1
|
Kartseva T, Aleksandrov V, Alqudah AM, Schierenbeck M, Tasheva K, Börner A, Misheva S. Exploring Novel Genomic Loci and Candidate Genes Associated with Plant Height in Bulgarian Bread Wheat via Multi-Model GWAS. PLANTS (BASEL, SWITZERLAND) 2024; 13:2775. [PMID: 39409644 PMCID: PMC11479123 DOI: 10.3390/plants13192775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
In the context of crop breeding, plant height (PH) plays a pivotal role in determining straw and grain yield. Although extensive research has explored the genetic control of PH in wheat, there remains an opportunity for further advancements by integrating genomics with growth-related phenomics. Our study utilizes the latest genome-wide association scan (GWAS) techniques to unravel the genetic basis of temporal variation in PH across 179 Bulgarian bread wheat accessions, including landraces, tall historical, and semi-dwarf modern varieties. A GWAS was performed with phenotypic data from three growing seasons, the calculated best linear unbiased estimators, and the leveraging genotypic information from the 25K Infinium iSelect array, using three statistical methods (MLM, FarmCPU, and BLINK). Twenty-five quantitative trait loci (QTL) associated with PH were identified across fourteen chromosomes, encompassing 21 environmentally stable quantitative trait nucleotides (QTNs), and four haplotype blocks. Certain loci (17) on chromosomes 1A, 1B, 1D, 2A, 2D, 3A, 3B, 4A, 5B, 5D, and 6A remain unlinked to any known Rht (Reduced height) genes, QTL, or GWAS loci associated with PH, and represent novel regions of potential breeding significance. Notably, these loci exhibit varying effects on PH, contribute significantly to natural variance, and are expressed during seedling to reproductive stages. The haplotype block on chromosome 6A contains five QTN loci associated with reduced height and two loci promoting height. This configuration suggests a substantial impact on natural variation and holds promise for accurate marker-assisted selection. The potentially novel genomic regions harbor putative candidate gene coding for glutamine synthetase, gibberellin 2-oxidase, auxin response factor, ethylene-responsive transcription factor, and nitric oxide synthase; cell cycle-related genes, encoding cyclin, regulator of chromosome condensation (RCC1) protein, katanin p60 ATPase-containing subunit, and expansins; genes implicated in stem mechanical strength and defense mechanisms, as well as gene regulators such as transcription factors and protein kinases. These findings enrich the pool of semi-dwarfing gene resources, providing the potential to further optimize PH, improve lodging resistance, and achieve higher grain yields in bread wheat.
Collapse
Affiliation(s)
- Tania Kartseva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| | - Vladimir Aleksandrov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Matías Schierenbeck
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstraße 3, 06466 Seeland, OT Gatersleben, Germany; (M.S.); (A.B.)
- CONICET CCT La Plata, 8 n°1467, La Plata 1900, Argentina
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Corrensstraße 3, 06466 Seeland, OT Gatersleben, Germany; (M.S.); (A.B.)
| | - Svetlana Misheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, 1113 Sofia, Bulgaria; (T.K.); (V.A.); (K.T.)
| |
Collapse
|
2
|
Derbyshire MC, Newman TE, Thomas WJW, Batley J, Edwards D. The complex relationship between disease resistance and yield in crops. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2612-2623. [PMID: 38743906 PMCID: PMC11331782 DOI: 10.1111/pbi.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/03/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
In plants, growth and defence are controlled by many molecular pathways that are antagonistic to one another. This results in a 'growth-defence trade-off', where plants temporarily reduce growth in response to pests or diseases. Due to this antagonism, genetic variants that improve resistance often reduce growth and vice versa. Therefore, in natural populations, the most disease resistant individuals are often the slowest growing. In crops, slow growth may translate into a yield penalty, but resistance is essential for protecting yield in the presence of disease. Therefore, plant breeders must balance these traits to ensure optimal yield potential and yield stability. In crops, both qualitative and quantitative disease resistance are often linked with genetic variants that cause yield penalties, but this is not always the case. Furthermore, both crop yield and disease resistance are complex traits influenced by many aspects of the plant's physiology, morphology and environment, and the relationship between the molecular growth-defence trade-off and disease resistance-yield antagonism is not well-understood. In this article, we highlight research from the last 2 years on the molecular mechanistic basis of the antagonism between defence and growth. We then discuss the interaction between disease resistance and crop yield from a breeding perspective, outlining the complexity and nuances of this relationship and where research can aid practical methods for simultaneous improvement of yield potential and disease resistance.
Collapse
Affiliation(s)
- Mark C. Derbyshire
- Centre for Crop and Disease ManagementCurtin UniversityPerthWestern AustraliaAustralia
| | - Toby E. Newman
- Centre for Crop and Disease ManagementCurtin UniversityPerthWestern AustraliaAustralia
| | - William J. W. Thomas
- Centre for Applied Bioinformatics and School of Biological ScienceUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Jacqueline Batley
- Centre for Applied Bioinformatics and School of Biological ScienceUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - David Edwards
- Centre for Applied Bioinformatics and School of Biological ScienceUniversity of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
3
|
Mandrioli M, Poggi GM, Cai G, Faleri C, Maccaferri M, Tuberosa R, Aloisi I, Toschi TG, Corneti S. Lipids and Fatty Acid Composition Reveal Differences between Durum Wheat Landraces and Modern Cultivars. PLANTS (BASEL, SWITZERLAND) 2024; 13:1817. [PMID: 38999657 PMCID: PMC11244281 DOI: 10.3390/plants13131817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Durum wheat (Triticum turgidum L. ssp. durum) landraces, traditional local varieties representing an intermediate stage in domestication, are gaining attention due to their high genetic variability and performance in challenging environments. While major kernel metabolites have been examined, limited research has been conducted on minor bioactive components like lipids, despite their nutritional benefits. To address this, we analyzed twenty-two tetraploid accessions, comprising modern elite cultivars and landraces, to (i) verify if the selection process for yield-related traits carried out during the Green Revolution has influenced lipid amount and composition; (ii) uncover the extent of lipid compositional variability, giving evidence that lipid fingerprinting effectively identifies evolutionary signatures; and (iii) identify genotypes interesting for breeding programs to improve yield and nutrition. Interestingly, total fat did not correlate with kernel weight, indicating lipid composition as a promising trait for selection. Tri- and di-acylglycerol were the major lipid components along with free fatty acids, and their relative content varied significantly among genotypes. In particular, landraces belonging to T. turanicum and carthlicum ecotypes differed significantly in total lipid and fatty acid profiles. Our findings provide evidence that landraces can be a genetically relevant source of lipid variability, with potential to be exploited for improving wheat nutritional quality.
Collapse
Affiliation(s)
- Mara Mandrioli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Giovanni Maria Poggi
- Council for Agricultural Research and Economics (CREA), Research Centre for Agriculture and Environment, 40128 Bologna, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Tullia Gallina Toschi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy
| | - Simona Corneti
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
4
|
Aleliūnas A, Gorash A, Armonienė R, Tamm I, Ingver A, Bleidere M, Fetere V, Kollist H, Mroz T, Lillemo M, Brazauskas G. Genome-wide association study reveals 18 QTL for major agronomic traits in a Nordic-Baltic spring wheat germplasm. FRONTIERS IN PLANT SCIENCE 2024; 15:1393170. [PMID: 38974985 PMCID: PMC11224466 DOI: 10.3389/fpls.2024.1393170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024]
Abstract
Spring wheat (Triticum aestivum L.) remains an important alternative to winter wheat cultivation at Northern latitudes due to high risk of overwintering or delayed sowing of winter wheat. We studied nine major agronomic traits in a set of 299 spring wheat genotypes in trials across 12-year-site combinations in Lithuania, Latvia, Estonia, and Norway for three consecutive years. The dataset analyzed here consisted of previously published phenotypic data collected in 2021 and 2022, supplemented with additional phenotypic data from the 2023 field season collected in this study. We combined these phenotypic datasets with previously published genotypic data generated using a 25K single nucleotide polymorphism (SNP) array that yielded 18,467 markers with a minor allele frequency above 0.05. Analysis of these datasets via genome-wide association study revealed 18 consistent quantitative trait loci (QTL) replicated in two or more trials that explained more than 5% of phenotypic variance for plant height, grain protein content, thousand kernel weight, or heading date. The most consistent markers across the tested environments were detected for plant height, thousand kernel weight, and days to heading in eight, five, and six trials, respectively. No beneficial effect of the semi-dwarfing alleles Rht-B1b and Rht-D1b on grain yield performance was observed across the 12 tested trials. Moreover, the cultivars carrying these alleles were low yielding in general. Based on principal component analysis, wheat genotypes developed in the Northern European region clustered separately from those developed at the southern latitudes, and markers associated with the clustering were identified. Important phenotypic traits, such as grain yield, days to heading, grain protein content, and thousand kernel weight were associated with this clustering of the genotype sets. Interestingly, despite being adapted to the Nordic environment, genotypes in the Northern set demonstrated lower grain yield performance across all tested environments. The results indicate that spring wheat germplasm harbors valuable QTL/alleles, and the identified trait-marker associations might be useful in improving Nordic-Baltic spring wheat germplasm under global warming conditions.
Collapse
Affiliation(s)
- Andrius Aleliūnas
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Andrii Gorash
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Rita Armonienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Ilmar Tamm
- Centre of Estonian Rural Research and Knowledge, Jõgeva Alevik, Estonia
| | - Anne Ingver
- Centre of Estonian Rural Research and Knowledge, Jõgeva Alevik, Estonia
| | - Māra Bleidere
- Crop Research Department, Institute of Agricultural Resources and Economics, Stende Research Centre, Dižstende, Latvia
| | - Valentīna Fetere
- Crop Research Department, Institute of Agricultural Resources and Economics, Stende Research Centre, Dižstende, Latvia
| | - Hannes Kollist
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Tomasz Mroz
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gintaras Brazauskas
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| |
Collapse
|
5
|
Liu X, Zheng S, Tian S, Si Y, Ma S, Ling HQ, Niu J. Natural variant of Rht27, a dwarfing gene, enhances yield potential in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:128. [PMID: 38733405 DOI: 10.1007/s00122-024-04636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
KEY MESSAGE Discovery of Rht27, a dwarf gene in wheat, showed potential in enhancing grain yield by reducing plant height. Plant height plays a crucial role in crop architecture and grain yield, and semi-dwarf Reduced Height (Rht) alleles contribute to lodging resistance and were important in "Green Revolution." However, the use of these alleles is associated with some negative side effects in some environments, such as reduced coleoptile length, low nitrogen use efficiency, and reduced yield. Therefore, novel dwarf gene resources are needed to pave an alternative route to overcome these side effects. In this study, a super-dwarf mutant rht27 was obtained by the mutagenesis of G1812 (Triticum urartu, the progenitor of the A sub-genome of common wheat). Genetic analysis revealed that the dwarf phenotype was regulated by a single recessive genetic factor. The candidate region for Rht27 was narrowed to a 1.55 Mb region on chromosome 3, within which we found two potential candidate genes that showed polymorphisms between the mutant and non-mutagenized G1812. Furthermore, the natural variants and elite haplotypes of the two candidates were investigated in a natural population of common wheat. The results showed that the natural variants affect grain yield components, and the dwarf haplotypes show the potential in improving agronomic traits and grain yield. Although the mutation in Rht27 results in severe dwarf phenotype in T. urartu, the natural variants in common wheat showed desirable phenotype, which suggests that Rht27 has the potential to improve wheat yield by utilizing its weak allelic mutation or fine-tuning its expression level.
Collapse
Affiliation(s)
- Xiaolin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shusong Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuiquan Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaoqi Si
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shengwei Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, Hainan, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, Hainan, China.
| | - Jianqing Niu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, Hainan, China.
| |
Collapse
|
6
|
Li X, He D, White RG, Delhaize E, Ryan PR, Ingvordsen CH, Scafaro AP, Atkin OK, Wasson A, Richards R. Reduced tillering and dwarfing genes alter root traits and rhizo-economics in wheat. PHYSIOLOGIA PLANTARUM 2024; 176:e14336. [PMID: 38783514 DOI: 10.1111/ppl.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/18/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
The tiller inhibition (tin) and Reduced height (Rht) genes strongly influence the carbon partitioning and architecture of wheat shoots, but their effects on the energy economy of roots have not been examined in detail. We examined multiple root traits in three sets of near-isogenic wheat lines (NILs) that differ in the tin gene or various dwarfing gene alleles (Rht-B1b, Rht-D1b, Rht-B1c and Rht-B1b + Rht-D1b) to determine their effects on root structure, anatomy and carbon allocation. The tin gene resulted in fewer tillers but more costly roots in an extreme tin phenotype with a Banks genetic background due to increases in root-to-shoot ratio, total root length, and whole root respiration. However, this effect depended on the genetic background as tin caused both smaller shoots and roots in a different genetic background. The semi-dwarf gene Rht-B1b caused few changes to the root structure, whereas Rht-D1b, Rht-B1c and the double dwarf (Rht-B1b + Rht-D1b) decreased the root biomass. Rht-B1c reduced the energy cost of roots by increasing specific root length, increasing the volume of cortical aerenchyma and by reducing root length, number, and biomass without affecting the root-to-shoot ratio. This work informs researchers using tin and Rht genes how to modify root system architecture to suit specific environments.
Collapse
Affiliation(s)
- Xiaoqing Li
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Di He
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | - Emmanuel Delhaize
- Australian Plant Phenomics Facility, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Peter R Ryan
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | - Andrew P Scafaro
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Anton Wasson
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | |
Collapse
|
7
|
Efimov VМ, Rechkin DV, Goncharov NP. Multivariate analysis of long-term climate data in connection with yield, earliness and the problem of global warming. Vavilovskii Zhurnal Genet Selektsii 2024; 28:155-165. [PMID: 38680183 PMCID: PMC11043512 DOI: 10.18699/vjgb-24-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 05/01/2024] Open
Abstract
Climate change is the key challenge to agriculture in the XXI century. Future agricultural techniques in the Russian Federation should involve the optimization of land utilization. This optimization should apply algorithms for smart farming and take into consideration possible climate variations. Due to timely risk assessment, this approach would increase profitability and production sustainability of agricultural products without extra expenditures. Also, we should ground farming optimization not on available empirical data encompassing limited time intervals (month, year) or human personal evaluations but on the integral analysis of long-term information bodies using artificial intelligence. This article presents the results of a multivariate analysis of meteorological extremes which caused crop failures in Eastern and Western Europe in last 2600 years according to chronicle data and paleoreconstructions as well as reconstructions of heliophysical data for the last 9000 years. This information leads us to the conclusion that the current global warming will last for some time. However, subsequent climate changes may go in any direction. And cooling is more likely than warming; thus, we should be prepared to any scenario. Plant breeding can play a key role in solving food security problems connected with climate changes. Possible measures to adapt plant industry to the ongoing and expected climate changes are discussed. It is concluded that future breeding should be based on the use of highly adapted crops that have already been produced in pre-breeding programs, ready to meet future challenges caused by potential climate change.
Collapse
Affiliation(s)
- V М Efimov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Rechkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N P Goncharov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
8
|
Golan G, Weiner J, Zhao Y, Schnurbusch T. Agroecological genetics of biomass allocation in wheat uncovers genotype interactions with canopy shade and plant size. THE NEW PHYTOLOGIST 2024; 242:107-120. [PMID: 38326944 DOI: 10.1111/nph.19576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
How plants distribute biomass among organs influences resource acquisition, reproduction and plant-plant interactions, and is essential in understanding plant ecology, evolution, and yield production in agriculture. However, the genetic mechanisms regulating allocation responses to the environment are largely unknown. We studied recombinant lines of wheat (Triticum spp.) grown as single plants under sunlight and simulated canopy shade to investigate genotype-by-environment interactions in biomass allocation to the leaves, stems, spikes, and grains. Size-corrected mass fractions and allometric slopes were employed to dissect allocation responses to light limitation and plant size. Size adjustments revealed light-responsive alleles associated with adaptation to the crop environment. Combined with an allometric approach, we demonstrated that polymorphism in the DELLA protein is associated with the response to shade and size. While a gibberellin-sensitive allelic effect on stem allocation was amplified when plants were shaded, size-dependent effects of this allele drive allocation to reproduction, suggesting that the ontogenetic trajectory of the plant affects the consequences of shade responses for allocation. Our approach provides a basis for exploring the genetic determinants underlying investment strategies in the face of different resource constraints and will be useful in predicting social behaviours of individuals in a crop community.
Collapse
Affiliation(s)
- Guy Golan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466, Seeland, Germany
| | - Jacob Weiner
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Frederiksberg, Denmark
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466, Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, 06466, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, 06120, Halle, Germany
| |
Collapse
|
9
|
Cseh A, Lenykó-Thegze A, Makai D, Szabados F, Hamow KÁ, Gulyás Z, Kiss T, Karsai I, Moncsek B, Mihók E, Sepsi A. Meiotic instability and irregular chromosome pairing underpin heat-induced infertility in bread wheat carrying the Rht-B1b or Rht-D1b Green Revolution genes. THE NEW PHYTOLOGIST 2024; 241:180-196. [PMID: 37691304 DOI: 10.1111/nph.19256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023]
Abstract
Mutations in the Rht-B1a and Rht-D1a genes of wheat (Triticum aestivum; resulting in Rht-B1b and Rht-D1b alleles) cause gibberellin-insensitive dwarfism and are one of the most important elements of increased yield introduced during the 'Green Revolution'. We measured the effects of a short period of heat imposed during the early reproductive stage on near-isogenic lines carrying Rht-B1b or Rht-D1b alleles, with respect to the wild-type (WT). The temperature shift caused a significant fertility loss within the ears of Rht-B1b and Rht-D1b wheats, greater than that observed for the WT. Defects in chromosome synapsis, reduced homologous recombination and a high frequency of chromosome mis-segregation were associated with reduced fertility. The transcription of TaGA3ox gene involved in the final stage of gibberellic acid (GA) biosynthesis was activated and ultra-performance liquid chromatography-tandem mass spectrometry identified GA1 as the dominant bioactive GA in developing ears, but levels were unaffected by the elevated temperature. Rht-B1b and Rht-D1b mutants were inclined to meiotic errors under optimal temperatures and showed a higher susceptibility to heat than their tall counterparts. Identification and introduction of new dwarfing alleles into modern breeding programmes is invaluable in the development of climate-resilient wheat varieties.
Collapse
Affiliation(s)
- András Cseh
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Andrea Lenykó-Thegze
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Diána Makai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Fanni Szabados
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Kamirán Áron Hamow
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Zsolt Gulyás
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Tibor Kiss
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eszterházy tér 1, Eger, 3300, Hungary
| | - Ildikó Karsai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Blanka Moncsek
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Edit Mihók
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Adél Sepsi
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| |
Collapse
|
10
|
Bazhenov M, Litvinov D, Karlov G, Divashuk M. Evaluation of phosphate rock as the only source of phosphorus for the growth of tall and semi-dwarf durum wheat and rye plants using digital phenotyping. PeerJ 2023; 11:e15972. [PMID: 37663276 PMCID: PMC10473039 DOI: 10.7717/peerj.15972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/06/2023] [Indexed: 09/05/2023] Open
Abstract
Background Phosphorus nutrition is important for obtaining high yields of crop plants. However, wheat plants are known to be almost incapable of taking up phosphorus from insoluble phosphate sources, and reduced height genes are supposed to decrease this ability further. Methods We performed a pot experiment using Triticum durum Desf. tall spring variety LD222, its near-isogenic semidwarf line carrying Rht17 (Reduced height 17) gene, and winter rye (Secale cereale L.) variety Chulpan. The individual plants were grown in quartz sand. The phosphorus was provided either as phosphate rock powder mixed with sand, or as monopotassium phosphate solution (normal nutrition control) or was not supplemented at all (no-phosphorus control). Other nutrients were provided in soluble form. During experiment the plants were assessed using the TraitFinder (Phenospex Ltd., Heerlen, Netherlands) digital phenotyping system for a standard set of parameters. Double scan with 90 degrees turns of pots around vertical axis vs. single scan were compared for accuracy of phenotyping. Results The phenotyping showed that at least 20 days of growth after seedling emergence were necessary to get stable differences between genotypes. After this initial period, phenotyping confirmed poor ability of wheat to grow on substrate with phosphate rock as the only source of phosphorus compared to rye; however, Rht17 did not cause an additional reduction in growth parameters other than plant height under this variant of substrate. The agreement between digital phenotyping and conventionally measured traits was at previously reported level for grasses (R2 = 0.85 and 0.88 for digital biomass and 3D leaf area vs. conventionally measured biomass and leaf area, single scan). Among vegetation indices, only the normalized differential vegetation index (NDVI) and the green leaf index (GLI) showed significant correlations with manually measured traits, including the percentage of dead leaves area. The double scan improved phenotyping accuracy, but not substantially.
Collapse
Affiliation(s)
- Mikhail Bazhenov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Dmitry Litvinov
- Kurchatov Genomics Center-ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Gennady Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Mikhail Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- Kurchatov Genomics Center-ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
11
|
Kocaoglan EG, Radhakrishnan D, Nakayama N. Synthetic developmental biology: molecular tools to re-design plant shoots and roots. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3864-3876. [PMID: 37155965 PMCID: PMC10826796 DOI: 10.1093/jxb/erad169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Plant morphology and anatomy strongly influence agricultural yield. Crop domestication has strived for desirable growth and developmental traits, such as larger and more fruits and semi-dwarf architecture. Genetic engineering has accelerated rational, purpose-driven engineering of plant development, but it can be unpredictable. Developmental pathways are complex and riddled with environmental and hormonal inputs, as well as feedback and feedforward interactions, which occur at specific times and places in a growing multicellular organism. Rational modification of plant development would probably benefit from precision engineering based on synthetic biology approaches. This review outlines recently developed synthetic biology technologies for plant systems and highlights their potential for engineering plant growth and development. Streamlined and high-capacity genetic construction methods (Golden Gate DNA Assembly frameworks and toolkits) allow fast and variation-series cloning of multigene transgene constructs. This, together with a suite of gene regulation tools (e.g. cell type-specific promoters, logic gates, and multiplex regulation systems), is starting to enable developmental pathway engineering with predictable outcomes in model plant and crop species.
Collapse
Affiliation(s)
- Elif Gediz Kocaoglan
- Department of Bioengineering, Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Dhanya Radhakrishnan
- Department of Bioengineering, Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Naomi Nakayama
- Department of Bioengineering, Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
12
|
Emebiri L, Hildebrand S. Natural variation and genetic loci underlying resistance to grain shattering in standing crop of modern wheat. Mol Genet Genomics 2023:10.1007/s00438-023-02051-z. [PMID: 37410105 PMCID: PMC10363068 DOI: 10.1007/s00438-023-02051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
Modern wheat (Triticum aestivum L.) cultivars have a free-threshing habit, which allows for easy manual or mechanical threshing. However, when harvesting is delayed or extreme weather events occur at harvest time, grain shattering can cause severe loss of harvestable yield. In the past, grain size was considered a predisposing factor as large, plump kernels can lead to buckling and breaking of the outer glume, but the correlation between glume strength and shattering is not strong in modern wheat, and it is hypothesised that there may be other genetic mechanisms. Data from two bi-parent populations and a wheat diversity panel were analyzed to explore the underlying genetic basis for grain shattering observed in multiple field experiments through quantitative trait loci (QTL) analysis. Grain shattering had a significant and negative association with grain yield, irrespective of populations and environments. The correlation with plant height was positive in all populations, but correlations with phenology were population specific, being negative in the diversity panel and the Drysdale × Waagan population, and positive in the Crusader × RT812 population. In the wheat diversity panel, allelic variations at well-known major genes (Rht-B1, Rht-D1 and Ppd-D1) showed minimal association with grain shattering. Instead, the genome-wide analysis identified a single locus on chromosome 2DS, which explained 50% of the phenotypic variation, and mapping to ~ 10 Mb from Tenacious glume (Tg) gene. In the Drysdale × Waagan cross, however, the reduced height (Rht) genes showed major effects on grain shattering. At the Rht-B1 locus, the Rht-B1b allele was associated with 10.4 cm shorter plant height, and 18% decreased grain shattering, whereas Rht-D1b reduced plant height by 11.4 cm and reduced grain shattering by 20%. Ten QTL were detected in the Crusader × RT812, including a major locus detected on the long arm of chromosome 5A. All the QTL identified in this population were non-pleiotropic, as they were still significant even after removing the influence of plant height. In conclusion, these results indicated a complex genetic system for grain shattering in modern wheat, which varied with genetic background, involved pleiotropic as well as independent gene actions, and which might be different from shattering in wild wheat species caused by major domestication genes. The influence of Rht genes was confirmed, and this provides valuable information in breeding crops of the future. Further, the SNP marker close to Tg on chromosome 2DS should be considered for utility in marker-assisted selection.
Collapse
Affiliation(s)
- Livinus Emebiri
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia.
| | - Shane Hildebrand
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| |
Collapse
|
13
|
Cheng J, Hill C, Han Y, He T, Ye X, Shabala S, Guo G, Zhou M, Wang K, Li C. New semi-dwarfing alleles with increased coleoptile length by gene editing of gibberellin 3-oxidase 1 using CRISPR-Cas9 in barley (Hordeum vulgare L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:806-818. [PMID: 36587283 PMCID: PMC10037138 DOI: 10.1111/pbi.13998] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The green revolution was based on genetic modification of the gibberellin (GA) hormone system with "dwarfing" gene mutations that reduces GA signals, conferring shorter stature, thus enabling plant adaptation to modern farming conditions. Strong GA-related mutants with shorter stature often have reduced coleoptile length, discounting yield gain due to their unsatisfactory seedling emergence under drought conditions. Here we present gibberellin (GA) 3-oxidase1 (GA3ox1) as an alternative semi-dwarfing gene in barley that combines an optimal reduction in plant height without restricting coleoptile and seedling growth. Using large-scale field trials with an extensive collection of barley accessions, we showed that a natural GA3ox1 haplotype moderately reduced plant height by 5-10 cm. We used CRISPR/Cas9 technology, generated several novel GA3ox1 mutants and validated the function of GA3ox1. We showed that altered GA3ox1 activities changed the level of active GA isoforms and consequently increased coleoptile length by an average of 8.2 mm, which could provide essential adaptation to maintain yield under climate change. We revealed that CRISPR/Cas9-induced GA3ox1 mutations increased seed dormancy to an ideal level that could benefit the malting industry. We conclude that selecting HvGA3ox1 alleles offers a new opportunity for developing barley varieties with optimal stature, longer coleoptile and additional agronomic traits.
Collapse
Affiliation(s)
- Jingye Cheng
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartTASAustralia
- Western Crop Genetics Alliance, Food Futures Institute, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWAAustralia
| | - Camilla Hill
- Western Crop Genetics Alliance, Food Futures Institute, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWAAustralia
| | - Yong Han
- Agriculture and Food, Department of Primary Industries and Regional DevelopmentSouth PerthWAAustralia
| | - Tianhua He
- Western Crop Genetics Alliance, Food Futures Institute, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWAAustralia
| | - Xingguo Ye
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Sergey Shabala
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartTASAustralia
- School of Biological ScienceUniversity of Western AustraliaPerthWAAustralia
| | - Ganggang Guo
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Meixue Zhou
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartTASAustralia
| | - Ke Wang
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Chengdao Li
- Western Crop Genetics Alliance, Food Futures Institute, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWAAustralia
- Agriculture and Food, Department of Primary Industries and Regional DevelopmentSouth PerthWAAustralia
| |
Collapse
|
14
|
Xu D, Hao Q, Yang T, Lv X, Qin H, Wang Y, Jia C, Liu W, Dai X, Zeng J, Zhang H, He Z, Xia X, Cao S, Ma W. Impact of "Green Revolution" gene Rht-B1b on coleoptile length of wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1147019. [PMID: 36938052 PMCID: PMC10017974 DOI: 10.3389/fpls.2023.1147019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Wheat coleoptile is a sheath-like structure that helps to deliver the first leaf from embryo to the soil surface. Here, a RIL population consisting of 245 lines derived from Zhou 8425B × Chinese Spring cross was genotyped by the high-density Illumina iSelect 90K assay for coleoptile length (CL) QTL mapping. Three QTL for CL were mapped on chromosomes 2BL, 4BS and 4DS. Of them, two major QTL QCL.qau-4BS and QCL.qau-4DS were detected, which could explain 9.1%-22.2% of the phenotypic variances across environments on Rht-B1 and Rht-D1 loci, respectively. Several studies have reported that Rht-B1b may reduce the length of wheat CL but no study has been carried out at molecular level. In order to verify that the Rht-B1 gene is the functional gene for the 4B QTL, an overexpression line Rht-B1b-OE and a CRISPR/SpCas9 line Rht-B1b-KO were studied. The results showed that Rht-B1b overexpression could reduce the CL, while loss-of-function of Rht-B1b would increase the CL relative to that of the null transgenic plants (TNL). To dissect the underlying regulatory mechanism of Rht-B1b on CL, comparative RNA-Seq was conducted between Rht-B1b-OE and TNL. Transcriptome profiles revealed a few key pathways involving the function of Rht-B1b in coleoptile development, including phytohormones, circadian rhythm and starch and sucrose metabolism. Our findings may facilitate wheat breeding for longer coleoptiles to improve seedling early vigor for better penetration through the soil crust in arid regions.
Collapse
Affiliation(s)
- Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Qianlin Hao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Tingzhi Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xinru Lv
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Huimin Qin
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yalin Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Chenfei Jia
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xuehuan Dai
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Hongsheng Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuanghe Cao
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
15
|
Poggi GM, Corneti S, Aloisi I, Ventura F. Environment-oriented selection criteria to overcome controversies in breeding for drought resistance in wheat. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153895. [PMID: 36529076 DOI: 10.1016/j.jplph.2022.153895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Wheat is one of the most important cereal crops, representing a fundamental source of calories and protein for the global human population. Drought stress (DS) is a widespread phenomenon, already affecting large wheat-growing areas worldwide, and a major threat for cereal productivity, resulting in consistent losses in average grain yield (GY). Climate change is projected to exacerbate DS incidence and severity by increasing temperatures and changing rainfall patterns. Estimating that wheat production has to substantially increase to guarantee food security to a demographically expanding human population, the need for breeding programs focused on improving wheat drought resistance is manifest. Drought occurrence, in terms of time of appearance, duration, frequency, and severity, along the plant's life cycle varies significantly among different environments and different agricultural years, making it difficult to identify reliable phenological, morphological, and functional traits to be used as effective breeding tools. The situation is further complicated by the presence of confounding factors, e.g., other concomitant abiotic stresses, in an open-field context. Consequently, the relationship between morpho-functional traits and GY under water deficit is often contradictory; moreover, controversies have emerged not only on which traits are to be preferred, but also on how one specific trait should be desired. In this review, we attempt to identify the possible causes of these disputes and propose the most suitable selection criteria in different target environments and, thus, the best trait combinations for breeders in different drought contexts. In fact, an environment-oriented approach could be a valuable solution to overcome controversies in identifying the proper selection criteria for improving wheat drought resistance.
Collapse
Affiliation(s)
- Giovanni Maria Poggi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, University of Bologna, Bologna, Italy; Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Simona Corneti
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | - Francesca Ventura
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Agronomic Trait Analysis and Genetic Mapping of a New Wheat Semidwarf Gene Rht-SN33d. Int J Mol Sci 2022; 24:ijms24010583. [PMID: 36614025 PMCID: PMC9820066 DOI: 10.3390/ijms24010583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Plant height is a key agronomic trait that is closely to the plant morphology and lodging resistance in wheat. However, at present, the few dwarf genes widely used in wheat breeding have narrowed wheat genetic diversity. In this study, we selected a semi-dwarf wheat mutant dwarf33 that exhibits decreased plant height with little serious negative impact on other agronomic traits. Genetic analysis and mutant gene mapping indicated that dwarf33 contains a new recessive semi-dwarf gene Rht-SN33d, which was mapped into ~1.3 Mb interval on the 3DL chromosome. The gibberellin metabolism-related gene TraesCS3D02G542800, which encodes gibberellin 2-beta-dioxygenase, is considered a potential candidate gene of Rht-SN33d. Rht-SN33d reduced plant height by approximately 22.4% in mutant dwarf33. Further study revealed that shorter stem cell length may be the main factor causing plant height decrease. In addition, the coleoptile length of dwarf33 was just 9.3% shorter than that of wild-type Shaannong33. These results will help to expand our understanding of new mechanisms of wheat height regulation, and obtain new germplasm for wheat improvement.
Collapse
|
17
|
Wang Z, Dhakal S, Cerit M, Wang S, Rauf Y, Yu S, Maulana F, Huang W, Anderson JD, Ma XF, Rudd JC, Ibrahim AMH, Xue Q, Hays DB, Bernardo A, St. Amand P, Bai G, Baker J, Baker S, Liu S. QTL mapping of yield components and kernel traits in wheat cultivars TAM 112 and Duster. FRONTIERS IN PLANT SCIENCE 2022; 13:1057701. [PMID: 36570880 PMCID: PMC9768232 DOI: 10.3389/fpls.2022.1057701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
In the Southern Great Plains, wheat cultivars have been selected for a combination of outstanding yield and drought tolerance as a long-term breeding goal. To understand the underlying genetic mechanisms, this study aimed to dissect the quantitative trait loci (QTL) associated with yield components and kernel traits in two wheat cultivars `TAM 112' and `Duster' under both irrigated and dryland environments. A set of 182 recombined inbred lines (RIL) derived from the cross of TAM 112/Duster were planted in 13 diverse environments for evaluation of 18 yield and kernel related traits. High-density genetic linkage map was constructed using 5,081 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing (GBS). QTL mapping analysis detected 134 QTL regions on all 21 wheat chromosomes, including 30 pleiotropic QTL regions and 21 consistent QTL regions, with 10 QTL regions in common. Three major pleiotropic QTL on the short arms of chromosomes 2B (57.5 - 61.6 Mbps), 2D (37.1 - 38.7 Mbps), and 7D (66.0 - 69.2 Mbps) colocalized with genes Ppd-B1, Ppd-D1, and FT-D1, respectively. And four consistent QTL associated with kernel length (KLEN), thousand kernel weight (TKW), plot grain yield (YLD), and kernel spike-1 (KPS) (Qklen.tamu.1A.325, Qtkw.tamu.2B.137, Qyld.tamu.2D.3, and Qkps.tamu.6A.113) explained more than 5% of the phenotypic variation. QTL Qklen.tamu.1A.325 is a novel QTL with consistent effects under all tested environments. Marker haplotype analysis indicated the QTL combinations significantly increased yield and kernel traits. QTL and the linked markers identified in this study will facilitate future marker-assisted selection (MAS) for pyramiding the favorable alleles and QTL map-based cloning.
Collapse
Affiliation(s)
- Zhen Wang
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Smit Dhakal
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Mustafa Cerit
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Shichen Wang
- Genomics and Bioinformatics Service Center, Texas A&M AgriLife Research, College Station, TX, United States
| | - Yahya Rauf
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Shuhao Yu
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Frank Maulana
- Noble Research Institute, Ardmore, OK, United States
| | - Wangqi Huang
- Noble Research Institute, Ardmore, OK, United States
| | | | - Xue-Feng Ma
- Noble Research Institute, Ardmore, OK, United States
| | - Jackie C. Rudd
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Amir M. H. Ibrahim
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, United States
| | - Qingwu Xue
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Dirk B. Hays
- Department of Soil and Crop Science, Texas A&M University, College Station, TX, United States
| | - Amy Bernardo
- Central Small Grain Genotyping Lab and Hard Winter Wheat Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Manhattan, KS, United States
| | - Paul St. Amand
- Central Small Grain Genotyping Lab and Hard Winter Wheat Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Manhattan, KS, United States
| | - Guihua Bai
- Central Small Grain Genotyping Lab and Hard Winter Wheat Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Manhattan, KS, United States
| | - Jason Baker
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Shannon Baker
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| | - Shuyu Liu
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States
| |
Collapse
|
18
|
Chernook AG, Bazhenov MS, Kroupin PY, Ermolaev AS, Kroupina AY, Vukovic M, Avdeev SM, Karlov GI, Divashuk MG. Compensatory Effect of the ScGrf3-2R Gene in Semi-Dwarf Spring Triticale (x Triticosecale Wittmack). PLANTS (BASEL, SWITZERLAND) 2022; 11:3032. [PMID: 36432759 PMCID: PMC9695017 DOI: 10.3390/plants11223032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The dwarfness in many triticale cultivars is provided by the dominant Ddw1 (Dominant dwarf 1) allele found in rye. However, along with conferring semi-dwarf phenotype to improve resistance to lodging, this gene also reduces grain size and weight and delays heading and flowering. Grf (Growth-regulating factors) genes are plant-specific transcription factors that regulate plant growth, including stem growth, in terms of length and thickness, and leaf and fruit size. In this work, we partially sequenced the rye gene ScGrf3 on chromosome 2R homologous to the wheat Grf3 gene, and found multiple polymorphisms in intron 3 and exon 4 complying with two alternative alleles (haplotypes ScGrf3-2Ra and ScGrf3-2Rb). For the identification of these, we developed a codominant PCR marker. Using a new marker, we studied the effect of ScGrf3-2R alleles in combination with the Ddw1 dwarf gene on economically valuable traits in F4 and F5 recombinant lines of spring triticale from the hybrid combination Valentin 90 x Dublet, grown in the Non-Chernozem zone for 2 years. Allele ScGrf3-2Ra was associated with greater thousand-grain weight, higher spike productivity, and earlier heading and flowering, which makes ScGrf3-2R a perspective compensator for negative effects of Ddw1 on these traits and increases prospects for its involvement in breeding semi-dwarf cultivars of triticale.
Collapse
Affiliation(s)
| | - Mikhail S. Bazhenov
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Pavel Yu. Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Aleksey S. Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | | | - Milena Vukovic
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey M. Avdeev
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, 127434 Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
19
|
Ingvordsen CH, Hendriks PW, Smith DJ, Bechaz KM, Rebetzke GJ. Seedling and field assessment of wheat (Triticum aestivum L.) dwarfing genes and their influence on root traits in multiple genetic backgrounds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6292-6306. [PMID: 35802045 PMCID: PMC9578352 DOI: 10.1093/jxb/erac306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Deployment of the Rht-B1b and Rht-D1b dwarfing genes helped facilitate the Green Revolution to increase wheat yields globally. Much is known of the influence of these genes on plant height and agronomic performance, but not of their effects on root architecture. We assessed 29 near-isogenic lines (NILs) representing 11 Green Revolution and alternative dwarfing genes across multiple genetic backgrounds for root architecture characteristics in controlled and field environments. Genetic background did not influence plant height, but had a small and significant (P<0.05) effect on root architecture. All dwarfing gene NILs were significantly (P<0.01) shorter compared with tall controls. The Green Revolution Rht-B1b and Rht-D1b sometimes had longer seedling roots but were not different from their respective tall controls for root depth in the field. The Rht8, Rht12, and Rht18 dwarfing gene NILs produced long seminal roots in seedling pouches, and a greater maximum rooting depth (MRD) and root penetration rate (RPR) in the field. Genotypic increases in MRD and RPR were strongly correlated with increased harvest index and grain yield, particularly in dry environments. Careful root phenotyping highlights the potential of novel dwarfing genes for wheat genetic improvement under water-limited conditions.
Collapse
Affiliation(s)
| | - Pieter-Willem Hendriks
- CSIRO, Agriculture and Food, Canberra ACTAustralia
- Charles Sturt University, School of Agriculture and Wine Sciences, Wagga-Wagga NSWAustralia
| | | | | | | |
Collapse
|
20
|
The Association of Grain Yield and Agronomical Traits with Genes of Plant Height, Photoperiod Sensitivity and Plastid Glutamine Synthetase in Winter Bread Wheat (Triticum aestivum L.) Collection. Int J Mol Sci 2022; 23:ijms231911402. [PMID: 36232703 PMCID: PMC9570164 DOI: 10.3390/ijms231911402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The reduction in plant height caused by mutations in Rht-B1 or Rht-D1 (Reduced height-1) genes in combination with day-length-independent early flowering associated with the Ppd-D1 (Photoperiod-D1) gene were the main factors of the drastic yield increase in bread wheat in the 1960s. Increasing nitrogen use efficiency as well as maintaining high yields under conditions of global climate change are the modern goals of wheat breeding. The glutamine synthetase (GS) enzyme plays a key role in ammonium assimilation in plants. In previous studies, the TaGS2-A1 gene, coding the plastid isoform of GS, was shown to be connected with nitrogen use efficiency in wheat. Using the polymerase chain reaction (PCR) markers, the association of yield and agronomical traits with haplotypes of Rht-B1, Rht-D1, Ppd-D1 and TaGS2-A1 genes was studied in a diverse collection of winter bread wheat cultivars grown in Krasnodar (Russia). In the three-year experiment, semidwarfism and photoperiod insensitivity were confirmed to be highly favorable for the grain yield. The TaGS2-A1b haplotype had a tendency for increased grain yield and lodging resistance, but mainly in plants not possessing the ‘green revolution’ alleles. Thus, TaGS2-A1b may have potential in breeding wheat cultivars with alternative dwarfing genes or tall cultivars, which may be optimal for growing under certain environments.
Collapse
|
21
|
Goncharov NP. Scientific support to plant breeding and seed production in Siberia in the XXI century. Vavilovskii Zhurnal Genet Selektsii 2022; 25:448-459. [PMID: 35088017 PMCID: PMC8765777 DOI: 10.18699/vj21.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 11/19/2022] Open
Abstract
Agriculture in the Russian Federation is fundamental to the country’s economic performance, living
standards, the wellbeing of people and state safety. Considerations relating to food security, prospects of and
challenges before plant breeding in the Siberian Federal District (SFD), the largest agricultural area of the Russian
Federation, are provided in the article. The agricultural area used in the SFD is about 50 million hectares and accounts for 13 % of the country’s gross grain production. The need for the introduction of modern molecular biological methods, bioengineering and IT technology is demonstrated and discussed. As Russia as a whole, Siberia
is largely engaged in unpromising extensive farming practices, which rely on natural soil fertility, and this factor
should be taken into account. Another issue is noncompliance with intensive farming technologies used for cultivating new-generation commercial cultivars. Although capital investments in plant breeding are the most cost
effective investments in crop production, breeders’ efforts remain underfunded. The article explains the need for
fundamental reform in this economic sector: the recognition of plant breeding as being a fundamental science;
a fair increase in its funding; the development of a breeding strategy, nationally and regionally; the further expansion of the network of the Breeding Centers; the re-establishment and improvement of the universities’ departments specialized in plant breeding and seed production; having more state-funded places in the universities for
training plant breeders to be able to maintain and cement the country’s advanced position in plant breeding and
to develop new globally competitive next-generation cultivars of main crops. Should these issues be ignored, all
the problems that have accumulated to date will lead to risks of long-term instability in this economic sector. The
need for the careful preservation of continuity in plant breeders and plants being bred is stated. The regulatory
functions of the state and agricultural science in plant breeding, plant industry and seed production are considered.
Collapse
Affiliation(s)
- N P Goncharov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
22
|
Exploring the legacy of Central European historical winter wheat landraces. Sci Rep 2021; 11:23915. [PMID: 34903761 PMCID: PMC8668957 DOI: 10.1038/s41598-021-03261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/29/2021] [Indexed: 11/14/2022] Open
Abstract
Historical wheat landraces are rich sources of genetic diversity offering untapped reservoirs for broadening the genetic base of modern varieties. Using a 20K SNP array, we investigated the accessible genetic diversity in a Central European bread wheat landrace collection with great drought, heat stress tolerance and higher tillering capacity. We discovered distinct differences in the number of average polymorphisms between landraces and modern wheat cultivars, and identified a set of novel rare alleles present at low frequencies in the landrace collection. The detected polymorphisms were unevenly distributed along the wheat genome, and polymorphic markers co-localized with genes of great agronomic importance. The geographical distribution of the inferred Bayesian clustering revealed six genetically homogenous ancestral groups among the collection, where the Central European core bared an admixed background originating from four ancestral groups. We evaluated the effective population sizes (Ne) of the Central European collection and assessed changes in diversity over time, which revealed a dramatic ~ 97% genetic erosion between 1955 and 2015.
Collapse
|
23
|
Frankin S, Roychowdhury R, Nashef K, Abbo S, Bonfil DJ, Ben-David R. In-Field Comparative Study of Landraces vs. Modern Wheat Genotypes under a Mediterranean Climate. PLANTS (BASEL, SWITZERLAND) 2021; 10:2612. [PMID: 34961083 PMCID: PMC8705803 DOI: 10.3390/plants10122612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/07/2023]
Abstract
The Near East climate ranges from arid to a Mediterranean, under which local wheat landraces have been grown for over millennia, assumingly accumulating a unique repertoire of genetic adaptations. In the current study, we subjected a subset of the Israeli Palestinian Landraces (IPLR) collection (n = 19: durum and bread wheat landraces, modern wheat cultivars, and landraces mixtures) to full-field evaluation. The multifield experiment included a semiarid site (2018-2019, 2019-2020) under low (L) and high (H) supplementary irrigation, and a Mediterranean site (2019-2020). Water availability had a major impact on crop performance. This was reflected in a strong discrimination between environments for biomass productivity and yield components. Compared to landraces, modern cultivars exhibited significantly higher grain yield (GY) across environments (+102%) reflecting the effect of the Green Revolution. However, under the Gilat19 (L) environment, this productivity gap was significantly reduced (only +39%). Five excelling landraces and the durum mix exhibited good agronomic potential across all trails. This was expressed in relatively high GY (2.3-2.85 t ha-1), early phenology (86-96 days to heading) and lodging resistance. Given the growing interest of stakeholders and consumers, these might be considered future candidates for the local artisanal wheat grain market. Yet, this step should be taken only after establishing an adjustable field management protocol.
Collapse
Affiliation(s)
- Sivan Frankin
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization–Volcani Institute, Rishon LeZion 7528809, Israel; (S.F.); (R.R.); (K.N.)
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7628604, Israel;
| | - Rajib Roychowdhury
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization–Volcani Institute, Rishon LeZion 7528809, Israel; (S.F.); (R.R.); (K.N.)
| | - Kamal Nashef
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization–Volcani Institute, Rishon LeZion 7528809, Israel; (S.F.); (R.R.); (K.N.)
| | - Shahal Abbo
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7628604, Israel;
| | - David J. Bonfil
- Department of Vegetable and Field Crop Research, Agricultural Research Organization, Gilat Research Center, MP Negev 8531100, Israel;
| | - Roi Ben-David
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization–Volcani Institute, Rishon LeZion 7528809, Israel; (S.F.); (R.R.); (K.N.)
| |
Collapse
|
24
|
Divashuk M, Chernook A, Kroupina A, Vukovic M, Karlov G, Ermolaev A, Shirnin S, Avdeev S, Igonin V, Pylnev V, Kroupin P. TaGRF3-2A Improves Some Agronomically Valuable Traits in Semi-Dwarf Spring Triticale. PLANTS (BASEL, SWITZERLAND) 2021; 10:2012. [PMID: 34685820 PMCID: PMC8537337 DOI: 10.3390/plants10102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
The breeding improvement of triticale is tightly associated with the introgression of dwarfing genes, in particular, gibberellin (GA)-insensitive Ddw1 from rye. Despite the increase in harvest index and resistance to lodging, this gene adversely affects grain weight and size. Growth regulation factor (GRF) genes are plant-specific transcription factors that play an important role in plant growth, including GA-induced stem elongation. This study presents the results of a two-year field experiment to assess the effect of alleles of the TaGRF3-2A gene in interaction with DDW1 on economically valuable traits of spring triticale plants grown in the Non-Chernozem zone. Our results show that, depending on the allelic state, the TaGRF3-2A gene in semi-dwarf spring triticale plants influences the thousand grain weight and the grain weight of the main spike in spring triticale, which makes it possible to use it to compensate for the negative effects of the dwarfing allele Ddw1. The identified allelic variants of the TaGRF3-2A gene can be included in marker-assisted breeding for triticale to improve traits.
Collapse
Affiliation(s)
- Mikhail Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 49, 127550 Moscow, Russia; (S.A.); (V.P.)
| | - Anastasiya Chernook
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Aleksandra Kroupina
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Milena Vukovic
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Gennady Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Aleksey Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Sergey Shirnin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Sergey Avdeev
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 49, 127550 Moscow, Russia; (S.A.); (V.P.)
| | - Vladimir Igonin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 49, 127550 Moscow, Russia; (S.A.); (V.P.)
| | - Vladimir Pylnev
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 49, 127550 Moscow, Russia; (S.A.); (V.P.)
| | - Pavel Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| |
Collapse
|
25
|
Stockinger EJ. The Breeding of Winter-Hardy Malting Barley. PLANTS 2021; 10:plants10071415. [PMID: 34371618 PMCID: PMC8309344 DOI: 10.3390/plants10071415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
In breeding winter malting barley, one recurring strategy is to cross a current preferred spring malting barley to a winter barley. This is because spring malting barleys have the greatest amalgamation of trait qualities desirable for malting and brewing. Spring barley breeding programs can also cycle their material through numerous generations each year-some managing even six-which greatly accelerates combining desirable alleles to generate new lines. In a winter barley breeding program, a single generation per year is the limit when the field environment is used and about two generations per year if vernalization and greenhouse facilities are used. However, crossing the current favored spring malting barley to a winter barley may have its downsides, as winter-hardiness too may be an amalgamation of desirable alleles assembled together that confers the capacity for prolonged cold temperature conditions. In this review I touch on some general criteria that give a variety the distinction of being a malting barley and some of the general trends made in the breeding of spring malting barleys. But the main objective of this review is to pull together different aspects of what we know about winter-hardiness from the seemingly most essential aspect, which is survival in the field, to molecular genetics and gene regulation, and then finish with ideas that might help further our insight for predictability purposes.
Collapse
Affiliation(s)
- Eric J Stockinger
- Ohio Agricultural Research and Development Center (OARDC), Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
26
|
Mohan A, Grant NP, Schillinger WF, Gill KS. Characterizing reduced height wheat mutants for traits affecting abiotic stress and photosynthesis during seedling growth. PHYSIOLOGIA PLANTARUM 2021; 172:233-246. [PMID: 33421138 DOI: 10.1111/ppl.13321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Most high-yielding, semidwarf wheat (Triticum aestivum L.) grown around the world contains either Rht1 or Rht2 genes. The success of these high-yielding cultivars is greatest in the most productive farming environments but provide marginal benefits in less favorable growing conditions such as shallow soils and low-precipitation dryland farming. Further, growing evidence suggests semidwarf genes not only affect early seedling growth but limit grain yield, especially under abiotic stress conditions. There are 23 other reduced-height mutants reported in wheat, most of which have not been functionally characterized. We evaluated these mutants along with their parents for several traits affecting seedling emergence, early seedling growth, and photosynthetic efficiency. Two- to seven-fold differences in coleoptile length, first leaf length, root length, and root angle were observed among the genotypes. Most of the mutations had a positive effect on root length, while the root angle narrowed. Coleoptile and first leaf lengths were strongly correlated with emergence. A specialized deep planting experiment identified Rht5, Rht6, Rht8, and Rht13 with significantly improved seedling emergence compared to the parent. Among the mutants, Rht4, Rht19, and Rht12 ranked highest for photosynthetic traits while Rht9, Rht16, and Rht15 performed best for early seedling growth parameters. Considering all traits collectively, Rht15 showed the most promise for utilization in marginal environments followed by Rht19 and Rht16. These wheat mutants may be useful for deciphering the underlying molecular mechanisms of understudied traits and breeding programs in arid and semiarid regions where deep planting is practiced.
Collapse
Affiliation(s)
- Amita Mohan
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathan P Grant
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| | - William F Schillinger
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| | - Kulvinder S Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
27
|
Sukhikh IS, Vavilova VJ, Blinov AG, Goncharov NP. Diversity and Phenotypical Effect of Allelic Variants of Rht Dwarfing Genes in Wheat. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Kothari A, Lachowiec J. Roles of Brassinosteroids in Mitigating Heat Stress Damage in Cereal Crops. Int J Mol Sci 2021; 22:2706. [PMID: 33800127 PMCID: PMC7962182 DOI: 10.3390/ijms22052706] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 01/24/2023] Open
Abstract
Heat stress causes huge losses in the yield of cereal crops. Temperature influences the rate of plant metabolic and developmental processes that ultimately determine the production of grains, with high temperatures causing a reduction in grain yield and quality. To ensure continued food security, the tolerance of high temperature is rapidly becoming necessary. Brassinosteroids (BR) are a class of plant hormones that impact tolerance to various biotic and abiotic stresses and regulate cereal growth and fertility. Fine-tuning the action of BR has the potential to increase cereals' tolerance and acclimation to heat stress and maintain yields. Mechanistically, exogenous applications of BR protect yields through amplifying responses to heat stress and rescuing the expression of growth promoters. Varied BR compounds and differential signaling mechanisms across cereals point to a diversity of mechanisms that can be leveraged to mitigate heat stress. Further, hormone transport and BR interaction with other molecules in plants may be critical to utilizing BR as protective agrochemicals against heat stress. Understanding the interplay between heat stress responses, growth processes and hormone signaling may lead us to a comprehensive dogma of how to tune BR application for optimizing cereal growth under challenging environments in the field.
Collapse
Affiliation(s)
| | - Jennifer Lachowiec
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
29
|
Bazhenov MS, Chernook AG, Goncharov NP, Chikida NN, Belousova MK, Karlov GI, Divashuk MG. The Allelic Diversity of the Gibberellin Signaling Pathway Genes in Aegilops tauschii Coss. PLANTS 2020; 9:plants9121696. [PMID: 33276632 PMCID: PMC7761575 DOI: 10.3390/plants9121696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Gibberellin-insensitive reduced height genes are widely spread in modern wheat varieties, making them resistant to lodging under conditions of intensive farming. However, the limited diversity of these genes present in wheat germplasm can limit the adaptability of newly created cultivars to the changing climate. The diversity of the gibberellin signaling pathway genes involved in plant height control- Reduced height 1 (Rht-D1), Gibberellin-insensitive dwarf 1 (Gid1‑D) and Gibberellin-insensitive dwarf 2 (Gid2-D)-was studied in the diploid wild goatgrass Aegilops tauschii Coss., one of the ancestral species of the bread wheat (Triticum aestivum L.) and the donor of its D subgenome, using high-throughput sequencing. The examination of 24 Ae. tauschii accessions of different geographical origins revealed a large number of new alleles (haplotypes) not found in bread wheat varieties. Some of the detected polymorphisms lead to changes in the amino acid sequence of proteins. Four isoforms (amino acid sequence variants) were found for the RHT-D1 protein, and two isoforms-for the GID1 and GID2 proteins, each. An analysis of the co-occurrence frequencies of various isoforms of the three proteins showed that their combinations were not random in Ae. tauschii, which may indicate the functional significance of their differences. New alleles of the Rht-D1, Gid1-D, and Gid2-D genes are promising for introgression into bread wheat and studying their effect on plant height and adaptability.
Collapse
Affiliation(s)
- Mikhail S. Bazhenov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.G.C.); (G.I.K.); (M.G.D.)
- Correspondence:
| | - Anastasiya G. Chernook
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.G.C.); (G.I.K.); (M.G.D.)
| | - Nikolay P. Goncharov
- Wheat Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia;
| | - Nadezhda N. Chikida
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia;
| | - Mariya Kh. Belousova
- Dagestan Experimental Station—The Branch of the Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Vavilovo Village, Derbent District, 368600 Dagestan, Russia;
| | - Gennady I. Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.G.C.); (G.I.K.); (M.G.D.)
| | - Mikhail G. Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.G.C.); (G.I.K.); (M.G.D.)
- Kurchatov Genomics Center–ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia
| |
Collapse
|
30
|
Zotova L, Shamambaeva N, Lethola K, Alharthi B, Vavilova V, Smolenskaya SE, Goncharov NP, Kurishbayev A, Jatayev S, Gupta NK, Gupta S, Schramm C, Anderson PA, Jenkins CLD, Soole KL, Shavrukov Y. TaDrAp1 and TaDrAp2, Partner Genes of a Transcription Repressor, Coordinate Plant Development and Drought Tolerance in Spelt and Bread Wheat. Int J Mol Sci 2020; 21:E8296. [PMID: 33167455 PMCID: PMC7663959 DOI: 10.3390/ijms21218296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023] Open
Abstract
Down-regulator associated protein, DrAp1, acts as a negative cofactor (NC2α) in a transcription repressor complex together with another subunit, down-regulator Dr1 (NC2β). In binding to promotors and regulating the initiation of transcription of various genes, DrAp1 plays a key role in plant transition to flowering and ultimately in seed production. TaDrAp1 and TaDrAp2 genes were identified, and their expression and genetic polymorphism were studied using bioinformatics, qPCR analyses, a 40K Single nucleotide polymorphism (SNP) microarray, and Amplifluor-like SNP genotyping in cultivars of bread wheat (Triticum aestivum L.) and breeding lines developed from a cross between spelt (T. spelta L.) and bread wheat. TaDrAp1 was highly expressed under non-stressed conditions, and at flowering, TaDrAp1 expression was negatively correlated with yield capacity. TaDrAp2 showed a consistently low level of mRNA production. Drought caused changes in the expression of both TaDrAp1 and TaDrAp2 genes in opposite directions, effectively increasing expression in lower yielding cultivars. The microarray 40K SNP assay and Amplifluor-like SNP marker, revealed clear scores and allele discriminations for TaDrAp1 and TaDrAp2 and TaRht-B1 genes. Alleles of two particular homeologs, TaDrAp1-B4 and TaDrAp2-B1, co-segregated with grain yield in nine selected breeding lines. This indicated an important regulatory role for both TaDrAp1 and TaDrAp2 genes in plant growth, ontogenesis, and drought tolerance in bread and spelt wheat.
Collapse
Affiliation(s)
- Lyudmila Zotova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (L.Z.); (N.S.); (A.K.)
| | - Nasgul Shamambaeva
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (L.Z.); (N.S.); (A.K.)
| | - Katso Lethola
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Badr Alharthi
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Valeriya Vavilova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (V.V.); (S.E.S.); (N.P.G.)
| | - Svetlana E. Smolenskaya
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (V.V.); (S.E.S.); (N.P.G.)
| | - Nikolay P. Goncharov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (V.V.); (S.E.S.); (N.P.G.)
| | - Akhylbek Kurishbayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (L.Z.); (N.S.); (A.K.)
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (L.Z.); (N.S.); (A.K.)
| | - Narendra K. Gupta
- Department of Plant Physiology, SKN Agriculture University, Jobner 303329, Rajasthan, India; (N.K.G.); (S.G.)
| | - Sunita Gupta
- Department of Plant Physiology, SKN Agriculture University, Jobner 303329, Rajasthan, India; (N.K.G.); (S.G.)
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Peter A. Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (K.L.); (B.A.); (C.S.); (P.A.A.); (C.L.D.J.); (K.L.S.)
| |
Collapse
|