1
|
Zarakas CM, Swann ALS, Koven CD, Smith MN, Taylor TC. Different model assumptions about plant hydraulics and photosynthetic temperature acclimation yield diverging implications for tropical forest gross primary production under warming. GLOBAL CHANGE BIOLOGY 2024; 30:e17449. [PMID: 39301722 DOI: 10.1111/gcb.17449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 09/22/2024]
Abstract
Tropical forest photosynthesis can decline at high temperatures due to (1) biochemical responses to increasing temperature and (2) stomatal responses to increasing vapor pressure deficit (VPD), which is associated with increasing temperature. It is challenging to disentangle the influence of these two mechanisms on photosynthesis in observations, because temperature and VPD are tightly correlated in tropical forests. Nonetheless, quantifying the relative strength of these two mechanisms is essential for understanding how tropical gross primary production (GPP) will respond to climate change, because increasing atmospheric CO2 concentration may partially offset VPD-driven stomatal responses, but is not expected to mitigate the effects of temperature-driven biochemical responses. We used two terrestrial biosphere models to quantify how physiological process assumptions (photosynthetic temperature acclimation and plant hydraulic stress) and functional traits (e.g., maximum xylem conductivity) influence the relative strength of modeled temperature versus VPD effects on light-saturated GPP at an Amazonian forest site, a seasonally dry tropical forest site, and an experimental tropical forest mesocosm. By simulating idealized climate change scenarios, we quantified the divergence in GPP predictions under model configurations with stronger VPD effects compared with stronger direct temperature effects. Assumptions consistent with stronger direct temperature effects resulted in larger GPP declines under warming, while assumptions consistent with stronger VPD effects resulted in more resilient GPP under warming. Our findings underscore the importance of quantifying the role of direct temperature and indirect VPD effects for projecting the resilience of tropical forests in the future, and demonstrate that the relative strength of temperature versus VPD effects in models is highly sensitive to plant functional parameters and structural assumptions about photosynthetic temperature acclimation and plant hydraulics.
Collapse
Affiliation(s)
- Claire M Zarakas
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
| | - Abigail L S Swann
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Charles D Koven
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, Michigan, USA
- School of Environmental and Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, UK
| | - Tyeen C Taylor
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
He Z, Huan J, Ye M, Liang D, Wu Y, Li W, Gong X, Jiang L. Based on CiteSpace Insights into Illicium verum Hook. f. Current Hotspots and Emerging Trends and China Resources Distribution. Foods 2024; 13:1510. [PMID: 38790809 PMCID: PMC11119909 DOI: 10.3390/foods13101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Illicium verum Hook. f. is a globally significant spice, which is recognized in China as a food-medicine homolog and extensively utilized across the pharmaceutical, food, and spice industries. China boasts the world's leading resources of I. verum, yet its comprehensive utilization remains relatively underexplored. Through a resource survey of I. verum and the application of bibliometric visualization using CiteSpace, this study analyzed 324 papers published in the Web of Science Core Collection (WOSCC) from 1962 to 2023 and 353 core documents from China's three major databases (CNKI, Wanfang Database, and VIP Database). I. verum from Guangxi province towards various southern provinces in China, with autumn fruits exhibited superior quality and market value over their spring fruits. Literature in WOSCC emerged earlier, with a research emphasis on food science technology and pharmacology pharmacy domains. WOSCC research on I. verum could be divided into two phases: an embryonic period (1962-2001) and a growth period (2002-2023), showing an overall upward trend in publication. The three major Chinese databases contain a larger number of publications, with a focus on the food sector, which could be categorized into three stages: an embryonic period (1990-1999), a growth period (2000-2010), and a stable period (2011-2023), with an overall downward trend in publication. Both Chinese and international research hotspots converge on the medical applications of I. verum, with antioxidant bioactivity research emerging as a prevailing trend. This study delineated the resource distribution of I. verum across China and identified the research hotspots and trends both in China and internationally. The findings are beneficial for guiding researchers in swiftly establishing their research focus and furnishing decision-makers with a comprehensive reference for industry information.
Collapse
Affiliation(s)
- Zhoujian He
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, China; (Z.H.); (X.G.)
- School of Life Sciences, Sichuan University, Wangjiang Road 29, Wuhou District, Chengdu 610064, China
| | - Jie Huan
- Enyang District Agriculture and Rural Bureau of Bazhong City, No. 6, Planning Road 40, Enyang District, Bazhong 636600, China;
| | - Meng Ye
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, China; (Z.H.); (X.G.)
| | - Dan Liang
- Baoxing County Natural Resources and Planning Bureau of Yaan City, Lingxiu Road 256, Baoxing County, Yaan 625700, China;
| | - Yongfei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, China;
| | - Wenjun Li
- Institute of Forestry, Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; (W.L.); (L.J.)
| | - Xiao Gong
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District, Chengdu 611130, China; (Z.H.); (X.G.)
| | - Liqiong Jiang
- Institute of Forestry, Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; (W.L.); (L.J.)
| |
Collapse
|
3
|
Weraduwage SM, Whitten D, Kulke M, Sahu A, Vermaas JV, Sharkey TD. The isoprene-responsive phosphoproteome provides new insights into the putative signalling pathways and novel roles of isoprene. PLANT, CELL & ENVIRONMENT 2024; 47:1099-1117. [PMID: 38038355 DOI: 10.1111/pce.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023]
Abstract
Many plants, especially trees, emit isoprene in a highly light- and temperature-dependent manner. The advantages for plants that emit, if any, have been difficult to determine. Direct effects on membranes have been disproven. New insights have been obtained by RNA sequencing, proteomic and metabolomic studies. We determined the responses of the phosphoproteome to exposure of Arabidopsis leaves to isoprene in the gas phase for either 1 or 5 h. Isoprene effects that were not apparent from RNA sequencing and other methods but were apparent in the phosphoproteome include effects on chloroplast movement proteins and membrane remodelling proteins. Several receptor kinases were found to have altered phosphorylation levels. To test whether potential isoprene receptors could be identified, we used molecular dynamics simulations to test for proteins that might have strong binding to isoprene and, therefore might act as receptors. Although many Arabidopsis proteins were found to have slightly higher binding affinities than a reference set of Homo sapiens proteins, no specific receptor kinase was found to have a very high binding affinity. The changes in chloroplast movement, photosynthesis capacity and so forth, found in this work, are consistent with isoprene responses being especially useful in the upper canopy of trees.
Collapse
Affiliation(s)
- Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Departments of Biology and Biochemistry, Bishop's University, Sherbrooke, Quebec, Canada
| | - Douglas Whitten
- Research Technology Support Facility-Proteomics Core, Michigan State University, East Lansing, Michigan, USA
| | - Martin Kulke
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- School of Natural Sciences, Technische Universität München, Munich, Germany
| | - Abira Sahu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Liu Z, Wang M, Wu M, Yu X, Sun Q, Su C, Sun Y, Cao S, Niu N, Chen L. A sensitive coumarin fluorescence sensor designed for isoprene detection and imaging research in plants. Biosens Bioelectron 2024; 248:115998. [PMID: 38176254 DOI: 10.1016/j.bios.2024.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
The release of isoprene by plants is considered to be an adaptation to the environment. Herein, a highly selective coumarin fluorescent probe (DMIC) was designed for detecting isoprene. When isoprene came into contact with the maleimide of DMIC, an electrophilic addition process took place. The powerful push-pull effect of DMIC was disrupted. Simultaneously, intramolecular charge transfer was initiated. This enabled DMIC to achieve rapid detection of isoprene within 5 min. Furthermore, excellent linearity was observed in the concentration range of 1-560 ppm (R2 = 0.996). A limit of detection is 1.6 ppm. DMIC was applied to in vitro studies of plant release of liberated isoprene. By monitoring the release of isoprene from different tree species throughout the day, the dynamics of isoprene release from plants throughout the day have been successfully revealed. In addition, the release of isoprene varied considerably among different tree species. In particular, the biocompatibility of DMIC allowed for the in vivo detection of isoprene using fluorescence imaging. The results successfully revealed the dynamics of isoprene release in plants under stress. The amount of isoprene that a plant produced increased with the severity of the stress it experienced. This suggested that the level of isoprene content in plants could be used as a preliminary indicator of the physiological health status of plants. This research demonstrates great potential for clarifying signal transduction in biological systems. It provided ideas for further understanding the biology of isoprene.
Collapse
Affiliation(s)
- Zhixin Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Mengyuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Xueling Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Qijun Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Chenglin Su
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Yining Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Shuang Cao
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China.
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
5
|
Song Y, Peng C, Wu Q, Tao S, Mei T, Sun Z, Zuo Z, Pan C, Zhou Y, Zhou G. Age effects of Moso bamboo on leaf isoprene emission characteristics. FRONTIERS IN PLANT SCIENCE 2023; 14:1132717. [PMID: 36959949 PMCID: PMC10028176 DOI: 10.3389/fpls.2023.1132717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Isoprene is a highly reactive volatile organic compound that significantly affects atmospheric oxidant capacity, regional air quality, and climate change. Moso bamboo (Phyllostachys edulis), a species widely distributed in tropical and subtropical regions, particularly in China, is a strong isoprene emitter with great potential for carbon sequestration. Carbon sequestration is negatively correlated with culm age; however, the effect of this correlation on isoprene emissions remains unknown. In this study, we investigated the photosynthetic and isoprene emission characteristics of Moso bamboo at different culm ages. The results showed that the age effect on isoprene emission was different from that on photosynthesis; the net photosynthesis rate (Pn) was the highest in young, followed by mature, and then old bamboo, whereas the isoprene emission rate (Iso) was the highest in young, followed by old, and then mature bamboo. Moreover, the percentage of carbon loss as isoprene emission (C-loss) during photosynthesis of old bamboo was 35% higher than that of mature bamboo under standard conditions (leaf temperature: 30°C; light intensity: 1000 µmol m-2 s-1). Therefore, we strongly recommend considering the culm age when establishing an isoprene emission model of Moso bamboo. Additionally, because the Iso and C-loss of old bamboo were higher than those of mature bamboo, we suggest that attention should be paid to the management of bamboo age structure and timely felling of aged bamboo to reduce environmental risk.
Collapse
Affiliation(s)
- Yandong Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Chunju Peng
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Qinjiao Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Shijie Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Tingting Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Zhihong Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Chunyu Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Yufeng Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| | - Guomo Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Vinod N, Slot M, McGregor IR, Ordway EM, Smith MN, Taylor TC, Sack L, Buckley TN, Anderson-Teixeira KJ. Thermal sensitivity across forest vertical profiles: patterns, mechanisms, and ecological implications. THE NEW PHYTOLOGIST 2023; 237:22-47. [PMID: 36239086 DOI: 10.1111/nph.18539] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
Rising temperatures are influencing forests on many scales, with potentially strong variation vertically across forest strata. Using published research and new analyses, we evaluate how microclimate and leaf temperatures, traits, and gas exchange vary vertically in forests, shaping tree, and ecosystem ecology. In closed-canopy forests, upper canopy leaves are exposed to the highest solar radiation and evaporative demand, which can elevate leaf temperature (Tleaf ), particularly when transpirational cooling is curtailed by limited stomatal conductance. However, foliar traits also vary across height or light gradients, partially mitigating and protecting against the elevation of upper canopy Tleaf . Leaf metabolism generally increases with height across the vertical gradient, yet differences in thermal sensitivity across the gradient appear modest. Scaling from leaves to trees, canopy trees have higher absolute metabolic capacity and growth, yet are more vulnerable to drought and damaging Tleaf than their smaller counterparts, particularly under climate change. By contrast, understory trees experience fewer extreme high Tleaf 's but have fewer cooling mechanisms and thus may be strongly impacted by warming under some conditions, particularly when exposed to a harsher microenvironment through canopy disturbance. As the climate changes, integrating the patterns and mechanisms reviewed here into models will be critical to forecasting forest-climate feedback.
Collapse
Affiliation(s)
- Nidhi Vinod
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
| | - Martijn Slot
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| | - Ian R McGregor
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27607, USA
| | - Elsa M Ordway
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
- School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, LL57 2DG, UK
| | - Tyeen C Taylor
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, 90039, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, 22630, USA
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panama City, Panama
| |
Collapse
|
7
|
Gomes Alves E, Taylor T, Robin M, Pinheiro Oliveira D, Schietti J, Duvoisin Júnior S, Zannoni N, Williams J, Hartmann C, Gonçalves JFC, Schöngart J, Wittmann F, Piedade MTF. Seasonal shifts in isoprenoid emission composition from three hyperdominant tree species in central Amazonia. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:721-733. [PMID: 35357064 DOI: 10.1111/plb.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Volatile isoprenoids regulate plant performance and atmospheric processes, and Amazon forests comprise the dominant source to the global atmosphere. Still, there is a poor understanding of how isoprenoid emission capacities vary in response to ecophysiological and environmental controls in Amazonian ecosystems. We measured isoprenoid emission capacities of three Amazonian hyperdominant tree species - Protium hebetatum, Eschweilera grandiflora, Eschweilera coriacea - across seasons and along a topographic and edaphic environmental gradient in the central Amazon. From wet to dry season, both photosynthesis and isoprene emission capacities strongly declined, while emissions increased among the heavier isoprenoids: monoterpenes and sesquiterpenes. Plasticity across habitats was most evident in P. hebetatum, which emitted sesquiterpenes only in the dry season, at rates that significantly increased along the hydro-topographic gradient from white sands (shallow root water access) to uplands (deep water table). We suggest that emission composition shifts are part of a plastic response to increasing abiotic stress (e.g. heat and drought) and reduced photosynthetic supply of substrates for isoprenoid synthesis. Our comprehensive measurements suggest that more emphasis should be placed on other isoprenoids, besides isoprene, in the context of abiotic stress responses. Shifting emission compositions have implications for atmospheric responses because of the strong variation in reactivity among isoprenoid compounds.
Collapse
Affiliation(s)
- E Gomes Alves
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
- Climate and Environment Department, National Institute of Amazonian Research, Manaus, Brazil
| | - T Taylor
- Biology Department, University of Miami, Coral Gables, FL, USA
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - M Robin
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
- Ecology Department, National Institute of Amazonian Research, Manaus, Brazil
| | - D Pinheiro Oliveira
- Climate and Environment Department, National Institute of Amazonian Research, Manaus, Brazil
| | - J Schietti
- Ecology Department, National Institute of Amazonian Research, Manaus, Brazil
- Biology Department, Federal University of Amazonas, Manaus, Brazil
| | | | - N Zannoni
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - J Williams
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - C Hartmann
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - J F C Gonçalves
- Coordination of Environmental Dynamics, National Institute of Amazonian Research, Manaus, Brazil
| | - J Schöngart
- Coordination of Environmental Dynamics, National Institute of Amazonian Research, Manaus, Brazil
| | - F Wittmann
- Department of Wetland Ecology, Karlsruhe Institute of Technology, Rastatt, Germany
| | - M T F Piedade
- Coordination of Environmental Dynamics, National Institute of Amazonian Research, Manaus, Brazil
| |
Collapse
|
8
|
Mu Z, Llusià J, Zeng J, Zhang Y, Asensio D, Yang K, Yi Z, Wang X, Peñuelas J. An Overview of the Isoprenoid Emissions From Tropical Plant Species. FRONTIERS IN PLANT SCIENCE 2022; 13:833030. [PMID: 35668805 PMCID: PMC9163954 DOI: 10.3389/fpls.2022.833030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Terrestrial vegetation is the largest contributor of isoprenoids (a group of biogenic volatile organic compounds (BVOCs)) to the atmosphere. BVOC emission data comes mostly from temperate regions, and less is known about BVOC emissions from tropical vegetation, even though it is estimated to be responsible for >70% of BVOC emissions. This review summarizes the available data and our current understanding of isoprenoid emissions from tropical plant species and the spatial and temporal variation in emissions, which are strongly species-specific and regionally variable. Emission models lacking foliar level data for tropical species need to revise their parameters to account for seasonal and diurnal variation due to differences in dependencies on temperature and light of emissions from plants in other ecosystems. More experimental information and determining how emission capacity varies during foliar development are warranted to account for seasonal variations more explicitly.
Collapse
Affiliation(s)
- Zhaobin Mu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Joan Llusià
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Jianqiang Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Dolores Asensio
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Kaijun Yang
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Zhigang Yi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| |
Collapse
|
9
|
Tropical tree mortality has increased with rising atmospheric water stress. Nature 2022; 608:528-533. [PMID: 35585230 DOI: 10.1038/s41586-022-04737-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/06/2022] [Indexed: 12/20/2022]
Abstract
Evidence exists that tree mortality is accelerating in some regions of the tropics1,2, with profound consequences for the future of the tropical carbon sink and the global anthropogenic carbon budget left to limit peak global warming below 2 °C. However, the mechanisms that may be driving such mortality changes and whether particular species are especially vulnerable remain unclear3-8. Here we analyse a 49-year record of tree dynamics from 24 old-growth forest plots encompassing a broad climatic gradient across the Australian moist tropics and find that annual tree mortality risk has, on average, doubled across all plots and species over the last 35 years, indicating a potential halving in life expectancy and carbon residence time. Associated losses in biomass were not offset by gains from growth and recruitment. Plots in less moist local climates presented higher average mortality risk, but local mean climate did not predict the pace of temporal increase in mortality risk. Species varied in the trajectories of their mortality risk, with the highest average risk found nearer to the upper end of the atmospheric vapour pressure deficit niches of species. A long-term increase in vapour pressure deficit was evident across the region, suggesting that thresholds involving atmospheric water stress, driven by global warming, may be a primary cause of increasing tree mortality in moist tropical forests.
Collapse
|
10
|
Morfopoulos C, Müller J, Stavrakou T, Bauwens M, De Smedt I, Friedlingstein P, Prentice IC, Regnier P. Vegetation responses to climate extremes recorded by remotely sensed atmospheric formaldehyde. GLOBAL CHANGE BIOLOGY 2022; 28:1809-1822. [PMID: 34510653 PMCID: PMC9290652 DOI: 10.1111/gcb.15880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 06/01/2023]
Abstract
Accurate monitoring of vegetation stress is required for better modelling and forecasting of primary production, in a world where heatwaves and droughts are expected to become increasingly prevalent. Variability in formaldehyde (HCHO) concentrations in the troposphere is dominated by local emissions of short-lived biogenic (BVOC) and pyrogenic volatile organic compounds. BVOCs are emitted by plants in a rapid protective response to abiotic stress, mediated by the energetic status of leaves (the excess of reducing power when photosynthetic light and dark reactions are decoupled, as occurs when stomata close in response to water stress). Emissions also increase exponentially with leaf temperature. New analytical methods for the detection of spatiotemporally contiguous extremes in remote-sensing data are applied here to satellite-derived atmospheric HCHO columns. BVOC emissions are shown to play a central role in the formation of the largest positive HCHO anomalies. Although vegetation stress can be captured by various remotely sensed quantities, spaceborne HCHO emerges as the most consistent recorder of vegetation responses to the largest climate extremes, especially in forested regions.
Collapse
Affiliation(s)
- Catherine Morfopoulos
- Department of Life SciencesImperial College LondonSilwood ParkUK
- Department of Geoscience, Environment & Society‐BGEOSYSUniversité Libre de BruxellesBrusselsBelgium
| | | | | | - Maite Bauwens
- Royal Belgian Institute for Space AeronomyBrusselsBelgium
| | | | - Pierre Friedlingstein
- College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
| | - Iain Colin Prentice
- Department of Life SciencesImperial College LondonSilwood ParkUK
- Ministry of Education Key Laboratory for Earth System ModelingDepartment of Earth System ScienceTsinghua UniversityBeijingChina
- Department of Biological SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Pierre Regnier
- Department of Geoscience, Environment & Society‐BGEOSYSUniversité Libre de BruxellesBrusselsBelgium
| |
Collapse
|
11
|
Tarvainen L, Wittemann M, Mujawamariya M, Manishimwe A, Zibera E, Ntirugulirwa B, Ract C, Manzi OJL, Andersson MX, Spetea C, Nsabimana D, Wallin G, Uddling J. Handling the heat - photosynthetic thermal stress in tropical trees. THE NEW PHYTOLOGIST 2022; 233:236-250. [PMID: 34655491 DOI: 10.1111/nph.17809] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Warming climate increases the risk for harmful leaf temperatures in terrestrial plants, causing heat stress and loss of productivity. The heat sensitivity may be particularly high in equatorial tropical tree species adapted to a thermally stable climate. Thermal thresholds of the photosynthetic system of sun-exposed leaves were investigated in three tropical montane tree species native to Rwanda with different growth and water use strategies (Harungana montana, Syzygium guineense and Entandrophragma exselsum). Measurements of chlorophyll fluorescence, leaf gas exchange, morphology, chemistry and temperature were made at three common gardens along an elevation/temperature gradient. Heat tolerance acclimated to maximum leaf temperature (Tleaf ) across the species. At the warmest sites, the thermal threshold for normal function of photosystem II was exceeded in the species with the highest Tleaf despite their higher heat tolerance. This was not the case in the species with the highest transpiration rates and lowest Tleaf . The results point to two differently effective strategies for managing thermal stress: tolerance through physiological adjustment of leaf osmolality and thylakoid membrane lipid composition, or avoidance through morphological adaptation and transpiratory cooling. More severe photosynthetic heat stress in low-transpiring montane climax species may result in a competitive disadvantage compared to high-transpiring pioneer species with more efficient leaf cooling.
Collapse
Affiliation(s)
- Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
| | - Maria Wittemann
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
| | - Myriam Mujawamariya
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
| | - Aloysie Manishimwe
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
| | - Etienne Zibera
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
| | - Bonaventure Ntirugulirwa
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
- Rwanda Agriculture and Animal Development Board, PO Box 5016, Kigali, Rwanda
| | - Claire Ract
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
| | - Olivier J L Manzi
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
- Department of Biology, University of Rwanda, University Avenue, PO Box 117, Huye, Rwanda
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
| | - Donat Nsabimana
- School of Forestry and Biodiversity and Biological Sciences, University of Rwanda, Busogo, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, Gothenburg, SE-405 30, Sweden
| |
Collapse
|
12
|
Slot M, Cala D, Aranda J, Virgo A, Michaletz ST, Winter K. Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. PLANT, CELL & ENVIRONMENT 2021; 44:2414-2427. [PMID: 33817813 DOI: 10.1111/pce.14060] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Exceeding thermal thresholds causes irreversible damage and ultimately loss of leaves. The lowland tropics are among the warmest forested biomes, but little is known about heat tolerance of tropical forest plants. We surveyed leaf heat tolerance of sun-exposed leaves from 147 tropical lowland and pre-montane forest species by determining the temperatures at which potential photosystem II efficiency based on chlorophyll a fluorescence started to decrease (TCrit ) and had decreased by 50% (T50 ). TCrit averaged 46.7°C (5th-95th percentile: 43.5°C-49.7°C) and T50 averaged 49.9°C (47.8°C-52.5°C). Heat tolerance partially adjusted to site temperature; TCrit and T50 decreased with elevation by 0.40°C and 0.26°C per 100 m, respectively, while mean annual temperature decreased by 0.63°C per 100 m. The phylogenetic signal in heat tolerance was weak, suggesting that heat tolerance is more strongly controlled by environment than by evolutionary legacies. TCrit increased with the estimated thermal time constant of the leaves, indicating that species with thermally buffered leaves maintain higher heat tolerance. Among lowland species, T50 increased with leaf mass per area, suggesting that in species with structurally more costly leaves the risk of leaf loss during hot spells is reduced. These results provide insight in variation in heat tolerance at local and regional scales.
Collapse
Affiliation(s)
- Martijn Slot
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Daniela Cala
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Paul H. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Jorge Aranda
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| |
Collapse
|
13
|
Perez TM, Socha A, Tserej O, Feeley KJ. Photosystem II heat tolerances characterize thermal generalists and the upper limit of carbon assimilation. PLANT, CELL & ENVIRONMENT 2021; 44:2321-2330. [PMID: 33378078 DOI: 10.1111/pce.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The heat tolerance of photosystem II (PSII) may promote carbon assimilation at higher temperatures and help explain plant responses to climate change. Higher PSII heat tolerance could lead to (a) increases in the high-temperature compensation point (Tmax ); (b) increases in the thermal breadth of photosynthesis (i.e. the photosynthetic parameter Ω) to promote a thermal generalist strategy of carbon assimilation; (c) increases in the optimum rate of carbon assimilation Popt and faster carbon assimilation and/or (d) increases in the optimum temperature for photosynthesis (Topt ). To address these hypotheses, we tested if the Tcrit , T50 and T95 PSII heat tolerances were correlated with carbon assimilation parameters for 21 plant species. Our results did not support Hypothesis 1, but we observed that T50 may be used to estimate the upper thermal limit for Tmax at the species level, and that community mean Tcrit may be useful for approximating Tmax . The T50 and T95 heat tolerance metrics were positively correlated with Ω in support of Hypothesis 2. We found no support for Hypotheses 3 or 4. Our study shows that high PSII heat tolerance is unlikely to improve carbon assimilation at higher temperatures but may characterize thermal generalists with slow resource acquisition strategies.
Collapse
Affiliation(s)
- Timothy M Perez
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Annika Socha
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Olga Tserej
- Department of Biology, University of Miami, Coral Gables, Florida, USA
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| | - Kenneth J Feeley
- Department of Biology, University of Miami, Coral Gables, Florida, USA
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| |
Collapse
|
14
|
Zhan Z, Seager S, Petkowski JJ, Sousa-Silva C, Ranjan S, Huang J, Bains W. Assessment of Isoprene as a Possible Biosignature Gas in Exoplanets with Anoxic Atmospheres. ASTROBIOLOGY 2021; 21:765-792. [PMID: 33798392 DOI: 10.1089/ast.2019.2146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The search for possible biosignature gases in habitable exoplanet atmospheres is accelerating, although actual observations are likely years away. This work adds isoprene, C5H8, to the roster of biosignature gases. We found that isoprene geochemical formation is highly thermodynamically disfavored and has no known abiotic false positives. The isoprene production rate on Earth rivals that of methane (CH4; ∼500 Tg/year). Unlike methane, on Earth isoprene is rapidly destroyed by oxygen-containing radicals. Although isoprene is predominantly produced by deciduous trees, isoprene production is ubiquitous to a diverse array of evolutionary distant organisms, from bacteria to plants and animals-few, if any, volatile secondary metabolites have a larger evolutionary reach. Although non-photochemical sinks of isoprene may exist, such as degradation of isoprene by life or other high deposition rates, destruction of isoprene in an anoxic atmosphere is mainly driven by photochemistry. Motivated by the concept that isoprene might accumulate in anoxic environments, we model the photochemistry and spectroscopic detection of isoprene in habitable temperature, rocky exoplanet anoxic atmospheres with a variety of atmosphere compositions under different host star ultraviolet fluxes. Limited by an assumed 10 ppm instrument noise floor, habitable atmosphere characterization when using James Webb Space Telescope (JWST) is only achievable with a transit signal similar or larger than that for a super-Earth-sized exoplanet transiting an M dwarf star with an H2-dominated atmosphere. Unfortunately, isoprene cannot accumulate to detectable abundance without entering a run-away phase, which occurs at a very high production rate, ∼100 times the Earth's production rate. In this run-away scenario, isoprene will accumulate to >100 ppm, and its spectral features are detectable with ∼20 JWST transits. One caveat is that some isoprene spectral features are hard to distinguish from those of methane and also from other hydrocarbons containing the isoprene substructure. Despite these challenges, isoprene is worth adding to the menu of potential biosignature gases.
Collapse
Affiliation(s)
- Zhuchang Zhan
- Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
- Department of Physics, MIT, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, and MIT, Cambridge, Massachusetts, USA
| | - Janusz Jurand Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
| | - Clara Sousa-Silva
- Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
| | - Sukrit Ranjan
- Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
| | | | - William Bains
- Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
- Rufus Scientific, Royston, United Kingdom
| |
Collapse
|
15
|
Boanares D, Lemos-Filho JP, Isaias RMS, França MGC. Photosynthetic heat tolerance in plants with different foliar water -uptake strategies. AMERICAN JOURNAL OF BOTANY 2021; 108:811-819. [PMID: 33891308 DOI: 10.1002/ajb2.1648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
PREMISE The distribution and even the survival of plant species are influenced by temperature. In an old climatically buffered infertile landscape (OCBIL) in Brazil, we previously characterized different strategies for foliar water uptake (FWU). It is possible that photosystem II tolerance to heat and excessive light intensity varies among species with different FWU capacities. METHODS The relationship between FWU, photoinhibition, and thermotolerance was investigated in seven species from this ecosystem. RESULTS The species with slow water absorption and high water absorption are those that presented less photoinhibition. Contrastingly, the species that have fast and low water absorption presented greater thermotolerance when their leaves are totally hydrated. However, when there is greater leaf dehydration, the most thermotolerant species were those with slow but high water absorption. CONCLUSIONS Foliar water uptake is an important trait for plants to tolerate excessive light intensity and higher temperatures. Plants in this OCBIL may be differentially affected by future global warming, and the best strategy to deal with this expected climate change is with slow and high absorption of water.
Collapse
Affiliation(s)
- Daniela Boanares
- Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brasil
| | - José P Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brasil
| | - Rosy M S Isaias
- Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brasil
| | - Marcel G C França
- Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brasil
| |
Collapse
|
16
|
Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia 2021; 197:885-902. [PMID: 33420520 DOI: 10.1007/s00442-020-04813-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene's role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective.
Collapse
|
17
|
Smith MN, Taylor TC, van Haren J, Rosolem R, Restrepo-Coupe N, Adams J, Wu J, de Oliveira RC, da Silva R, de Araujo AC, de Camargo PB, Huxman TE, Saleska SR. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. NATURE PLANTS 2020; 6:1225-1230. [PMID: 33051618 DOI: 10.1038/s41477-020-00780-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Tropical forests may be vulnerable to climate change1-3 if photosynthetic carbon uptake currently operates near a high temperature limit4-6. Predicting tropical forest function requires understanding the relative contributions of two mechanisms of high-temperature photosynthetic declines: stomatal limitation (H1), an indirect response due to temperature-associated changes in atmospheric vapour pressure deficit (VPD)7, and biochemical restrictions (H2), a direct temperature response8,9. Their relative control predicts different outcomes-H1 is expected to diminish with stomatal responses to future co-occurring elevated atmospheric [CO2], whereas H2 portends declining photosynthesis with increasing temperatures. Distinguishing the two mechanisms at high temperatures is therefore critical, but difficult because VPD is highly correlated with temperature in natural settings. We used a forest mesocosm to quantify the sensitivity of tropical gross ecosystem productivity (GEP) to future temperature regimes while constraining VPD by controlling humidity. We then analytically decoupled temperature and VPD effects under current climate with flux-tower-derived GEP trends in situ from four tropical forest sites. Both approaches showed consistent, negative sensitivity of GEP to VPD but little direct response to temperature. Importantly, in the mesocosm at low VPD, GEP persisted up to 38 °C, a temperature exceeding projections for tropical forests in 2100 (ref. 10). If elevated [CO2] mitigates VPD-induced stomatal limitation through enhanced water-use efficiency as hypothesized9,11, tropical forest photosynthesis may have a margin of resilience to future warming.
Collapse
Affiliation(s)
- Marielle N Smith
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
- Department of Forestry, Michigan State University, East Lansing, MI, USA.
| | - Tyeen C Taylor
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Rafael Rosolem
- Department of Civil Engineering, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | - Natalia Restrepo-Coupe
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - John Adams
- Biosphere 2, University of Arizona, Oracle, AZ, USA
| | - Jin Wu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, China
| | | | - Rodrigo da Silva
- Department of Environmental Physics, University of Western Pará (UFOPA), Santarém, Brazil
| | - Alessandro C de Araujo
- Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
- Embrapa Amazônia Oriental, Belém, Brazil
| | - Plinio B de Camargo
- Laboratório de Ecologia Isotópica, Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba, Brazil
| | - Travis E Huxman
- Ecology and Evolutionary Biology & Center for Environmental Biology, University of California, Irvine, CA, USA
| | - Scott R Saleska
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
18
|
Montoya OLQ, Niño-Ruiz ED, Pinel N. On the mathematical modelling and data assimilation for air pollution assessment in the Tropical Andes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35993-36012. [PMID: 32335834 DOI: 10.1007/s11356-020-08268-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Air pollution assessment in the Tropical Andes requires a multidisciplinary approach. This can be supported from the understanding of the underlying biological dynamics and atmospheric behavior, to the mathematical approach for the proper use of all available information. This review paper touches on several aspects in which mathematical models can help to solve challenging problems regarding air pollution in reviewing the state-of-the-art at the global level and assessing the corresponding state of development as applied to the Tropical Andes. We address the complexities and challenges that modelling atmospheric dynamics in a mega-diverse region with abrupt topography entails. Understanding the relevance of monitoring and facing the problems of data scarcity, we call attention to the usefulness of data assimilation for uncertainty reduction, and how these techniques could help tackle the scarcity of regional monitoring networks to accelerate the implementation and development of modelling systems for air quality in the Tropical Andes. Finally, we suggest a cyberphysical framework for decision-making processes based on the data assimilation of chemical transport models, the forecast of scenarios, and their use in regulation and policy making.
Collapse
Affiliation(s)
| | - Elías D Niño-Ruiz
- Computer Science Department, Universidad del Norte, Barranquilla, Colombia
| | - Nicolás Pinel
- Biodiversity Evolution and Conservation, Universidad EAFIT, Medellín, Colombia
| |
Collapse
|
19
|
Rodrigues TB, Baker CR, Walker AP, McDowell N, Rogers A, Higuchi N, Chambers JQ, Jardine KJ. Stimulation of isoprene emissions and electron transport rates as key mechanisms of thermal tolerance in the tropical species Vismia guianensis. GLOBAL CHANGE BIOLOGY 2020; 26:5928-5941. [PMID: 32525272 DOI: 10.1111/gcb.15213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis, but high surface temperatures suppress this absorption while promoting isoprene emissions. While mechanistic isoprene emission models predict a tight coupling to photosynthetic electron transport (ETR) as a function of temperature, direct field observations of this phenomenon are lacking in the tropics and are necessary to assess the impact of a warming climate on global isoprene emissions. Here we demonstrate that in the early successional species Vismia guianensis in the central Amazon, ETR rates increased with temperature in concert with isoprene emissions, even as stomatal conductance (gs ) and net photosynthetic carbon fixation (Pn ) declined. We observed the highest temperatures of continually increasing isoprene emissions yet reported (50°C). While Pn showed an optimum value of 32.6 ± 0.4°C, isoprene emissions, ETR, and the oxidation state of PSII reaction centers (qL ) increased with leaf temperature with strong linear correlations for ETR (ƿ = 0.98) and qL (ƿ = 0.99) with leaf isoprene emissions. In contrast, other photoprotective mechanisms, such as non-photochemical quenching, were not activated at elevated temperatures. Inhibition of isoprenoid biosynthesis repressed Pn at high temperatures through a mechanism that was independent of stomatal closure. While extreme warming will decrease gs and Pn in tropical species, our observations support a thermal tolerance mechanism where the maintenance of high photosynthetic capacity under extreme warming is assisted by the simultaneous stimulation of ETR and metabolic pathways that consume the direct products of ETR including photorespiration and the biosynthesis of thermoprotective isoprenoids. Our results confirm that models which link isoprene emissions to the rate of ETR hold true in tropical species and provide necessary "ground-truthing" for simulations of the large predicted increases in tropical isoprene emissions with climate warming.
Collapse
Affiliation(s)
- Tayana B Rodrigues
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
| | - Christopher R Baker
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Nate McDowell
- Earth System Analysis and Modeling, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Niro Higuchi
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
| | - Jeffrey Q Chambers
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kolby J Jardine
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
20
|
Yáñez-Serrano AM, Bourtsoukidis E, Alves EG, Bauwens M, Stavrakou T, Llusià J, Filella I, Guenther A, Williams J, Artaxo P, Sindelarova K, Doubalova J, Kesselmeier J, Peñuelas J. Amazonian biogenic volatile organic compounds under global change. GLOBAL CHANGE BIOLOGY 2020; 26:4722-4751. [PMID: 32445424 DOI: 10.1111/gcb.15185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Biogenic volatile organic compounds (BVOCs) play important roles at cellular, foliar, ecosystem and atmospheric levels. The Amazonian rainforest represents one of the major global sources of BVOCs, so its study is essential for understanding BVOC dynamics. It also provides insights into the role of such large and biodiverse forest ecosystem in regional and global atmospheric chemistry and climate. We review the current information on Amazonian BVOCs and identify future research priorities exploring biogenic emissions and drivers, ecological interactions, atmospheric impacts, depositional processes and modifications to BVOC dynamics due to changes in climate and land cover. A feedback loop between Amazonian BVOCs and the trends of climate and land-use changes in Amazonia is then constructed. Satellite observations and model simulation time series demonstrate the validity of the proposed loop showing a combined effect of climate change and deforestation on BVOC emission in Amazonia. A decreasing trend of isoprene during the wet season, most likely due to forest biomass loss, and an increasing trend of the sesquiterpene to isoprene ratio during the dry season suggest increasing temperature stress-induced emissions due to climate change.
Collapse
Affiliation(s)
- Ana M Yáñez-Serrano
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| | - Efstratios Bourtsoukidis
- Atmospheric Chemistry and Multiphase Chemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
| | - Eliane G Alves
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Maite Bauwens
- Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
| | | | - Joan Llusià
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| | - Iolanda Filella
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Jonathan Williams
- Atmospheric Chemistry and Multiphase Chemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
| | - Paulo Artaxo
- Instituto de Física, Universidade de Sao Paulo, São Paulo, Brazil
| | - Katerina Sindelarova
- Faculty of Mathematics and Physics, Department of Atmospheric Physics, Charles University, Prague, Czechia
| | - Jana Doubalova
- Faculty of Mathematics and Physics, Department of Atmospheric Physics, Charles University, Prague, Czechia
- Modelling and Assessment Department, Czech Hydrometeorological Institute, Prague, Czechia
| | - Jürgen Kesselmeier
- Atmospheric Chemistry and Multiphase Chemistry Departments, Max Planck Institute for Chemistry, Mainz, Germany
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, Spain
| |
Collapse
|
21
|
Jardine KJ, Zorzanelli RF, Gimenez BO, Oliveira Piva LRD, Teixeira A, Fontes CG, Robles E, Higuchi N, Chambers JQ, Martin ST. Leaf isoprene and monoterpene emission distribution across hyperdominant tree genera in the Amazon basin. PHYTOCHEMISTRY 2020; 175:112366. [PMID: 32278887 DOI: 10.1016/j.phytochem.2020.112366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 05/26/2023]
Abstract
Tropical forests are acknowledged to be the largest global source of isoprene (C5H8) and monoterpenes (C10H16) emissions, with current synthesis studies suggesting few tropical species emit isoprenoids (20-38%) and do so with highly variable emission capacities, including within the same genera. This apparent lack of a clear phylogenetic thread has created difficulties both in linking isoprenoid function with evolution and for the development of accurate biosphere-atmosphere models. Here, we present a systematic emission study of "hyperdominant" tree species in the Amazon Basin. Across 162 individuals, distributed among 25 botanical families and 113 species, isoprenoid emissions were widespread among both early and late successional species (isoprene: 61.9% of the species; monoterpenes: 15.0%; both isoprene and monoterpenes: 9.7%). The hyperdominant species (69) across the top five most abundant genera, which make up about 50% of all individuals in the Basin, had a similar abundance of isoprenoid emitters (isoprene: 63.8%; monoterpenes: 17.4%; both 11.6%). Among the abundant genera, only Pouteria had a low frequency of isoprene emitting species (15.8% of 19 species). In contrast, Protium, Licania, Inga, and Eschweilera were rich in isoprene emitting species (83.3% of 12 species, 61.1% of 18 species, 100% of 8 species, and 100% of 12 species, respectively). Light response curves of individuals in each of the five genera showed light-dependent, photosynthesis-linked emission rates of isoprene and monoterpenes. Importantly, in every genus, we observed species with light-dependent isoprene emissions together with monoterpenes including β-ocimene. These observations support the emerging view of the evolution of isoprene synthases from β-ocimene synthases. Our results have important implications for understanding isoprenoid function-evolution relationships and the development of more accurate Earth System Models.
Collapse
Affiliation(s)
- Kolby J Jardine
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, One Cyclotron Rd, building 64-241, Berkeley, CA, 94720, USA; National Institute for Amazon Research (INPA), Department of Forest Management, Ave. Andre Araujo, 2936, Manaus, AM, 69.080-97, Brazil.
| | - Raquel F Zorzanelli
- Federal University of Espírito Santo (UFES), Ave. Governador Lindemberg, nº 316, Centro, Jerônimo, Monteiro, ES, 29.550-000, Brazil
| | - Bruno O Gimenez
- National Institute for Amazon Research (INPA), Department of Forest Management, Ave. Andre Araujo, 2936, Manaus, AM, 69.080-97, Brazil
| | | | - Andrea Teixeira
- National Institute for Amazon Research (INPA), Department of Forest Management, Ave. Andre Araujo, 2936, Manaus, AM, 69.080-97, Brazil
| | - Clarissa G Fontes
- College of Biological Sciences, University of Minnesota, 100 Ecology 1987 Upper Buford Circle, St. Paul, MN, 55108, USA
| | - Emily Robles
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, One Cyclotron Rd, building 64-241, Berkeley, CA, 94720, USA; College of Natural Resources, University of California Berkeley, 260 Mulford Hall, Berkeley, CA, 94720, USA
| | - Niro Higuchi
- National Institute for Amazon Research (INPA), Department of Forest Management, Ave. Andre Araujo, 2936, Manaus, AM, 69.080-97, Brazil
| | - Jeffrey Q Chambers
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, One Cyclotron Rd, building 64-241, Berkeley, CA, 94720, USA; Department of Geography, University of California Berkeley, 507 McCone Hall #4740, Berkeley, CA, 94720, USA
| | - Scot T Martin
- School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
22
|
Xu Y, Shang B, Feng Z, Tarvainen L. Effect of elevated ozone, nitrogen availability and mesophyll conductance on the temperature responses of leaf photosynthetic parameters in poplar. TREE PHYSIOLOGY 2020; 40:484-497. [PMID: 32031641 DOI: 10.1093/treephys/tpaa007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Although ozone (O3) concentration and nitrogen (N) availability are well known to affect plant physiology, their impacts on the photosynthetic temperature response are poorly understood. We addressed this knowledge gap by exposing seedlings of hybrid poplar clone '107' (Populous euramericana cv. '74/76') to elevated O3 (E-O3) and N availability variation in a factorial experiment. E-O3 decreased light-saturated net photosynthesis (Asat), mesophyll conductance (gm) and apparent maximum rate of carboxylation (Vcmax, based on intercellular CO2 concentration) but not actual Vcmax (based on chloroplast CO2 concentration) and increased respiration in light (Rd) at 25 °C. Nitrogen fertilization increased Asat, gm, Vcmax and the maximum rate of electron transport (Jmax) and reduced Rd at 25 °C and the activation energy of actual Vcmax. No E-O3 or E-O3 x N interaction effects on the temperature response parameters were detected, simplifying the inclusion of O3 impacts on photosynthesis in vegetation models. gm peaked at 30 °C, apparent Vcmax and Jmax at 32-33 °C, while the optimum temperatures of actual Vcmax and Jmax exceeded the measured temperature range (15-35 °C). Ignoring gm would, thus, have resulted in mistakenly attributing the decrease in Asat at high temperatures to reduced biochemical capacity rather than to greater diffusion limitation.
Collapse
Affiliation(s)
- Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Shang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaozhong Feng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Lasse Tarvainen
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
23
|
Yáñez-Serrano AM, Mahlau L, Fasbender L, Byron J, Williams J, Kreuzwieser J, Werner C. Heat stress increases the use of cytosolic pyruvate for isoprene biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5827-5838. [PMID: 31396620 PMCID: PMC6812709 DOI: 10.1093/jxb/erz353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/18/2019] [Indexed: 05/28/2023]
Abstract
The increasing occurrence of heatwaves has intensified temperature stress on terrestrial vegetation. Here, we investigate how two contrasting isoprene-emitting tropical species, Ficus benjamina and Pachira aquatica, cope with heat stress and assess the role of internal plant carbon sources for isoprene biosynthesis in relation to thermotolerance. To our knowledge, this is the first study to report isoprene emissions from P. aquatica. We exposed plants to two levels of heat stress and determined the temperature response curves for isoprene and photosynthesis. To assess the use of internal C sources in isoprene biosynthesis, plants were fed with 13C position-labelled pyruvate. F. benjamina was more heat tolerant with higher constitutive isoprene emissions and stronger acclimation to higher temperatures than P. aquatica, which showed higher induced isoprene emissions at elevated temperatures. Under heat stress, both isoprene emissions and the proportion of cytosolic pyruvate allocated into isoprene synthesis increased. This represents a mechanism that P. aquatica, and to a lesser extent F. benjamina, has adopted as an immediate response to sudden increase in heat stress. However, in the long run under prolonged heat, the species with constitutive emissions (F. benjamina) was better adapted, indicating that plants that invest more carbon into protective emissions of biogenic volatile organic compounds tend to suffer less from heat stress.
Collapse
Affiliation(s)
| | - Lucas Mahlau
- Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany
| | - Lukas Fasbender
- Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany
| | - Joseph Byron
- Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz, Germany
| | - Jonathan Williams
- Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz, Germany
| | - Jürgen Kreuzwieser
- Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany
| | - Christiane Werner
- Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Lantz AT, Allman J, Weraduwage SM, Sharkey TD. Isoprene: New insights into the control of emission and mediation of stress tolerance by gene expression. PLANT, CELL & ENVIRONMENT 2019; 42:2808-2826. [PMID: 31350912 PMCID: PMC6788959 DOI: 10.1111/pce.13629] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 05/10/2023]
Abstract
Isoprene is a volatile compound produced in large amounts by some, but not all, plants by the enzyme isoprene synthase. Plants emit vast quantities of isoprene, with a net global output of 600 Tg per year, and typical emission rates from individual plants around 2% of net carbon assimilation. There is significant debate about whether global climate change resulting from increasing CO2 in the atmosphere will increase or decrease global isoprene emission in the future. We show evidence supporting predictions of increased isoprene emission in the future, but the effects could vary depending on the environment under consideration. For many years, isoprene was believed to have immediate, physical effects on plants such as changing membrane properties or quenching reactive oxygen species. Although observations sometimes supported these hypotheses, the effects were not always observed, and the reasons for the variability were not apparent. Although there may be some physical effects, recent studies show that isoprene has significant effects on gene expression, the proteome, and the metabolome of both emitting and nonemitting species. Consistent results are seen across species and specific treatment protocols. This review summarizes recent findings on the role and control of isoprene emission from plants.
Collapse
Affiliation(s)
- Alexandra T. Lantz
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Joshua Allman
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Sarathi M. Weraduwage
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Thomas D. Sharkey
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Madison, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
25
|
A Spatial and Temporal Risk Assessment of the Impacts of El Niño on the Tropical Forest Carbon Cycle: Theoretical Framework, Scenarios, and Implications. ATMOSPHERE 2019. [DOI: 10.3390/atmos10100588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Strong El Niño events alter tropical climates and may lead to a negative carbon balance in tropical forests and consequently a disruption to the global carbon cycle. The complexity of tropical forests and the lack of data from these regions hamper the assessment of the spatial distribution of El Niño impacts on these ecosystems. Typically, maps of climate anomaly are used to detect areas of greater risk, ignoring baseline climate conditions and forest cover. Here, we integrated climate anomalies from the 1982–1983, 1997–1998, and 2015–2016 El Niño events with baseline climate and forest edge extent, using a risk assessment approach to hypothetically assess the spatial and temporal distributions of El Niño risk over tropical forests under several risk scenarios. The drivers of risk varied temporally and spatially. Overall, the relative risk of El Niño has been increasing driven mainly by intensified forest fragmentation that has led to a greater chance of fire ignition and increased mean annual air temperatures. We identified areas of repeated high risk, where conservation efforts and fire control measures should be focused to avoid future forest degradation and negative impacts on the carbon cycle.
Collapse
|