears that domestication in cotton has not generally led to significant improvement in gm, in part because their thinner mesophyll cell walls (increasing gcw) compensate for their lower gcyt, itself due to larger distance between plasmalemma and chloroplast envelopes.
Collapse
Affiliation(s)
- Zhangying Lei
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Marc Carriquí
- School of Natural Sciences, University of Tasmania, Bag 55, 7001 Hobart, Tasmania, Australia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Jimei Han
- School of Integrative Plant Science, Soil and Crop Science Section, Cornell University, Ithaca, NY 14850, USA
| | - Mengmeng Jia
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Wangfeng Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Yali Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| |
Collapse
|
15
|
Flexas J, Clemente-Moreno MJ, Bota J, Brodribb TJ, Gago J, Mizokami Y, Nadal M, Perera-Castro AV, Roig-Oliver M, Sugiura D, Xiong D, Carriquí M. Cell wall thickness and composition are involved in photosynthetic limitation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3971-3986. [PMID: 33780533 DOI: 10.1093/jxb/erab144] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The key role of cell walls in setting mesophyll conductance to CO2 (gm) and, consequently, photosynthesis is reviewed. First, the theoretical properties of cell walls that can affect gm are presented. Then, we focus on cell wall thickness (Tcw) reviewing empirical evidence showing that Tcw varies strongly among species and phylogenetic groups in a way that correlates with gm and photosynthesis; that is, the thicker the mesophyll cell walls, the lower the gm and photosynthesis. Potential interplays of gm, Tcw, dehydration tolerance, and hydraulic properties of leaves are also discussed. Dynamic variations of Tcw in response to the environment and their implications in the regulation of photosynthesis are discussed, and recent evidence suggesting an influence of cell wall composition on gm is presented. We then propose a hypothetical mechanism for the influence of cell walls on photosynthesis, combining the effects of thickness and composition, particularly pectins. Finally, we discuss the prospects for using biotechnology for enhancing photosynthesis by altering cell wall-related genes.
Collapse
Affiliation(s)
- Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - María J Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Yusuke Mizokami
- Laboratory of Applied Ecology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo, Japan
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Margalida Roig-Oliver
- Research Group on Plant Biology under Mediterranean Conditions, Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA) - Universitat de les Illes Balears (UIB), Ctra Valldemossa Km 7.5., 07122, Palma, Illes Balears, Spain
| | - Daisuke Sugiura
- Laboratory of Crop Science, Department of Plant Production Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Marc Carriquí
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
16
|
Xiao Y, Sloan J, Hepworth C, Osborne CP, Fleming AJ, Chen X, Zhu XG. Estimating uncertainty: A Bayesian approach to modelling photosynthesis in C3 leaves. PLANT, CELL & ENVIRONMENT 2021; 44:1436-1450. [PMID: 33410527 DOI: 10.1111/pce.13995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The Farquhar-von Caemmerer-Berry (FvCB) model is extensively used to model photosynthesis from gas exchange measurements. Since its publication, many methods have been developed to measure, or more accurately estimate, parameters of this model. Here, we have created a tool that uses Bayesian statistics to fit photosynthetic parameters using concurrent gas exchange and chlorophyll fluorescence measurements whilst evaluating the reliability of the parameter estimation. We have tested this tool on synthetic data and experimental data from rice leaves. Our results indicate that reliable parameter estimation can be achieved whilst only keeping one parameter, Km , that is, Michaelis constant for CO2 by Rubisco, prefixed. Additionally, we show that including detailed low CO2 measurements at low light levels increases reliability and suggests this as a new standard measurement protocol. By providing an estimated distribution of parameter values, the tool can be used to evaluate the quality of data from gas exchange and chlorophyll fluorescence measurement protocols. Compared to earlier model fitting methods, the use of a Bayesian statistics-based tool minimizes human interaction during fitting, reducing the subjectivity which is essential to most existing tools. A user friendly, interactive Bayesian tool script is provided.
Collapse
Affiliation(s)
- Yi Xiao
- Center of Excellence for Molecular Plant Science, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jen Sloan
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Chris Hepworth
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Andrew J Fleming
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Xingyuan Chen
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Xin-Guang Zhu
- Center of Excellence for Molecular Plant Science, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Evans JR. Mesophyll conductance: walls, membranes and spatial complexity. THE NEW PHYTOLOGIST 2021; 229:1864-1876. [PMID: 33135193 DOI: 10.1111/nph.16968] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
A significant resistance to CO2 diffusion is imposed by mesophyll tissue inside leaves. Mesophyll resistance, rm (or its reciprocal, mesophyll conductance, gm ), reduces the rate at which Rubisco can fix CO2 , increasing the water and nitrogen costs of carbon acquisition. gm varies in proportion to the surface area of chloroplasts exposed to intercellular airspace per unit leaf area. It also depends on the thickness and effective porosity of the cell wall and the CO2 permeabilities of membranes. As no measurements exist for the effective porosity of mesophyll cell walls, and CO2 permeability values are too low to account for observed rates of CO2 assimilation, conclusions from modelling must be treated with caution. There is great variation in the mesophyll resistance per unit chloroplast area for a given cell wall thickness, which may reflect differences in effective porosity. While apparent gm can vary with CO2 and irradiance, the underlying conductance at the cellular level may remain unchanged. Dynamic changes in apparent gm arise for spatial reasons and because chloroplasts differ in their photosynthetic composition and operate in different light environments. Measurements of the temperature sensitivity of membrane CO2 permeability are urgently needed to explain variation in temperature responses of gm .
Collapse
Affiliation(s)
- John R Evans
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
18
|
Luo Y, Ho CL, Helliker BR, Katifori E. Leaf Water Storage and Robustness to Intermittent Drought: A Spatially Explicit Capacitive Model for Leaf Hydraulics. FRONTIERS IN PLANT SCIENCE 2021; 12:725995. [PMID: 34721457 PMCID: PMC8551678 DOI: 10.3389/fpls.2021.725995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/20/2021] [Indexed: 05/11/2023]
Abstract
Leaf hydraulic networks play an important role not only in fluid transport but also in maintaining whole-plant water status through transient environmental changes in soil-based water supply or air humidity. Both water potential and hydraulic resistance vary spatially throughout the leaf transport network, consisting of xylem, stomata and water-storage cells, and portions of the leaf areas far from the leaf base can be disproportionately disadvantaged under water stress. Besides the suppression of transpiration and reduction of water loss caused by stomatal closure, the leaf capacitance of water storage, which can also vary locally, is thought to be crucial for the maintenance of leaf water status. In order to study the fluid dynamics in these networks, we develop a spatially explicit, capacitive model which is able to capture the local spatiotemporal changes of water potential and flow rate in monocotyledonous and dicotyledonous leaves. In electrical-circuit analogs described by Ohm's law, we implement linear capacitors imitating water storage, and we present both analytical calculations of a uniform one-dimensional model and numerical simulation methods for general spatially explicit network models, and their relation to conventional lumped-element models. Calculation and simulation results are shown for the uniform model, which mimics key properties of a monocotyledonous grass leaf. We illustrate water status of a well-watered leaf, and the lowering of water potential and transpiration rate caused by excised water source or reduced air humidity. We show that the time scales of these changes under water stress are hugely affected by leaf capacitance and resistances to capacitors, in addition to stomatal resistance. Through this modeling of a grass leaf, we confirm the presence of uneven water distribution over leaf area, and also discuss the importance of considering the spatial variation of leaf hydraulic traits in plant biology.
Collapse
Affiliation(s)
- Yongtian Luo
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Yongtian Luo
| | - Che-Ling Ho
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Brent R. Helliker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Eleni Katifori
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States
- Eleni Katifori
| |
Collapse
|
19
|
Carriquí M, Nadal M, Clemente-Moreno MJ, Gago J, Miedes E, Flexas J. Cell wall composition strongly influences mesophyll conductance in gymnosperms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1372-1385. [PMID: 32390169 DOI: 10.1111/tpj.14806] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Cell wall thickness is widely recognized as one of the main determinants of mesophyll conductance to CO2 (gm ). However, little is known about the components that regulate effective CO2 diffusivity in the cell wall (i.e. the ratio between actual porosity and tortuosity, the other two biophysical diffusion properties of cell walls). The aim of this study was to assess, at the interspecific level, potential relationships between cell wall composition, cell wall thickness (Tcw ) and gm . Gymnosperms constitute an ideal group to deepen these relationships, as they present, on average, the thickest cell walls within spermatophytes. We characterized the foliar gas exchange, the morphoanatomical traits related with gm , the leaf fraction constituted by cell walls and three main components of primary cell walls (hemicelluloses, cellulose and pectins) in seven gymnosperm species. We found that, although the relatively low gm of gymnosperms was mainly determined by their elevated Tcw , gm was also strongly correlated with cell wall composition, which presumably sets the final effective CO2 diffusivity. The data presented here suggest that (i) differences in gm are strongly correlated to the pectins to hemicelluloses and cellulose ratio in gymnosperms, and (ii) variations in cell wall composition may modify effective CO2 diffusivity in the cell wall to compensate the negative impact of thickened walls. We speculate that higher relative pectin content allows higher gm because pectins increase cell wall hydrophilicity and CO2 molecules cross the wall dissolved in water.
Collapse
Affiliation(s)
- Marc Carriquí
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
- School of Natural Sciences, University of Tasmania (UTAS), Bag 55, Hobart, Tasmania, 7001, Australia
| | - Miquel Nadal
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| | - María J Clemente-Moreno
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| | - Jorge Gago
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Madrid, 28040, Spain
| | - Jaume Flexas
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB) - Agro-Environmental and Water Economics Institute (INAGEA), Palma, Illes Balears, 07122, Spain
| |
Collapse
|
20
|
Zhu XG, Ort DR, Parry MAJ, von Caemmerer S. A wish list for synthetic biology in photosynthesis research. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2219-2225. [PMID: 32060550 PMCID: PMC7134917 DOI: 10.1093/jxb/eraa075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/12/2020] [Indexed: 05/02/2023]
Abstract
This perspective summarizes the presentations and discussions at the ' International Symposium on Synthetic Biology in Photosynthesis Research', which was held in Shanghai in 2018. Leveraging the current advanced understanding of photosynthetic systems, the symposium brain-stormed about the redesign and engineering of photosynthetic systems for translational goals and evaluated available new technologies/tools for synthetic biology as well as technological obstacles and new tools that would be needed to overcome them. Four major research areas for redesigning photosynthesis were identified: (i) mining natural variations of photosynthesis; (ii) coordinating photosynthesis with pathways utilizing photosynthate; (iii) reconstruction of highly efficient photosynthetic systems in non-host species; and (iv) development of new photosynthetic systems that do not exist in nature. To expedite photosynthesis synthetic biology research, an array of new technologies and community resources need to be developed, which include expanded modelling capacities, molecular engineering toolboxes, model species, and phenotyping tools.
Collapse
Affiliation(s)
- Xin-Guang Zhu
- Institute of Plant Physiology and Ecology and Center for Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Donald R Ort
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Susanne von Caemmerer
- Research School of Biological Sciences, Australian National University, Acton, Australia
| |
Collapse
|
21
|
Mesophyll conductance: the leaf corridors for photosynthesis. Biochem Soc Trans 2020; 48:429-439. [DOI: 10.1042/bst20190312] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.
Collapse
|
22
|
Harwood R, Goodman E, Gudmundsdottir M, Huynh M, Musulin Q, Song M, Barbour MM. Cell and chloroplast anatomical features are poorly estimated from 2D cross-sections. THE NEW PHYTOLOGIST 2020; 225:2567-2578. [PMID: 31553810 DOI: 10.1111/nph.16219] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Leaf function is intimately related to the size, shape, abundance and position of cells and chloroplasts. Anatomy has long been assessed and quantified in two dimensions with 3D structure inferred from 2D micrographs. Serial block face scanning electron microscopy (SBF-SEM) was used to reconstruct 95 cells and 1173 chloroplasts from three wheat and nine chickpea leaves (three samples each from three chickpea genotypes). Wheat chloroplast volume was underestimated by 61% in mesophyll cells and 45% in bundle sheath cells from 2D micrographs, whereas chickpea mesophyll chloroplast volume was underestimated by 60% using simple geometrical models. Models of chickpea spongy and palisade cells both under- and overestimated surface area and volume by varying degrees. These models did not adequately capture irregular shapes such as flattening of chloroplasts or lobed spongy mesophyll cells. It is concluded that simple geometrical models to estimate chloroplast and cell 3D volume and surface area from 2D micrographs are inadequate, and that SBF-SEM has strong potential to contribute to improved understanding of leaf form and function.
Collapse
Affiliation(s)
- Richard Harwood
- School of Life and Environmental Sciences, The University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Elinor Goodman
- School of Life and Environmental Sciences, The University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Marin Gudmundsdottir
- School of Life and Environmental Sciences, The University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Minh Huynh
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, City Road, Sydney, NSW, 2006, Australia
| | - Quinn Musulin
- School of Life and Environmental Sciences, The University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Magnolia Song
- School of Life and Environmental Sciences, The University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Margaret M Barbour
- School of Life and Environmental Sciences, The University of Sydney, Private Bag 4011, Narellan, NSW, 2567, Australia
| |
Collapse
|
23
|
Li Y, Song X, Li S, Salter WT, Barbour MM. The role of leaf water potential in the temperature response of mesophyll conductance. THE NEW PHYTOLOGIST 2020; 225:1193-1205. [PMID: 31545519 DOI: 10.1111/nph.16214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Variation in temperature (T) is usually accompanied by changes in leaf water potential (Ψleaf ), which may influence mesophyll conductance (gm ). However, the effects of Ψleaf on gm have not yet been considered in models of the gm response to temperature. Temperature responses of gm and Ψleaf and the response of gm to Ψleaf were studied in rice (Oryza sativa) and wheat (Triticum aestivum), and then an empirical model of Ψleaf was incorporated into an existing gm -T model. In wheat, Ψleaf was dramatically decreased with increasing T, whereas in rice Ψleaf was less sensitive or insensitive to T. Without taking Ψleaf into account, gm for wheat showed no response to T. However, at a given Ψleaf , gm was significantly higher at high temperature compared with low. After incorporating the function of Ψleaf into the gm -T model, we suggest that the gm -T relationship can be influenced by the activation and deactivation energy for membrane permeability, Ψleaf gradient between temperatures, and the sensitivity of gm to Ψleaf , below a threshold (Ψleaf,0 ). The data presented here suggest that Ψleaf plays an important role in the gm -T relationship and should be considered in future studies related to the temperature response of gm and photosynthesis.
Collapse
Affiliation(s)
- Yong Li
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xin Song
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Si Li
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, 2570, NSW, Australia
| | - William T Salter
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, 2570, NSW, Australia
| | - Margaret M Barbour
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, 2570, NSW, Australia
| |
Collapse
|
24
|
Cousins AB, Mullendore DL, Sonawane BV. Recent developments in mesophyll conductance in C3, C4, and crassulacean acid metabolism plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:816-830. [PMID: 31960507 DOI: 10.1111/tpj.14664] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/19/2019] [Indexed: 05/24/2023]
Abstract
The conductance of carbon dioxide (CO2 ) from the substomatal cavities to the initial sites of CO2 fixation (gm ) can significantly reduce the availability of CO2 for photosynthesis. There have been many recent reviews on: (i) the importance of gm for accurately modelling net rates of CO2 assimilation, (ii) on how leaf biochemical and anatomical factors influence gm , (iii) the technical limitation of estimating gm , which cannot be directly measured, and (iv) how gm responds to long- and short-term changes in growth and measurement environmental conditions. Therefore, this review will highlight these previous publications but will attempt not to repeat what has already been published. We will instead initially focus on the recent developments on the two-resistance model of gm that describe the potential of photorespiratory and respiratory CO2 released within the mitochondria to diffuse directly into both the chloroplast and the cytosol. Subsequently, we summarize recent developments in the three-dimensional (3-D) reaction-diffusion models and 3-D image analysis that are providing new insights into how the complex structure and organization of the leaf influences gm . Finally, because most of the reviews and literature on gm have traditionally focused on C3 plants we review in the final sections some of the recent developments, current understanding and measurement techniques of gm in C4 and crassulacean acid metabolism (CAM) plants. These plants have both specialized leaf anatomy and either a spatially or temporally separated CO2 concentrating mechanisms (C4 and CAM, respectively) that influence how we interpret and estimate gm compared with a C3 plants.
Collapse
Affiliation(s)
- Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Daniel L Mullendore
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Balasaheb V Sonawane
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
25
|
Knauer J, Zaehle S, De Kauwe MG, Haverd V, Reichstein M, Sun Y. Mesophyll conductance in land surface models: effects on photosynthesis and transpiration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:858-873. [PMID: 31659806 DOI: 10.1111/tpj.14587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 05/08/2023]
Abstract
The CO2 transfer conductance within plant leaves (mesophyll conductance, gm ) is currently not considered explicitly in most land surface models (LSMs), but instead treated implicitly as an intrinsic property of the photosynthetic machinery. Here, we review approaches to overcome this model deficiency by explicitly accounting for gm , which comprises the re-adjustment of photosynthetic parameters and a model describing the variation of gm in dependence of environmental conditions. An explicit representation of gm causes changes in the response of photosynthesis to environmental factors, foremost leaf temperature, and ambient CO2 concentration, which are most pronounced when gm is small. These changes in leaf-level photosynthesis translate into a stronger climate and CO2 response of gross primary productivity (GPP) and transpiration at the global scale. The results from two independent studies show consistent latitudinal patterns of these effects with biggest differences in GPP in the boreal zone (up to ~15%). Transpiration and evapotranspiration show spatially similar, but attenuated, changes compared with GPP. These changes are indirect effects of gm caused by the assumed strong coupling between stomatal conductance and photosynthesis in current LSMs. Key uncertainties in these simulations are the variation of gm with light and the robustness of its temperature response across plant types and growth conditions. Future research activities focusing on the response of gm to environmental factors and its relation to other plant traits have the potential to improve the representation of photosynthesis in LSMs and to better understand its present and future role in the Earth system.
Collapse
Affiliation(s)
- Jürgen Knauer
- CSIRO Oceans and Atmosphere, Canberra, ACT, 2601, Australia
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Sönke Zaehle
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Michael-Stifel Center Jena for Data-Driven and Simulation Science, 07745, Jena, Germany
| | - Martin G De Kauwe
- ARC Centre of Excellence for Climate Extremes and the Climate Change Research Centre, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Vanessa Haverd
- CSIRO Oceans and Atmosphere, Canberra, ACT, 2601, Australia
| | - Markus Reichstein
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
- Michael-Stifel Center Jena for Data-Driven and Simulation Science, 07745, Jena, Germany
| | - Ying Sun
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
26
|
Retta MA, Abera MK, Berghuijs HN, Verboven P, Struik PC, Nicolaï BM. In silico study of the role of cell growth factors in photosynthesis using a virtual leaf tissue generator coupled to a microscale photosynthesis gas exchange model. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:997-1009. [PMID: 31616944 PMCID: PMC6977192 DOI: 10.1093/jxb/erz451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Computational tools that allow in silico analysis of the role of cell growth and division on photosynthesis are scarce. We present a freely available tool that combines a virtual leaf tissue generator and a two-dimensional microscale model of gas transport during C3 photosynthesis. A total of 270 mesophyll geometries were generated with varying degrees of growth anisotropy, growth extent, and extent of schizogenous airspace formation in the palisade mesophyll. The anatomical properties of the virtual leaf tissue and microscopic cross-sections of actual leaf tissue of tomato (Solanum lycopersicum L.) were statistically compared. Model equations for transport of CO2 in the liquid phase of the leaf tissue were discretized over the geometries. The virtual leaf tissue generator produced a leaf anatomy of tomato that was statistically similar to real tomato leaf tissue. The response of photosynthesis to intercellular CO2 predicted by a model that used the virtual leaf tissue geometry compared well with measured values. The results indicate that the light-saturated rate of photosynthesis was influenced by interactive effects of extent and directionality of cell growth and degree of airspace formation through the exposed surface of mesophyll per leaf area. The tool could be used further in investigations of improving photosynthesis and gas exchange in relation to cell growth and leaf anatomy.
Collapse
Affiliation(s)
- Moges A Retta
- Division BIOSYST-MeBioS, KU Leuven-University of Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Metadel K Abera
- Division BIOSYST-MeBioS, KU Leuven-University of Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Herman Nc Berghuijs
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- BioSolar Cells, 6700 AB Wageningen, The Netherlands
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 75651 Uppsala, Sweden
| | - Pieter Verboven
- Division BIOSYST-MeBioS, KU Leuven-University of Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- BioSolar Cells, 6700 AB Wageningen, The Netherlands
| | - Bart M Nicolaï
- Division BIOSYST-MeBioS, KU Leuven-University of Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
- Flanders Centre of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium
| |
Collapse
|
27
|
Franco-Navarro JD, Rosales MA, Cubero-Font P, Calvo P, Álvarez R, Diaz-Espejo A, Colmenero-Flores JM. Chloride as a macronutrient increases water-use efficiency by anatomically driven reduced stomatal conductance and increased mesophyll diffusion to CO 2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:815-831. [PMID: 31148340 DOI: 10.1111/tpj.14423] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 05/27/2023]
Abstract
Chloride (Cl- ) has been recently described as a beneficial macronutrient, playing specific roles in promoting plant growth and water-use efficiency (WUE). However, it is still unclear how Cl- could be beneficial, especially in comparison with nitrate (NO3- ), an essential source of nitrogen that shares with Cl- similar physical and osmotic properties, as well as common transport mechanisms. In tobacco plants, macronutrient levels of Cl- specifically reduce stomatal conductance (gs ) without a concomitant reduction in the net photosynthesis rate (AN ). As stomata-mediated water loss through transpiration is inherent in the need of C3 plants to capture CO2 , simultaneous increase in photosynthesis and WUE is of great relevance to achieve a sustainable increase in C3 crop productivity. Our results showed that Cl- -mediated stimulation of larger leaf cells leads to a reduction in stomatal density, which in turn reduces gs and water consumption. Conversely, Cl- improves mesophyll diffusion conductance to CO2 (gm ) and photosynthetic performance due to a higher surface area of chloroplasts exposed to the intercellular airspace of mesophyll cells, possibly as a consequence of the stimulation of chloroplast biogenesis. A key finding of this study is the simultaneous improvement of AN and WUE due to macronutrient Cl- nutrition. This work identifies relevant and specific functions in which Cl- participates as a beneficial macronutrient for higher plants, uncovering a sustainable approach to improve crop yield.
Collapse
Affiliation(s)
- Juan D Franco-Navarro
- Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012, Sevilla, Spain
| | - Miguel A Rosales
- Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012, Sevilla, Spain
| | - Paloma Cubero-Font
- Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012, Sevilla, Spain
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), Univ. Montpellier, CNRS, INRA, SupAgro, 2 Place P. Viala, Montpellier, 34060, France
| | - Purificación Calvo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012, Sevilla, Spain
| | - Rosario Álvarez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012, Sevilla, Spain
| | - Antonio Diaz-Espejo
- Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012, Sevilla, Spain
| | - José M Colmenero-Flores
- Instituto de Recursos Naturales y Agrobiología, CSIC, Avda Reina Mercedes 10, 41012, Sevilla, Spain
| |
Collapse
|
28
|
Lekklar C, Suriya-Arunroj D, Pongpanich M, Comai L, Kositsup B, Chadchawan S, Buaboocha T. Comparative Genomic Analysis of Rice with Contrasting Photosynthesis and Grain Production under Salt Stress. Genes (Basel) 2019; 10:genes10080562. [PMID: 31349693 PMCID: PMC6722916 DOI: 10.3390/genes10080562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/22/2023] Open
Abstract
Unfavourable environmental conditions, including soil salinity, lead to decreased rice (Oryza sativa L.) productivity, especially at the reproductive stage. In this study, we examined 30 rice varieties, which revealed significant differences in the photosynthetic performance responses under salt stress conditions during the reproductive stage, which ultimately affected yield components after recovery. In rice with a correlation between net photosynthetic rate (PN) and intercellular CO2 concentration (Ci) under salt stress, PN was found to be negatively correlated with filled grain number after recovery. Applying stringent criteria, we identified 130,317 SNPs and 15,396 InDels between two “high-yield rice” varieties and two “low-yield rice” varieties with contrasting photosynthesis and grain yield characteristics. A total of 2089 genes containing high- and moderate-impact SNPs or InDels were evaluated by gene ontology (GO) enrichment analysis, resulting in over-represented terms in the apoptotic process and kinase activity. Among these genes, 262 were highly expressed in reproductive tissues, and most were annotated as receptor-like protein kinases. These findings highlight the importance of variations in signaling components in the genome and these loci can serve as potential genes in rice breeding to produce a variety with salt avoidance that leads to increased yield in saline soil.
Collapse
Affiliation(s)
- Chakkree Lekklar
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Duangjai Suriya-Arunroj
- Nakohn Ratchasima Rice Research Center, Rice Department, Ministry of Agriculture and Cooperative, Nakohn Ratchasima 30110, Thailand
| | - Monnat Pongpanich
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Boonthida Kositsup
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
29
|
Berghuijs HNC, Yin X, Ho QT, Retta MA, Nicolaï BM, Struik PC. Using a reaction-diffusion model to estimate day respiration and reassimilation of (photo)respired CO 2 in leaves. THE NEW PHYTOLOGIST 2019; 223:619-631. [PMID: 31002400 PMCID: PMC6618012 DOI: 10.1111/nph.15857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/05/2019] [Indexed: 05/29/2023]
Abstract
Methods using gas exchange measurements to estimate respiration in the light (day respiration R d ) make implicit assumptions about reassimilation of (photo)respired CO2 ; however, this reassimilation depends on the positions of mitochondria. We used a reaction-diffusion model without making these assumptions to analyse datasets on gas exchange, chlorophyll fluorescence and anatomy for tomato leaves. We investigated how R d values obtained by the Kok and the Yin methods are affected by these assumptions and how those by the Laisk method are affected by the positions of mitochondria. The Kok method always underestimated R d . Estimates of R d by the Yin method and by the reaction-diffusion model agreed only for nonphotorespiratory conditions. Both the Yin and Kok methods ignore reassimilation of (photo)respired CO2 , and thus underestimated R d for photorespiratory conditions, but this was less so in the Yin than in the Kok method. Estimates by the Laisk method were affected by assumed positions of mitochondria. It did not work if mitochondria were in the cytosol between the plasmamembrane and the chloroplast envelope. However, mitochondria were found to be most likely between the tonoplast and chloroplasts. Our reaction-diffusion model effectively estimates R d , enlightens the dependence of R d estimates on reassimilation and clarifies (dis)advantages of existing methods.
Collapse
Affiliation(s)
- Herman N. C. Berghuijs
- Centre for Crop Systems AnalysisWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
- Flanders Center of Postharvest Technology/BIOSYST‐MeBioSKatholieke Universiteit LeuvenWillem de Croylaan 42LeuvenB‐3001Belgium
- Department of Crop Production EcologySwedish University of Agricultural SciencesUlls väg 16Uppsala75651Sweden
| | - Xinyou Yin
- Centre for Crop Systems AnalysisWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Q. Tri Ho
- Flanders Center of Postharvest Technology/BIOSYST‐MeBioSKatholieke Universiteit LeuvenWillem de Croylaan 42LeuvenB‐3001Belgium
- Food Chemistry & Technology DepartmentTeagasc Food Research CentreMoorepark, Fermoy, Co.CorkP61 C996Ireland
| | - Moges A. Retta
- Centre for Crop Systems AnalysisWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
- Flanders Center of Postharvest Technology/BIOSYST‐MeBioSKatholieke Universiteit LeuvenWillem de Croylaan 42LeuvenB‐3001Belgium
| | - Bart M. Nicolaï
- Flanders Center of Postharvest Technology/BIOSYST‐MeBioSKatholieke Universiteit LeuvenWillem de Croylaan 42LeuvenB‐3001Belgium
| | - Paul C. Struik
- Centre for Crop Systems AnalysisWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| |
Collapse
|
30
|
Tiwari A, Kumar P, Baldauf R, Zhang KM, Pilla F, Di Sabatino S, Brattich E, Pulvirenti B. Considerations for evaluating green infrastructure impacts in microscale and macroscale air pollution dispersion models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:410-426. [PMID: 30965257 PMCID: PMC7236027 DOI: 10.1016/j.scitotenv.2019.03.350] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/16/2019] [Accepted: 03/22/2019] [Indexed: 05/05/2023]
Abstract
Green infrastructure (GI) in urban areas may be adopted as a passive control system to reduce air pollutant concentrations. However, current dispersion models offer limited modelling options to evaluate its impact on ambient pollutant concentrations. The scope of this review revolves around the following question: how can GI be considered in readily available dispersion models to allow evaluation of its impacts on pollutant concentrations and health risk assessment? We examined the published literature on the parameterisation of deposition velocities and datasets for both particulate matter and gaseous pollutants that are required for deposition schemes. We evaluated the limitations of different air pollution dispersion models at two spatial scales - microscale (i.e. 10-500 m) and macroscale (i.e. 5-100 km) - in considering the effects of GI on air pollutant concentrations and exposure alteration. We conclude that the deposition schemes that represent GI impacts in detail are complex, resource-intensive, and involve an abundant volume of input data. An appropriate handling of GI characteristics (such as aerodynamic effect, deposition of air pollutants and surface roughness) in dispersion models is necessary for understanding the mechanism of air pollutant concentrations simulation in presence of GI at different spatial scales. The impacts of GI on air pollutant concentrations and health risk assessment (e.g., mortality, morbidity) are partly explored. The i-Tree tool with the BenMap model has been used to estimate the health outcomes of annually-averaged air pollutant removed by deposition over GI canopies at the macroscale. However, studies relating air pollution health risk assessments due to GI-related changes in short-term exposure, via pollutant concentrations redistribution at the microscale and enhanced atmospheric pollutant dilution by increased surface roughness at the macroscale, along with deposition, are rare. Suitable treatments of all physical and chemical processes in coupled dispersion-deposition models and assessments against real-world scenarios are vital for health risk assessments.
Collapse
Affiliation(s)
- Arvind Tiwari
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom; Department of Civil, Structural & Environmental Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Richard Baldauf
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA; (d)U.S. Environmental Protection Agency, Office of Transportation and Air Quality, Ann Arbor, MI, USA
| | - K Max Zhang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Francesco Pilla
- Department of Planning and Environmental Policy, University College Dublin, Dublin D14, Ireland
| | - Silvana Di Sabatino
- Department of Physics and Astronomy, Alma Mater Studiorum - University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Erika Brattich
- Department of Physics and Astronomy, Alma Mater Studiorum - University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Beatrice Pulvirenti
- Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, University of Bologna, Bologna, Italy
| |
Collapse
|
31
|
Šantrůček J, Schreiber L, Macková J, Vráblová M, Květoň J, Macek P, Neuwirthová J. Partitioning of mesophyll conductance for CO 2 into intercellular and cellular components using carbon isotope composition of cuticles from opposite leaf sides. PHOTOSYNTHESIS RESEARCH 2019; 141:33-51. [PMID: 30806882 DOI: 10.1007/s11120-019-00628-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
We suggest a new technique for estimating the relative drawdown of CO2 concentration (c) in the intercellular air space (IAS) across hypostomatous leaves (expressed as the ratio cd/cb, where the indexes d and b denote the adaxial and abaxial edges, respectively, of IAS), based on the carbon isotope composition (δ13C) of leaf cuticular membranes (CMs), cuticular waxes (WXs) or epicuticular waxes (EWXs) isolated from opposite leaf sides. The relative drawdown in the intracellular liquid phase (i.e., the ratio cc/cbd, where cc and cbd stand for mean CO2 concentrations in chloroplasts and in the IAS), the fraction of intercellular resistance in the total mesophyll resistance (rIAS/rm), leaf thickness, and leaf mass per area (LMA) were also assessed. We show in a conceptual model that the upper (adaxial) side of a hypostomatous leaf should be enriched in 13C compared to the lower (abaxial) side. CM, WX, and/or EWX isolated from 40 hypostomatous C3 species were 13C depleted relative to bulk leaf tissue by 2.01-2.85‰. The difference in δ13C between the abaxial and adaxial leaf sides (δ13CAB - 13CAD, Δb-d), ranged from - 2.22 to + 0.71‰ (- 0.09 ± 0.54‰, mean ± SD) in CM and from - 7.95 to 0.89‰ (- 1.17 ± 1.40‰) in WX. In contrast, two tested amphistomatous species showed no significant Δb-d difference in WX. Δb-d correlated negatively with LMA and leaf thickness of hypostomatous leaves, which indicates that the mesophyll air space imposes a non-negligible resistance to CO2 diffusion. δ13C of EWX and 30-C aldehyde in WX reveal a stronger CO2 drawdown than bulk WX or CM. Mean values of cd/cb and cc/cbd were 0.90 ± 0.12 and 0.66 ± 0.11, respectively, across 14 investigated species in which wax was isolated and analyzed. The diffusion resistance of IAS contributed 20 ± 14% to total mesophyll resistance and reflects species-specific and environmentally-induced differences in leaf functional anatomy.
Collapse
Affiliation(s)
- J Šantrůček
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005, Ceske Budejovice, Czech Republic.
| | - L Schreiber
- Institute for Cellular & Molecular Botany - IZMB, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - J Macková
- Biology Centre ASCR, Institute of Soil Biology, Na Sádkách 702/7, 37005, Ceske Budejovice, Czech Republic
| | - M Vráblová
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005, Ceske Budejovice, Czech Republic
- Institute of Environmental Technology, VSB - Technical University of Ostrava, 17. listopadu 15, 70833, Ostrava, Czech Republic
| | - J Květoň
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005, Ceske Budejovice, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502, Prague, Czech Republic
| | - P Macek
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005, Ceske Budejovice, Czech Republic
- Biology Centre ASCR, Institute of Soil Biology, Na Sádkách 702/7, 37005, Ceske Budejovice, Czech Republic
| | - J Neuwirthová
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005, Ceske Budejovice, Czech Republic
| |
Collapse
|
32
|
Carriquí M, Douthe C, Molins A, Flexas J. Leaf anatomy does not explain apparent short-term responses of mesophyll conductance to light and CO 2 in tobacco. PHYSIOLOGIA PLANTARUM 2019; 165:604-618. [PMID: 29744895 DOI: 10.1111/ppl.12755] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Mesophyll conductance to CO2 (gm ), a key photosynthetic trait, is strongly constrained by leaf anatomy. Leaf anatomical parameters such as cell wall thickness and chloroplast area exposed to the mesophyll intercellular airspace have been demonstrated to determine gm in species with diverging phylogeny, leaf structure and ontogeny. However, the potential implication of leaf anatomy, especially chloroplast movement, on the short-term response of gm to rapid changes (i.e. seconds to minutes) under different environmental conditions (CO2 , light or temperature) has not been examined. The aim of this study was to determine whether the observed rapid variations of gm in response to variations of light and CO2 could be explained by changes in any leaf anatomical arrangements. When compared to high light and ambient CO2 , the values of gm estimated by chlorophyll fluorescence decreased under high CO2 and increased at low CO2 , while it decreased with decreasing light. Nevertheless, no changes in anatomical parameters, including chloroplast distribution, were found. Hence, the gm estimated by analytical models based on anatomical parameters was constant under varying light and CO2 . Considering this discrepancy between anatomy and chlorophyll fluorescence estimates, it is concluded that apparent fast gm variations should be due to artefacts in its estimation and/or to changes in the biochemical components acting on diffusional properties of the leaf (e.g. aquaporins and carbonic anhydrase).
Collapse
Affiliation(s)
- Marc Carriquí
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears - Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Palma, 07122, Spain
| | - Cyril Douthe
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears - Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Palma, 07122, Spain
| | - Arántzazu Molins
- Departament de Botànica, ICBIBE & Jardí Botànic, Facultat de Ciències Biològiques, Universitat de València, Valencia, 46100, Spain
| | - Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears - Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Palma, 07122, Spain
| |
Collapse
|
33
|
Ren T, Weraduwage SM, Sharkey TD. Prospects for enhancing leaf photosynthetic capacity by manipulating mesophyll cell morphology. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1153-1165. [PMID: 30590670 DOI: 10.1093/jxb/ery448] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Leaves are beautifully specialized organs designed to maximize the use of light and CO2 for photosynthesis. Engineering leaf anatomy therefore holds great potential to enhance photosynthetic capacity. Here we review the effect of the dominant leaf anatomical traits on leaf photosynthesis and confirm that a high chloroplast surface area exposed to intercellular airspace per unit leaf area (Sc) is critical for efficient photosynthesis. The possibility of improving Sc through appropriately increasing mesophyll cell density is further analyzed. The potential influences of modifying mesophyll cell morphology on CO2 diffusion, light distribution within the leaf, and other physiological processes are also discussed. Some potential target genes regulating leaf mesophyll cell proliferation and expansion are explored. Indeed, more comprehensive research is needed to understand how manipulating mesophyll cell morphology through editing the potential target genes impacts leaf photosynthetic capacity and related physiological processes. This will pinpoint the targets for engineering leaf anatomy to maximize photosynthetic capacity.
Collapse
Affiliation(s)
- Tao Ren
- College of Resources and Environment, Huazhong Agricultural University, China
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
| | - Sarathi M Weraduwage
- Department of Energy Plant Research Laboratory and Plant Resiience Institute, Michigan State University, East Lansing, USA
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, USA
- Department of Energy Plant Research Laboratory and Plant Resiience Institute, Michigan State University, East Lansing, USA
| |
Collapse
|
34
|
Kolbe AR, Cousins AB. Mesophyll conductance in Zea mays responds transiently to CO 2 availability: implications for transpiration efficiency in C 4 crops. THE NEW PHYTOLOGIST 2018; 217:1463-1474. [PMID: 29220090 DOI: 10.1111/nph.14942] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Mesophyll conductance (gm ) describes the movement of CO2 from the intercellular air spaces below the stomata to the site of initial carboxylation in the mesophyll. In contrast with C3 -gm , little is currently known about the intraspecific variation in C4 -gm or its responsiveness to environmental stimuli. To address these questions, gm was measured on five maize (Zea mays) lines in response to CO2 , employing three different estimates of gm . Each of the methods indicated a significant response of gm to CO2 . Estimates of gm were similar between methods at ambient and higher CO2 , but diverged significantly at low partial pressures of CO2 . These differences are probably driven by incomplete chemical and isotopic equilibrium between CO2 and bicarbonate under these conditions. Carbonic anhydrase and phosphoenolpyruvate carboxylase in vitro activity varied significantly despite similar values of gm and leaf anatomical traits. These results provide strong support for a CO2 response of gm in Z. mays, and indicate that gm in maize is probably driven by anatomical constraints rather than by biochemical limitations. The CO2 response of gm indicates a potential role for facilitated diffusion in C4 -gm . These results also suggest that water-use efficiency could be enhanced in C4 species by targeting gm .
Collapse
Affiliation(s)
- Allison R Kolbe
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
35
|
Slot M, Winter K. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species. PLANT, CELL & ENVIRONMENT 2017; 40:3055-3068. [PMID: 28926102 DOI: 10.1111/pce.13071] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 05/25/2023]
Abstract
Net photosynthetic carbon uptake of Panamanian lowland tropical forest species is typically optimal at 30-32 °C. The processes responsible for the decrease in photosynthesis at higher temperatures are not fully understood for tropical trees. We determined temperature responses of maximum rates of RuBP-carboxylation (VCMax ) and RuBP-regeneration (JMax ), stomatal conductance (Gs ), and respiration in the light (RLight ) in situ for 4 lowland tropical tree species in Panama. Gs had the lowest temperature optimum (TOpt ), similar to that of net photosynthesis, and photosynthesis became increasingly limited by stomatal conductance as temperature increased. JMax peaked at 34-37 °C and VCMax ~2 °C above that, except in the late-successional species Calophyllum longifolium, in which both peaked at ~33 °C. RLight significantly increased with increasing temperature, but simulations with a photosynthesis model indicated that this had only a small effect on net photosynthesis. We found no evidence for Rubisco-activase limitation of photosynthesis. TOpt of VCMax and JMax fell within the observed in situ leaf temperature range, but our study nonetheless suggests that net photosynthesis of tropical trees is more strongly influenced by the indirect effects of high temperature-for example, through elevated vapour pressure deficit and resulting decreases in stomatal conductance-than by direct temperature effects on photosynthetic biochemistry and respiration.
Collapse
Affiliation(s)
- Martijn Slot
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
| |
Collapse
|