1
|
Luukkonen J, Moustgaard H, Martikainen P, Remes H. Does having siblings really protect against childhood atopic diseases? A total population and within-family analysis. Eur J Epidemiol 2024; 39:289-298. [PMID: 38316709 PMCID: PMC10995035 DOI: 10.1007/s10654-024-01104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/20/2024] [Indexed: 02/07/2024]
Abstract
The association between having older siblings and decreased risk for atopic symptoms is well-established. This has been interpreted as evidence for the microbiota hypothesis, i.e. that increased early-childhood microbial exposure caused by siblings protects from immune hypersensitivities. However, possible confounders of the association have received little attention. We used register data on Finnish cohorts born in 1995-2004 (N = 559,077) to assess medication purchases for atopic diseases: antihistamines, eczema medication, asthma medication and Epinephrine. We modelled the probability of atopic medication purchases at ages 0-15 by birth order controlling for important observed confounders and all unobserved genetic and environmental characteristics shared by siblings in a within-family fixed effects model. We further studied medication purchases among first-borns according to the age difference with younger siblings to assess whether having younger siblings in early childhood is beneficial. Having older siblings was associated with a lower probability of atopic medication purchases. Compared to first-borns, the probability was 10-20% lower among second-borns, 20-40% lower among third-borns, and 30-70% lower among subsequent children, depending on medication type. Confounding accounted for up to 75% of these differences, particularly for asthma and eczema medication, but significant differences by birth order remained across all medication types. Among first-borns, a smaller age difference with younger siblings was related to a lower likelihood of atopic medication use. Our results, based on designs that account for unobserved confounding, show that exposure to siblings in early childhood, protects from atopic diseases, and thus strongly support the microbiota hypothesis.
Collapse
Affiliation(s)
- Juha Luukkonen
- Population Research Unit, University of Helsinki, Helsinki, Finland.
- Max Planck-University of Helsinki Center for Social Inequalities in Population Health, Helsinki, Finland.
| | - Heta Moustgaard
- Population Research Unit, University of Helsinki, Helsinki, Finland.
- Max Planck-University of Helsinki Center for Social Inequalities in Population Health, Helsinki, Finland.
- Helsinki Institute for Social Sciences and Humanities, University of Helsinki, Helsinki, Finland.
| | - Pekka Martikainen
- Population Research Unit, University of Helsinki, Helsinki, Finland
- Max Planck-University of Helsinki Center for Social Inequalities in Population Health, Helsinki, Finland
- Max Planck Institute for Demographic Research, Rostock, Germany
| | - Hanna Remes
- Population Research Unit, University of Helsinki, Helsinki, Finland
- Max Planck-University of Helsinki Center for Social Inequalities in Population Health, Helsinki, Finland
| |
Collapse
|
2
|
Manus MB, Sardaro MLS, Dada O, Davis MI, Romoff MR, Torello SG, Ubadigbo E, Wu RC, Miller ES, Amato KR. Interactions with alloparents are associated with the diversity of infant skin and fecal bacterial communities in Chicago, United States. Am J Hum Biol 2023:e23972. [PMID: 37632331 DOI: 10.1002/ajhb.23972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/28/2023] Open
Abstract
INTRODUCTION Social interactions shape the infant microbiome by providing opportunities for caregivers to spread bacteria through physical contact. With most research focused on the impact of maternal-infant contact on the infant gut microbiome, it is unclear how alloparents (i.e., caregivers other than the parents) influence the bacterial communities of infant body sites that are frequently contacted during bouts of caregiving, including the skin. METHODS To begin to understand how allocare may influence the diversity of the infant microbiome, detailed questionnaire data on infant-alloparent relationships and specific allocare behaviors were coupled with skin and fecal microbiome samples (four body sites) from 48 infants living in Chicago, United States. RESULTS Data from 16S rRNA gene amplicon sequencing indicated that infant skin and fecal bacterial diversity showed strong associations (positive and negative) to having female adult alloparents. Alloparental feeding and co-sleeping displayed stronger associations to infant bacterial diversity compared to playing or holding. The associations with allocare behaviors differed in magnitude and direction across infant body sites. Bacterial relative abundances varied by infant-alloparent relationship and breastfeeding status. CONCLUSION This study provides some of the first evidence of an association between allocare and infant skin and fecal bacterial diversity. The results suggest that infants' exposure to bacteria from the social environment may vary based on infant-alloparent relationships and allocare behaviors. Since the microbiome influences immune system development, variation in allocare that impacts the diversity of infant bacterial communities may be an underexplored dimension of the social determinants of health in early life.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Maria Luisa Savo Sardaro
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Human Science and Promotion of the Quality of Life, University of San Raffaele, Rome, Italy
| | - Omolola Dada
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Maya I Davis
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Melissa R Romoff
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Stephanie G Torello
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Esther Ubadigbo
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Rebecca C Wu
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Emily S Miller
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
3
|
Lu C, Wang F, Liu Z, Li B, Yang W, Liao H. Intrauterine and early postnatal exposure to air pollution associated with childhood allergic rhinitis. CHEMOSPHERE 2023:139296. [PMID: 37353167 DOI: 10.1016/j.chemosphere.2023.139296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Despite mounting evidence linking allergic rhinitis (AR) to air pollution, it remains unclear which major air pollutant(s) and critical window(s) of exposure play important roles in children's AR. OBJECTIVE To examine the effects of intrauterine and early postnatal exposure to outdoor air pollution on children with doctor-diagnosed allergic rhinitis (DDAR). METHODS A retrospective cohort study involving 8689 kindergarten children was conducted in Changsha, China, from 2019 to 2020. A questionnaire survey was conducted to collect information on the health status of children and their family members, as well as their living habits and home environment. Personal exposure to daily outdoor air pollutants (PM2.5, PM2.5-10, PM10, SO2, NO2, and CO) was estimated during 40 gestational weeks, three trimesters, the entire pregnancy, and the first year after birth. Multiple logistic regression models were used to assess the associations between air pollution and children's DDAR. RESULTS Children's DDAR was associated with intrauterine CO exposure, with adjusted ORs (95% CI) of 1.18 (1.03-1.34) for each IQR increase in CO exposure. The second and third trimesters were critical windows for PM2.5 and CO exposure in relation to DDAR. Furthermore, early postnatal exposure to PM2.5-10 and PM10 in first year of life was associated with DDAR development, with adjusted ORs (95% CI) of 1.11 (1.01-1.22) and 1.27 (1.09, 1.47). The entire pregnancy and the first year of life were critical windows for CO and PM10 exposure. Some children were predisposed to DDAR risk due to exposure to traffic-related air pollution (TRAP). CONCLUSION Our findings support the hypothesis of "fetal origin of allergic rhinitis" by demonstrating that intrauterine and early postnatal exposure to air pollution plays an important role in children's DDAR.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, China.
| | - Faming Wang
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Zijing Liu
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Bin Li
- School of Psychology, Central China Normal University, Wuhan, China
| | - Wenhui Yang
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Hongsen Liao
- XiangYa School of Public Health, Central South University, Changsha, China
| |
Collapse
|
4
|
Le Moual N, Dumas O, Bonnet P, Eworo Nchama A, Le Bot B, Sévin E, Pin I, Siroux V, Mandin C. Exposure to Disinfectants and Cleaning Products and Respiratory Health of Workers and Children in Daycares: The CRESPI Cohort Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105903. [PMID: 37239629 DOI: 10.3390/ijerph20105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Although cleaning tasks are frequently performed in daycare, no study has focused on exposures in daycares in relation to respiratory health. The CRESPI cohort is an epidemiological study among workers (n~320) and children (n~540) attending daycares. The purpose is to examine the impact of daycare exposures to disinfectants and cleaning products (DCP) on the respiratory health of workers and children. A sample of 108 randomly selected daycares in the region of Paris has been visited to collect settled dust to analyze semi-volatile organic compounds and microbiota, as well as sample indoor air to analyze aldehydes and volatile organic compounds. Innovative tools (smartphone applications) are used to scan DCP barcodes in daycare and inform their use; a database then matches the barcodes with the products' compositions. At baseline, workers/parents completed a standardized questionnaire, collecting information on DCP used at home, respiratory health, and potential confounders. Follow-up regarding children's respiratory health (monthly report through a smartphone application and biannual questionnaires) is ongoing until the end of 2023. Associations between DCP exposures and the respiratory health of workers/children will be evaluated. By identifying specific environments or DCP substances associated with the adverse respiratory health of workers and children, this longitudinal study will contribute to the improvement of preventive measures.
Collapse
Affiliation(s)
- Nicole Le Moual
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France
| | - Orianne Dumas
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France
| | - Pierre Bonnet
- Scientific and Technical Center for Building (CSTB), Indoor Environment Quality Unit, 77420 Champs-sur-Marne, France
| | - Anastasie Eworo Nchama
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France
| | - Barbara Le Bot
- Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Inserm, École des Hautes Etudes en Santé Publique (EHESP), University of Rennes, 35000 Rennes, France
| | | | - Isabelle Pin
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Valérie Siroux
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Corinne Mandin
- Scientific and Technical Center for Building (CSTB), Indoor Environment Quality Unit, 77420 Champs-sur-Marne, France
| |
Collapse
|
5
|
Recurrent Acute Otitis Media Environmental Risk Factors: A Literature Review from the Microbiota Point of View. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute otitis media (AOM) constitutes a multifactorial disease, as several host and environmental factors contribute to its occurrence. Prevention of AOM represents one of the most important goals in pediatrics, both in developing countries, in which complications, mortality, and deafness remain possible consequences of the disease, compared to in developed countries, in which this condition has an important burden in terms of medical, social, and economical implications. The strategies for AOM prevention are based on reducing the burden of risk factors, through the application of behavioral, environmental, and therapeutic interventions. The introduction of culture-independent techniques has allowed high-throughput investigation of entire bacterial communities, providing novel insights into the pathogenesis of middle ear diseases through the identification of potential protective bacteria. The upper respiratory tract (URT) is a pivotal region in AOM pathogenesis, as it could act as a source of pathogens than of protective microorganisms for the middle ear (ME). Due to its direct connection with the external ambient, the URT is particularly exposed to the influence of environmental agents. The aim of this review was to evaluate AOM environmental risk factors and their impact on URT microbial communities, and to investigate AOM pathogenesis from the microbiota perspective.
Collapse
|
6
|
Lee S, Zhang A, Flores MA, de Ángel Solá D, Cao L, Bolanos-Rosero B, Wang L, Godoy-Vitorino F, Matos NR, Wang L. Prenatal exposure to Hurricane Maria is associated with an altered infant nasal microbiome. JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY: GLOBAL 2022; 1:128-137. [PMID: 36091489 PMCID: PMC9461092 DOI: 10.1016/j.jacig.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background: Prenatal adverse exposures have been associated with increased risks of development of respiratory diseases in children. The infant nasal microbiome is an important mechanism and indicator. Objective: Our aim was to characterize and compare the nasal microbiome of infants who were in utero and exposed to Hurricane Maria in Puerto Rico during 2017 with that of infants who were conceived at least 5 months after the hurricane as controls. Methods: We recruited 63 vaginally born infants, 29 of whom were in the exposure group and 34 of whom were in the control group. Nasal swab samples were collected and analyzed by using 16S ribosomal RNA gene sequencing at the community and taxon levels, respectively. Results: Infants in the exposure group were more likely to harbor a Staphylococcus-Streptococcus–dominant microbial community in their nose. The richness and diversity of the microbiome was significantly higher in the exposure group than in the control group. In the exposure group, the bacterial genera Rhodocista, Azospirillum, Massilia, Herbaspirillum, Aquabacterium, and Pseudomonas were enriched, whereas Corynebacterium and Ralstonia were depleted. Food insecurity due to Hurricane Maria was associated with an increase in Pseudomonas in the infant nasal microbiome. Conclusion: Infants who were exposed to Hurricane Maria during gestation had an altered nasal microbiome, with a higher prevalence of environmental bacteria. More research is needed to evaluate the long-term impacts of extreme weather events occurring in the prenatal stage on a child’s nasal microbiome and respiratory health.
Collapse
Affiliation(s)
- Sandra Lee
- Department of Medicine, Division of Allergy and Immunology
| | - Ai Zhang
- Department of Medicine, Division of Allergy and Immunology
| | - Midnela Acevedo Flores
- San Juan City Hospital Research Unit, Department of Pediatrics and Obstetrics and Gynecology, San Juan Hospital
| | | | - Lijuan Cao
- Department of Medicine, Division of Allergy and Immunology
| | - Benjamin Bolanos-Rosero
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, San Juan
| | - Nicolás Rosario Matos
- San Juan City Hospital Research Unit, Department of Pediatrics and Obstetrics and Gynecology, San Juan Hospital
| | - Leyao Wang
- Department of Medicine, Division of Allergy and Immunology
| |
Collapse
|
7
|
Christensen ED, Hjelmsø MH, Thorsen J, Shah S, Redgwell T, Poulsen CE, Trivedi U, Russel J, Gupta S, Chawes BL, Bønnelykke K, Sørensen SJ, Rasmussen MA, Bisgaard H, Stokholm J. The developing airway and gut microbiota in early life is influenced by age of older siblings. MICROBIOME 2022; 10:106. [PMID: 35831879 PMCID: PMC9277889 DOI: 10.1186/s40168-022-01305-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/17/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Growing up with siblings has been linked to numerous health outcomes and is also an important determinant for the developing microbiota. Nonetheless, research into the role of having siblings on the developing microbiota has mainly been incidental. RESULTS Here, we investigate the specific effects of having siblings on the developing airway and gut microbiota using a total of 4497 hypopharyngeal and fecal samples taken from 686 children in the COPSAC2010 cohort, starting at 1 week of age and continuing until 6 years of age. Sibship was evaluated longitudinally and used for stratification. Microbiota composition was assessed using 16S rRNA gene amplicon sequencing of the variable V4 region. We found siblings in the home to be one of the most important determinants of the developing microbiota in both the airway and gut, with significant differences in alpha diversity, beta diversity, and relative abundances of the most abundant taxa, with the specific associations being particularly apparent during the first year of life. The age gap to the closest older sibling was more important than the number of older siblings. The signature of having siblings in the gut microbiota at 1 year was associated with protection against asthma at 6 years of age, while no associations were found for allergy. CONCLUSIONS Having siblings is one of the most important factors influencing a child's developing microbiota, and the specific effects may explain previously established associations between siblings and asthma and infectious diseases. As such, siblings should be considered in all studies involving the developing microbiota, with emphasis on the age gap to the closest older sibling rather than the number of siblings. Video abstract.
Collapse
Affiliation(s)
- Emil Dalgaard Christensen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mathis Hjort Hjelmsø
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shiraz Shah
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Tamsin Redgwell
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Christina Egeø Poulsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Shashank Gupta
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Bo L. Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| |
Collapse
|
8
|
Vacca M, Raspini B, Calabrese FM, Porri D, De Giuseppe R, Chieppa M, Liso M, Cerbo RM, Civardi E, Garofoli F, Cena H, De Angelis M. The establishment of the gut microbiota in 1-year-aged infants: from birth to family food. Eur J Nutr 2022; 61:2517-2530. [PMID: 35211851 PMCID: PMC9279275 DOI: 10.1007/s00394-022-02822-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Purpose With the aim of characterizing the gastrointestinal (GI) microbiota and contextually determine how different prenatal, perinatal, and postnatal factors affected its composition in early childhood, infants were enrolled in a longitudinal-prospective study named “A.MA.MI.” (Alimentazione MAmma e bambino nei primi MIlle giorni; NCT04122612, October 2019). Methods Forty-five fecal samples were collected at 12 months of infants’ age, identified as the 3rd follow-up (T3). The evaluated variables were pre-gestational weight and weight gain during pregnancy, delivery mode, feeding, timing of weaning, and presence/absence of older siblings. Fecal alpha and beta-diversities were analyzed. Noteworthy, to determine the impact of the influencing factors, multivariate analyses were conducted. Results At T3, all prenatal and perinatal variables did not result to be significant whereas, among the postnatal variables, type of milk-feeding and weaning showed the greatest contribution in shaping the microbiota. Although aged 1 year, infants exclusively breastfed until 6 months were mainly colonized by Lactobacillaceae and Enterobacteriaceae. Differently, Bacteroidaceae characterized the microbiota of infants that were never breastfed in an exclusive way. Moreover, although an early introduction of solid foods determined higher values of Faith’s PD, high abundances of Ruminococcaceae and Faecalibacterium mainly associated with infants weaned after the 4th month of age. Conclusion The microbial colonization during the first year of life is likely affected by a simultaneous effect of multiple variables playing a significant role at different times. Therefore, these data contribute to add evidence concerning the complex multifactorial interaction between GI microbiota and various stimuli affecting infants during the early stages of life. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-022-02822-1.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Benedetta Raspini
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | | | - Debora Porri
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Marcello Chieppa
- Institute of Research, National Institute of Gastroenterology "S. de Bellis", Castellana Grotte, Italy
| | - Marina Liso
- Institute of Research, National Institute of Gastroenterology "S. de Bellis", Castellana Grotte, Italy
| | - Rosa Maria Cerbo
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Civardi
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Garofoli
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy. .,Unit of Internal Medicine and Endocrinology, Clinical Nutrition and Dietetics Service, ICS Maugeri IRCCS, Pavia, Italy.
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
9
|
Gisler A, Korten I, de Hoogh K, Vienneau D, Frey U, Decrue F, Gorlanova O, Soti A, Hilty M, Latzin P, Usemann J. Associations of air pollution and greenness with the nasal microbiota of healthy infants: A longitudinal study. ENVIRONMENTAL RESEARCH 2021; 202:111633. [PMID: 34256075 DOI: 10.1016/j.envres.2021.111633] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Air pollution and greenness are associated with short- and long-term respiratory health in children but the underlying mechanisms are only scarcely investigated. The nasal microbiota during the first year of life has been shown to be associated with respiratory tract infections and asthma development. Thus, an interplay between greenness, air pollution and the early nasal microbiota may contribute to short- and long-term respiratory health. We aimed to examine associations between fine particulate matter (PM2.5), nitrogen dioxide (NO2) and greenness with the nasal microbiota of healthy infants during the first year of life in a European context with low-to-moderate air pollution levels. METHODS Microbiota characterization was performed using 16 S rRNA pyrosequencing of 846 nasal swabs collected fortnightly from 47 healthy infants of the prospective Basel-Bern Infant Lung Development (BILD) cohort. We investigated the association of satellite-based greenness and an 8-day-average exposure to air pollution (PM2.5, NO2) with the nasal microbiota during the first year of life. Exposures were individually estimated with novel spatial-temporal models incorporating satellite data. Generalized additive mixed models adjusted for known confounders and considering the autoregressive correlation structure of the data were used for analysis. RESULTS Mean (SD) PM2.5 level was 17.1 (3.8 μg/m3) and mean (SD) NO2 level was 19.7 (7.9 μg/m3). Increased PM2.5 and increased NO2 were associated with reduced within-subject Ružička dissimilarity (PM2.5: per 1 μg/m3 -0.004, 95% CI -0.008, -0.001; NO2: per 1 μg/m3 -0.004, 95% CI -0.007, -0.001). Whole microbial community comparison with nonmetric multidimensional scaling revealed distinct microbiota profiles for different PM2.5 exposure levels. Increased NO2 was additionally associated with reduced abundance of Corynebacteriaceae (per 1 μg/m3: -0.027, 95% CI -0.053, -0.001). No associations were found between greenness and the nasal microbiota. CONCLUSION Air pollution was associated with Ružička dissimilarity and relative abundance of Corynebacteriaceae. This suggests that even low-to-moderate exposure to air pollution may impact the nasal microbiota during the first year of life. Our results will be useful for future studies assessing the clinical relevance of air-pollution-induced alterations of the nasal microbiota with subsequent respiratory disease development.
Collapse
Affiliation(s)
- Amanda Gisler
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Insa Korten
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Urs Frey
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Decrue
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andras Soti
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jakob Usemann
- University Children's Hospital Basel, University of Basel, Basel, Switzerland; Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Division of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Vu K, Lou W, Tun HM, Konya TB, Morales-Lizcano N, Chari RS, Field CJ, Guttman DS, Mandal R, Wishart DS, Azad MB, Becker AB, Mandhane PJ, Moraes TJ, Lefebvre DL, Sears MR, Turvey SE, Subbarao P, Scott JA, Kozyrskyj AL. From Birth to Overweight and Atopic Disease: Multiple and Common Pathways of the Infant Gut Microbiome. Gastroenterology 2021; 160:128-144.e10. [PMID: 32946900 DOI: 10.1053/j.gastro.2020.08.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Few studies, even those with cohort designs, test the mediating effects of infant gut microbes and metabolites on the onset of disease. We undertook such a study. METHODS Using structural equation modeling path analysis, we tested directional relationships between first pregnancy, birth mode, prolonged labor and breastfeeding; infant gut microbiota, metabolites, and IgA; and childhood body mass index and atopy in 1667 infants. RESULTS After both cesarean birth and prolonged labor with a first pregnancy, a higher Enterobacteriaceae/Bacteroidaceae ratio at 3 months was the dominant path to overweight; higher Enterobacteriaceae/Bacteroidaceae ratios and Clostridioides difficile colonization at 12 months were the main pathway to atopic sensitization. Depletion of Bifidobacterium after prolonged labor was a secondary pathway to overweight. Influenced by C difficile colonization at 3 months, metabolites propionate and formate were secondary pathways to child outcomes, with a key finding that formate was at the intersection of several paths. CONCLUSIONS Pathways from cesarean section and first pregnancy to child overweight and atopy share many common mediators of the infant gut microbiome, notably C difficile colonization.
Collapse
Affiliation(s)
- Khanh Vu
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy Lou
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Hein M Tun
- School of Public Health, University of Hong Kong, Hong Kong
| | - Theodore B Konya
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | | | - Radha S Chari
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Rupasri Mandal
- The Metabolomics Innovation Centre, Edmonton, Alberta, Canada
| | - David S Wishart
- The Metabolomics Innovation Centre, Edmonton, Alberta, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Allan B Becker
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Theo J Moraes
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Diana L Lefebvre
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Malcolm R Sears
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada; School of Public Health, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
11
|
Infant Skin Bacterial Communities Vary by Skin Site and Infant Age across Populations in Mexico and the United States. mSystems 2020; 5:5/6/e00834-20. [PMID: 33144313 PMCID: PMC7646528 DOI: 10.1128/msystems.00834-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study contributes to the sparse literature on the infant skin microbiome in general, and the virtually nonexistent literature on the infant skin microbiome in a field setting. While microbiome research often addresses patterns at a national scale, this study addresses the influence of population-level factors, such as maternal socioeconomic status and contact with caregivers, on infant skin bacterial communities. This approach strengthens our understanding of how local variables influence the infant skin microbiome, and paves the way for additional studies to combine biological sample collection with questionnaires to adequately capture how specific behaviors dictate infant microbial exposures. Work in this realm has implications for infant care and health, as well as for investigating how the microbial communities of different body sites develop over time, with applications to specific health outcomes associated with the skin microbiome (e.g., immune system development or atopic dermatitis). Daily practices put humans in close contact with the surrounding environment, and differences in these practices have an impact on human physiology, development, and health. There is mounting evidence that the microbiome represents an interface that mediates interactions between the human body and the environment. In particular, the skin microbiome serves as the primary interface with the external environment and aids in host immune function by contributing as the first line of defense against pathogens. Despite these important connections, we have only a basic understanding of how the skin microbiome is first established, or which environmental factors contribute to its development. To this end, this study compared the skin bacterial communities of infants (n = 47) living in four populations in Mexico and the United States that span the socioeconomic gradient, where we predicted that variation in physical and social environments would shape the infant skin microbiome. Results of 16S rRNA bacterial gene sequencing on 119 samples (armpit, hand, and forehead) showed that infant skin bacterial diversity and composition are shaped by population-level factors, including those related to socioeconomic status and household composition, and vary by skin site and infant age. Differences in infant-environment interactions, including with other people, appear to vary across the populations, likely influencing infant microbial exposures and, in turn, the composition of infant skin bacterial communities. These findings suggest that variation in microbial exposures stemming from the local environment in infancy can impact the establishment of the skin microbiome across body sites, with implications for developmental and health outcomes. IMPORTANCE This study contributes to the sparse literature on the infant skin microbiome in general, and the virtually nonexistent literature on the infant skin microbiome in a field setting. While microbiome research often addresses patterns at a national scale, this study addresses the influence of population-level factors, such as maternal socioeconomic status and contact with caregivers, on infant skin bacterial communities. This approach strengthens our understanding of how local variables influence the infant skin microbiome, and paves the way for additional studies to combine biological sample collection with questionnaires to adequately capture how specific behaviors dictate infant microbial exposures. Work in this realm has implications for infant care and health, as well as for investigating how the microbial communities of different body sites develop over time, with applications to specific health outcomes associated with the skin microbiome (e.g., immune system development or atopic dermatitis).
Collapse
|
12
|
Simione M, Harshman SG, Castro I, Linnemann R, Roche B, Ajami NJ, Petrosino JF, Raspini B, Portale S, Camargo CA, Taveras EM, Hasegawa K, Fiechtner L. Maternal Fish Consumption in Pregnancy Is Associated with a Bifidobacterium-Dominant Microbiome Profile in Infants. Curr Dev Nutr 2020; 4:nzz133. [PMID: 31875205 PMCID: PMC6923185 DOI: 10.1093/cdn/nzz133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/18/2019] [Accepted: 11/14/2019] [Indexed: 01/19/2023] Open
Abstract
National guidelines suggest that pregnant women consume 2-3 servings of fish weekly and often focus exclusively on limiting mercury exposure. We examined if meeting this recommendation in the third trimester of pregnancy was associated with differences in infant fecal microbiota composition and diversity. We used multinomial regression to analyze data from 114 infant-mother dyads. Applying 16S rRNA gene sequencing, we identified 3 infant fecal microbiota profiles: Bifidobacterium dominant, Enterobacter dominant, and Escherichia dominant. We found that 20% of mothers met the recommended fish consumption, and those infants whose mothers met the recommendation were more likely to have a Bifidobacterium-dominant profile than an Escherichia-dominant profile (RR ratio: 4.61; 95% CI: 1.40, 15.15; P = 0.01). In multivariable models, the significant association persisted (P < 0.05). Our findings support the need to expand recommendations focusing on the beneficial effects of fish consumption on the infant fecal microbiota profile.
Collapse
Affiliation(s)
- Meg Simione
- Division of General Pediatrics, Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA, USA
- Department of Gastroenterology and Nutrition, MassGeneral Hospital for Children, Boston, MA, USA
| | | | - Ines Castro
- Division of General Pediatrics, Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA, USA
| | - Rachel Linnemann
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Brianna Roche
- Division of General Pediatrics, Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA, USA
| | - Nadim J Ajami
- Division of General Pediatrics, Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology, and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Benedetta Raspini
- Department of Public Health, Experimental and Forensic Medicine-Dietetics and Clinical Nutrition Laboratory, University of Pavia, Italy
| | - Sandra Portale
- Department of Public Health, Experimental and Forensic Medicine-Dietetics and Clinical Nutrition Laboratory, University of Pavia, Italy
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Elsie M Taveras
- Division of General Pediatrics, Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lauren Fiechtner
- Division of General Pediatrics, Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA, USA
- Department of Gastroenterology and Nutrition, MassGeneral Hospital for Children, Boston, MA, USA
| |
Collapse
|
13
|
Abstract
The recognition that intestinal microbiota exert profound effects on human health has led to major advances in our understanding of disease processes. Studies over the past 20 years have shown that host components, including components of the host immune system, shape the microbial community. Pathogenic alterations in commensal microorganisms contribute to disease manifestations that are generally considered to be noncommunicable, such as inflammatory bowel disease, diabetes mellitus and liver disease, through a variety of mechanisms, including effects on host immunity. More recent studies have shed new light on how the immune system and microbiota might also drive the pathogenesis of renal disorders. In this Review, we discuss the latest insights into the mechanisms regulating the microbiome composition, with a focus both on genetics and environmental factors, and describe how commensal microorganisms calibrate innate and adaptive immune responses to affect the activation threshold for pathogenic stimulations. We discuss the mechanisms that lead to intestinal epithelial barrier inflammation and the relevance of certain bacteria to the pathogenesis of two common kidney-based disorders: hypertension and renal stone disease. Limitations of current approaches to microbiota research are also highlighted, emphasizing the need to move beyond studies of correlation to causation.
Collapse
Affiliation(s)
- Felix Knauf
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - J Richard Brewer
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Toivonen L, Hasegawa K, Waris M, Ajami NJ, Petrosino JF, Camargo CA, Peltola V. Early nasal microbiota and acute respiratory infections during the first years of life. Thorax 2019; 74:592-599. [PMID: 31076501 DOI: 10.1136/thoraxjnl-2018-212629] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/16/2019] [Accepted: 04/08/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Emerging evidence shows that airway microbiota may modulate local immune responses, thereby contributing to the susceptibility and severity of acute respiratory infections (ARIs). However, there are little data on the longitudinal relationships between airway microbiota and susceptibility to ARIs in children. OBJECTIVE We aimed to investigate the association of early nasal microbiota and the subsequent risk of ARIs during the first years of life. METHODS In this prospective population-based birth-cohort study in Finland, we followed 839 healthy infants for ARIs from birth to age 24 months. Nasal microbiota was tested using 16S rRNA gene sequencing at age 2 months. We applied an unsupervised clustering approach to identify early nasal microbiota profiles, and examined the association of profiles with the rate of ARIs during age 2-24 months. RESULTS We identified five nasal microbiota profiles dominated by Moraxella, Streptococcus, Dolosigranulum, Staphylococcus and Corynebacteriaceae, respectively. Incidence rate of ARIs was highest in children with an early Moraxella-dominant profile and lowest in those with a Corynebacteriaceae-dominant profile (738 vs 552/100 children years; unadjusted incidence rate ratio (IRR), 1.34; 95% CI 1.16 to 1.54; p < 0.001). After adjusting for nine potential confounders, the Moraxella-dominant profile-ARI association persisted (adjusted IRR (aIRR), 1.19; 95% CI 1.04 to 1.37; p = 0.01). Similarly, the incidence rate of lower respiratory tract infections (a subset of all ARIs) was significantly higher in children with an early Moraxella-dominant profile (aIRR, 2.79; 95% CI 1.04 to 8.09; p = 0.04). CONCLUSION Moraxella-dominant nasal microbiota profile in early infancy was associated with an increased rate of ARIs during the first 2 years of life.
Collapse
Affiliation(s)
- Laura Toivonen
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA .,Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matti Waris
- Virology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ville Peltola
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
15
|
Lane AA, McGuire MK, McGuire MA, Williams JE, Lackey KA, Hagen EH, Kaul A, Gindola D, Gebeyehu D, Flores KE, Foster JA, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, Kvist LJ, Otoo GE, Rodríguez JM, Ruiz L, Pareja RG, Bode L, Price WJ, Meehan CL. Household composition and the infant fecal microbiome: The INSPIRE study. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:526-539. [PMID: 31012086 DOI: 10.1002/ajpa.23843] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/01/2019] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Establishment and development of the infant gastrointestinal microbiome (GIM) varies cross-culturally and is thought to be influenced by factors such as gestational age, birth mode, diet, and antibiotic exposure. However, there is little data as to how the composition of infants' households may play a role, particularly from a cross-cultural perspective. Here, we examined relationships between infant fecal microbiome (IFM) diversity/composition and infants' household size, number of siblings, and number of other household members. MATERIALS AND METHODS We analyzed 377 fecal samples from healthy, breastfeeding infants across 11 sites in eight different countries (Ethiopia, The Gambia, Ghana, Kenya, Peru, Spain, Sweden, and the United States). Fecal microbial community structure was determined by amplifying, sequencing, and classifying (to the genus level) the V1-V3 region of the bacterial 16S rRNA gene. Surveys administered to infants' mothers identified household members and composition. RESULTS Our results indicated that household composition (represented by the number of cohabitating siblings and other household members) did not have a measurable impact on the bacterial diversity, evenness, or richness of the IFM. However, we observed that variation in household composition categories did correspond to differential relative abundances of specific taxa, namely: Lactobacillus, Clostridium, Enterobacter, and Klebsiella. DISCUSSION This study, to our knowledge, is the largest cross-cultural study to date examining the association between household composition and the IFM. Our results indicate that the social environment of infants (represented here by the proxy of household composition) may influence the bacterial composition of the infant GIM, although the mechanism is unknown. A higher number and diversity of cohabitants and potential caregivers may facilitate social transmission of beneficial bacteria to the infant gastrointestinal tract, by way of shared environment or through direct physical and social contact between the maternal-infant dyad and other household members. These findings contribute to the discussion concerning ways by which infants are influenced by their social environments and add further dimensionality to the ongoing exploration of social transmission of gut microbiota and the "old friends" hypothesis.
Collapse
Affiliation(s)
- Avery A Lane
- Department of Anthropology, Washington State University, Pullman, Washington
| | - Michelle K McGuire
- School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho
| | - Mark A McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho
| | - Janet E Williams
- Department of Animal and Veterinary Science, University of Idaho, Moscow, Idaho
| | - Kimberly A Lackey
- School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho
| | - Edward H Hagen
- Department of Anthropology, Washington State University, Pullman, Washington
| | - Abhishek Kaul
- Department of Mathematics and Statistics, Washington State University, Pullman, Washington
| | - Debela Gindola
- Department of Anthropology, Hawassa University, Hawassa, Ethiopia
| | - Dubale Gebeyehu
- Department of Anthropology, Hawassa University, Hawassa, Ethiopia
| | - Katherine E Flores
- Department of Anthropology, Washington State University, Pullman, Washington
| | - James A Foster
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Daniel W Sellen
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru, Kenya
| | - Sophie E Moore
- Department of Women and Children's Health, King's College London, London, United Kingdom.,MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Andrew M Prentice
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia.,MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Gloria E Otoo
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
| | - Juan M Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Lorena Ruiz
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain.,Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas, Villaviciosa, Spain
| | | | - Lars Bode
- Department of Pediatrics, and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, California
| | - William J Price
- Statistical Programs, College of Agriculture and Life Sciences, University of Idaho, Moscow, Idaho
| | - Courtney L Meehan
- Department of Anthropology, Washington State University, Pullman, Washington
| |
Collapse
|
16
|
Toivonen L, Camargo CA, Gern JE, Bochkov YA, Mansbach JM, Piedra PA, Hasegawa K. Association between rhinovirus species and nasopharyngeal microbiota in infants with severe bronchiolitis. J Allergy Clin Immunol 2019; 143:1925-1928.e7. [PMID: 30654045 PMCID: PMC6504611 DOI: 10.1016/j.jaci.2018.12.1004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Laura Toivonen
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass; Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland.
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - James E Gern
- Departments of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Yury A Bochkov
- Departments of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | | | - Pedro A Piedra
- Departments of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
17
|
Lunjani N, Satitsuksanoa P, Lukasik Z, Sokolowska M, Eiwegger T, O'Mahony L. Recent developments and highlights in mechanisms of allergic diseases: Microbiome. Allergy 2018; 73:2314-2327. [PMID: 30325537 DOI: 10.1111/all.13634] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/11/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022]
Abstract
All body surfaces are exposed to a wide variety of microbes, which significantly influence immune reactivity within the host. This review provides an update on some of the critical novel findings that have been published on the influence of the microbiome on atopic dermatitis, food allergy and asthma. Microbial dysbiosis has consistently been observed in the skin, gut and lungs of patients with atopic dermatitis, food allergy and asthma, respectively, and the role of specific microbes in allergic disorders is being intensively investigated. However, many of these discoveries have yet to be translated into routine clinical practice.
Collapse
Affiliation(s)
- Nonhlanhla Lunjani
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- University of Cape Town; Cape Town South Africa
| | | | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
| | - Thomas Eiwegger
- Program in Translational Medicine; The Hospital for Sick Children; Toronto Ontario Canada
- Department of Immunology; The University of Toronto; Toronto Ontario Canada
- Division of Immunology and Allergy; Food allergy and Anaphylaxis Program; The Department of Paediatrics; The Hospital for Sick Children; Toronto Ontario Canada
| | - Liam O'Mahony
- Departments of Medicine and Microbiology; APC Microbiome Ireland; National University of Ireland; Cork Ireland
| |
Collapse
|
18
|
Combellick JL, Shin H, Shin D, Cai Y, Hagan H, Lacher C, Lin DL, McCauley K, Lynch SV, Dominguez-Bello MG. Differences in the fecal microbiota of neonates born at home or in the hospital. Sci Rep 2018; 8:15660. [PMID: 30353125 PMCID: PMC6199260 DOI: 10.1038/s41598-018-33995-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Research on the neonatal microbiome has been performed mostly on hospital-born infants, who often undergo multiple birth-related interventions. Both the hospital environment and interventions around the time of birth may affect the neonate microbiome. In this study, we determine the structure of the microbiota in feces from babies born in the hospital or at home, and from vaginal samples of their mothers. We included 35 vaginally-born, breast-fed neonates, 14 of whom delivered at home (4 in water), and 21 who delivered in the hospital. Feces from babies and mothers and maternal vaginal swab samples were collected at enrollment, the day of birth, followed by days 1, 2, 7, 14, 21, and 28. At the time of birth, the diversity of the vaginal microbiota of mothers delivering in the hospital was lower than in mothers delivering at home, and showed higher proportion of Lactobacillus. Among 20 infants not exposed to perinatal maternal antibiotics or water birth, fecal beta diversity differed significantly by birth site, with hospital-born infants having lower Bacteroides, Bifidobacterium, Streptococcus, and Lactobacillus, and higher Clostridium and Enterobacteriaceae family (LDA > 3.0), than babies born at home. At 1 month of age, feces from infants born in the hospital also induced greater pro-inflammatory gene expression (TLR4, IL-8, occludin and TGFβ) in human colon epithelial HT-29 cells. The results of this work suggest that hospitalization (perinatal interventions or the hospital environment) may affect the microbiota of the vaginal source and the initial colonization during labor and birth, with effects that could persist in the intestinal microbiota of infants 1 month after birth. More research is needed to determine specific factors that alter bacterial transmission between mother and baby and the long-term health implications of these differences for the developing infant.
Collapse
Affiliation(s)
- Joan L Combellick
- New York University Rory Meyers College of Nursing, New York, 10010, USA
| | - Hakdong Shin
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Dongjae Shin
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Yi Cai
- New York University School of Medicine, New York, 10016, USA
| | - Holly Hagan
- New York University Rory Meyers College of Nursing, New York, 10010, USA
| | - Corey Lacher
- Department of Biochemistry and Microbiology and Department of Anthropology, Rutgers University, New Brunswick, 08901, USA
| | - Din L Lin
- University of California San Francisco, Department of Medicine, Division of Gastroenterology, San Francisco, 94118, USA
| | - Kathryn McCauley
- University of California San Francisco, Department of Medicine, Division of Gastroenterology, San Francisco, 94118, USA
| | - Susan V Lynch
- University of California San Francisco, Department of Medicine, Division of Gastroenterology, San Francisco, 94118, USA
| | - Maria Gloria Dominguez-Bello
- New York University School of Medicine, New York, 10016, USA. .,Department of Biochemistry and Microbiology and Department of Anthropology, Rutgers University, New Brunswick, 08901, USA.
| |
Collapse
|
19
|
Hahn A, Warnken S, Pérez-Losada M, Freishtat RJ, Crandall KA. Microbial diversity within the airway microbiome in chronic pediatric lung diseases. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 63:316-325. [PMID: 29225146 PMCID: PMC5992000 DOI: 10.1016/j.meegid.2017.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/22/2017] [Accepted: 12/07/2017] [Indexed: 12/31/2022]
Abstract
The study of the airway microbiome in children is an area of emerging research, especially in relation to the role microbial diversity may play in acute and chronic inflammation. Three such pediatric airway diseases include cystic fibrosis, asthma, and chronic lung disease of prematurity. In cystic fibrosis, the presence of Pseudomonas spp. is associated with decreased microbial diversity. Decreasing microbial diversity is also associated with poor lung function. In asthma, early viral infections appear to drive changes in bacterial diversity which may be associated with asthma risk. Premature infants with Ureaplasma spp. are at higher risk for chronic lung disease due to inflammation. Microbiome changes due to prematurity also appear to affect the inflammatory response to viral infections post-natally. Importantly, microbial diversity can be measured using metataxonomic (e.g., 16S rRNA sequencing) and metagenomic (e.g., shotgun sequencing) approaches. A metagenomics approach may be preferable as it can provide further granularity of the sample composition, identifying the bacterial species or strain, information on additional microbial components, including fungal and viral components, information about functional genomics of the microbiome, and information about antimicrobial resistance mutations. Future studies of pediatric airway diseases incorporating these techniques may provide evidence for new treatment approaches for these vulnerable patient populations.
Collapse
Affiliation(s)
- Andrea Hahn
- Division of Infectious Diseases, Children's National Health System (CNHS), Washington, D.C. 20010, USA; Department of Pediatrics, George Washington University (GWU) School of Medicine and Health Sciences (SMHS), Washington, D.C. 20052, USA.
| | - Stephanie Warnken
- Computational Biology Institute, Milken Institute School of Public Health, GWU, Washington, D.C. 20052, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, GWU, Washington, D.C. 20052, USA; CIBIO-InBIO, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Robert J Freishtat
- Department of Pediatrics, George Washington University (GWU) School of Medicine and Health Sciences (SMHS), Washington, D.C. 20052, USA; Division of Emergency Medicine, CNHS, Washington, D.C. 20010, USA
| | - Keith A Crandall
- Computational Biology Institute, Milken Institute School of Public Health, GWU, Washington, D.C. 20052, USA
| |
Collapse
|
20
|
Kourosh A, Luna RA, Balderas M, Nance C, Anagnostou A, Devaraj S, Davis CM. Fecal microbiome signatures are different in food-allergic children compared to siblings and healthy children. Pediatr Allergy Immunol 2018; 29:545-554. [PMID: 29624747 DOI: 10.1111/pai.12904] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Intestinal microbes have been shown to influence predisposition to atopic disease, including food allergy. The intestinal microbiome of food-allergic children may differ in significant ways from genetically similar non-allergic children and age-matched controls. The aim was to characterize fecal microbiomes to identify taxa that may influence the expression of food allergy. METHODS Stool samples were collected from children with IgE-mediated food allergies, siblings without food allergy, and non-allergic controls. Stool microbiome characterization was performed via next-generation sequencing (Illumina) of the V1V3 and V4 variable regions of the 16S rRNA gene. Bacterial diversity, evenness, richness, and relative abundance of the operational taxonomic units (OTUs) were evaluated using QIIME. ANOVA and Welch's t test were utilized to compare groups. RESULTS Sixty-eight children were included: food-allergic (n = 22), non-food-allergic siblings (n = 25), and controls (n = 21). When comparing fecal microbial communities across groups, differences were noted in Rikenellaceae (P = .035), Actinomycetaceae (P = .043), and Pasteurellaceae (P = .018), and nine other distinct OTUs. Food-allergic subjects had enrichment for specific microbes within the Clostridia class and Firmicutes phylum (Oscillobacter valericigenes, Lachnoclostridium bolteae, Faecalibacterium sp.) compared to siblings and controls. Identification of Clostridium sp. OTUs revealed differences in specific Clostridia drive the separation of the allergic from the siblings and controls. Alistipes sp. were enriched in non-allergic siblings. CONCLUSIONS Comparisons in the fecal microbiome of food-allergic children, siblings, and healthy children point to key differences in microbiome signatures, suggesting the role of both genetic and environmental contributors in the manifestation of food-allergic disease.
Collapse
Affiliation(s)
- Atoosa Kourosh
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Ruth A Luna
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, USA
| | - Miriam Balderas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, USA
| | - Christina Nance
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Aikaterini Anagnostou
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Sridevi Devaraj
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, USA
| | - Carla M Davis
- Section of Immunology, Allergy and Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
21
|
Haspeslagh E, Heyndrickx I, Hammad H, Lambrecht BN. The hygiene hypothesis: immunological mechanisms of airway tolerance. Curr Opin Immunol 2018; 54:102-108. [PMID: 29986301 PMCID: PMC6202673 DOI: 10.1016/j.coi.2018.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Microbial and environmental signals set tonic activation status of barrier tissues. Signaling from barrier tissues licenses dendritic cells to induce T helper 2 cells. Pulmonary immune system in early-life prone to asthma development. Mechanistic understanding needed to translate epidemiological findings in therapies.
The hygiene hypothesis was initially proposed as an explanation for the alarming rise in allergy prevalence in the last century. The immunological idea behind this hypothesis was a lack of infections associated with a Western lifestyle and a consequential reduction in type 1 immune responses. It is now understood that the development of tolerance to allergens depends on microbial colonization and immunostimulatory environmental signals during early-life or passed on by the mother. These environmental cues are sensed and integrated by barrier epithelial cells of the lungs and possibly skin, which in turn instruct dendritic cells to regulate or impede adaptive T cell responses. Recent reports also implicate immunoregulatory macrophages as powerful suppressors of allergy by the microbiome. We propose that loss of adequate microbial stimulation due to a Western lifestyle may result in hypersensitive barrier tissues and the observed rise in type 2 allergic disease.
Collapse
Affiliation(s)
- Eline Haspeslagh
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine, Ghent University, De Pintelaan 185 K12, B-9000 Ghent, Belgium
| | - Ines Heyndrickx
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine, Ghent University, De Pintelaan 185 K12, B-9000 Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine, Ghent University, De Pintelaan 185 K12, B-9000 Ghent, Belgium.
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium; Department of Internal Medicine, Ghent University, De Pintelaan 185 K12, B-9000 Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Ta LDH, Yap GC, Tay CJX, Lim ASM, Huang CH, Chu CW, De Sessions PF, Shek LP, Goh A, Van Bever HPS, Teoh OH, Soh JY, Thomas B, Ramamurthy MB, Goh DYT, Lay C, Soh SE, Chan YH, Saw SM, Kwek K, Chong YS, Godfrey KM, Hibberd ML, Lee BW. Establishment of the nasal microbiota in the first 18 months of life: Correlation with early-onset rhinitis and wheezing. J Allergy Clin Immunol 2018; 142:86-95. [PMID: 29452199 DOI: 10.1016/j.jaci.2018.01.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/19/2017] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Dynamic establishment of the nasal microbiota in early life influences local mucosal immune responses and susceptibility to childhood respiratory disorders. OBJECTIVE The aim of this case-control study was to monitor, evaluate, and compare development of the nasal microbiota of infants with rhinitis and wheeze in the first 18 months of life with those of healthy control subjects. METHODS Anterior nasal swabs of 122 subjects belonging to the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) birth cohort were collected longitudinally over 7 time points in the first 18 months of life. Nasal microbiota signatures were analyzed by using 16S rRNA multiplexed pair-end sequencing from 3 clinical groups: (1) patients with rhinitis alone (n = 28), (2) patients with rhinitis with concomitant wheeze (n = 34), and (3) healthy control subjects (n = 60). RESULTS Maturation of the nasal microbiome followed distinctive patterns in infants from both rhinitis groups compared with control subjects. Bacterial diversity increased over the period of 18 months of life in control infants, whereas infants with rhinitis showed a decreasing trend (P < .05). An increase in abundance of the Oxalobacteraceae family (Proteobacteria phylum) and Aerococcaceae family (Firmicutes phylum) was associated with rhinitis and concomitant wheeze (adjusted P < .01), whereas the Corynebacteriaceae family (Actinobacteria phylum) and early colonization with the Staphylococcaceae family (Firmicutes phylum; 3 weeks until 9 months) were associated with control subjects (adjusted P < .05). The only difference between the rhinitis and control groups was a reduced abundance of the Corynebacteriaceae family (adjusted P < .05). Determinants of nasal microbiota succession included sex, mode of delivery, presence of siblings, and infant care attendance. CONCLUSION Our results support the hypothesis that the nasal microbiome is involved in development of early-onset rhinitis and wheeze in infants.
Collapse
Affiliation(s)
- Le Duc Huy Ta
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gaik Chin Yap
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Carina Jing Xuan Tay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alicia Shi Min Lim
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chiung-Hui Huang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Collins Wenhan Chu
- Genome Institute of Singapore, Agency for Science, Technology and Research Singapore, Singapore
| | | | - Lynette P Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Anne Goh
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Hugo P S Van Bever
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Oon Hoe Teoh
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Jian Yi Soh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Biju Thomas
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Mahesh Babu Ramamurthy
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Daniel Y T Goh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Christophe Lay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Danone Nutricia Research, Singapore
| | - Shu-E Soh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Kenneth Kwek
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore
| | - Yap-Seng Chong
- Department of Obstetrics & Gynaecology, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research Singapore, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Martin Lloyd Hibberd
- Genome Institute of Singapore, Agency for Science, Technology and Research Singapore, Singapore
| | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
23
|
Sokolowska M, Frei R, Lunjani N, Akdis CA, O'Mahony L. Microbiome and asthma. Asthma Res Pract 2018; 4:1. [PMID: 29318023 PMCID: PMC5755449 DOI: 10.1186/s40733-017-0037-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022] Open
Abstract
The mucosal immune system is in constant communication with the vast diversity of microbes present on body surfaces. The discovery of novel molecular mechanisms, which mediate host-microbe communication, have highlighted the important roles played by microbes in influencing mucosal immune responses. Dendritic cells, epithelial cells, ILCs, T regulatory cells, effector lymphocytes, NKT cells and B cells can all be influenced by the microbiome. Many of the mechanisms being described are bacterial strain- or metabolite-specific. Microbial dysbiosis in the gut and the lung is increasingly being associated with the incidence and severity of asthma. More accurate endotyping of patients with asthma may be assisted by further analysis of the composition and metabolic activity of an individual’s microbiome. In addition, the efficacy of specific therapeutics may be influenced by the microbiome and novel bacterial-based therapeutics should be considered in future clinical studies.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Remo Frei
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Nonhlanhla Lunjani
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,University of Cape Town, Cape Town, South Africa
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Obere Strasse 22, 7270 Davos, Switzerland
| |
Collapse
|
24
|
Jatzlauk G, Bartel S, Heine H, Schloter M, Krauss-Etschmann S. Influences of environmental bacteria and their metabolites on allergies, asthma, and host microbiota. Allergy 2017; 72:1859-1867. [PMID: 28600901 DOI: 10.1111/all.13220] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2017] [Indexed: 02/07/2023]
Abstract
The prevalence of allergic diseases and asthma has dramatically increased over the last decades, resulting in a high burden for patients and healthcare systems. Thus, there is an unmet need to develop preventative strategies for these diseases. Epidemiological studies show that reduced exposure to environmental bacteria in early life (eg, birth by cesarean section, being formula-fed, growing up in an urban environment or with less contact to various persons) is associated with an increased risk to develop allergies and asthma later in life. Conversely, a reduced risk for asthma is consistently found in children growing up on traditional farms, thereby being exposed to a wide spectrum of microbes. However, clinical studies with bacteria to prevent allergic diseases are still rare and to some extent contradicting. A detailed mechanistic understanding of how environmental microbes influence the development of the human microbiome and the immune system is important to enable the development of novel preventative approaches that are based on the early modulation of the host microbiota and immunity. In this mini-review, we summarize current knowledge and experimental evidence for the potential of bacteria and their metabolites to be used for the prevention of asthma and allergic diseases.
Collapse
Affiliation(s)
- G. Jatzlauk
- Division of Early Life Origins of Chronic Lung Diseases; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
| | - S. Bartel
- Division of Early Life Origins of Chronic Lung Diseases; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
| | - H. Heine
- Division of Innate Immunity; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
| | - M. Schloter
- Research Unit Environmental Genomics; Helmholtz Zentrum München; Oberschleißheim Germany
| | - S. Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
- Institute for Experimental Medicine; Christian-Albrechts-Universität zu Kiel; Kiel Germany
| |
Collapse
|
25
|
Robinson A, Fiechtner L, Roche B, Ajami NJ, Petrosino JF, Camargo CA, Taveras EM, Hasegawa K. Association of Maternal Gestational Weight Gain With the Infant Fecal Microbiota. J Pediatr Gastroenterol Nutr 2017; 65:509-515. [PMID: 28272161 PMCID: PMC5589469 DOI: 10.1097/mpg.0000000000001566] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Pregnancy characteristics may influence the infant fecal microbiota during early life. We aimed to examine associations of maternal gestational weight gain with infant fecal microbiota composition, bacterial community richness, and Shannon diversity index. METHODS We analyzed data from a prospective cohort study of healthy infants. We collected prenatal data, including report of mother's gestational weight gain, and infant fecal samples from 84 infant-mother dyads. By applying 16S rRNA gene sequencing and an unbiased clustering by partitioning around medoids using Bray-Curtis distances, we identified 4 fecal microbiota profiles, and examined the associations of maternal gestational weight gain with the 4 fecal microbiota profiles, bacterial community richness, and Shannon diversity index. RESULTS Overall, the median age of infants was 4.0 months and 43% were girls. The mothers of the 84 infants gained a mean of 14.2 kg (standard deviation, 5.4 kg) during pregnancy. We identified 4 distinct microbiota profiles: Bifidobacterium-dominant (42%), Enterobacter/Veillonella-dominant (23%), Bacteroides-dominant (19%), and Escherichia-dominant (17%). Infants whose mothers had higher gestational weight gain were less likely to have a Bacteroides-dominant profile, corresponding to a relative risk ratio of 0.83 (95% confidence interval, 0.71-0.96; P = 0.01) per 1 kg increase in weight. In addition, higher gestational weight gain was also associated with lower bacterial community richness and Shannon diversity index (P < 0.05). CONCLUSIONS In this prospective cohort study of healthy infants, maternal gestational weight gain was associated with the infant fecal microbiota profiles, bacterial community richness, and Shannon diversity index.
Collapse
Affiliation(s)
- Alyssa Robinson
- Division of General Academic Pediatrics, Department of Pediatrics,
MassGeneral Hospital for Children, 125 Nashua Street, Suite 860,
Boston, MA 02114, USA
| | - Lauren Fiechtner
- Division of General Academic Pediatrics, Department of Pediatrics,
MassGeneral Hospital for Children, 125 Nashua Street, Suite 860,
Boston, MA 02114, USA
- Department of Gastroenterology and Nutrition, MassGeneral Hospital
for Children, 175 Cambridge St, 5 floor, Boston,
MA 02114 USA
| | - Brianna Roche
- Division of General Academic Pediatrics, Department of Pediatrics,
MassGeneral Hospital for Children, 125 Nashua Street, Suite 860,
Boston, MA 02114, USA
| | - Nadim J. Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of
Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza,
MS BCM385, Houston, TX, USA
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of
Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza,
MS BCM385, Houston, TX, USA
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital,
125 Nashua Street, Suite 920, Boston, MA 02114, USA
| | - Elsie M. Taveras
- Division of General Academic Pediatrics, Department of Pediatrics,
MassGeneral Hospital for Children, 125 Nashua Street, Suite 860,
Boston, MA 02114, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health,
677 Huntington Ave, Boston, MA, 02115 USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital,
125 Nashua Street, Suite 920, Boston, MA 02114, USA
| |
Collapse
|
26
|
The immunology of the allergy epidemic and the hygiene hypothesis. Nat Immunol 2017; 18:1076-1083. [PMID: 28926539 DOI: 10.1038/ni.3829] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022]
Abstract
The immunology of the hygiene hypothesis of allergy is complex and involves the loss of cellular and humoral immunoregulatory pathways as a result of the adoption of a Western lifestyle and the disappearance of chronic infectious diseases. The influence of diet and reduced microbiome diversity now forms the foundation of scientific thinking on how the allergy epidemic occurred, although clear mechanistic insights into the process in humans are still lacking. Here we propose that barrier epithelial cells are heavily influenced by environmental factors and by microbiome-derived danger signals and metabolites, and thus act as important rheostats for immunoregulation, particularly during early postnatal development. Preventive strategies based on this new knowledge could exploit the diversity of the microbial world and the way humans react to it, and possibly restore old symbiotic relationships that have been lost in recent times, without causing disease or requiring a return to an unhygienic life style.
Collapse
|
27
|
Hasegawa K, Stewart CJ, Mansbach JM, Linnemann RW, Ajami NJ, Petrosino JF, Camargo CA. Sphingolipid metabolism potential in fecal microbiome and bronchiolitis in infants: a case-control study. BMC Res Notes 2017; 10:325. [PMID: 28747215 PMCID: PMC5530560 DOI: 10.1186/s13104-017-2659-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Emerging evidence demonstrated that the structure of fecal microbiome is associated with the likelihood of bronchiolitis in infants. However, no study has examined functional profiles of fecal microbiome in infants with bronchiolitis. In this context, we conducted a case-control study. As a part of multicenter prospective study, we collected stool samples from 40 infants hospitalized with bronchiolitis (cases). We concurrently enrolled 115 age-matched healthy controls. RESULTS First, by applying 16S rRNA gene sequencing to these 155 fecal samples, we identified the taxonomic profiles of fecal microbiome. Next, based on the taxonomy data, we inferred the functional capabilities of fecal microbiome and tested for differences in the functional capabilities between cases and controls. Overall, the median age was 3 months and 45% were female. Among 274 metabolic pathways surveyed, there were significant differences between bronchiolitis cases and healthy controls for 37 pathways, including lipid metabolic pathways (false discovery rate [FDR] <0.05). Particularly, the fecal microbiome of bronchiolitis cases had consistently higher abundances of gene function related to the sphingolipid metabolic pathways compared to that of controls (FDR <0.05). These pathways were more abundant in infants with Bacteroides-dominant microbiome profile compared to the others (FDR <0.001). On the basis of the predicted metagenome in this case-control study, we found significant differences in the functional potential of fecal microbiome between infants with bronchiolitis and healthy controls. Although causal inferences remain premature, our data suggest a potential link between the bacteria-derived metabolites, modulations of host immune response, and development of bronchiolitis.
Collapse
Affiliation(s)
- Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, Suite 920, Boston, MA 02114-1101 USA
| | - Christopher J. Stewart
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX USA
| | | | - Rachel W. Linnemann
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA USA
| | - Nadim J. Ajami
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX USA
| | - Joseph F. Petrosino
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX USA
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, Suite 920, Boston, MA 02114-1101 USA
| |
Collapse
|
28
|
Becerra-Díaz M, Wills-Karp M, Heller NM. New perspectives on the regulation of type II inflammation in asthma. F1000Res 2017; 6:1014. [PMID: 28721208 PMCID: PMC5497827 DOI: 10.12688/f1000research.11198.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the lungs which has been thought to arise as a result of inappropriately directed T helper type-2 (Th2) immune responses of the lungs to otherwise innocuous inhaled antigens. Current asthma therapeutics are directed towards the amelioration of downstream consequences of type-2 immune responses (i.e. β-agonists) or broad-spectrum immunosuppression (i.e. corticosteroids). However, few approaches to date have been focused on the primary prevention of immune deviation. Advances in molecular phenotyping reveal heterogeneity within the asthmatic population with multiple endotypes whose varying expression depends on the interplay between numerous environmental factors and the inheritance of a broad range of susceptibility genes. The most common endotype is one described as "type-2-high" (i.e. high levels of interleukin [IL]-13, eosinophilia, and periostin). The identification of multiple endotypes has provided a potential explanation for the observations that therapies directed at typical Th2 cytokines (IL-4, IL-5, and IL-13) and their receptors have often fallen short when they were tested in a diverse group of asthmatic patients without first stratifying based on disease endotype or severity. However, despite the incorporation of endotype-dependent stratification schemes into clinical trial designs, variation in drug responses are still apparent, suggesting that additional genetic/environmental factors may be contributing to the diversity in drug efficacy. Herein, we will review recent advances in our understanding of the complex pathways involved in the initiation and regulation of type-2-mediated immune responses and their modulation by host factors (genetics, metabolic status, and the microbiome). Particular consideration will be given to how this knowledge could pave the way for further refinement of disease endotypes and/or the development of novel therapeutic strategies for the treatment of asthma .
Collapse
Affiliation(s)
- Mireya Becerra-Díaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Nicola M. Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|