1
|
Di Cicco M, Bertolucci G, Gerini C, Bruschi F, Peroni DG. Eosinophilia and potential antibody cross-reactivity between parasites in a child with pinworm and immune dysregulation: a case report. BMC Pediatr 2023; 23:200. [PMID: 37101158 PMCID: PMC10134642 DOI: 10.1186/s12887-023-04006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Intestinal parasitic infections are common in humans, especially among young children. These conditions are often asymptomatic and self-limiting, and diagnosis is mainly based on the search for ova and parasites in the stools since serology may be biased due to cross reactivity between parasites. Pinworm is common in children and is not usually associated with hypereosinophilia; adhesive-tape test is the gold standard testing for the microscopic detection of Enterobious vermicularis (Ev) eggs. CASE PRESENTATION A 13-year-old boy was referred due to a self-resolving episode of vomiting and palpebral oedema after dinner, together with a history of chronic rhinitis, chronic cough, absolute IgA deficiency and Hashimoto's thyroiditis and hypereosinophilia (higher value = 3140/µl). On evaluation we detected only palpable thyroid and hypertrophic nasal turbinates. Food allergy was excluded, but skin prick tests showed sensitization to house dust mites and cat epithelium and spirometry showed a marked obstructive pattern with positive bronchodilation test prompting the diagnosis of asthma for which maintenance inhaled treatment was started. Chest x-ray and abdomen ultrasound were negative. Further blood testing showed positive IgG anti-Echinococcus spp. and Strongyloides stercoralis and positive IgE for Ascaris, while Ev were detected both by the adhesive tape test and stool examination, so that we made a final diagnosis of pinworm infection. Three months after adequate treatment with pyrantel pamoate the adhesive-tape test turned out negative and blood testing showed a normal eosinophil count. The child later developed also type 1 diabetes. CONCLUSIONS We suggest the need to investigate for enterobiasis in children with hypereosinophilia and to consider autoimmunity as a potential confounding factor when interpreting serology for helminths.
Collapse
Affiliation(s)
- Maria Di Cicco
- Azienda Ospedaliero Universitaria Pisana - Pisa University Hospital, U.O. Pediatria - Pediatrics Unit, Via Roma n. 67 -, 56126, Pisa, Italy.
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Giulia Bertolucci
- Azienda Ospedaliero Universitaria Pisana - Pisa University Hospital, U.O. Pediatria - Pediatrics Unit, Via Roma n. 67 -, 56126, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carlotta Gerini
- Azienda Ospedaliero Universitaria Pisana - Pisa University Hospital, U.O. Pediatria - Pediatrics Unit, Via Roma n. 67 -, 56126, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fabrizio Bruschi
- Department of Translational Research, N.T.M.S., University of Pisa, Pisa, Italy
- Programma Monitoraggio Parassitosi e f.a.d., Pisa University Hospital, Pisa, Italy
| | - Diego G Peroni
- Azienda Ospedaliero Universitaria Pisana - Pisa University Hospital, U.O. Pediatria - Pediatrics Unit, Via Roma n. 67 -, 56126, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Msallam R, Redegeld FA. Mast cells-fetal mast cells crosstalk with maternal interfaces during pregnancy: Friend or foe? Pediatr Allergy Immunol 2023; 34:e13943. [PMID: 37102389 DOI: 10.1111/pai.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 04/28/2023]
Abstract
Mast cells (MC) are hematopoietic immune cells that play a major role during allergic reactions in adults by releasing a myriad of vasoactive and inflammatory mediators. MC seed all vascularized tissues and are most prominent in organs with a barrier function such as skin, lungs, and intestines. These secreted molecules cause mild symptoms such as localized itchiness and sneezing to life-threatening symptoms (i.e., anaphylactic shock). Presently, despite the extensive research on Th2-mediated immune responses in allergic diseases in adults, we are still unable to determine the mechanisms of the role of MC in developing pediatric allergic (PA) disorders. In this review, we will summarize the most recent findings on the origin of MC and discuss the underappreciated contribution of MC in the sensitization phase to maternal antibodies during pregnancy in allergic reactions and other diseases such as infectious diseases. Then, we will lay out potential MC-dependent therapeutic strategies to be considered in future investigations to understand the remaining gaps in MC research for a better quality of life for these young patients.
Collapse
Affiliation(s)
- Rasha Msallam
- Next Gen of Immunology (NGIg) Consultancy, Dubai, UAE
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Galor A, Britten-Jones AC, Feng Y, Ferrari G, Goldblum D, Gupta PK, Merayo-Lloves J, Na KS, Naroo SA, Nichols KK, Rocha EM, Tong L, Wang MTM, Craig JP. TFOS Lifestyle: Impact of lifestyle challenges on the ocular surface. Ocul Surf 2023; 28:262-303. [PMID: 37054911 DOI: 10.1016/j.jtos.2023.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
Many factors in the domains of mental, physical, and social health have been associated with various ocular surface diseases, with most of the focus centered on aspects of dry eye disease (DED). Regarding mental health factors, several cross-sectional studies have noted associations between depression and anxiety, and medications used to treat these disorders, and DED symptoms. Sleep disorders (both involving quality and quantity of sleep) have also been associated with DED symptoms. Under the domain of physical health, several factors have been linked to meibomian gland abnormalities, including obesity and face mask wear. Cross-sectional studies have also linked chronic pain conditions, specifically migraine, chronic pain syndrome and fibromyalgia, to DED, principally focusing on DED symptoms. A systematic review and meta-analysis reviewed available data and concluded that various chronic pain conditions increased the risk of DED (variably defined), with odds ratios ranging from 1.60 to 2.16. However, heterogeneity was noted, highlighting the need for additional studies examining the impact of chronic pain on DED signs and subtype (evaporative versus aqueous deficient). With respect to societal factors, tobacco use has been most closely linked to tear instability, cocaine to decreased corneal sensitivity, and alcohol to tear film disturbances and DED symptoms.
Collapse
Affiliation(s)
- Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA; Surgical Services, Miami Veterans Administration, Miami, FL, USA.
| | - Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia
| | - Yun Feng
- Department of Ophthalmology, Peking University Eye Center, Peking University Third Hospital, Beijing, China
| | - Giulio Ferrari
- Cornea and Ocular Surface Unit, Eye Repair Lab, San Raffaele Scientific Institute, Milan, Italy
| | - David Goldblum
- Pallas-Kliniken, Olten, Bern, Zurich, Switzerland; University of Basel, Basel, Switzerland
| | - Preeya K Gupta
- Triangle Eye Consultants, Raleigh, NC, USA; Department of Ophthalmology, Tulane University, New Orleans, LA, USA
| | - Jesus Merayo-Lloves
- Instituto Universitario Fernandez-Vega, Universidad de Oviedo, Principality of Asturias, Spain
| | - Kyung-Sun Na
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Shehzad A Naroo
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Kelly K Nichols
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eduardo M Rocha
- Department of Ophthalmology, Othorynolaringology and Head & Neck Surgery, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Louis Tong
- Cornea and External Eye Disease Service, Singapore National Eye Center, Ocular Surface Research Group, Singapore Eye Research Institute, Eye Academic Clinical Program, Duke-National University of Singapore, Singapore
| | - Michael T M Wang
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | - Jennifer P Craig
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Chauché C, Rasid O, Donachie A, McManus CM, Löser S, Campion T, Richards J, Smyth DJ, McSorley HJ, Maizels RM. Suppression of airway allergic eosinophilia by Hp-TGM, a helminth mimic of TGF-β. Immunology 2022; 167:197-211. [PMID: 35758054 PMCID: PMC9885513 DOI: 10.1111/imm.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/20/2022] [Indexed: 02/02/2023] Open
Abstract
Type 2-high asthma is a chronic inflammatory disease of the airways which is increasingly prevalent in countries where helminth parasite infections are rare, and characterized by T helper 2 (Th2)-dependent accumulation of eosinophils in the lungs. Regulatory cytokines such as TGF-β can restrain inflammatory reactions, dampen allergic Th2 responses, and control eosinophil activation. The murine helminth parasite Heligmosomoides polygyrus releases a TGF-β mimic (Hp-TGM) that replicates the biological and functional properties of TGF-β despite bearing no structural similarity to the mammalian protein. Here, we investigated if Hp-TGM could alleviate allergic airway inflammation in mice exposed to Alternaria alternata allergen, house dust mite (HDM) extract or alum-adjuvanted ovalbumin protein (OVA). Intranasal administration of Hp-TGM during Alternaria exposure sharply reduced airway and lung tissue eosinophilia along with bronchoalveolar lavage fluid IL-5 and lung IL-33 cytokine levels at 24 h. The protective effect of Hp-TGM on airway eosinophilia was also obtained in the longer T-cell mediated models of HDM or OVA sensitisation with significant inhibition of eotaxin-1, IL-4 and IL-13 responses depending on the model and time-point. Hp-TGM was also protective when administered parenterally either when given at the time of allergic sensitisation or during airway allergen challenge. This project has taken the first steps in identifying the role of Hp-TGM in allergic asthma and highlighted its ability to control lung inflammation and allergic pathology. Future research will investigate the mode of action of Hp-TGM against airway allergic eosinophilia, and further explore its potential to be developed as a biotherapeutic in allergic asthma.
Collapse
Affiliation(s)
- Caroline Chauché
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK,Centre for Inflammation ResearchUniversity of Edinburgh, Queen's Medical Research InstituteEdinburghUK
| | - Orhan Rasid
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Anne‐Marie Donachie
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Caitlin M. McManus
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Stephan Löser
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Tiffany Campion
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| | - Josh Richards
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK,Division of Cell Signalling and ImmunologySchool of Life Sciences, Wellcome Trust Building, University of DundeeDundeeUK
| | - Danielle J. Smyth
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK,Division of Cell Signalling and ImmunologySchool of Life Sciences, Wellcome Trust Building, University of DundeeDundeeUK
| | - Henry J. McSorley
- Division of Cell Signalling and ImmunologySchool of Life Sciences, Wellcome Trust Building, University of DundeeDundeeUK
| | - Rick M. Maizels
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUK
| |
Collapse
|
5
|
Evaluation of the Immunomodulatory Effect of the Recombinant 14-3-3 and Major Antigen Proteins of Strongyloides stercoralis against an Infection by S. venezuelensis. Vaccines (Basel) 2022; 10:vaccines10081292. [PMID: 36016178 PMCID: PMC9415175 DOI: 10.3390/vaccines10081292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Strongyloidiasis, caused by Strongyloides stercoralis, is a neglected parasitic disease that represents a serious public health problem. In immunocompromised patients, this parasitosis can result in hyperinfection or disseminated disease with high levels of mortality. In previous studies, the mRNAs encoding for the 14-3-3 and major antigen proteins were found to be expressed at high levels in S. stercoralis L3 larvae, suggesting potential key roles in parasite-host interactions. We have produced them as recombinant proteins (rSs14-3-3 and rSsMA) in a bacterial protein expression system. The serum levels of anti-rSs14-3-3 and anti-rSsMA IgGs are increased upon infection with S. venezuelensis, validating the use of the mouse model since the native 14-3-3 and MA proteins induce an immune response. Each recombinant protein was formulated in the adjuvant adaptation (ADAD) vaccination system and injected twice, subcutaneously, in CD1 mice that were experimentally infected with 3000 S. venezuelensis L3 to evaluate their protective and immunomodulatory activity. Our results, including the number of parthenogenetic females, number of eggs in stool samples and the analysis of the splenic and intestinal indexes, show that the vaccines did not protect against infection. The immunization with rSs14-3-3 induced changes in the cytokine profile in mice, producing higher expression of IL-10, TGF-β, IL-13 and TNF-α in the spleen, suggesting a Th2/Treg-type response with an increase in TNF-α levels, confirming its role as an immunomodulator.
Collapse
|
6
|
Sung JS, Bong JH, Lee SJ, Jung J, Kang MJ, Lee M, Shim WB, Jose J, Pyun JC. One-step immunoassay for food allergens based on screened mimotopes from autodisplayed F V-antibody library. Biosens Bioelectron 2022; 202:113976. [PMID: 35042130 DOI: 10.1016/j.bios.2022.113976] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
One-step immunoassay detects a target analyte simply by mixing a sample with a reagent solution without any washing steps. Herein, we present a one-step immunoassay that uses a peptide mimicking a target analyte (mimotope). The key idea of this strategy is that the mimotopes are screened from an autodisplayed FV-antibody library using monoclonal antibodies against target analytes. The monoclonal antibodies are bound to fluorescence-labeled mimotopes, which are quantitatively released into the solution when the target analytes are bound to the monoclonal antibodies. Thus, the target analyte is detected without any washing steps. For the mimotope screening, an FV-antibody library was exhibited on the outer membrane of E. coli with a diversity of >106 clones/library using autodisplay technology. The targeted clones were screened from the autodisplayed FV-antibody library using magnetic beads with immobilized monoclonal antibodies against food allergens. The analysis of binding properties of a control strain with mutant FV -antibodies composed of only CDR1 and CDR2 demonstrated that the CDR3 regions of the screened FV-antibodies showed binding affinity to food allergens. The CDR3 regions were synthesized into peptides as mimotopes for the corresponding food allergens (mackerel, peanuts, and pig fat). One-step immunoassays for food allergens were demonstrated using mimotopes against mackerel, peanut, and pig fat without any washing steps in solution without immobilization of antibodies to a solid support.
Collapse
Affiliation(s)
- Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Soo Jeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Misu Lee
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Won-Bo Shim
- Department of Food Science and Technology & Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Westfälischen Wilhelms-Universität Münster, Muenster, Germany
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
| |
Collapse
|
7
|
Menon M, Hussell T, Ali Shuwa H. Regulatory B cells in respiratory health and diseases. Immunol Rev 2021; 299:61-73. [PMID: 33410165 PMCID: PMC7986090 DOI: 10.1111/imr.12941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
B cells are critical mediators of humoral immune responses in the airways through antibody production, antigen presentation, and cytokine secretion. In addition, a subset of B cells, known as regulatory B cells (Bregs), exhibit immunosuppressive functions via diverse regulatory mechanisms. Bregs modulate immune responses via the secretion of IL‐10, IL‐35, and tumor growth factor‐β (TGF‐β), and by direct cell contact. The balance between effector and regulatory B cell functions is critical in the maintenance of immune homeostasis. The importance of Bregs in airway immune responses is emphasized by the different respiratory disorders associated with abnormalities in Breg numbers and function. In this review, we summarize the role of immunosuppressive Bregs in airway inflammatory diseases and highlight the importance of this subset in the maintenance of respiratory health. We propose that improved understanding of signals in the lung microenvironment that drive Breg differentiation can provide novel therapeutic avenues for improved management of respiratory diseases.
Collapse
Affiliation(s)
- Madhvi Menon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Halima Ali Shuwa
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
8
|
Abstract
The hygiene hypothesis posits that the decreased incidence of parasitic infection in developed countries may underlie an increased prevalence of allergic and autoimmune diseases in these countries. As unique inflammation modulator of intracellular parasitism, Trichinella spiralis, or its excretory-secretory (ES) product, shows improved responses to allergies, autoimmune diseases, inflammatory bowel disease, type 1 diabetes, rheumatic arthritis and autoimmune encephalomyelitis by exerting immunomodulatory effects on both innate and adaptive immune cells in animal models. Research has shown that T. spiralis differs from other helminths in manipulation of the host immune response not only by well-known characteristics of its life cycle, but also by its inflammation modulation pathway. How the parasite achieves inflammation modulation has not been fully elucidated yet. This review will generalize the mechanism and focuses on ES immunomodulatory molecules of T. spiralis that may be important for developing new therapeutics for inflammatory disorders.
Collapse
|
9
|
Ryan S, Shiels J, Taggart CC, Dalton JP, Weldon S. Fasciola hepatica-Derived Molecules as Regulators of the Host Immune Response. Front Immunol 2020; 11:2182. [PMID: 32983184 PMCID: PMC7492538 DOI: 10.3389/fimmu.2020.02182] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Helminths (worms) are one of the most successful organisms in nature given their ability to infect millions of humans and animals worldwide. Their success can be attributed to their ability to modulate the host immune response for their own benefit by releasing excretory-secretory (ES) products. Accordingly, ES products have been lauded as a potential source of immunomodulators/biotherapeutics for an array of inflammatory diseases. However, there is a significant lack of knowledge regarding the specific interactions between these products and cells of the immune response. Many different compounds have been identified within the helminth "secretome," including antioxidants, proteases, mucin-like peptides, as well as helminth defense molecules (HDMs), each with unique influences on the host inflammatory response. HDMs are a conserved group of proteins initially discovered in the secretome of the liver fluke, Fasciola hepatica. HDMs interact with cell membranes without cytotoxic effects and do not exert antimicrobial activity, suggesting that these peptides evolved specifically for immunomodulatory purposes. A peptide generated from the HDM sequence, termed FhHDM-1, has shown extensive anti-inflammatory abilities in clinically relevant models of diseases such as diabetes, multiple sclerosis, asthma, and acute lung injury, offering hope for the development of a new class of therapeutics. In this review, the current knowledge of host immunomodulation by a range of F. hepatica ES products, particularly FhHDM-1, will be discussed. Immune regulators, including HDMs, have been identified from other helminths and will also be outlined to broaden our understanding of the variety of effects these potent molecules exert on immune cells.
Collapse
Affiliation(s)
- Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jenna Shiels
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - John P Dalton
- Centre of One Health (COH), Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Galway, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
10
|
Gosens R, Hiemstra PS, Adcock IM, Bracke KR, Dickson RP, Hansbro PM, Krauss-Etschmann S, Smits HH, Stassen FRM, Bartel S. Host-microbe cross-talk in the lung microenvironment: implications for understanding and treating chronic lung disease. Eur Respir J 2020; 56:13993003.02320-2019. [PMID: 32430415 PMCID: PMC7439216 DOI: 10.1183/13993003.02320-2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are highly prevalent worldwide and will continue to rise in the foreseeable future. Despite intensive efforts over recent decades, the development of novel and effective therapeutic approaches has been slow. However, there is new and increasing evidence that communities of micro-organisms in our body, the human microbiome, are crucially involved in the development and progression of chronic respiratory diseases. Understanding the detailed mechanisms underlying this cross-talk between host and microbiota is critical for development of microbiome- or host-targeted therapeutics and prevention strategies. Here we review and discuss the most recent knowledge on the continuous reciprocal interaction between the host and microbes in health and respiratory disease. Furthermore, we highlight promising developments in microbiome-based therapies and discuss the need to employ more holistic approaches of restoring both the pulmonary niche and the microbial community. The reciprocal interaction between microbes and host in the lung is increasingly recognised as an important determinant of health. The complexity of this cross-talk needs to be taken into account when studying diseases and developing future new therapies.https://bit.ly/2VKYUfT
Collapse
Affiliation(s)
- Reinoud Gosens
- University of Groningen, Dept of Molecular Pharmacology, GRIAC Research Institute, Groningen, The Netherlands
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ian M Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ken R Bracke
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute for Experimental Medicine, Christian-Albrechts-Universitaet zu Kiel, Kiel, Germany
| | - Hermelijn H Smits
- Dept of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank R M Stassen
- Dept of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, Member of the German Center for Lung Research (DZL), Borstel, Germany .,University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, GRIAC Research Institute, Groningen, The Netherlands
| |
Collapse
|
11
|
Vacca F, Chauché C, Jamwal A, Hinchy EC, Heieis G, Webster H, Ogunkanbi A, Sekne Z, Gregory WF, Wear M, Perona-Wright G, Higgins MK, Nys JA, Cohen ES, McSorley HJ. A helminth-derived suppressor of ST2 blocks allergic responses. eLife 2020; 9:54017. [PMID: 32420871 PMCID: PMC7234810 DOI: 10.7554/elife.54017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/06/2020] [Indexed: 11/13/2022] Open
Abstract
The IL-33-ST2 pathway is an important initiator of type 2 immune responses. We previously characterised the HpARI protein secreted by the model intestinal nematode Heligmosomoides polygyrus, which binds and blocks IL-33. Here, we identify H. polygyrus Binds Alarmin Receptor and Inhibits (HpBARI) and HpBARI_Hom2, both of which consist of complement control protein (CCP) domains, similarly to the immunomodulatory HpARI and Hp-TGM proteins. HpBARI binds murine ST2, inhibiting cell surface detection of ST2, preventing IL-33-ST2 interactions, and inhibiting IL-33 responses in vitro and in an in vivo mouse model of asthma. In H. polygyrus infection, ST2 detection is abrogated in the peritoneal cavity and lung, consistent with systemic effects of HpBARI. HpBARI_Hom2 also binds human ST2 with high affinity, and effectively blocks human PBMC responses to IL-33. Thus, we show that H. polygyrus blocks the IL-33 pathway via both HpARI which blocks the cytokine, and also HpBARI which blocks the receptor.
Collapse
Affiliation(s)
- Francesco Vacca
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Caroline Chauché
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Abhishek Jamwal
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Elizabeth C Hinchy
- Bioscience Asthma, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Graham Heieis
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Holly Webster
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Adefunke Ogunkanbi
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, United Kingdom
| | - Zala Sekne
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - William F Gregory
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom.,Division of Microbiology & Parasitology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Wear
- The Edinburgh Protein Production Facility (EPPF), Wellcome Trust Centre for Cell Biology (WTCCB), University of Edinburgh, Edinburgh, United Kingdom
| | - Georgia Perona-Wright
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Josquin A Nys
- Bioscience Asthma, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - E Suzanne Cohen
- Bioscience Asthma, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom.,Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
12
|
Magnaval JF, Fillaux J, Cassaing S, Valentin A, Iriart X, Berry A. Human toxocariasis and atopy. ACTA ACUST UNITED AC 2020; 27:32. [PMID: 32400389 PMCID: PMC7219086 DOI: 10.1051/parasite/2020029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/23/2020] [Indexed: 11/14/2022]
Abstract
To assess the possible influence of atopy on the clinical picture of human toxocariasis, a retrospective study was carried out using file records for patients who attended the Outpatient Clinic of Parasitology in Toulouse University Hospitals. A total of 106 file records for patients who had been diagnosed with common/covert toxocariasis were extracted from the database. Forty-nine patients (20 females and 29 males) were considered atopic since they exhibited a long (≥ 1 year) history of various allergic issues along with a titer ≥ 0.7 kIU/L for specific IgE against at least two out of nine mixes of common inhalant allergens. Fifty-seven patients (42 females and 15 males) were designated nonatopic on the basis of a negative result (<0.35 kIU/L) of the test for specific IgE. Demographic (age and sex), clinical (20 signs or symptoms) and laboratory (blood eosinophil count, eosinophil cationic protein, serum total IgE, and specific anti-Toxocara IgE) variables were investigated by bivariate analysis followed by multivariate regression analysis using "atopy" as the outcome variable. On the basis of our results, the clinical or laboratory picture of toxocaral disease was not affected by the presence of an atopic status.
Collapse
Affiliation(s)
- Jean-François Magnaval
- Service de Parasitologie Médicale, Faculté de Médecine, Université de Toulouse, 31000 Toulouse, France
| | - Judith Fillaux
- Service de Parasitologie et Mycologie, Université de Toulouse, Centre Hospitalier Universitaire de Toulouse, TSA 40031-31059 Toulouse cedex 9, France - PharmaDev, Faculté de Pharmacie, Université de Toulouse, IRD, UPS, 31062 Toulouse cedex 9, France
| | - Sophie Cassaing
- Service de Parasitologie et Mycologie, Université de Toulouse, Centre Hospitalier Universitaire de Toulouse, TSA 40031-31059 Toulouse cedex 9, France - PharmaDev, Faculté de Pharmacie, Université de Toulouse, IRD, UPS, 31062 Toulouse cedex 9, France
| | - Alexis Valentin
- Service de Parasitologie et Mycologie, Université de Toulouse, Centre Hospitalier Universitaire de Toulouse, TSA 40031-31059 Toulouse cedex 9, France - PharmaDev, Faculté de Pharmacie, Université de Toulouse, IRD, UPS, 31062 Toulouse cedex 9, France
| | - Xavier Iriart
- Service de Parasitologie et Mycologie, Université de Toulouse, Centre Hospitalier Universitaire de Toulouse, TSA 40031-31059 Toulouse cedex 9, France - Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, TSA 40031-31059 Toulouse cedex 9, France
| | - Antoine Berry
- Service de Parasitologie et Mycologie, Université de Toulouse, Centre Hospitalier Universitaire de Toulouse, TSA 40031-31059 Toulouse cedex 9, France - Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, TSA 40031-31059 Toulouse cedex 9, France
| |
Collapse
|
13
|
Della Bella C, Spinicci M, Rojo D, Grassi A, Gamboa H, Benagiano M, Torrez R, Tapinassi S, Gabrielli S, Cancrini G, Macchioni F, Alnwaisri H, Azzurri A, Monasterio J, Montresor A, Olliaro P, D’Elios MM, Bartoloni A. Decline in Total Serum IgE and Soluble CD30 in the Context of Soil-Transmitted Helminth Decline in Bolivia. Am J Trop Med Hyg 2020; 102:847-850. [PMID: 31989919 PMCID: PMC7124912 DOI: 10.4269/ajtmh.19-0180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/16/2019] [Indexed: 01/15/2023] Open
Abstract
In the Bolivian Chaco, recent surveys documented a dramatic decrease in the prevalence of soil-transmitted helminth (STH) infections as compared with the 1980s after thirty years of preventive chemotherapy (PC). Concomitant immunological rearrangements are expected. Because nematode infections are associated with increased levels of circulating IgE and glycoprotein CD30 soluble form (sCD30), this study aims to evaluate changes in serological markers of T helper (Th)2-cells activity between 1987 (high STH prevalence) and 2013 (low STH prevalence) in rural communities in the Bolivian Chaco area. We collected 151 sera during two different surveys in 1987 (n = 65) and 2013 (n = 86) and measured the concentration of total IgE and sCD30 by immunoassays. We found a statistically significant age-independent decrease in the total IgE (P < 0.0001) and sCD30 (P < 0.0001) from 1987 to 2013. The significant decrease in serological Th2 markers (IgE and sCD30) between 1987 and 2013 is consistent with the drop in STH prevalence in this geographical area during the same period of time. Further studies might elucidate the clinical and epidemiological impact of these serological rearrangements.
Collapse
Affiliation(s)
- Chiara Della Bella
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Michele Spinicci
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - David Rojo
- Escuela de Salud del Chaco Tekove Katu, Gutierrez, Plurinational State of Bolivia
| | - Alessia Grassi
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Herlan Gamboa
- Facultad Integral del Chaco, Universidad Autónoma Gabriel René Moreno, Camiri, Plurinational State of Bolivia
| | - Marisa Benagiano
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Roberto Torrez
- Servicio Departamental de Salud (SEDES) de Santa Cruz, Santa Cruz, Plurinational State of Bolivia
| | - Simona Tapinassi
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Simona Gabrielli
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma Sapienza, Roma, Italy
| | - Gabriella Cancrini
- Dipartimento di Sanità Pubblica e Malattie Infettive, Università di Roma Sapienza, Roma, Italy
| | - Fabio Macchioni
- Dipartimento di Scienze Veterinarie, Università degli Studi di Pisa, Pisa, Italy
| | - Heba Alnwaisri
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Annalisa Azzurri
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Joaquín Monasterio
- Servicio Departamental de Salud (SEDES) de Santa Cruz, Santa Cruz, Plurinational State of Bolivia
| | - Antonio Montresor
- Department of Control of Neglected Tropical Diseases (NTD), World Health Organization, Geneva, Switzerland
| | - Piero Olliaro
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Mario Milco D’Elios
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| | - Alessandro Bartoloni
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
14
|
Voskamp AL, Kormelink TG, van Wijk RG, Hiemstra PS, Taube C, de Jong EC, Smits HH. Modulating local airway immune responses to treat allergic asthma: lessons from experimental models and human studies. Semin Immunopathol 2020; 42:95-110. [PMID: 32020335 PMCID: PMC7066288 DOI: 10.1007/s00281-020-00782-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
With asthma affecting over 300 million individuals world-wide and estimated to affect 400 million by 2025, developing effective, long-lasting therapeutics is essential. Allergic asthma, where Th2-type immunity plays a central role, represents 90% of child and 50% of adult asthma cases. Research based largely on animal models of allergic disease have led to the generation of a novel class of drugs, so-called biologicals, that target essential components of Th2-type inflammation. Although highly efficient in subclasses of patients, these biologicals and other existing medication only target the symptomatic stage of asthma and when therapy is ceased, a flare-up of the disease is often observed. Therefore, it is suggested to target earlier stages in the inflammatory cascade underlying allergic airway inflammation and to focus on changing and redirecting the initiation of type 2 inflammatory responses against allergens and certain viral agents. This focus on upstream aspects of innate immunity that drive development of Th2-type immunity is expected to have longer-lasting and disease-modifying effects, and may potentially lead to a cure for asthma. This review highlights the current understanding of the contribution of local innate immune elements in the development and maintenance of inflammatory airway responses and discusses available leads for successful targeting of those pathways for future therapeutics.
Collapse
Affiliation(s)
- A L Voskamp
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2 2333 ZA, Leiden, The Netherlands
| | - T Groot Kormelink
- Department of Experimental Immunology, Amsterdam University Medical Centers, AMC, Amsterdam, The Netherlands
| | - R Gerth van Wijk
- Department of Internal Medicine, Section Allergology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - P S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - C Taube
- Department of Pulmonary Medicine, University Hospital Essen - Ruhrklinik, Essen, Germany
| | - E C de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, AMC, Amsterdam, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
15
|
Cooper PJ, Amoah AS. Parasites and allergy: a case of more means less and less means more? Parasite Immunol 2019; 41:e12629. [PMID: 31106875 DOI: 10.1111/pim.12629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Philip J Cooper
- Institute of Infection and Immunity, St George's University of London, London, UK.,School of Medicine, Universidad Internacional del Ecuador, Quito, Ecuador
| | - Abena S Amoah
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Population Health, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.,Malawi Epidemiology and Intervention Research Unit, Lilongwe, Malawi
| |
Collapse
|
16
|
Costain AH, MacDonald AS, Smits HH. Schistosome Egg Migration: Mechanisms, Pathogenesis and Host Immune Responses. Front Immunol 2018; 9:3042. [PMID: 30619372 PMCID: PMC6306409 DOI: 10.3389/fimmu.2018.03042] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
Many parasitic worms possess complex and intriguing life cycles, and schistosomes are no exception. To exit the human body and progress to their successive snail host, Schistosoma mansoni eggs must migrate from the mesenteric vessels, across the intestinal wall and into the feces. This process is complex and not always successful. A vast proportion of eggs fail to leave their definite host, instead becoming lodged within intestinal or hepatic tissue, where they can evoke potentially life-threatening pathology. Thus, to maximize the likelihood of successful egg passage whilst minimizing host pathology, intriguing egg exit strategies have evolved. Notably, schistosomes actively exert counter-inflammatory influences on the host immune system, discreetly compromise endothelial and epithelial barriers, and modulate granuloma formation around transiting eggs, which is instrumental to their migration. In this review, we discuss new developments in our understanding of schistosome egg migration, with an emphasis on S. mansoni and the intestine, and outline the host-parasite interactions that are thought to make this process possible. In addition, we explore the potential immune implications of egg penetration and discuss the long-term consequences for the host of unsuccessful egg transit, such as fibrosis, co-infection and cancer development.
Collapse
Affiliation(s)
- Alice H. Costain
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
17
|
McSorley HJ, Chayé MAM, Smits HH. Worms: Pernicious parasites or allies against allergies? Parasite Immunol 2018; 41:e12574. [PMID: 30043455 PMCID: PMC6585781 DOI: 10.1111/pim.12574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022]
Abstract
Type 2 immune responses are most commonly associated with allergy and helminth parasite infections. Since the discovery of Th1 and Th2 immune responses more than 30 years ago, models of both allergic disease and helminth infections have been useful in characterizing the development, effector mechanisms and pathological consequences of type 2 immune responses. The observation that some helminth infections negatively correlate with allergic and inflammatory disease led to a large field of research into parasite immunomodulation. However, it is worth noting that helminth parasites are not always benign infections, and that helminth immunomodulation can have stimulatory as well as suppressive effects on allergic responses. In this review, we will discuss how parasitic infections change host responses, the consequences for bystander immunity and how this interaction influences clinical symptoms of allergy.
Collapse
Affiliation(s)
- Henry J McSorley
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mathilde A M Chayé
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| |
Collapse
|