1
|
Andriantelomanana T, Améglio T, Delzon S, Cochard H, Herbette S. Unpacking the point of no return under drought in poplar: insight from stem diameter variation. THE NEW PHYTOLOGIST 2024; 242:466-478. [PMID: 38406847 DOI: 10.1111/nph.19615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
A specific, robust threshold for drought-induced tree mortality is needed to improve the prediction of forest dieback. Here, we tested the relevance of continuous measurements of stem diameter variations for identifying such a threshold, their relationship with hydraulic and cellular damage mechanisms, and the influence of growth conditions on these relationships. Poplar saplings were grown under well-watered, water-limited, or light-limited conditions and then submitted to a drought followed by rewatering. Stem diameter was continuously measured to investigate two parameters: the percentage loss of diameter (PLD) and the percentage of diameter recovery (DR) following rewatering. Water potentials, stomatal conductance, embolism, and electrolyte leakage were also measured, and light microscopy allowed investigating cell collapse induced by drought. The water release observed through loss of diameter occurred throughout the drought, regardless of growth conditions. Poplars did not recover from drought when PLD reached a threshold and this differed according to growth conditions but remained linked to cell resistance to damage and collapse. Our findings shed new light on the mechanisms of drought-induced tree mortality and indicate that PLD could be a relevant indicator of drought-induced tree mortality, regardless of the growth conditions.
Collapse
Affiliation(s)
| | - Thierry Améglio
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| | - Sylvain Delzon
- Université Bordeaux, INRAE, BIOGECO, Pessac, 33615, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| | - Stephane Herbette
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| |
Collapse
|
2
|
Correa-Díaz A, Villanueva-Díaz J, Gómez-Guerrero A, Martínez-Bautista H, Castruita-Esparza LU, Horwath WR, Silva LCR. A comprehensive resilience assessment of Mexican tree species and their relationship with drought events over the last century. GLOBAL CHANGE BIOLOGY 2023; 29:3652-3666. [PMID: 37026182 DOI: 10.1111/gcb.16705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 06/06/2023]
Abstract
The resilience of forests to drought events has become a major natural resource sustainability concern, especially in response to climate change. Yet, little is known about the legacy effects of repeated droughts, and tree species ability to respond across environmental gradients. In this study, we used a tree-ring database (121 sites) to evaluate the overall resilience of tree species to drought events in the last century. We investigated how climate and geography affected the response at the species level. We evaluated temporal trends of resilience using a predictive mixed linear modeling approach. We found that pointer years (e.g., tree growth reduction) occurred during 11.3% of the 20th century, with an average decrease in tree growth of 66% compared to the previous period. The occurrence of pointer years was associated with negative values of the Standardized Precipitation Index (SPI, 81.6%) and Palmer Drought Severity Index (PDSI, 77.3%). Tree species differed in their resilience capacity, however, species inhabiting xeric conditions were less resistant but with higher recovery rates (e.g., Abies concolor, Pinus lambertiana, and Pinus jeffreyi). On average, tree species needed 2.7 years to recover from drought events, with extreme cases requiring more than a decade to reach pre-drought tree growth rates. The main abiotic factor related to resilience was precipitation, confirming that some tree species are better adapted to resist the effects of droughts. We found a temporal variation for all tree resilience indices (scaled to 100), with a decreasing resistance (-0.56 by decade) and resilience (-0.22 by decade), but with a higher recovery (+1.72 by decade) and relative resilience rate (+0.33 by decade). Our results emphasize the importance of time series of forest resilience, particularly by distinguishing the species-level response in the context of legacy of droughts, which are likely to become more frequent and intense under a changing climate.
Collapse
Affiliation(s)
- A Correa-Díaz
- Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales CENID-COMEF, INIFAP, Ciudad de México, Mexico
| | - J Villanueva-Díaz
- Centro Nacional de Investigación Disciplinaria en Relación Agua, Suelo, Planta, Atmósfera CENID-RASPA, INIFAP, Durango, Mexico
| | - A Gómez-Guerrero
- Posgrado en Ciencias Forestales, Colegio de Postgraduados, Estado de México, Mexico
| | - H Martínez-Bautista
- Centro de Investigación en Matemáticas, A.C. (CIMAT), Unidad Aguascalientes, Aguascalientes, Mexico
| | | | - W R Horwath
- Department of Land Air and Water Resources, University of California, Davis, California, USA
| | - L C R Silva
- Environmental Studies Program, Department of Geography, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
3
|
Barkaoui K, Volaire F. Drought survival and recovery in grasses: Stress intensity and plant-plant interactions impact plant dehydration tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:1489-1503. [PMID: 36655754 DOI: 10.1111/pce.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Plant dehydration tolerance confers drought survival in grasses, but the mortality thresholds according to soil water content (SWC), vapour pressure deficit (VPD) and plant-plant interactions are little explored. We compared the dehydration dynamics of leaf meristems, which are the key surviving organs, plant mortality, and recovery of Mediterranean and temperate populations of two perennial grass species, Dactylis glomerata and Festuca arundinacea, grown in monocultures and mixtures under a low-VPD (1.5 kPa) versus a high-VPD drought (2.2 kPa). The lethal drought index (LD50 ), that is, SWC associated with 50% plant mortality, ranged from 2.87% (ψs = -1.68 MPa) to 2.19% (ψs = -4.47 MPa) and reached the lowest values under the low-VPD drought. Populations of D. glomerata were more dehydration-tolerant (lower LD50 ), survived and recovered better than F. arundinacea populations. Plant-plant interactions modified dehydration tolerance and improved post-drought recovery in mixtures compared with monocultures. Water content as low as 20.7%-36.1% in leaf meristems allowed 50% of plants to survive. We conclude that meristem dehydration causes plant mortality and that drought acclimation can increase dehydration tolerance. Genetic diversity, acclimation and plant-plant interactions are essential sources of dehydration tolerance variability to consider when predicting drought-induced mortality.
Collapse
Affiliation(s)
- Karim Barkaoui
- CIRAD, UMR ABSys, F-34398 Montpellier, France
- ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Florence Volaire
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, INRAE, Montpellier, France
| |
Collapse
|
4
|
Volaire F, Barkaoui K, Grémillet D, Charrier G, Dangles O, Lamarque LJ, Martin-StPaul N, Chuine I. Is a seasonally reduced growth potential a convergent strategy to survive drought and frost in plants? ANNALS OF BOTANY 2023; 131:245-254. [PMID: 36567631 PMCID: PMC9992932 DOI: 10.1093/aob/mcac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Plants have adapted to survive seasonal life-threatening frost and drought. However, the timing and frequency of such events are impacted by climate change, jeopardizing plant survival. Understanding better the strategies of survival to dehydration stress is therefore timely and can be enhanced by the cross-fertilization of research between disciplines (ecology, physiology), models (woody, herbaceous species) and types of stress (drought, frost). SCOPE We build upon the 'growth-stress survival' trade-off, which underpins the identification of global plant strategies across environments along a 'fast-slow' economics spectrum. Although phenological adaptations such as dormancy are crucial to survive stress, plant global strategies along the fast-slow economic spectrum rarely integrate growth variations across seasons. We argue that the growth-stress survival trade-off can be a useful framework to identify convergent plant ecophysiological strategies to survive both frost and drought. We review evidence that reduced physiological activity, embolism resistance and dehydration tolerance of meristematic tissues are interdependent strategies that determine thresholds of mortality among plants under severe frost and drought. We show that complete dormancy, i.e. programmed growth cessation, before stress occurrence, minimizes water flows and maximizes dehydration tolerance during seasonal life-threatening stresses. We propose that incomplete dormancy, i.e. the programmed reduction of growth potential during the harshest seasons, could be an overlooked but major adaptation across plants. Quantifying stress survival in a range of non-dormant versus winter- or summer-dormant plants, should reveal to what extent incomplete to complete dormancy could represent a proxy for dehydration tolerance and stress survival. CONCLUSIONS Our review of the strategies involved in dehydration stress survival suggests that winter and summer dormancy are insufficiently acknowledged as plant ecological strategies. Incorporating a seasonal fast-slow economics spectrum into global plant strategies improves our understanding of plant resilience to seasonal stress and refines our prevision of plant adaptation to extreme climatic events.
Collapse
Affiliation(s)
- Florence Volaire
- CEFE, Université Montpellier, INRAE, CNRS, EPHE, IRD, F-34090 Montpellier, France
| | - Karim Barkaoui
- CIRAD, UMR ABSys, F-34398 Montpellier, France
- ABSys, Université F-34060 Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - David Grémillet
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont Ferrand, France
| | - Olivier Dangles
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
| | - Laurent J Lamarque
- Département des Sciences de l’Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Nicolas Martin-StPaul
- INRAE, URFM, Domaine Saint Paul, Centre de recherche PACA, 228 route de l’Aérodrome, CS 40509, Domaine Saint-Paul, Site Agroparc, France
| | - Isabelle Chuine
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
| |
Collapse
|
5
|
Weygint WA, Eitel JUH, Maguire AJ, Vierling LA, Johnson DM, Campbell CS, Griffin KL. Leaf temperatures and environmental conditions predict daily stem radial variations in a temperate coniferous forest. Ecosphere 2023. [DOI: 10.1002/ecs2.4465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Affiliation(s)
- William A. Weygint
- McCall Field Campus University of Idaho McCall Idaho USA
- Department of Natural Resources and Society University of Idaho Moscow Idaho USA
| | - Jan U. H. Eitel
- McCall Field Campus University of Idaho McCall Idaho USA
- Department of Natural Resources and Society University of Idaho Moscow Idaho USA
| | - Andrew J. Maguire
- Jet Propulsion Laboratory California Institute of Technology Pasadena California USA
- Conservation Science Partners, Inc. Truckee California USA
| | - Lee A. Vierling
- Department of Natural Resources and Society University of Idaho Moscow Idaho USA
| | - Daniel M. Johnson
- Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia USA
| | | | - Kevin L. Griffin
- Department of Ecology, Evolution, and Environmental Biology Columbia University New York New York USA
- Department of Earth and Environmental Sciences Columbia University Palisades New York USA
- Lamont‐Doherty Earth Observatory Columbia University Palisades New York USA
| |
Collapse
|
6
|
Johnson DM, Katul G, Domec J. Catastrophic hydraulic failure and tipping points in plants. PLANT, CELL & ENVIRONMENT 2022; 45:2231-2266. [PMID: 35394656 PMCID: PMC9544843 DOI: 10.1111/pce.14327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 06/12/2023]
Abstract
Water inside plants forms a continuous chain from water in soils to the water evaporating from leaf surfaces. Failures in this chain result in reduced transpiration and photosynthesis and are caused by soil drying and/or cavitation-induced xylem embolism. Xylem embolism and plant hydraulic failure share several analogies to 'catastrophe theory' in dynamical systems. These catastrophes are often represented in the physiological and ecological literature as tipping points when control variables exogenous (e.g., soil water potential) or endogenous (e.g., leaf water potential) to the plant are allowed to vary on time scales much longer than time scales associated with cavitation events. Here, plant hydraulics viewed from the perspective of catastrophes at multiple spatial scales is considered with attention to bubble expansion within a xylem conduit, organ-scale vulnerability to embolism, and whole-plant biomass as a proxy for transpiration and hydraulic function. The hydraulic safety-efficiency tradeoff, hydraulic segmentation and maximum plant transpiration are examined using this framework. Underlying mechanisms for hydraulic failure at fine scales such as pit membranes and cell-wall mechanics, intermediate scales such as xylem network properties and at larger scales such as soil-tree hydraulic pathways are discussed. Understudied areas in plant hydraulics are also flagged where progress is urgently needed.
Collapse
Affiliation(s)
- Daniel M. Johnson
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| | - Gabriel Katul
- Department of Civil and Environmental EngineeringDuke UniversityDurhamNorth CarolinaUSA
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth CarolinaUSA
| | - Jean‐Christophe Domec
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth CarolinaUSA
- Department of ForestryBordeaux Sciences Agro, UMR INRAE‐ISPA 1391GradignanFrance
| |
Collapse
|
7
|
Duan H, Resco de Dios V, Wang D, Zhao N, Huang G, Liu W, Wu J, Zhou S, Choat B, Tissue DT. Testing the limits of plant drought stress and subsequent recovery in four provenances of a widely distributed subtropical tree species. PLANT, CELL & ENVIRONMENT 2022; 45:1187-1203. [PMID: 34985807 DOI: 10.1111/pce.14254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Drought-induced tree mortality may increase with ongoing climate change. Unraveling the links between stem hydraulics and mortality thresholds, and the effects of intraspecific variation, remain important unresolved issues. We conducted a water manipulation experiment in a rain-out shelter, using four provenances of Schima superba originating from a gradient of annual precipitation (1124-1796 mm) and temperature (16.4-22.4°C). Seedlings were droughted to three levels of percentage loss of hydraulic conductivity (i.e., P50 , P88 and P99) and subsequently rewatered to field capacity for 30 days; traits related to water and carbon relations were measured. The lethal water potential associated with incipient mortality was between P50 and P88 . Seedlings exhibited similar drought responses in xylem water potential, hydraulic conductivity and gas exchange. Upon rehydration, patterns of gas exchange differed among provenances but were not related to the climate at the origin. The four provenances exhibited a similar degree of stem hydraulic recovery, which was correlated with the magnitude of antecedent drought and stem soluble sugar at the end of the drought. Results suggest that there were intraspecific differences in the capacity of S. superba seedlings for carbon assimilation during recovery, indicating a decoupling between gas exchange recovery and stem hydraulics across provenances.
Collapse
Affiliation(s)
- Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences, Unversitat de Lleida, Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA Centre, Lleida, Spain
| | - Defu Wang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Nan Zhao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Guomin Huang
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Wenfei Liu
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems & Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Jianping Wu
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Shuangxi Zhou
- Department of Biological Sciences, Macquarie University, New South Wales, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, New South Wales, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Richmond, New South Wales, Australia
- Global Centre for Land-based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, New South Wales, Australia
| |
Collapse
|
8
|
Williams CB, Reese Næsborg R, Ambrose AR, Baxter WL, Koch GW, Dawson TE. The dynamics of stem water storage in the tops of Earth's largest trees-Sequoiadendron giganteum. TREE PHYSIOLOGY 2021; 41:2262-2278. [PMID: 34104960 DOI: 10.1093/treephys/tpab078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Water stored in tree stems (i.e., trunks and branches) is an important contributor to transpiration that can improve photosynthetic carbon gain and reduce the probability of cavitation. However, in tall trees, the capacity to store water may decline with height because of chronically low water potentials associated with the gravitational potential gradient. We quantified the importance of elastic stem water storage in the top 5-6 m of large (4.2-5.0 m diameter at breast height, 82.1-86.3 m tall) Sequoiadendron giganteum (Lindley) J. Buchholz (giant sequoia) trees using a combination of architectural measurements and automated sensors that monitored summertime diel rhythms in sap flow, stem diameter and water potential. Stem water storage contributed 1.5-1.8% of water transpired at the tree tops, and hydraulic capacitance ranged from 2.6 to 4.1 l MPa-1 m-3. These values, which are considerably smaller than reported for shorter trees, may be associated with persistently low water potentials imposed by gravity and could indicate a trend of decreasing water storage dynamics with height in tree. Branch diameter contraction and expansion consistently and substantially lagged behind fluxes in water potential and sap flow, which occurred in sync. This lag suggests that the inner bark, which consists mostly of live secondary phloem tissue, was an important hydraulic capacitor, and that hydraulic resistance between xylem and phloem retards water transfer between these tissues. We also measured tree-base sap flux, which lagged behind that measured in trunks near the tree tops, indicating additional storage in the large trunks between these measurement positions. Whole-tree sap flow ranged from 2227 to 3752 l day-1, corroborating previous records for similar-sized giant sequoia and representing the largest yet reported for any individual tree. Despite such extraordinarily high daily water use, we estimate that water stored in tree-top stems contributes minimally to transpiration on typical summer days.
Collapse
Affiliation(s)
- Cameron B Williams
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Channel Islands National Park, Ventura, CA 93001, USA
- Santa Barbara Botanic Garden, Santa Barbara, CA 93105, USA
| | - Rikke Reese Næsborg
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Santa Barbara Botanic Garden, Santa Barbara, CA 93105, USA
| | - Anthony R Ambrose
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- The Marmot Society, South Lake Tahoe, CA 96150, USA
| | - Wendy L Baxter
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- The Marmot Society, South Lake Tahoe, CA 96150, USA
| | - George W Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|