1
|
Aguiar A, Menezes de Brito ASS, Santos AGAD, Watanabe PDS, Cuman RKN, Trevizan AR, de Lima LL, Bersani-Amado CA, Rinaldi JDC, Sant Ana DDMG, Nogueira-Melo GDA. Mastocytosis and intraepithelial lymphocytosis in the ileum and colon characterize chronic Toxoplasma gondii infection in mice. Tissue Cell 2024; 91:102533. [PMID: 39213782 DOI: 10.1016/j.tice.2024.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis, a common zoonotic disease affecting vertebrates with high global incidence. For the parasite to disseminate throughout the body, it crosses the intestinal barrier, triggering inflammatory reactions. This study aimed to assess the tissue response in the ileum and colon of mice following chronic infection with T. gondii. Fourteen mice were divided into two groups: the infected group received 1000 T. gondii oocysts via gavage, and after 60 days, the mice were euthanized. The ileum and colon were collected and processed for histological analysis, inflammatory marker measurement and myenteric neuron analysis. Chronic infection resulted in a significant increase in intraepithelial lymphocytes and mast cells, as well as morphometric changes such as increased total intestinal wall thickness of the ileum, crypt depth, collagen fiber area, and a decrease in myeloperoxidase activity, without altering nitric oxide levels. While the number of myenteric neurons remained unchanged, there was an increase in vasoactive intestinal peptide expression. These results suggest persistence intestinal inflammatory stimuli in chronic T. gondii infection.
Collapse
Affiliation(s)
- Aline Aguiar
- Graduate Program in Biosciences and Pathophysiology, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | - Paulo da Silva Watanabe
- Graduate Program in Biosciences and Pathophysiology, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Aline Rosa Trevizan
- Graduate Program in Biosciences and Pathophysiology, State University of Maringá, Maringá, Paraná, Brazil
| | - Lainy Leiny de Lima
- Graduate Program in Biosciences and Pathophysiology, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | | | | |
Collapse
|
2
|
Cordonnier C, Mandalasi M, Gigley J, Wohlfert EA, West CM, Blader IJ. The Toxoplasma oxygen-sensing protein, TgPhyA, is required for resistance to interferon gamma-mediated nutritional immunity in mice. PLoS Biol 2024; 22:e3002690. [PMID: 38857298 PMCID: PMC11192375 DOI: 10.1371/journal.pbio.3002690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/21/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
As Toxoplasma gondii disseminates through its host, the parasite must sense and adapt to its environment and scavenge nutrients. Oxygen (O2) is one such environmental factor and cytoplasmic prolyl 4-hydroxylases (PHDs) are evolutionarily conserved O2 cellular sensing proteins that regulate responses to changes in O2 availability. Toxoplasma expresses 2 PHDs. One of them, TgPHYa hydroxylates SKP1, a subunit of the SCF-E3 ubiquitin ligase complex. In vitro, TgPHYa is important for growth at low O2 levels. However, studies have yet to examine the role that TgPHYa or any other pathogen-encoded PHD plays in virulence and disease. Using a type II ME49 Toxoplasma TgPHYa knockout, we report that TgPHYa is important for Toxoplasma virulence and brain cyst formation in mice. We further find that while TgPHYa mutant parasites can establish an infection in the gut, they are unable to efficiently disseminate to peripheral tissues because the mutant parasites are unable to survive within recruited immune cells. Since this phenotype was abrogated in IFNγ knockout mice, we studied how TgPHYa mediates survival in IFNγ-treated cells. We find that TgPHYa is not required for release of parasite-encoded effectors into host cells that neutralize anti-parasitic processes induced by IFNγ. In contrast, we find that TgPHYa is required for the parasite to scavenge tryptophan, which is an amino acid whose levels are decreased after IFNγ up-regulates the tryptophan-catabolizing enzyme, indoleamine dioxygenase (IDO). We further find, relative to wild-type mice, that IDO knockout mice display increased morbidity when infected with TgPHYa knockout parasites. Together, these data identify the first parasite mechanism for evading IFNγ-induced nutritional immunity and highlight a novel role that oxygen-sensing proteins play in pathogen growth and virulence.
Collapse
Affiliation(s)
- Charlotte Cordonnier
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Msano Mandalasi
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Jason Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Elizabeth A. Wohlfert
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| |
Collapse
|
3
|
Martin AT, Giri S, Safronova A, Eliseeva SI, Kwok SF, Yarovinsky F. Parasite-induced IFN-γ regulates host defense via CD115 and mTOR-dependent mechanism of tissue-resident macrophage death. PLoS Pathog 2024; 20:e1011502. [PMID: 38377133 PMCID: PMC10906828 DOI: 10.1371/journal.ppat.1011502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/01/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Host resistance to a common protozoan parasite Toxoplasma gondii relies on a coordinated immune response involving multiple cell types, including macrophages. Embryonically seeded tissue-resident macrophages (TRMs) play a critical role in maintaining tissue homeostasis, but their role in parasite clearance is poorly understood. In this study, we uncovered a crucial aspect of host defense against T. gondii mediated by TRMs. Through the use of neutralizing antibodies and conditional IFN-γ receptor-deficient mice, we demonstrated that IFN-γ directly mediated the elimination of TRMs. Mechanistically, IFN-γ stimulation in vivo rendered macrophages unresponsive to macrophage colony-stimulating factor (M-CSF) and inactivated mTOR signaling by causing the shedding of CD115 (CSFR1), the receptor for M-CSF. Further experiments revealed the essential role of macrophage IFN-γ responsiveness in host resistance to T. gondii. The elimination of peritoneal TRMs emerged as an additional host defense mechanism aimed at limiting the parasite's reservoir. The identified mechanism, involving IFN-γ-induced suppression of CD115-dependent mTOR signaling in macrophages, provides insights into the adaptation of macrophage subsets during infection and highlights a crucial aspect of host defense against intracellular pathogens.
Collapse
Affiliation(s)
- Andrew T. Martin
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shilpi Giri
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Alexandra Safronova
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sophia I. Eliseeva
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Samantha F. Kwok
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Felix Yarovinsky
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
4
|
Su R, Yang Y. Gut commensal bacteria exacerbate toxoplasmosis associated with TgSheepCHn5 (ToxoDB#2) and TgRedpandaCHn1 (ToxoDB#20) through Th1 immune response. Parasitol Res 2023; 122:2795-2806. [PMID: 37782335 DOI: 10.1007/s00436-023-07962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Oral infection of mice with several strains of Toxoplasma gondii results in intestinal pathological lesions, which contributes to the invasion of this parasite. However, the exact mechanism is unclear, and only a few strains have been explored. Here, T. gondii TgSheepCHn5 and TgRedpandaCHn1 strains from sheep and red panda were evaluated. The TgSheepCHn5 and TgRedpandaCHn1 strains induced intestinal lesions, loss of Paneth cells, and gut commensal bacteria dysbiosis in Swiss Webster mice. The lesions and loss of Paneth cells were dependent on IFN-γ and gut commensal bacteria during T. gondii infection. Deleting IFN-γ or gut commensal bacteria suppressed the Th1 immune response, alleviated the lesions and parasite loading, and upregulated the number of Paneth cells. Loss of IFN-γ production accelerated mice death, whereas the deletion of gut commensal bacteria enhanced the survival time of the host. The Th1 cell immune responses have positive and negative effects on toxoplasmosis, resistance to T. gondii infection, and acceleration intestine lesions. Adjustment of Th1 cell responses and gut commensal bacteria may be effective treatments for toxoplasmosis.
Collapse
Affiliation(s)
- Ruijing Su
- Veterinary Pathology, College of Veterinary Science, Henan Agricultural University, Zhengzhou, China.
| | - Yurong Yang
- Veterinary Pathology, College of Veterinary Science, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
5
|
Hong S, Choi JH, Oh S, Yi MH, Kim SL, Kim M, Lee CW, Yang HJ, Chai JY, Yong TS, Jung BK, Kim JY. Gut microbiota differences induced by Toxoplasma gondii seropositivity in stray cats in South Korea. Parasitol Res 2023; 122:2413-2421. [PMID: 37596434 DOI: 10.1007/s00436-023-07943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
T. gondii is a highly prevalent parasite worldwide, with cats serving as its final host. However, few studies have investigated the impact of T. gondii infection on cat gut microbiota. Therefore, this study examined the influence of T. gondii infection on the gut microbiota of stray cats and identified potential pathogens in their feces. This study examined T. gondii infection through blood of stray cats and the influence of microbiota in their feces using 16S rRNA gene amplicon sequencing. The results revealed significant differences in gut microbiota composition and diversity between the T. gondii seropositive and seronegative groups. Seropositive samples displayed a lower number of operational taxonomic units and reduced Shannon index than the seronegative samples. The seropositive and seronegative groups exhibited enrichment of taxa, including Escherichia and Enterobacteriaceae and Collinsella, Bifidobacterium, and Roseburia, respectively. Furthermore, potential pathogen species, including Campylobacter, Escherichia, and Streptococcus, were identified in the fecal samples. These findings suggest that T. gondii infection significantly impacts gut microbiota composition and diversity in stray cats. Additionally, an increased potential pathogen load, represented by Escherichia spp., was observed. These results underscore the importance of monitoring the prevalence of zoonotic pathogens in stray cats, as they can serve as reservoirs for zoonotic diseases.
Collapse
Affiliation(s)
- Sooji Hong
- MediCheck Research Institute, Korea Association of Health Promotion, Seoul, 07649, Korea
- Department of Parasitology and Ewha Medical Research Center, Ewha Womans University School of Medicine, Seoul, 07084, Korea
| | - Jun Ho Choi
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Singeun Oh
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Myung-Hee Yi
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Soo Lim Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Myungjun Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | | | - Hyun-Jong Yang
- Department of Parasitology and Ewha Medical Research Center, Ewha Womans University School of Medicine, Seoul, 07084, Korea
| | - Jong-Yil Chai
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Tai-Soon Yong
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Bong-Kwang Jung
- MediCheck Research Institute, Korea Association of Health Promotion, Seoul, 07649, Korea.
| | - Ju Yeong Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
6
|
Barakat AM, El-Razik KAA, El Fadaly HAM, Saleh WM, Ali FAZ, Gouda AA, Sadek SAS, Dahran N, El-khadragy MF, Elmahallawy EK. Parasitological, Molecular, and Histopathological Investigation of the Potential Activity of Propolis and Wheat Germ Oil against Acute Toxoplasmosis in Mice. Pharmaceutics 2023; 15:pharmaceutics15020478. [PMID: 36839800 PMCID: PMC9967381 DOI: 10.3390/pharmaceutics15020478] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Toxoplasmosis is one of the most common parasitic zoonoses that affects all vertebrates. The drugs most commonly used against toxoplasmosis have many side effects, making the development of new antiparasitic drugs a big challenge. The present study evaluated the therapeutic effectiveness of novel herbal treatments, including propolis and wheat germ oil (WGO), against acute toxoplasmosis. A total of 50 albino mice were divided into five groups: group 1 (G1) (non-infected and non-treated); group 2 (G2) (infected without treatment); group 3 (G3) (treated with propolis); group 4 (G4) (treated with WGO); group 5 (G5) (treated with a combination of propolis and WGO). The effects of the herbal substances on different organs, mainly liver, spleen, and lungs, were investigated using parasitological, molecular, and histopathological examinations. The results of parasitological examination demonstrated statistically significant (p < 0.05) differences in the parasitic load between treated groups (G3, G4, and G5) compared to the control positive group (G2). These differences were represented by a significant reduction in the parasite load in stained tissue smears from the liver obtained from the animals treated with propolis (G3) compared to the parasite load in the positive control group. Similarly, animals (G4) treated with WGO exhibited a significant reduction in the parasite load versus the positive control group, while the lowest parasite load was found in G5, treated with propolis and WGO. Quantification of the parasite burden through molecular methods (PCR) revealed similar findings represented by reduction in the parasite burden in all treated groups with WGO and propolis as compared to the control group. Importantly, these previous parasitological and molecular findings were accompanied by a marked improvement in the histopathological picture of the liver, spleen, and lungs. In conclusion, propolis and WGO showed a good combination of therapeutic efficacy against acute toxoplasmosis.
Collapse
Affiliation(s)
- Ashraf Mohamed Barakat
- Department of Zoonotic Diseases, National Research Centre, El Buhouth St., Dokki, Giza 12622, Egypt
| | - Khaled A. Abd El-Razik
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Giza 12556, Egypt
| | | | - Walaa M. Saleh
- Department of Parasitology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Asmaa Aboelabbas Gouda
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Sabry A. S. Sadek
- Department of Zoonotic Diseases, National Research Centre, El Buhouth St., Dokki, Giza 12622, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Manal F. El-khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence:
| |
Collapse
|
7
|
Novel insights on the potential activity of propolis and wheat germ oil against chronic toxoplasmosis in experimentally infected mice. Biomed Pharmacother 2022; 156:113811. [DOI: 10.1016/j.biopha.2022.113811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/20/2022] Open
|
8
|
RIPK3 Facilitates Host Resistance to Oral Toxoplasma gondii Infection. Infect Immun 2021; 89:IAI.00021-21. [PMID: 33526566 PMCID: PMC8091083 DOI: 10.1128/iai.00021-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii infection activates pattern recognition receptor (PRR) pathways that drive innate inflammatory responses to control infection. Necroptosis is a proinflammatory cell death pathway apart from the innate immune response that has evolved to control pathogenic infection. In this study, we further defined the role of Z-DNA binding protein 1 (ZBP1) as a PRR and assessed its contribution to necroptosis as a host protection mechanism to T. gondii infection. We found that ZBP1 does not induce proinflammatory necroptosis cell death, and ZBP1 null mice have reduced survival after oral T. gondii infection. In contrast, mice deleted in receptor-interacting serine/threonine-protein kinase 3 (RIPK3-/-), a central mediator of necroptosis, have significantly improved survival after oral T. gondii infection without a reduction in parasite burden. The physiological consequences of RIPK3 activity did not show any differences in intestine villus immunopathology, but RIPK3-/- mice showed higher immune cell infiltration and edema in the lamina propria. The contribution of necroptosis to host survival was clarified with mixed-lineage kinase domain-like pseudokinase null (MLKL-/-) mice. We found MLKL-/- mice succumbed to oral T. gondii infection the same as wild-type mice, indicating necroptosis-independent RIPK3 activity impacts host survival. These results provide new insights on the impacts of proinflammatory cell death pathways as a mechanism of host defense to oral T. gondii infection.
Collapse
|
9
|
Elsheikha HM, Marra CM, Zhu XQ. Epidemiology, Pathophysiology, Diagnosis, and Management of Cerebral Toxoplasmosis. Clin Microbiol Rev 2021; 34:e00115-19. [PMID: 33239310 PMCID: PMC7690944 DOI: 10.1128/cmr.00115-19] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is known to infect a considerable number of mammalian and avian species and a substantial proportion of the world's human population. The parasite has an impressive ability to disseminate within the host's body and employs various tactics to overcome the highly regulatory blood-brain barrier and reside in the brain. In healthy individuals, T. gondii infection is largely tolerated without any obvious ill effects. However, primary infection in immunosuppressed patients can result in acute cerebral or systemic disease, and reactivation of latent tissue cysts can lead to a deadly outcome. It is imperative that treatment of life-threatening toxoplasmic encephalitis is timely and effective. Several therapeutic and prophylactic regimens have been used in clinical practice. Current approaches can control infection caused by the invasive and highly proliferative tachyzoites but cannot eliminate the dormant tissue cysts. Adverse events and other limitations are associated with the standard pyrimethamine-based therapy, and effective vaccines are unavailable. In this review, the epidemiology, economic impact, pathophysiology, diagnosis, and management of cerebral toxoplasmosis are discussed, and critical areas for future research are highlighted.
Collapse
Affiliation(s)
- Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Christina M Marra
- Departments of Neurology and Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, People's Republic of China
| |
Collapse
|
10
|
Mévélec MN, Lakhrif Z, Dimier-Poisson I. Key Limitations and New Insights Into the Toxoplasma gondii Parasite Stage Switching for Future Vaccine Development in Human, Livestock, and Cats. Front Cell Infect Microbiol 2020; 10:607198. [PMID: 33324583 PMCID: PMC7724089 DOI: 10.3389/fcimb.2020.607198] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a parasitic disease affecting human, livestock and cat. Prophylactic strategies would be ideal to prevent infection. In a One Health vaccination approach, the objectives would be the prevention of congenital disease in both women and livestock, prevention/reduction of T. gondii tissue cysts in food-producing animals; and oocyst shedding in cats. Over the last few years, an explosion of strategies for vaccine development, especially due to the development of genetic-engineering technologies has emerged. The field of vaccinology has been exploring safer vaccines by the generation of recombinant immunogenic proteins, naked DNA vaccines, and viral/bacterial recombinants vectors. These strategies based on single- or few antigens, are less efficacious than recombinant live-attenuated, mostly tachyzoite T. gondii vaccine candidates. Reflections on the development of an anti-Toxoplasma vaccine must focus not only on the appropriate route of administration, capable of inducing efficient immune response, but also on the choice of the antigen (s) of interest and the associated delivery systems. To answer these questions, the choice of the animal model is essential. If mice helped in understanding the protection mechanisms, the data obtained cannot be directly transposed to humans, livestock and cats. Moreover, effectiveness vaccines should elicit strong and protective humoral and cellular immune responses at both local and systemic levels against the different stages of the parasite. Finally, challenge protocols should use the oral route, major natural route of infection, either by feeding tissue cysts or oocysts from different T. gondii strains. Effective Toxoplasma vaccines depend on our understanding of the (1) protective host immune response during T. gondii invasion and infection in the different hosts, (2) manipulation and modulation of host immune response to ensure survival of the parasites able to evade and subvert host immunity, (3) molecular mechanisms that define specific stage development. This review presents an overview of the key limitations for the development of an effective vaccine and highlights the contributions made by recent studies on the mechanisms behind stage switching to offer interesting perspectives for vaccine development.
Collapse
Affiliation(s)
| | - Zineb Lakhrif
- Team BioMAP, Université de Tours, INRAE, ISP, Tours, France
| | | |
Collapse
|
11
|
Ortiz-Guerrero G, Gonzalez-Reyes RE, de-la-Torre A, Medina-Rincón G, Nava-Mesa MO. Pathophysiological Mechanisms of Cognitive Impairment and Neurodegeneration by Toxoplasma gondii Infection. Brain Sci 2020; 10:brainsci10060369. [PMID: 32545619 PMCID: PMC7349234 DOI: 10.3390/brainsci10060369] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite considered one of the most successful pathogens in the world, owing to its ability to produce long-lasting infections and to persist in the central nervous system (CNS) in most warm-blooded animals, including humans. This parasite has a preference to invade neurons and affect the functioning of glial cells. This could lead to neurological and behavioral changes associated with cognitive impairment. Although several studies in humans and animal models have reported controversial results about the relationship between toxoplasmosis and the onset of dementia as a causal factor, two recent meta-analyses have shown a relative association with Alzheimer’s disease (AD). AD is characterized by amyloid-β (Aβ) peptide accumulation, neurofibrillary tangles, and neuroinflammation. Different authors have found that toxoplasmosis may affect Aβ production in brain areas linked with memory functioning, and can induce a central immune response and neurotransmitter imbalance, which in turn, affect the nervous system microenvironment. In contrast, other studies have revealed a reduction of Aβ plaques and hyperphosphorylated tau protein formation in animal models, which might cause some protective effects. The aim of this article is to summarize and review the newest data in regard to different pathophysiological mechanisms of cerebral toxoplasmosis and their relationship with the development of AD and cognitive impairment. All these associations should be investigated further through clinical and experimental studies.
Collapse
Affiliation(s)
- Gloria Ortiz-Guerrero
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Rodrigo E. Gonzalez-Reyes
- GI en Neurociencias-NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia; (R.E.G.-R.); (A.d.-l.-T.); (G.M.-R.)
| | - Alejandra de-la-Torre
- GI en Neurociencias-NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia; (R.E.G.-R.); (A.d.-l.-T.); (G.M.-R.)
| | - German Medina-Rincón
- GI en Neurociencias-NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia; (R.E.G.-R.); (A.d.-l.-T.); (G.M.-R.)
| | - Mauricio O. Nava-Mesa
- GI en Neurociencias-NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia; (R.E.G.-R.); (A.d.-l.-T.); (G.M.-R.)
- Correspondence: ; Tel.: +57-1-2970200 (ext. 3354); Fax: +571-3440351
| |
Collapse
|
12
|
Dos Santos LM, Commodaro AG, Vasquez ARR, Kohlhoff M, de Paula Guerra DA, Coimbra RS, Martins-Filho OA, Teixeira-Carvalho A, Rizzo LV, Vieira LQ, Serra HM. Intestinal microbiota regulates tryptophan metabolism following oral infection with Toxoplasma gondii. Parasite Immunol 2020; 42:e12720. [PMID: 32275066 DOI: 10.1111/pim.12720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/24/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The intestinal microbiota plays an important role in modulating host immune responses. Oral Toxoplasma gondii infection can promote intestinal inflammation in certain mice strains. The IDO-AhR axis may control tryptophan (Trp) metabolism constituting an important immune regulatory mechanism in inflammatory settings. AIMS In the present study, we investigated the role of the intestinal microbiota on Trp metabolism during oral infection with T gondii. METHODS AND RESULTS Mice were treated with antibiotics for four weeks and then infected with T gondii by gavage. Histopathology and immune responses were evaluated 8 days after infection. We found that depletion of intestinal microbiota by antibiotics contributed to resistance against T gondii infection and led to reduced expression of AhR on dendritic and Treg cells. Mice depleted of Gram-negative bacteria presented higher levels of systemic Trp, downregulation of AhR expression and increased resistance to infection whereas depletion of Gram-positive bacteria did not affect susceptibility or expression of AhR on immune cells. CONCLUSION Our findings indicate that the intestinal microbiota can control Trp availability and provide a link between the AhR pathway and host-microbiota interaction in acute infection with T gondii.
Collapse
Affiliation(s)
- Liliane M Dos Santos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Alessandra G Commodaro
- Departmento de Oftalmologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Alicia R R Vasquez
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Markus Kohlhoff
- Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | | | - Roney S Coimbra
- Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | | | | | - Luiz V Rizzo
- Instituto Israelita de Pesquisa e Ensino, São Paulo, Brazil
| | - Leda Q Vieira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Horacio M Serra
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Córdoba, Argentina
| |
Collapse
|
13
|
Andrade MMC, Carneiro VL, Galvão AA, Fonseca TR, Vitor RWA, Alcantara-Neves NM, Cruz ÁA, Figueiredo CA. Toxoplasma gondii protects from IgE sensitization and induces Th1/Th2 immune profile. Parasite Immunol 2020; 42:e12694. [PMID: 31884701 DOI: 10.1111/pim.12694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii (T gondii) infection has been associated with protection against allergy and autoimmune diseases. We investigated the effects of T gondii infection on cytokine and antibody responses in atopic and nonatopic Brazilian subjects. We have measured in whole-blood cultures, Th1 (IFN-γ and IL-12), Th2 (IL-5) and regulatory cytokine IL-10 in blood cells unstimulated and stimulated with pokeweed mitogen or T gondii soluble tachyzoites antigen (STAg) or Dermatophagoides pteronyssinus antigen. A significant negative association was found between high levels of anti-dust mite IgE and T gondii seropositivity (OR = 0.46; 95%CI = 0.25-0.85). STAg stimulation induced a mixed profile of Th1 and Th2 cytokines (IFN-γ, IL-12 and IL-5) in Tg-positive atopic individuals compared with Tg-negative atopic individuals (P < .0001, P = .033 and P = .003, respectively). In contrast, IL-10 production was not different between these groups. No association was found between T gondii infection and asthma. We hypothesized that the protective effect on atopy might be related to the strong Th1 immune response to T gondii found on the seropositive subjects. From our knowledge, this is the first study to investigate the association between atopy and T gondii infection in Brazilian subjects, analysing the cellular immune responses.
Collapse
Affiliation(s)
- Milena M C Andrade
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Alana A Galvão
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Thales R Fonseca
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Ricardo W A Vitor
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Álvaro A Cruz
- ProAR - Universidade Federal da Bahia, Salvador, Brazil
| | - Camila A Figueiredo
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
14
|
Nakashima F, Pardo VS, Miola MP, Murata FHA, Paduan N, Longo SM, Brandão de Mattos CC, Pereira-Chioccola VL, Ricci O, de Mattos LC. Serum IgG Anti- Toxoplasma gondii Antibody Concentrations Do Not Correlate Nested PCR Results in Blood Donors. Front Cell Infect Microbiol 2020; 9:461. [PMID: 31993377 PMCID: PMC6970978 DOI: 10.3389/fcimb.2019.00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background:Toxoplasma gondii infects millions of individuals worldwide. This protozoan is food and water-borne transmitted but blood transfusion and organ transplantation constitute alternative forms for transmission. However, the influence of IgG anti-T. gondii antibodies in molecular analysis carried out in peripheral blood still remain unclear. This study aimed to investigate the serum IgG anti-T. gondii antibody concentrations correlate Nested PCR results in blood donors. Methods: 750 blood donors were enrolled. IgM and IgG anti-T. gondii antibodies were assessed by ELISA (DiaSorin, Italy). Nested PCR was performed with primers JW62/JW63 (288 bp) and B22/B23 (115 bp) of the T. gondii B1 gene. The mean values of IgG concentration were compared for PCR positive and PCR Negative blood donors using the t-test or Mann-Whitney according to the normal distribution (p-value ≤ 0.05). Results: 361 (48.1%) blood donors presented positive serology as follow: IgM+/IgG−: 5 (0.6%); IgM+/IgG+: 21 (2.8%); IgM−/IgG+: 335 (44.7%) and 389 (51.9%), negative serology. From 353 blood donors with positive serology tested, the Nested PCR was positive in 38 (10.8%) and negative in 315 (89.2%). There were no differences statistically significant between the mean values of serum IgG anti-T. gondii antibody concentrations and the Nested PCR results. Conclusions: In conclusion, our data show that variations in the serum IgG anti-T. gondii antibody concentrations do not correlate T. gondii parasitemia detected by Nested PCR in chronically infected healthy blood donors.
Collapse
Affiliation(s)
- Fabiana Nakashima
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | - Valquíria Sousa Pardo
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | - Marcos Paulo Miola
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil.,Blood Bank São José do Rio Preto, Fundação Faculdade Regional de Medicina, São Paulo, Brazil
| | | | - Natalia Paduan
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | - Stefani Miqueline Longo
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil
| | - Cinara Cássia Brandão de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil.,FAMERP Toxoplasma Research Group, São Paulo, Brazil
| | | | - Octávio Ricci
- Blood Bank São José do Rio Preto, Fundação Faculdade Regional de Medicina, São Paulo, Brazil
| | - Luiz Carlos de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil.,FAMERP Toxoplasma Research Group, São Paulo, Brazil
| |
Collapse
|
15
|
de Moura MLC, Alvares-Saraiva AM, Pérez EC, Xavier JG, Spadacci-Morena DD, Moysés CRS, Rocha PRD, Lallo MA. Cyclophosphamide Treatment Mimics Sub-Lethal Infections With Encephalitozoon intestinalis in Immunocompromised Individuals. Front Microbiol 2019; 10:2205. [PMID: 31608035 PMCID: PMC6773878 DOI: 10.3389/fmicb.2019.02205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/09/2019] [Indexed: 01/31/2023] Open
Abstract
Microsporidia, including Encephalitozoon intestinalis, are emerging pathogens which cause opportunistic infections in immunocompromised patients, such as those with AIDS, cancer, the elderly and people on immunosuppressive drugs. Intestinal mucosa (IM) is crucial for developing an efficient adaptive immune response against pathogenic micro-organisms, thereby preventing their colonization and subsequent infection. As immunosuppressive drugs affect the intestinal immune response is little known. In the present study, we investigated the immune response to E. intestinalis infection in the IM and gut-associated lymphoid tissue (GALT) in cyclophosphamide (Cy) immunosuppressed mice, to mimic an immunocompromised condition. Histopathology revealed lymphoplasmacytic enteritis at 7 and 14 days-post-infection (dpi) in all infected groups, however, inflammation diminished at 21 and 28 dpi. Cy treatment also led to a higher number of E. intestinalis spores and lesions, which reduced at 28 dpi. In addition, flow cytometry analysis demonstrated CD4+ and CD8+ T cells to be predominant immune cells, with up-regulation in both Th1 and Th2 cytokines at 7 and 14 dpi, as demonstrated by histopathology. In conclusion, Cy treatment reduced GALT (Peyer’s plaques and mesenteric lymph nodes) and peritoneum populations but increased the T-cell population in the intestinal mucosa and the production of pro-and anti-inflammatory cytokines, which were able to eliminate this opportunistic fungus and reduced the E. intestinalis infection.
Collapse
Affiliation(s)
- Maria Lucia Costa de Moura
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| | | | - Elizabeth Cristina Pérez
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| | - José Guilherme Xavier
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| | | | | | | | - Maria Anete Lallo
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brazil
| |
Collapse
|
16
|
Delgado Betancourt E, Hamid B, Fabian BT, Klotz C, Hartmann S, Seeber F. From Entry to Early Dissemination- Toxoplasma gondii's Initial Encounter With Its Host. Front Cell Infect Microbiol 2019; 9:46. [PMID: 30891433 PMCID: PMC6411707 DOI: 10.3389/fcimb.2019.00046] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is a zoonotic intracellular parasite, able to infect any warm-blooded animal via ingestion of infective stages, either contained in tissue cysts or oocysts released into the environment. While immune responses during infection are well-studied, there is still limited knowledge about the very early infection events in the gut tissue after infection via the oral route. Here we briefly discuss differences in host-specific responses following infection with oocyst-derived sporozoites vs. tissue cyst-derived bradyzoites. A focus is given to innate intestinal defense mechanisms and early immune cell events that precede T. gondii's dissemination in the host. We propose stem cell-derived intestinal organoids as a model to study early events of natural host-pathogen interaction. These offer several advantages such as live cell imaging and transcriptomic profiling of the earliest invasion processes. We additionally highlight the necessity of an appropriate large animal model reflecting human infection more closely than conventional infection models, to study the roles of dendritic cells and macrophages during early infection.
Collapse
Affiliation(s)
| | - Benjamin Hamid
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Benedikt T Fabian
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Christian Klotz
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Frank Seeber
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
17
|
Mitsunaga T, Norose K, Aosai F, Horie H, Ohnuma N, Yano A. Infection dynamics of Toxoplasma gondii in gut-associated tissues after oral infection: The role of Peyer's patches. Parasitol Int 2018; 68:40-47. [PMID: 30189256 DOI: 10.1016/j.parint.2018.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 08/31/2018] [Indexed: 01/26/2023]
Abstract
Toxoplasma gondii is a common perorally transmitted parasite; however, its immunopathogenesis in gut-associated tissues remains unclear. Here, we compared disease manifestation in C57BL/6 immunocompetent wild type (WT) mice and immunocompromised interferon (IFN)-γ-deficient (GKO) mice after peroral infection (PI) with T. gondii cysts (Fukaya strain). Strong PI-induced Th1 cytokine expression was detected in WT mice. Moreover, bradyzoite-specific T.g.HSP30/bag1 mRNA was detected in the ileum parenchyma and Peyer's patches (PP), but not in the mesenteric lymph nodes, at 7 days post-infection in WT mice, and was significantly higher than that in GKO mice. Nested PCR showed that parasites existed in ileum parenchyma at days 1 and 1.5 post-PI in GKO and WT mice, respectively. In addition, quantitative competitive-PCR indicated that T. gondii first colonized the PP (day 3 post-PI), followed by the ileum parenchyma and mesenteric lymph nodes, spleen, and portal and aortic blood (day 7 post-PI). Although parasites were consistently more abundant in GKO mice, similar invasion and dissemination patterns were observed in the two hosts. Collectively, these data suggest that some zoites differentiate from tachyzoites to bradyzoites in the ileum and that T. gondii initially invades the ileum parenchyma, and then accumulates and proliferates in the PP before disseminating through the lymphatic systems of both GKO and WT hosts.
Collapse
Affiliation(s)
- Tetsuya Mitsunaga
- Department of Infection & Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Kazumi Norose
- Department of Infection & Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Fumie Aosai
- Department of Infection & Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Department of Infection and Host Defense, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Hiroshi Horie
- Department of Pathology, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Naomi Ohnuma
- Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Akihiko Yano
- Department of Infection & Host Defense, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
18
|
Couturier-Maillard A, Froux N, Piotet-Morin J, Michaudel C, Brault L, Le Bérichel J, Sénéchal A, Robinet P, Chenuet P, Jejou S, Dumoutier L, Renauld JC, Iovanna J, Huber S, Chamaillard M, Quesniaux V, Sokol H, Chamaillard M, Ryffel B. Interleukin-22-deficiency and microbiota contribute to the exacerbation of Toxoplasma gondii-induced intestinal inflammation. Mucosal Immunol 2018; 11:1181-1190. [PMID: 29728643 DOI: 10.1038/s41385-018-0005-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 02/04/2023]
Abstract
Upon oral infection with Toxoplasma gondii cysts (76 K strain) tachyzoites are released into the intestinal lumen and cross the epithelial barrier causing damage and acute intestinal inflammation in C57BL/6 (B6) mice. Here we investigated the role of microbiota and IL-22 in T.gondii-induced small intestinal inflammation. Oral T.gondii infection in B6 mice causes inflammation with IFNγ and IL-22 production. In IL-22-deficient mice, T.gondii infection augments the Th1 driven inflammation. Deficiency in either IL-22bp, the soluble IL-22 receptor or Reg3γ, an IL-22-dependent antimicrobial lectin/peptide, did not reduce inflammation. Under germ-free conditions, T.gondii-induced inflammation was reduced in correlation with parasite load. But intestinal inflammation is still present in germ-free mice, at low level, in the lamina propria, independently of IL-22 expression. Exacerbated intestinal inflammation driven by absence of IL-22 appears to be independent of IL-22 deficiency associated-dysbiosis as similar inflammation was observed after fecal transplantation of IL-22-/- or WT microbiota to germ-free-WT mice. Our results suggest cooperation between parasite and intestinal microbiota in small intestine inflammation development and endogenous IL-22 seems to exert a protective role independently of its effect on the microbiota. In conclusion, IL-22 participates in T.gondii induced acute small intestinal inflammation independently of microbiota and Reg3γ.
Collapse
Affiliation(s)
- A Couturier-Maillard
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), CNRS and University of Orleans (UMR7355), Orléans, France
| | - N Froux
- CNRS UPS44 -TAAM, Orléans, France
| | - J Piotet-Morin
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), CNRS and University of Orleans (UMR7355), Orléans, France
| | - C Michaudel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), CNRS and University of Orleans (UMR7355), Orléans, France
| | - L Brault
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), CNRS and University of Orleans (UMR7355), Orléans, France
| | - J Le Bérichel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), CNRS and University of Orleans (UMR7355), Orléans, France
| | | | - P Robinet
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), CNRS and University of Orleans (UMR7355), Orléans, France
| | - P Chenuet
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), CNRS and University of Orleans (UMR7355), Orléans, France
| | - S Jejou
- Sorbonne Universités, UPMC Univ. Paris 06, École Normale Supérieure, PSL Research University, CNRS, INSERM, APHP, Laboratoire des Biomolécules (LBM), 27 rue de Chaligny, 75005, Paris, France
| | - L Dumoutier
- Ludwig Institute for Cancer Research, Université Catholique de Louvain, Brussels, Belgium
| | - J C Renauld
- Ludwig Institute for Cancer Research, Université Catholique de Louvain, Brussels, Belgium
| | - J Iovanna
- INSERM U1068, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université and Institut Paoli-Calmette, Parc Scientifique et Technologique de Luminy, CNRS UMR 7258, Marseille, France
| | - S Huber
- Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, 20246, Germany
| | | | - Vfj Quesniaux
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), CNRS and University of Orleans (UMR7355), Orléans, France
| | - H Sokol
- Sorbonne Universités, UPMC Univ. Paris 06, École Normale Supérieure, PSL Research University, CNRS, INSERM, APHP, Laboratoire des Biomolécules (LBM), 27 rue de Chaligny, 75005, Paris, France
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78352, France
- Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique-Hopitaux de Paris, UPMC, Paris, France
| | - M Chamaillard
- Department of Gastroenterology, Saint Antoine Hospital, Assistance Publique-Hopitaux de Paris, UPMC, Paris, France
| | - B Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), CNRS and University of Orleans (UMR7355), Orléans, France.
| |
Collapse
|
19
|
López-Yglesias AH, Burger E, Araujo A, Martin AT, Yarovinsky F. T-bet-independent Th1 response induces intestinal immunopathology during Toxoplasma gondii infection. Mucosal Immunol 2018; 11:921-931. [PMID: 29297501 PMCID: PMC6179443 DOI: 10.1038/mi.2017.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/22/2017] [Indexed: 02/04/2023]
Abstract
Coordinated production of IFN-γ by innate and adaptive immune cells is central for host defense, but can also trigger immunopathology. The investigation of the lymphoid cell-specific contribution to the IFN-γ-mediated intestinal pathology during Toxoplasma gondii infection identified CD4+ T cells as a key cell population responsible for IFN-γ-dependent intestinal inflammation and Paneth cell loss, where T-bet-dependent group 1 innate lymphoid cells have a minor role in driving the parasite-induced immunopathology. This was evident from the analysis of T-bet deficiency that did not prevent the intestinal inflammation and instead revealed that T-bet-deficient CD4+ Th1 cells are sufficient for T. gondii-triggered acute ileitis and Paneth cell loss. These results revealed that T-bet-independent Th1 effector cells are major functional mediators of the type I immunopathological response during acute gastrointestinal infection.
Collapse
Affiliation(s)
- Américo H. López-Yglesias
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY
| | - Elise Burger
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY
| | - Alessandra Araujo
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY
| | - Andrew T. Martin
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY
| | - Felix Yarovinsky
- Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY
| |
Collapse
|
20
|
Schneider LCL, do Nascimento JCP, Trevizan AR, Góis MB, Borges SC, Beraldi EJ, Garcia JL, Sant'Ana DMG, Buttow NC. Toxoplasma gondii promotes changes in VIPergic submucosal neurons, mucosal intraepithelial lymphocytes, and goblet cells during acute infection in the ileum of rats. Neurogastroenterol Motil 2018; 30:e13264. [PMID: 29266818 DOI: 10.1111/nmo.13264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND The intestinal mucosa plays an important role in the mechanical barrier against pathogens. During Toxoplasma gondii infection, however, the parasites invade the epithelial cells of the small intestine and initiate a local immune response. In the submucosal plexus, this response promotes an imbalance of neurotransmitters and induces neuroplasticity, which can change the integrity of the epithelium and its secretory function. This study evaluated the submucosal neurons throughout acute T. gondii infection and the relationship between possible alterations and the epithelial and immune defense cells of the mucosa. METHODS Forty Wistar rats were randomly assigned to 8 groups (n = 5): 1 control group, uninfected, and 7 groups infected with an inoculation of 5000 sporulated T. gondii oocysts (ME-49 strain, genotype II). Segments of the ileum were collected for standard histological processing, histochemical techniques, and immunofluorescence. KEY RESULTS The infection caused progressive neuronal loss in the submucosal general population and changed the proportion of VIPergic neurons throughout the infection periods. These changes may be related to the observed reduction in goblet cells that secret sialomucins and increase in intraepithelial lymphocytes after 24 hours, and the increase in immune cells in the lamina propria after 10 days of infection. The submucosa also presented fibrogenesis, characterizing injury and tissue repair. CONCLUSIONS AND INFERENCES The acute T. gondii infection in the ileum of rats changes the proportion of VIPergic neurons and the epithelial cells, which can compromise the mucosal defense during infection.
Collapse
Affiliation(s)
- L C L Schneider
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - J C P do Nascimento
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - A R Trevizan
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - M B Góis
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - S C Borges
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - E J Beraldi
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - J L Garcia
- State University of Londrina, Londrina, Paraná, Brazil
| | - D M G Sant'Ana
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - N C Buttow
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
21
|
Quan JH, Huang R, Wang Z, Huang S, Choi IW, Zhou Y, Lee YH, Chu JQ. P2X7 receptor mediates NLRP3-dependent IL-1β secretion and parasite proliferation in Toxoplasma gondii-infected human small intestinal epithelial cells. Parasit Vectors 2018; 11:1. [PMID: 29291748 PMCID: PMC5748956 DOI: 10.1186/s13071-017-2573-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022] Open
Abstract
Background Toxoplasma gondii can invade and replicate in all nucleated cells in a wide range of host species, and infection induces IL-1β production. IL-1β plays central roles in the stimulation of the innate immune system and inflammation. However, little is known of the innate immune responses in human fetal small intestinal epithelial cells (FHs 74 Int cells) after T. gondii infection. Methods FHs 74 Int cells were infected with the T. gondii GFP-RH strain. Then, IL-1β production and its mechanisms of action were evaluated using ELISA, MTT cell viability assays, Western blotting, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR), and gene-specific small interfering RNA (siRNA) transfection. Results Infection of FHs 74 Int cells by T. gondii triggered significant time- and dose-dependent IL-1β production. Although T. gondii activated NLRP1, NLRP3, NLRC4 and AIM2 inflammasomes in FHs 74 Int cells, NLRP3 levels were consistently and significantly time-dependently increased, while the other inflammasomes were not. Transfection with siRNA targeting NLRP3, cleaved caspase-1 (Casp-1) or ASC significantly reduced T. gondii-induced IL-1β production, whereas T. gondii proliferation was markedly increased. Toxoplasma gondii infection activated P2X7 receptor (P2X7R) levels in FHs 74 Int cells in a time-dependent manner; however, transfection with siRNA targeting P2X7R significantly reduced T. gondii-induced IL-1β secretion and substantially increased T. gondii proliferation, which is mediated by decreased protein expression levels of NLRP3, cleaved Casp-1 and ASC. Collectively, NLRP3-dependent IL-1β secretion is mediated by P2X7R in small intestinal epithelial cells in response to T. gondii infection, thereby controlling parasite proliferation. Conclusions This study revealed that the P2X7R/NLRP3 pathway plays important roles in IL-1β secretion and inhibition of T. gondii proliferation in small intestinal epithelial cells. These results not only contribute to our understanding of the mucosal immune mechanisms of T. gondii infection but also offer new insight into the identification of innate resistance in the gut epithelium. Electronic supplementary material The online version of this article (10.1186/s13071-017-2573-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan-Hua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, 524001, People's Republic of China
| | - Rui Huang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, 524001, People's Republic of China
| | - Zhuang Wang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, 524001, People's Republic of China
| | - Shuai Huang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, 524001, People's Republic of China
| | - In-Wook Choi
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yu Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, 524001, People's Republic of China
| | - Young-Ha Lee
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| | - Jia-Qi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, 524001, People's Republic of China.
| |
Collapse
|
22
|
Han SJ, Glatman Zaretsky A, Andrade-Oliveira V, Collins N, Dzutsev A, Shaik J, Morais da Fonseca D, Harrison OJ, Tamoutounour S, Byrd AL, Smelkinson M, Bouladoux N, Bliska JB, Brenchley JM, Brodsky IE, Belkaid Y. White Adipose Tissue Is a Reservoir for Memory T Cells and Promotes Protective Memory Responses to Infection. Immunity 2017; 47:1154-1168.e6. [PMID: 29221731 DOI: 10.1016/j.immuni.2017.11.009] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/13/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Abstract
White adipose tissue bridges body organs and plays a fundamental role in host metabolism. To what extent adipose tissue also contributes to immune surveillance and long-term protective defense remains largely unknown. Here, we have shown that at steady state, white adipose tissue contained abundant memory lymphocyte populations. After infection, white adipose tissue accumulated large numbers of pathogen-specific memory T cells, including tissue-resident cells. Memory T cells in white adipose tissue expressed a distinct metabolic profile, and white adipose tissue from previously infected mice was sufficient to protect uninfected mice from lethal pathogen challenge. Induction of recall responses within white adipose tissue was associated with the collapse of lipid metabolism in favor of antimicrobial responses. Our results suggest that white adipose tissue represents a memory T cell reservoir that provides potent and rapid effector memory responses, positioning this compartment as a potential major contributor to immunological memory.
Collapse
Affiliation(s)
- Seong-Ji Han
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Arielle Glatman Zaretsky
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Vinicius Andrade-Oliveira
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicholas Collins
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jahangheer Shaik
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Denise Morais da Fonseca
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Oliver J Harrison
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Samira Tamoutounour
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Allyson L Byrd
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Department of Bioinformatics, Boston University, Boston, MA 02215, USA
| | - Margery Smelkinson
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; NIAID Microbiome Program, NIH, Bethesda, MD 20892, USA
| | - James B Bliska
- Department of Molecular Genetics and Microbiology, 238 Centers for Molecular Medicine, Stony Brook University, Stonybrook, NY 11794, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; NIAID Microbiome Program, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Imam A, Al-Anzi FG, Al-Ghasham MA, Al-Suraikh MA, Al-Yahya AO, Rasheed Z. Serologic evidence of Toxoplasma gondii infection among cancer patients. A prospective study from Qassim region, Saudi Arabia. Saudi Med J 2017; 38:319-321. [PMID: 28251231 PMCID: PMC5387912 DOI: 10.15537/smj.2017.3.18535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives: To determine the frequency of antibody seropositivity of Toxoplasma gondii infection in a cancer patient population. We also explored on association of Toxoplasma gondii seropositivity with selected variables. Methods: This is a prospective cross-sectional study conducted at Prince Faisal bin Bandar cancer center, Qassim, Saudi Arabia, from November 2014 to March 2015. One hundred thirty seven patients were involved in the study. Demographic data was collected using structured questionnaire, and clinical information was retrieved from the patient’s medical reports. Enzyme-linked immunosorbent assay technique was used for antibody assay. Results: The frequency of seropositivity for Toxoplasma gondii infection was 30.6%. The patient’s age range from 1.5-84 years with a geometric mean of 42.7 years. The seropositivity was significantly higher (p<0.05) among the 40-80 years age group (71.4%) as compared to 0-39 years one (28.6%). Conclusion: The prevalence of Toxoplasma gondii increases with increasing age among cancer patients in this region of central Saudi Arabia. More research is advisable for better understanding of ageing in pathogenesis of toxoplasmosis among patients with malignancies.
Collapse
Affiliation(s)
- Abdelmageed Imam
- Parasitology Unit, College of Medicine, Qassim University, Qassim, Kingdom of Saudi Arabia. E-mail.
| | | | | | | | | | | |
Collapse
|
24
|
Wohlfert EA, Blader IJ, Wilson EH. Brains and Brawn: Toxoplasma Infections of the Central Nervous System and Skeletal Muscle. Trends Parasitol 2017; 33:519-531. [PMID: 28483381 PMCID: PMC5549945 DOI: 10.1016/j.pt.2017.04.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/29/2017] [Accepted: 04/08/2017] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii is a widespread parasitic pathogen that infects over a third of the world's population. Following an acute infection, the parasite can persist within its mammalian host as intraneuronal or intramuscular cysts. Cysts will occasionally reactivate, and - depending on the host's immune status and site of reactivation - encephalitis or myositis can develop. Because these diseases have high levels of morbidity and can be lethal, it is important to understand how Toxoplasma traffics to these tissues, how the immune response controls parasite burden and contributes to tissue damage, and what mechanisms underlie neurological and muscular pathologies that toxoplasmosis patients present with. This review aims to summarize recent important developments addressing these critical topics.
Collapse
Affiliation(s)
- Elizabeth A Wohlfert
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA.
| | - Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA.
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
25
|
Rougier S, Montoya JG, Peyron F. Lifelong Persistence of Toxoplasma Cysts: A Questionable Dogma? Trends Parasitol 2016; 33:93-101. [PMID: 27939103 DOI: 10.1016/j.pt.2016.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/01/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
Abstract
It is believed that infection by Toxoplasma gondii triggers a lifelong protective immunity due to the persistence of parasitic cysts which induce immunoprotection against reinfection. A review of the scientific literature since the 1950s did not yield any definitive data regarding the duration of cysts in the host or the presence of lifelong protective immunity, which led us to question this dogma. We put forward the hypothesis that sustained immunity to T. gondii requires repeated antigenic stimulations. The decline of seroprevalence recently observed in many countries might contribute to explain the loss of immunity. We address the potential consequences of this phenomenon, should it persist and worsen.
Collapse
Affiliation(s)
- Solène Rougier
- Hospices Civils de Lyon, Institut de Parasitologie et Mycologie Médicale, Hôpital de la Croix Rousse, F-69317 Lyon, France
| | - Jose G Montoya
- Department of Medicine and Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA; Palo Alto Medical Foundation Toxoplasma Serology Laboratory, Palo Alto, CA 94301, USA
| | - François Peyron
- Hospices Civils de Lyon, Institut de Parasitologie et Mycologie Médicale, Hôpital de la Croix Rousse, F-69317 Lyon, France.
| |
Collapse
|
26
|
Severance EG, Xiao J, Jones-Brando L, Sabunciyan S, Li Y, Pletnikov M, Prandovszky E, Yolken R. Toxoplasma gondii-A Gastrointestinal Pathogen Associated with Human Brain Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:143-163. [PMID: 27793216 DOI: 10.1016/bs.irn.2016.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Serious psychiatric disorders such as schizophrenia, bipolar disorder, and major depression are important causes of mortality and morbidity worldwide. While these are primarily diseases involving altered brain functioning, numerous studies have documented increased rates of gastrointestinal inflammation and dysfunction in many individuals with these disorders. Toxoplasma gondii is an apicomplexan protozoan intracellular parasite with a widespread distribution in both developed and developing countries. Toxoplasma organisms enter the ecosystem through the shedding of oocysts by Toxoplasma-infected felines. In almost all cases of postnatal human infection, Toxoplasma enters its hosts through the intestinal tract either by the ingestion of oocysts or by the consumption of meat from food animals which themselves were infected by Toxoplasma oocysts. It had previously been thought that most cases of Toxoplasma infection in immune competent children and adults were inapparent and asymptomatic. However, recent studies cast doubt on this concept as exposure to Toxoplasma has been associated with a range of acute and chronic symptoms. Of particular note has been the finding of an increased rate of a range of neurological and psychiatric disorders associated with serological evidence of Toxoplasma exposure. A role of Toxoplasma infection in brain diseases is also supported by the consistent finding of altered cognition and behavior in animal models of infections. Much of the attention relating to the role of Toxoplasma infection in neuropsychiatric disorders has focused on the brain, where Toxoplasma tissue cysts can persist for extended periods of time. However, recent discoveries relating to the role of the gastrointestinal tract in cognition and behavior suggest that Toxoplasma may also increase susceptibility to human brain diseases through immune activation, particularly involving the gastrointestinal mucosa. The study of the pathways relating to the pathobiology and immunology of Toxoplasma infection may provide insights into the pathogenesis of a range of human neuropsychiatric disorders as well as into cognitive functioning in otherwise healthy individuals.
Collapse
Affiliation(s)
- E G Severance
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - J Xiao
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - L Jones-Brando
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - S Sabunciyan
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Y Li
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - M Pletnikov
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - E Prandovszky
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - R Yolken
- Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
27
|
Cervantes-Valencia ME, Alcalá-Canto Y, Sumano-Lopez H, Ducoing-Watty AM, Gutierrez-Olvera L. Effects of Curcuma longa dietary inclusion against Eimeria spp. in naturally-infected lambs. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2015.12.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Unmethylated CpG motifs inToxoplasma gondiiDNA induce TLR9- and IFN-β-dependent expression ofα-defensin-5 in intestinal epithelial cells. Parasitology 2015; 143:60-8. [DOI: 10.1017/s0031182015001456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SUMMARYThe gut epithelial barrier is a strategic place to prevent, or at least to limit, parasite dissemination upon oral infection withToxoplasma gondii. Innate immunity to this pathogen results from delicate interactions involving different components of the infecting agent and the host. We herein aimed to examine the molecular mechanism by which protozoan DNA boosts the production ofα-defensin-5 (DEFA-5), the main antimicrobial peptide at the target site of infection. The present study shows that DEFA-5 is rapidly upregulated in intestinal epithelial cells following intracellular Toll-like receptor 9 (TLR9) activation by unmethylated CpG motifs in DNA fromT. gondii(CpG-DNA). Concomitantly, CpG-DNA purified from the pathogen markedly increased TLR9 mRNA expression levels in the Caco-2 cell line. We further verified that DEFA-5 production was dependent on interferon-βreleased from these cells upon treatment with CpG-DNA prepared from tachyzoites. Our results suggest that, in protozoan DNA-stimulated intestinal epithelial cells, the TLR9/interferon-β/DEFA-5 pathway may initiate an innate anti-T. gondiiresponse without the need of parasite invasion. These findings highlight the key role of the gut epithelium in Toxoplasma recognition and amplification of local host defence against this microbe, thereby contributing to gain insight into immunoprotective mechanisms and to improve therapeutic strategies.
Collapse
|
29
|
Cohen SB, Denkers EY. Impact of Toxoplasma gondii on Dendritic Cell Subset Function in the Intestinal Mucosa. THE JOURNAL OF IMMUNOLOGY 2015; 195:2754-62. [PMID: 26283477 DOI: 10.4049/jimmunol.1501137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/20/2015] [Indexed: 01/10/2023]
Abstract
The function of mucosal dendritic cell (DC) subsets in immunity and inflammation is not well understood. In this study, we define four DC subsets present within the lamina propria and mesenteric lymph node compartments based on expression of CD103 and CD11b. Using IL-12p40 YFP (Yet40) reporter mice, we show that CD103(+)CD11b(-) mucosal DCs are primary in vivo sources of IL-12p40; we also identified CD103(-)CD11b(-) mucosal DCs as a novel population producing this cytokine. Infection was preferentially found in CD11b(+) DCs that were negative for CD103. Lamina propria DCs containing parasites were negative for IL-12p40. Instead, production of the cytokine was strictly a property of noninfected cells. We also show that vitamin A metabolism, as measured by ALDH activity, was preferentially found in CD103(+)CD11b(+) DC and was strongly downregulated in all mucosal DC subsets during infection. Finally, overall apoptosis of lamina propria DC subsets was increased during infection. Combined, these results highlight the ability of intestinal Toxoplasma infection to alter mucosal DC activity at both the whole population level and at the level of individual subsets.
Collapse
Affiliation(s)
- Sara B Cohen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Eric Y Denkers
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
30
|
Hakimi MA, Bougdour A. Toxoplasma 's ways of manipulating the host transcriptome via secreted effectors. Curr Opin Microbiol 2015; 26:24-31. [DOI: 10.1016/j.mib.2015.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 12/12/2022]
|