1
|
Romanowicz KJ, Zhang F, Wang S, Veličković D, Chu RK, Shaked Y, Boiteau RM. Single-colony MALDI mass spectrometry imaging reveals spatial differences in metabolite abundance between natural and cultured Trichodesmium morphotypes. mSystems 2024; 9:e0115224. [PMID: 39315778 PMCID: PMC11501100 DOI: 10.1128/msystems.01152-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Trichodesmium, a globally significant N2-fixing marine cyanobacterium, forms extensive surface blooms in nutrient-poor ocean regions. These blooms consist of a dynamic assemblage of Trichodesmium species that form distinct colony morphotypes and are inhabited by diverse microorganisms. Trichodesmium colony morphotypes vary in ecological niche, nutrient uptake, and organic molecule release, differentially impacting ocean carbon and nitrogen biogeochemical cycles. Here, we assessed the poorly studied spatial abundance of metabolites within and between three morphologically distinct Trichodesmium colonies collected from the Red Sea. We also compared these results with two morphotypes of the cultivable Trichodesmium strain IMS101. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) coupled with liquid extraction surface analysis (LESA) tandem mass spectrometry (MS2), we identified and localized a wide range of small metabolites associated with single-colony Trichodesmium morphotypes. Our untargeted MALDI-MSI approach revealed 80 unique features (metabolites) shared between Trichodesmium morphotypes. Discrimination analysis showed spatial variations in 57 shared metabolites, accounting for 62% of the observed variation between morphotypes. The greatest variations in metabolite abundance were observed between the cultured morphotypes compared to the natural colony morphotypes, suggesting substantial differences in metabolite production between the cultivable strain IMS101 and the naturally occurring colony morphotypes that the cultivable strain is meant to represent. This study highlights the variations in metabolite abundance between natural and cultured Trichodesmium morphotypes and provides valuable insights into metabolites common to morphologically distinct Trichodesmium colonies, offering a foundation for future targeted metabolomic investigations.IMPORTANCEThis work demonstrates that the application of spatial mass spectrometry imaging at single-colony resolution can successfully resolve metabolite differences between natural and cultured Trichodesmium morphotypes, shedding light on their distinct biochemical profiles. Understanding the morphological differences between Trichodesmium colonies is crucial because they impact nutrient uptake, organic molecule production, and carbon and nitrogen export, and subsequently influence ocean biogeochemical cycles. As such, our study serves as an important initial assessment of metabolite differences between distinct Trichodesmium colony types, identifying features that can serve as ideal candidates for future targeted metabolomic studies.
Collapse
Affiliation(s)
- Karl J. Romanowicz
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Futing Zhang
- Fredy and Nadine Hermann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Siyuan Wang
- Fredy and Nadine Hermann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Rosalie K. Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Yeala Shaked
- Fredy and Nadine Hermann Institute of Earth Sciences, Hebrew University, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Rene M. Boiteau
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Li H, Gao K. Deoxygenation enhances photosynthetic performance and increases N 2 fixation in the marine cyanobacterium Trichodesmium under elevated pCO 2. Front Microbiol 2023; 14:1102909. [PMID: 36876059 PMCID: PMC9975739 DOI: 10.3389/fmicb.2023.1102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Effects of changed levels of dissolved O2 and CO2 on marine primary producers are of general concern with respect to ecological effects of ongoing ocean deoxygenation and acidification as well as upwelled seawaters. We investigated the response of the diazotroph Trichodesmium erythraeum IMS 101 after it had acclimated to lowered pO2 (~60 μM O2) and/or elevated pCO2 levels (HC, ~32 μM CO2) for about 20 generations. Our results showed that reduced O2 levels decreased dark respiration significantly, and increased the net photosynthetic rate by 66 and 89% under the ambient (AC, ~13 μM CO2) and the HC, respectively. The reduced pO2 enhanced the N2 fixation rate by ~139% under AC and only by 44% under HC, respectively. The N2 fixation quotient, the ratio of N2 fixed per O2 evolved, increased by 143% when pO2 decreased by 75% under the elevated pCO2. Meanwhile, particulate organic carbon and nitrogen quota increased simultaneously under reduced O2 levels, regardless of the pCO2 treatments. Nevertheless, changed levels of O2 and CO2 did not bring about significant changes in the specific growth rate of the diazotroph. Such inconsistency was attributed to the daytime positive and nighttime negative effects of both lowered pO2 and elevated pCO2 on the energy supply for growth. Our results suggest that Trichodesmium decrease its dark respiration by 5% and increase its N2-fixation by 49% and N2-fixation quotient by 30% under future ocean deoxygenation and acidification with 16% decline of pO2 and 138% rise of pCO2 by the end of this century.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
3
|
Abstract
The dominant marine filamentous N2 fixer, Trichodesmium, conducts photosynthesis and N2 fixation during the daytime. Because N2 fixation is sensitive to O2, some previous studies suggested that spatial segregation of N2 fixation and photosynthesis is essential in Trichodesmium. However, this hypothesis conflicts with some observations where all the cells contain both photosystems and the N2-fixing enzyme nitrogenase. Here, we construct a systematic model simulating Trichodesmium metabolism, showing that the hypothetical spatial segregation is probably useless in increasing the Trichodesmium growth and N2 fixation, unless substances can efficiently transfer among cells with low loss to the environment. The model suggests that Trichodesmium accumulates fixed carbon in the morning and uses that in respiratory protection to reduce intracellular O2 during the mid-daytime, when photosynthesis is downregulated, allowing the occurrence of N2 fixation. A cell membrane barrier against O2 and alternative non-O2 evolving electron transfer also contribute to maintaining low intracellular O2. Our study provides a mechanism enabling N2 fixation despite the presence of photosynthesis across Trichodesmium. IMPORTANCE The filamentous Trichodesmium is a globally prominent marine nitrogen fixer. A long-standing paradox is that the nitrogen-fixing enzyme nitrogenase is sensitive to oxygen, but Trichodesmium conducts both nitrogen fixation and oxygen-evolving photosynthesis during the daytime. Previous studies using immunoassays reported that nitrogenase was limited in some specialized Trichodesmium cells (termed diazocytes), suggesting the necessity of spatial segregation of nitrogen fixation and photosynthesis. However, attempts using other methods failed to find diazocytes in Trichodesmium, causing controversy on the existence of the spatial segregation. Here, our physiological model shows that Trichodesmium can maintain low intracellular O2 in mid-daytime and achieve feasible nitrogen fixation and growth rates even without the spatial segregation, while the hypothetical spatial segregation might not be useful if substantial loss of substances to the environment occurs when they transfer among the Trichodesmium cells. Our study then suggests a possible mechanism by which Trichodesmium can survive without the spatial segregation.
Collapse
|
4
|
Abstract
Economical production of photosynthetic organisms requires the use of natural day/night cycles. These induce strong circadian rhythms that lead to transient changes in the cells, requiring complex modeling to capture. In this study, we coupled times series transcriptomic data from the model green alga Chlamydomonas reinhardtii to a metabolic model of the same organism in order to develop the first transient metabolic model for diurnal growth of algae capable of predicting phenotype from genotype. We first transformed a set of discrete transcriptomic measurements (D. Strenkert, S. Schmollinger, S. D. Gallaher, P. A. Salomé, et al., Proc Natl Acad Sci U S A 116:2374–2383, 2019, https://doi.org/10.1073/pnas.1815238116) into continuous curves, producing a complete database of the cell’s transcriptome that can be interrogated at any time point. We also decoupled the standard biomass formation equation to allow different components of biomass to be synthesized at different times of the day. The resulting model was able to predict qualitative phenotypical outcomes of a starchless mutant. We also extended this approach to simulate all single-knockout mutants and identified potential targets for rational engineering efforts to increase productivity. This model enables us to evaluate the impact of genetic and environmental changes on the growth, biomass composition, and intracellular fluxes for diurnal growth. IMPORTANCE We have developed the first transient metabolic model for diurnal growth of algae based on experimental data and capable of predicting phenotype from genotype. This model enables us to evaluate the impact of genetic and environmental changes on the growth, biomass composition and intracellular fluxes of the model green alga, Chlamydomonas reinhardtii. The availability of this model will enable faster and more efficient design of cells for production of fuels, chemicals, and pharmaceuticals.
Collapse
|
5
|
Zhang Q, Luo YW. A Competitive Advantage of Middle-Sized Diatoms From Increasing Seawater CO 2. Front Microbiol 2022; 13:838629. [PMID: 35663890 PMCID: PMC9158336 DOI: 10.3389/fmicb.2022.838629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Diatoms, one of the most important phytoplankton groups, fulfill their carbon demand from seawater mainly by obtaining passively diffused carbon dioxide (CO2) and/or actively consuming intracellular energy to acquire bicarbonate (HCO3–). An anthropogenically induced increase in seawater CO2 reduces the HCO3– requirement of diatoms, potentially saving intracellular energy and benefitting their growth. This effect is commonly speculated to be most remarkable in larger diatoms that are subject to a stronger limitation of CO2 supply because of their smaller surface-to-volume ratios. However, we constructed a theoretical model for diatoms and revealed a unimodal relationship between the simulated growth rate response (GRR, the ratio of growth rates under elevated and ambient CO2) and cell size, with the GRR peaking at a cell diameter of ∼7 μm. The simulated GRR of the smallest diatoms was low because the CO2 supply was nearly sufficient at the ambient level, while the decline of GRR from a cell diameter of 7 μm was simulated because the contribution of seawater CO2 to the total carbon demand greatly decreased and diatoms became less sensitive to CO2 increase. A collection of historical data in CO2 enrichment experiments of diatoms also showed a roughly unimodal relationship between maximal GRR and cell size. Our model further revealed that the “optimal” cell size corresponding to peak GRR enlarged with the magnitude of CO2 increase but diminished with elevating cellular carbon demand, leading to projection of the smallest optimal cell size in the equatorial Pacific upwelling zone. Last, we need to emphasize that the size-dependent effects of increasing CO2 on diatoms are multifaceted, while our model only considers the inorganic carbon supply from seawater and optimal allocation of intracellular energy. Our study proposes a competitive advantage of middle-sized diatoms and can be useful in projecting changes in the diatom community in the future acidified high-CO2 ocean.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ya-Wei Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Held NA, Waterbury JB, Webb EA, Kellogg RM, McIlvin MR, Jakuba M, Valois FW, Moran DM, Sutherland KM, Saito MA. Dynamic diel proteome and daytime nitrogenase activity supports buoyancy in the cyanobacterium Trichodesmium. Nat Microbiol 2022; 7:300-311. [PMID: 35013592 PMCID: PMC10288448 DOI: 10.1038/s41564-021-01028-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
Cyanobacteria of the genus Trichodesmium provide about 80 Tg of fixed nitrogen to the surface ocean per year and contribute to marine biogeochemistry, including the sequestration of carbon dioxide. Trichodesmium fixes nitrogen in the daylight, despite the incompatibility of the nitrogenase enzyme with oxygen produced during photosynthesis. While the mechanisms protecting nitrogenase remain unclear, all proposed strategies require considerable resource investment. Here we identify a crucial benefit of daytime nitrogen fixation in Trichodesmium spp. that may counteract these costs. We analysed diel proteomes of cultured and field populations of Trichodesmium in comparison with the marine diazotroph Crocosphaera watsonii WH8501, which fixes nitrogen at night. Trichodesmium's proteome is extraordinarily dynamic and demonstrates simultaneous photosynthesis and nitrogen fixation, resulting in balanced particulate organic carbon and particulate organic nitrogen production. Unlike Crocosphaera, which produces large quantities of glycogen as an energy store for nitrogenase, proteomic evidence is consistent with the idea that Trichodesmium reduces the need to produce glycogen by supplying energy directly to nitrogenase via soluble ferredoxin charged by the photosynthesis protein PsaC. This minimizes ballast associated with glycogen, reducing cell density and decreasing sinking velocity, thus supporting Trichodesmium's niche as a buoyant, high-light-adapted colony forming cyanobacterium. To occupy its niche of simultaneous nitrogen fixation and photosynthesis, Trichodesmium appears to be a conspicuous consumer of iron, and has therefore developed unique iron-acquisition strategies, including the use of iron-rich dust. Particle capture by buoyant Trichodesmium colonies may increase the residence time and degradation of mineral iron in the euphotic zone. These findings describe how cellular biochemistry defines and reinforces the ecological and biogeochemical function of these keystone marine diazotrophs.
Collapse
Affiliation(s)
- Noelle A Held
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Environmental Systems Science, ETH, Zurich, Switzerland
| | - John B Waterbury
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Eric A Webb
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Riss M Kellogg
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew R McIlvin
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Michael Jakuba
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Frederica W Valois
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Dawn M Moran
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Kevin M Sutherland
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
7
|
Ani CJ, Robson B. Responses of marine ecosystems to climate change impacts and their treatment in biogeochemical ecosystem models. MARINE POLLUTION BULLETIN 2021; 166:112223. [PMID: 33730556 DOI: 10.1016/j.marpolbul.2021.112223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
To predict the effects of climate change on marine ecosystems and the effectiveness of intervention and mitigation strategies, we need reliable marine ecosystem response models such as biogeochemical models that reproduce climate change effects. We reviewed marine ecosystem parameters and processes that are modified by climate change and examined their representations in biogeochemical ecosystem models. The interactions among important aspects of marine ecosystem modelling are not often considered due to complexity: these include the use of multiple IPCC scenarios, ensemble modelling approach, independent calibration datasets, the consideration of changes in cloud cover, ocean currents, wind speed, sea-level rise, storm frequency, storm intensity, and the incorporation of species adaptation to changing environmental conditions. Including our recommendations in future marine modelling studies could help improve the accuracy and reliability of model predictions of climate change impacts on marine ecosystems.
Collapse
Affiliation(s)
- Chinenye J Ani
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, Townsville, PMB3, Townsville, QLD 4810, Australia; AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| | - Barbara Robson
- Australian Institute of Marine Science, Townsville, PMB3, Townsville, QLD 4810, Australia
| |
Collapse
|
8
|
Polerecky L, Masuda T, Eichner M, Rabouille S, Vancová M, Kienhuis MVM, Bernát G, Bonomi-Barufi J, Campbell DA, Claquin P, Červený J, Giordano M, Kotabová E, Kromkamp J, Lombardi AT, Lukeš M, Prášil O, Stephan S, Suggett D, Zavřel T, Halsey KH. Temporal Patterns and Intra- and Inter-Cellular Variability in Carbon and Nitrogen Assimilation by the Unicellular Cyanobacterium Cyanothece sp. ATCC 51142. Front Microbiol 2021; 12:620915. [PMID: 33613489 PMCID: PMC7890256 DOI: 10.3389/fmicb.2021.620915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/11/2021] [Indexed: 12/05/2022] Open
Abstract
Unicellular nitrogen fixing cyanobacteria (UCYN) are abundant members of phytoplankton communities in a wide range of marine environments, including those with rapidly changing nitrogen (N) concentrations. We hypothesized that differences in N availability (N2 vs. combined N) would cause UCYN to shift strategies of intracellular N and C allocation. We used transmission electron microscopy and nanoscale secondary ion mass spectrometry imaging to track assimilation and intracellular allocation of 13C-labeled CO2 and 15N-labeled N2 or NO3 at different periods across a diel cycle in Cyanothece sp. ATCC 51142. We present new ideas on interpreting these imaging data, including the influences of pre-incubation cellular C and N contents and turnover rates of inclusion bodies. Within cultures growing diazotrophically, distinct subpopulations were detected that fixed N2 at night or in the morning. Additional significant within-population heterogeneity was likely caused by differences in the relative amounts of N assimilated into cyanophycin from sources external and internal to the cells. Whether growing on N2 or NO3, cells prioritized cyanophycin synthesis when N assimilation rates were highest. N assimilation in cells growing on NO3 switched from cyanophycin synthesis to protein synthesis, suggesting that once a cyanophycin quota is met, it is bypassed in favor of protein synthesis. Growth on NO3 also revealed that at night, there is a very low level of CO2 assimilation into polysaccharides simultaneous with their catabolism for protein synthesis. This study revealed multiple, detailed mechanisms underlying C and N management in Cyanothece that facilitate its success in dynamic aquatic environments.
Collapse
Affiliation(s)
- Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Takako Masuda
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Meri Eichner
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sophie Rabouille
- Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefranche, Villefranche-sur-mer, France
- Sorbonne Université, CNRS, Laboratoire d’Océanographie Microbienne, Banyuls-sur-mer, France
| | - Marie Vancová
- Institute of Parasitology, Czech Academy of Sciences, Biology Centre, České Budějovice, Czechia
| | | | - Gabor Bernát
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
- Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| | - Jose Bonomi-Barufi
- Botany Department, Federal University of Santa Catarina, Campus de Trindade, Florianópolis, Brazil
| | | | - Pascal Claquin
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques, FRE 2030, Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Normandie Université, Esplanade de la Paix, France
| | - Jan Červený
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Mario Giordano
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
- STU-UNIVPM Joint Algal Research Center, Marine Biology Institute, College of Sciences, Shantou University, Shantou, China
| | - Eva Kotabová
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Jacco Kromkamp
- NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, Netherlands
| | | | - Martin Lukeš
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Ondrej Prášil
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Susanne Stephan
- Department Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
- Department of Ecology, Berlin Institute of Technology, Berlin, Germany
| | - David Suggett
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Tomas Zavřel
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Kimberly H. Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
9
|
Wu S, Mi T, Zhen Y, Yu K, Wang F, Yu Z. A Rise in ROS and EPS Production: New Insights into the Trichodesmium erythraeum Response to Ocean Acidification. JOURNAL OF PHYCOLOGY 2021; 57:172-182. [PMID: 32975309 DOI: 10.1111/jpy.13075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The diazotrophic cyanobacterium Trichodesmium is thought to be a major contributor to the new N in parts of the oligotrophic, subtropical, and tropical oceans. In this study, physiological and biochemical methods and transcriptome sequencing were used to investigate the influences of ocean acidification (OA) on Trichodesmium erythraeum (T. erythraeum). We presented evidence that OA caused by CO2 slowed the growth rate and physiological activity of T. erythraeum. OA led to reduced development of proportion of the vegetative cells into diazocytes which included up-regulated genes of nitrogen fixation. Reactive oxygen species (ROS) accumulation was increased due to the disruption of photosynthetic electron transport and decrease in antioxidant enzyme activities under acidified conditions. This study showed that OA increased the amounts of (exopolysaccharides) EPS in T. erythraeum, and the key genes of ribose-5-phosphate (R5P) and glycosyltransferases (Tery_3818) were up-regulated. These results provide new insight into how ROS and EPS of T. erythraeum increase in an acidified future ocean to cope with OA-imposed stress.
Collapse
Affiliation(s)
- Shijie Wu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Tiezhu Mi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yu Zhen
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Kaiqiang Yu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fuwen Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
10
|
Boatman TG, Upton GJG, Lawson T, Geider RJ. Projected expansion of Trichodesmium's geographical distribution and increase in growth potential in response to climate change. GLOBAL CHANGE BIOLOGY 2020; 26:6445-6456. [PMID: 32870567 DOI: 10.1111/gcb.15324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Estimates of marine N2 fixation range from 52 to 73 Tg N/year, of which we calculate up to 84% is from Trichodesmium based on previous measurements of nifH gene abundance and our new model of Trichodesmium growth. Here, we assess the likely effects of four major climate change-related abiotic factors on the spatiotemporal distribution and growth potential of Trichodesmium for the last glacial maximum (LGM), the present (2006-2015) and the end of this century (2100) by mapping our model of Trichodesmium growth onto inferred global surface ocean fields of pCO2 , temperature, light and Fe. We conclude that growth rate was severely limited by low pCO2 at the LGM, that current pCO2 levels do not significantly limit Trichodesmium growth and thus, the potential for enhanced growth from future increases in CO2 is small. We also found that the area of the ocean where sea surface temperatures (SST) are within Trichodesmium's thermal niche increased by 32% from the LGM to present, but further increases in SST due to continued global warming will reduce this area by 9%. However, the range reduction at the equator is likely to be offset by enhanced growth associated with expansion of regions with optimal or near optimal Fe and light availability. Between now and 2100, the ocean area of optimal SST and irradiance is projected to increase by 7%, and the ocean area of optimal SST, irradiance and iron is projected to increase by 173%. Given the major contribution of this keystone species to annual N2 fixation and thus pelagic ecology, biogeochemistry and CO2 sequestration, the projected increase in the geographical range for optimal growth could provide a negative feedback to increasing atmospheric CO2 concentrations.
Collapse
Affiliation(s)
| | - Graham J G Upton
- Department of Mathematical Sciences, University of Essex, Colchester, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | | |
Collapse
|
11
|
Zhang F, Hong H, Kranz SA, Shen R, Lin W, Shi D. Proteomic responses to ocean acidification of the marine diazotroph Trichodesmium under iron-replete and iron-limited conditions. PHOTOSYNTHESIS RESEARCH 2019; 142:17-34. [PMID: 31077001 DOI: 10.1007/s11120-019-00643-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/30/2019] [Indexed: 05/19/2023]
Abstract
Growth and dinitrogen (N2) fixation of the globally important diazotrophic cyanobacteria Trichodesmium are often limited by iron (Fe) availability in surface seawaters. To systematically examine the combined effects of Fe limitation and ocean acidification (OA), T. erythraeum strain IMS101 was acclimated to both Fe-replete and Fe-limited concentrations under ambient and acidified conditions. Proteomic analysis showed that OA affected a wider range of proteins under Fe-limited conditions compared to Fe-replete conditions. OA also led to an intensification of Fe deficiency in key cellular processes (e.g., photosystem I and chlorophyll a synthesis) in already Fe-limited T. erythraeum. This is a result of reallocating Fe from these processes to Fe-rich nitrogenase to compensate for the suppressed N2 fixation. To alleviate the Fe shortage, the diazotroph adopts a series of Fe-based economic strategies (e.g., upregulating Fe acquisition systems for organically complexed Fe and particulate Fe, replacing ferredoxin by flavodoxin, and using alternative electron flow pathways to produce ATP). This was more pronounced under Fe-limited-OA conditions than under Fe limitation only. Consequently, OA resulted in a further decrease of N2- and carbon-fixation rates in Fe-limited T. erythraeum. In contrast, Fe-replete T. erythraeum induced photosystem I (PSI) expression to potentially enhance the PSI cyclic flow for ATP production to meet the higher demand for energy to cope with the stress caused by OA. Our study provides mechanistic insight into the holistic response of the globally important N2-fixing marine cyanobacteria Trichodesmium to acidified and Fe-limited conditions of future oceans.
Collapse
Affiliation(s)
- Futing Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Haizheng Hong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, Fujian, People's Republic of China
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Sven A Kranz
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Rong Shen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Wenfang Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Dalin Shi
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, Fujian, People's Republic of China.
- College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People's Republic of China.
| |
Collapse
|
12
|
Mechanistic Model for the Coexistence of Nitrogen Fixation and Photosynthesis in Marine Trichodesmium. mSystems 2019; 4:4/4/e00210-19. [PMID: 31387928 PMCID: PMC6687940 DOI: 10.1128/msystems.00210-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trichodesmium is a major nitrogen-fixing cyanobacterium and exerts a significant influence on the oceanic nitrogen cycle. It is also a widely used model organism in laboratory studies. Since the nitrogen-fixing enzyme nitrogenase is extremely sensitive to oxygen, how these surface-dwelling plankton manage the two conflicting processes of nitrogen fixation and photosynthesis has been a long-standing question. In this study, we developed a simple model of metabolic fluxes of Trichodesmium capturing observed daily cycles of photosynthesis, nitrogen fixation, and boundary layer oxygen concentrations. The model suggests that forming a chain of cells for spatially segregating nitrogen fixation and photosynthesis is essential but not sufficient. It also requires a barrier against oxygen diffusion and high rates of oxygen scavenging by respiration. Finally, the model indicates that the life span of intracellular oxygen is extremely short, thus enabling cells to instantly create a low-oxygen environment upon deactivation of photosynthesis. The cyanobacterium Trichodesmium is an important contributor of new nitrogen (N) to the surface ocean, but its strategies for protecting the nitrogenase enzyme from inhibition by oxygen (O2) remain poorly understood. We present a dynamic physiological model to evaluate hypothesized conditions that would allow Trichodesmium to carry out its two conflicting metabolic processes of N2 fixation and photosynthesis. First, the model indicates that managing cellular O2 to permit N2 fixation requires high rates of respiratory O2 consumption. The energetic cost amounts to ∼80% of daily C fixation, comparable to the observed diminution of the growth rate of Trichodesmium relative to other phytoplankton. Second, by forming a trichome of connected cells, Trichodesmium can segregate N2 fixation from photosynthesis. The transfer of stored C to N-fixing cells fuels the respiratory O2 consumption that protects nitrogenase, while the reciprocal transfer of newly fixed N to C-fixing cells supports cellular growth. Third, despite Trichodesmium lacking the structural barrier found in heterocystous species, the model predicts low diffusivity of cell membranes, a function that may be explained by the presence of Gram-negative membrane, production of extracellular polysaccharide substances (EPS), and “buffer cells” that intervene between N2-fixing and photosynthetic cells. Our results suggest that all three factors—respiratory protection, trichome formation, and diffusion barriers—represent essential strategies that, despite their energetic costs, facilitate the growth of Trichodesmium in the oligotrophic aerobic ocean and permit it to be a major source of new reactive nitrogen. IMPORTANCETrichodesmium is a major nitrogen-fixing cyanobacterium and exerts a significant influence on the oceanic nitrogen cycle. It is also a widely used model organism in laboratory studies. Since the nitrogen-fixing enzyme nitrogenase is extremely sensitive to oxygen, how these surface-dwelling plankton manage the two conflicting processes of nitrogen fixation and photosynthesis has been a long-standing question. In this study, we developed a simple model of metabolic fluxes of Trichodesmium capturing observed daily cycles of photosynthesis, nitrogen fixation, and boundary layer oxygen concentrations. The model suggests that forming a chain of cells for spatially segregating nitrogen fixation and photosynthesis is essential but not sufficient. It also requires a barrier against oxygen diffusion and high rates of oxygen scavenging by respiration. Finally, the model indicates that the life span of intracellular oxygen is extremely short, thus enabling cells to instantly create a low-oxygen environment upon deactivation of photosynthesis.
Collapse
|
13
|
Eichner M, Basu S, Gledhill M, de Beer D, Shaked Y. Hydrogen Dynamics in Trichodesmium Colonies and Their Potential Role in Mineral Iron Acquisition. Front Microbiol 2019; 10:1565. [PMID: 31354665 PMCID: PMC6636555 DOI: 10.3389/fmicb.2019.01565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
N2-fixing cyanobacteria mediate H2 fluxes through the opposing processes of H2 evolution, which is a by-product of the N2 fixation reaction, and H2 uptake, which is driven by uptake hydrogenases. Here, we used microelectrodes to characterize H2 and O2 dynamics in single natural colonies of the globally important N2 fixer Trichodesmium collected from the Gulf of Eilat. We observed gradually changing H2 dynamics over the course of the day, including both net H2 evolution and net H2 uptake, as well as large differences in H2 fluxes between individual colonies. Net H2 uptake was observed in colonies amended with H2 in both light and dark. Net H2 evolution was recorded in the light only, reflecting light-dependent N2 fixation coupled to H2 evolution. Both net H2 evolution and H2 uptake rates were higher before 2 pm than later in the day. These pronounced H2 dynamics in the morning coincided with strong net O2 uptake and the previously reported diel peak in N2 fixation. Later in the afternoon, when photosynthesis rates determined by O2 measurements were highest, and N2 fixation rates decrease according to previous studies, the H2 dynamics were also less pronounced. Thus, the observed diel variations in H2 dynamics reflect diel changes in the rates of O2 consumption and N2 fixation. Remarkably, the presence of H2 strongly stimulated the uptake of mineral iron by natural colonies. The magnitude of this effect was dependent on the time of day, with the strongest response in incubations that started before 2 pm, i.e., the period that covered the time of highest uptake hydrogenase activity. Based on these findings, we propose that by providing an electron source for mineral iron reduction in N2-fixing cells, H2 may contribute to iron uptake in Trichodesmium colonies.
Collapse
Affiliation(s)
- Meri Eichner
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Subhajit Basu
- The Freddy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Martha Gledhill
- GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany
| | - Dirk de Beer
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Yeala Shaked
- The Freddy & Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
14
|
Luo YW, Shi D, Kranz SA, Hopkinson BM, Hong H, Shen R, Zhang F. Reduced nitrogenase efficiency dominates response of the globally important nitrogen fixer Trichodesmium to ocean acidification. Nat Commun 2019; 10:1521. [PMID: 30944323 PMCID: PMC6447586 DOI: 10.1038/s41467-019-09554-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 03/19/2019] [Indexed: 12/25/2022] Open
Abstract
The response of the prominent marine dinitrogen (N2)-fixing cyanobacteria Trichodesmium to ocean acidification (OA) is critical to understanding future oceanic biogeochemical cycles. Recent studies have reported conflicting findings on the effect of OA on growth and N2 fixation of Trichodesmium. Here, we quantitatively analyzed experimental data on how Trichodesmium reallocated intracellular iron and energy among key cellular processes in response to OA, and integrated the findings to construct an optimality-based cellular model. The model results indicate that Trichodesmium growth rate decreases under OA primarily due to reduced nitrogenase efficiency. The downregulation of the carbon dioxide (CO2)-concentrating mechanism under OA has little impact on Trichodesmium, and the energy demand of anti-stress responses to OA has a moderate negative effect. We predict that if anthropogenic CO2 emissions continue to rise, OA could reduce global N2 fixation potential of Trichodesmium by 27% in this century, with the largest decrease in iron-limiting regions.
Collapse
Affiliation(s)
- Ya-Wei Luo
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Dalin Shi
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Sven A Kranz
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Brian M Hopkinson
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Haizheng Hong
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Rong Shen
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Futing Zhang
- State Key Laboratory of Marine Environmental Science and College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| |
Collapse
|
15
|
Eichner M, Thoms S, Rost B, Mohr W, Ahmerkamp S, Ploug H, Kuypers MMM, de Beer D. N 2 fixation in free-floating filaments of Trichodesmium is higher than in transiently suboxic colony microenvironments. THE NEW PHYTOLOGIST 2019; 222:852-863. [PMID: 30507001 PMCID: PMC6590460 DOI: 10.1111/nph.15621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/22/2018] [Indexed: 05/31/2023]
Abstract
To understand the role of micrometer-scale oxygen (O2 ) gradients in facilitating dinitrogen (N2 ) fixation, we characterized O2 dynamics in the microenvironment around free-floating trichomes and colonies of Trichodesmium erythraeum IMS101. Diurnal and spatial variability in O2 concentrations in the bulk medium, within colonies, along trichomes and within single cells were determined using O2 optodes, microsensors and model calculations. Carbon (C) and N2 fixation as well as O2 evolution and uptake under different O2 concentrations were analyzed by stable isotope incubations and membrane inlet mass spectrometry. We observed a pronounced diel rhythm in O2 fluxes, with net O2 evolution restricted to short periods in the morning and evening, and net O2 uptake driven by dark respiration and light-dependent O2 uptake during the major part of the light period. Remarkably, colonies showed lower N2 fixation and C fixation rates than free-floating trichomes despite the long period of O2 undersaturation in the colony microenvironment. Model calculations demonstrate that low permeability of the cell wall in combination with metabolic heterogeneity between single cells allows for anoxic intracellular conditions in colonies but also free-floating trichomes of Trichodesmium. Therefore, whereas colony formation must have benefits for Trichodesmium, it does not favor N2 fixation.
Collapse
Affiliation(s)
- Meri Eichner
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1Bremen28359Germany
| | - Silke Thoms
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchAm Handelshafen 12Bremerhaven27570Germany
| | - Björn Rost
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchAm Handelshafen 12Bremerhaven27570Germany
| | - Wiebke Mohr
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1Bremen28359Germany
| | - Soeren Ahmerkamp
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1Bremen28359Germany
| | - Helle Ploug
- Department of Marine SciencesUniversity of GothenburgCarl Skottbergsgata 22 BGöteborg41319Sweden
| | | | - Dirk de Beer
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1Bremen28359Germany
| |
Collapse
|
16
|
Boatman TG, Davey PA, Lawson T, Geider RJ. CO2 modulation of the rates of photosynthesis and light-dependent O2 consumption in Trichodesmium. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:589-597. [PMID: 30380078 PMCID: PMC6322564 DOI: 10.1093/jxb/ery368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/15/2018] [Indexed: 05/28/2023]
Abstract
As atmospheric CO2 concentrations increase, so too does the dissolved CO2 and HCO3- concentrations in the world's oceans. There are still many uncertainties regarding the biological response of key groups of organisms to these changing conditions, which is crucial for predicting future species distributions, primary productivity rates, and biogeochemical cycling. In this study, we established the relationship between gross photosynthetic O2 evolution and light-dependent O2 consumption in Trichodesmium erythraeum IMS101 acclimated to three targeted pCO2 concentrations (180 µmol mol-1=low-CO2, 380 µmol mol-1=mid-CO2, and 720 µmol mol-1=high-CO2). We found that biomass- (carbon) specific, light-saturated maximum net O2 evolution rates (PnC,max) and acclimated growth rates increased from low- to mid-CO2, but did not differ significantly between mid- and high-CO2. Dark respiration rates were five times higher than required to maintain cellular metabolism, suggesting that respiration provides a substantial proportion of the ATP and reductant for N2 fixation. Oxygen uptake increased linearly with gross O2 evolution across light intensities ranging from darkness to 1100 µmol photons m-2 s-1. The slope of this relationship decreased with increasing CO2, which we attribute to the increased energetic cost of operating the carbon-concentrating mechanism at lower CO2 concentrations. Our results indicate that net photosynthesis and growth of T. erythraeum IMS101 would have been severely CO2 limited at the last glacial maximum, but that the direct effect of future increases of CO2 may only cause marginal increases in growth.
Collapse
Affiliation(s)
- Tobias G Boatman
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
- Department of Chemical Engineering, Imperial College London, South Kensington, London, UK
| | - Phillip A Davey
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Richard J Geider
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
17
|
Boatman TG, Davey PA, Lawson T, Geider RJ. The physiological cost of diazotrophy for Trichodesmium erythraeum IMS101. PLoS One 2018; 13:e0195638. [PMID: 29641568 PMCID: PMC5895029 DOI: 10.1371/journal.pone.0195638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/26/2018] [Indexed: 11/24/2022] Open
Abstract
Trichodesmium plays a significant role in the oligotrophic oceans, fixing nitrogen in an area corresponding to half of the Earth's surface, representing up to 50% of new production in some oligotrophic tropical and subtropical oceans. Whilst Trichodesmium blooms at the surface exhibit a strong dependence on diazotrophy, colonies at depth or at the surface after a mixing event could be utilising additional N-sources. We conducted experiments to establish how acclimation to varying N-sources affects the growth, elemental composition, light absorption coefficient, N2 fixation, PSII electron transport rate and the relationship between net and gross photosynthetic O2 exchange in T. erythraeum IMS101. To do this, cultures were acclimated to growth medium containing NH4+ and NO3- (replete concentrations) or N2 only (diazotrophic control). The light dependencies of O2 evolution and O2 uptake were measured using membrane inlet mass spectrometry (MIMS), while PSII electron transport rates were measured from fluorescence light curves (FLCs). We found that at a saturating light intensity, Trichodesmium growth was ~ 10% and 13% lower when grown on N2 than with NH4+ and NO3-, respectively. Oxygen uptake increased linearly with net photosynthesis across all light intensities ranging from darkness to 1100 μmol photons m-2 s-1. The maximum rates and initial slopes of light response curves for C-specific gross and net photosynthesis and the slope of the relationship between gross and net photosynthesis increased significantly under non-diazotrophic conditions. We attribute these observations to a reduced expenditure of reductant and ATP for nitrogenase activity under non-diazotrophic conditions which allows NADPH and ATP to be re-directed to CO2 fixation and/or biosynthesis. The energy and reductant conserved through utilising additional N-sources could enhance Trichodesmium's productivity and growth and have major implications for its role in ocean C and N cycles.
Collapse
Affiliation(s)
- Tobias G. Boatman
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Phillip A. Davey
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Richard J. Geider
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
18
|
Boatman TG, Oxborough K, Gledhill M, Lawson T, Geider RJ. An Integrated Response of Trichodesmium erythraeum IMS101 Growth and Photo-Physiology to Iron, CO 2, and Light Intensity. Front Microbiol 2018; 9:624. [PMID: 29755417 PMCID: PMC5932364 DOI: 10.3389/fmicb.2018.00624] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
We have assessed how varying CO2 (180, 380, and 720 μatm) and growth light intensity (40 and 400 μmol photons m-2 s-1) affected Trichodesmium erythraeum IMS101 growth and photophysiology over free iron (Fe') concentrations between 20 and 9,600 pM. We found significant iron dependencies of growth rate and the initial slope and maximal relative PSII electron transport rates (rPm). Under iron-limiting concentrations, high-light increased growth rates and rPm; possibly indicating a lower allocation of resources to iron-containing photosynthetic proteins. Higher CO2 increased growth rates across all iron concentrations, enabled growth to occur at lower Fe' concentrations, increased rPm and lowered the iron half saturation constants for growth (Km). We attribute these CO2 responses to the operation of the CCM and the ATP spent/saved for CO2 uptake and transport at low and high CO2, respectively. It seems reasonable to conclude that T. erythraeum IMS101 can exhibit a high degree of phenotypic plasticity in response to CO2, light intensity and iron-limitation. These results are important given predictions of increased dissolved CO2 and water column stratification (i.e., higher light exposures) over the coming decades.
Collapse
Affiliation(s)
- Tobias G Boatman
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Kevin Oxborough
- Chelsea Technologies Group Ltd, West Molesey, United Kingdom
| | - Martha Gledhill
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom.,GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Richard J Geider
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
19
|
Wulff A, Karlberg M, Olofsson M, Torstensson A, Riemann L, Steinhoff FS, Mohlin M, Ekstrand N, Chierici M. Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community. MARINE BIOLOGY 2018; 165:63. [PMID: 29563649 PMCID: PMC5843668 DOI: 10.1007/s00227-018-3321-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/01/2018] [Indexed: 05/19/2023]
Abstract
Helcom scenario modelling suggests that the Baltic Sea, one of the largest brackish-water bodies in the world, could expect increased precipitation (decreased salinity) and increased concentration of atmospheric CO2 over the next 100 years. These changes are expected to affect the microplanktonic food web, and thereby nutrient and carbon cycling, in a complex and possibly synergistic manner. In the Baltic Proper, the extensive summer blooms dominated by the filamentous cyanobacteria Aphanizomenon sp., Dolichospermum spp. and the toxic Nodularia spumigena contribute up to 30% of the yearly new nitrogen and carbon exported to the sediment. In a 12 days outdoor microcosm experiment, we tested the combined effects of decreased salinity (from 6 to 3) and elevated CO2 concentrations (380 and 960 µatm) on a natural summer microplanktonic community, focusing on diazotrophic filamentous cyanobacteria. Elevated pCO2 had no significant effects on the natural microplanktonic community except for higher biovolume of Dolichospermum spp. and lower biomass of heterotrophic bacteria. At the end of the experimental period, heterotrophic bacterial abundance was correlated to the biovolume of N. spumigena. Lower salinity significantly affected cyanobacteria together with biovolumes of dinoflagellates, diatoms, ciliates and heterotrophic bacteria, with higher biovolume of Dolichospermum spp. and lower biovolume of N. spumigena, dinoflagellates, diatoms, ciliates and heterotrophic bacteria in reduced salinity. Although the salinity effects on diatoms were apparent, they could not clearly be separated from the influence of inorganic nutrients. We found a clear diurnal cycle in photosynthetic activity and pH, but without significant treatment effects. The same diurnal pattern was also observed in situ (pCO2, pH). Thus, considering the Baltic Proper, we do not expect any dramatic effects of increased pCO2 in combination with decreased salinity on the microplanktonic food web. However, long-term effects of the experimental treatments need to be further studied, and indirect effects of the lower salinity treatments could not be ruled out. Our study adds one piece to the complicated puzzle to reveal the combined effects of increased pCO2 and reduced salinity levels on the Baltic microplanktonic community.
Collapse
Affiliation(s)
- Angela Wulff
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Maria Karlberg
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Malin Olofsson
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Anders Torstensson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
- Present Address: School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195 USA
| | - Lasse Riemann
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Franciska S. Steinhoff
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Malin Mohlin
- Swedish Meteorological and Hydrological Institute, Sven Källfelts gata 15, 426 71 Västra Frölunda, Sweden
| | - Nina Ekstrand
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Melissa Chierici
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
- Present Address: Institute of Marine Research, Sykehusveien 23, Tromsø, Norway
| |
Collapse
|
20
|
Hutchins DA, Fu F, Walworth NG, Lee MD, Saito MA, Webb EA. Comment on "The complex effects of ocean acidification on the prominent N 2-fixing cyanobacterium Trichodesmium". Science 2017; 357:357/6356/eaao0067. [PMID: 28912213 DOI: 10.1126/science.aao0067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/07/2017] [Indexed: 11/02/2022]
Abstract
Hong et al (Reports, 5 May 2017, p. 527) suggested that previous studies of the biogeochemically significant marine cyanobacterium Trichodesmium showing increased growth and nitrogen fixation at projected future high CO2 levels suffered from ammonia or copper toxicity. They reported that these rates instead decrease at high CO2 when contamination is alleviated. We present and discuss results of multiple published studies refuting this toxicity hypothesis.
Collapse
Affiliation(s)
- David A Hutchins
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Feixue Fu
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Nathan G Walworth
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael D Lee
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Eric A Webb
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
21
|
Dang H, Chen CTA. Ecological Energetic Perspectives on Responses of Nitrogen-Transforming Chemolithoautotrophic Microbiota to Changes in the Marine Environment. Front Microbiol 2017; 8:1246. [PMID: 28769878 PMCID: PMC5509916 DOI: 10.3389/fmicb.2017.01246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/20/2017] [Indexed: 11/15/2022] Open
Abstract
Transformation and mobilization of bioessential elements in the biosphere, lithosphere, atmosphere, and hydrosphere constitute the Earth’s biogeochemical cycles, which are driven mainly by microorganisms through their energy and material metabolic processes. Without microbial energy harvesting from sources of light and inorganic chemical bonds for autotrophic fixation of inorganic carbon, there would not be sustainable ecosystems in the vast ocean. Although ecological energetics (eco-energetics) has been emphasized as a core aspect of ecosystem analyses and microorganisms largely control the flow of matter and energy in marine ecosystems, marine microbial communities are rarely studied from the eco-energetic perspective. The diverse bioenergetic pathways and eco-energetic strategies of the microorganisms are essentially the outcome of biosphere-geosphere interactions over evolutionary times. The biogeochemical cycles are intimately interconnected with energy fluxes across the biosphere and the capacity of the ocean to fix inorganic carbon is generally constrained by the availability of nutrients and energy. The understanding of how microbial eco-energetic processes influence the structure and function of marine ecosystems and how they interact with the changing environment is thus fundamental to a mechanistic and predictive understanding of the marine carbon and nitrogen cycles and the trends in global change. By using major groups of chemolithoautotrophic microorganisms that participate in the marine nitrogen cycle as examples, this article examines their eco-energetic strategies, contributions to carbon cycling, and putative responses to and impacts on the various global change processes associated with global warming, ocean acidification, eutrophication, deoxygenation, and pollution. We conclude that knowledge gaps remain despite decades of tremendous research efforts. The advent of new techniques may bring the dawn to scientific breakthroughs that necessitate the multidisciplinary combination of eco-energetic, biogeochemical and “omics” studies in this field.
Collapse
Affiliation(s)
- Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
| | - Chen-Tung A Chen
- Department of Oceanography, National Sun Yat-sen UniversityKaohsiung, Taiwan
| |
Collapse
|
22
|
Hong H, Shen R, Zhang F, Wen Z, Chang S, Lin W, Kranz SA, Luo YW, Kao SJ, Morel FMM, Shi D. The complex effects of ocean acidification on the prominent N2-fixing cyanobacteriumTrichodesmium. Science 2017; 356:527-531. [DOI: 10.1126/science.aal2981] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/12/2017] [Indexed: 11/02/2022]
|
23
|
Eichner MJ, Klawonn I, Wilson ST, Littmann S, Whitehouse MJ, Church MJ, Kuypers MM, Karl DM, Ploug H. Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO 2. ISME JOURNAL 2017; 11:1305-1317. [PMID: 28398346 PMCID: PMC5437350 DOI: 10.1038/ismej.2017.15] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 11/20/2022]
Abstract
Gradients of oxygen (O2) and pH, as well as small-scale fluxes of carbon (C), nitrogen (N) and O2 were investigated under different partial pressures of carbon dioxide (pCO2) in field-collected colonies of the marine dinitrogen (N2)-fixing cyanobacterium Trichodesmium. Microsensor measurements indicated that cells within colonies experienced large fluctuations in O2, pH and CO2 concentrations over a day–night cycle. O2 concentrations varied with light intensity and time of day, yet colonies exposed to light were supersaturated with O2 (up to ~200%) throughout the light period and anoxia was not detected. Alternating between light and dark conditions caused a variation in pH levels by on average 0.5 units (equivalent to 15 nmol l−1 proton concentration). Single-cell analyses of C and N assimilation using secondary ion mass spectrometry (SIMS; large geometry SIMS and nanoscale SIMS) revealed high variability in metabolic activity of single cells and trichomes of Trichodesmium, and indicated transfer of C and N to colony-associated non-photosynthetic bacteria. Neither O2 fluxes nor C fixation by Trichodesmium were significantly influenced by short-term incubations under different pCO2 levels, whereas N2 fixation increased with increasing pCO2. The large range of metabolic rates observed at the single-cell level may reflect a response by colony-forming microbial populations to highly variable microenvironments.
Collapse
Affiliation(s)
- Meri J Eichner
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Isabell Klawonn
- Department of Ecology, Environment and Plant Sciences, University of Stockholm, Stockholm, Sweden
| | - Samuel T Wilson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA
| | - Sten Littmann
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Martin J Whitehouse
- Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
| | - Matthew J Church
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA
| | - Marcel Mm Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Honolulu, HI, USA
| | - Helle Ploug
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Boatman TG, Lawson T, Geider RJ. A Key Marine Diazotroph in a Changing Ocean: The Interacting Effects of Temperature, CO2 and Light on the Growth of Trichodesmium erythraeum IMS101. PLoS One 2017; 12:e0168796. [PMID: 28081236 PMCID: PMC5230749 DOI: 10.1371/journal.pone.0168796] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022] Open
Abstract
Trichodesmium is a globally important marine diazotroph that accounts for approximately 60 - 80% of marine biological N2 fixation and as such plays a key role in marine N and C cycles. We undertook a comprehensive assessment of how the growth rate of Trichodesmium erythraeum IMS101 was directly affected by the combined interactions of temperature, pCO2 and light intensity. Our key findings were: low pCO2 affected the lower temperature tolerance limit (Tmin) but had no effect on the optimum temperature (Topt) at which growth was maximal or the maximum temperature tolerance limit (Tmax); low pCO2 had a greater effect on the thermal niche width than low-light; the effect of pCO2 on growth rate was more pronounced at suboptimal temperatures than at supraoptimal temperatures; temperature and light had a stronger effect on the photosynthetic efficiency (Fv/Fm) than did CO2; and at Topt, the maximum growth rate increased with increasing CO2, but the initial slope of the growth-irradiance curve was not affected by CO2. In the context of environmental change, our results suggest that the (i) nutrient replete growth rate of Trichodesmium IMS101 would have been severely limited by low pCO2 at the last glacial maximum (LGM), (ii) future increases in pCO2 will increase growth rates in areas where temperature ranges between Tmin to Topt, but will have negligible effect at temperatures between Topt and Tmax, (iii) areal increase of warm surface waters (> 18°C) has allowed the geographic range to increase significantly from the LGM to present and that the range will continue to expand to higher latitudes with continued warming, but (iv) continued global warming may exclude Trichodesmium spp. from some tropical regions by 2100 where temperature exceeds Topt.
Collapse
Affiliation(s)
- Tobias G. Boatman
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Richard J. Geider
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
25
|
Li F, Beardall J, Collins S, Gao K. Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO 2 over 1800 generations. GLOBAL CHANGE BIOLOGY 2017; 23:127-137. [PMID: 27629864 DOI: 10.1111/gcb.13501] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
Studies on the long-term responses of marine phytoplankton to ongoing ocean acidification (OA) are appearing rapidly in the literature. However, only a few of these have investigated diatoms, which is disproportionate to their contribution to global primary production. Here we show that a population of the model diatom Phaeodactylum tricornutum, after growing under elevated CO2 (1000 μatm, HCL, pHT : 7.70) for 1860 generations, showed significant differences in photosynthesis and growth from a population maintained in ambient CO2 and then transferred to elevated CO2 for 20 generations (HC). The HCL population had lower mitochondrial respiration, than did the control population maintained in ambient CO2 (400 μatm, LCL, pHT : 8.02) for 1860 generations. Although the cells had higher respiratory carbon loss within 20 generations under the elevated CO2 , being consistent to previous findings, they downregulated their respiration to sustain their growth in longer duration under the OA condition. Responses of phytoplankton to OA may depend on the timescale for which they are exposed due to fluctuations in physiological traits over time. This study provides the first evidence that populations of the model species, P. tricornutum, differ phenotypically from each other after having been grown for differing spans of time under OA conditions, suggesting that long-term changes should be measured to understand responses of primary producers to OA, especially in waters with diatom-dominated phytoplankton assemblages.
Collapse
Affiliation(s)
- Futian Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - John Beardall
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | - Sinéad Collins
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
26
|
Zhang LH, Chen SF. Influence of different factors on the nitrogenase activity of the engineered Escherichia coli 78-7. World J Microbiol Biotechnol 2015; 31:921-7. [PMID: 25850532 DOI: 10.1007/s11274-015-1846-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
The engineered Escherichia coli 78-7 is a derivative of E. coli JM109 carrying a nitrogen fixation (nif) gene cluster composed of nine genes (nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV) and its own σ(70)-dependent nif promoter from a gram-positive bacterium Paenibacillus sp. WLY78. The physiological and biochemical characteristics of the engineered E. coli 78-7 were analyzed by using Biolog GEN III MicroPlate, with E. coli JM109 and JM109/pHY300PLK (E. coli JM109 carrying empty vector) as controls. Analysis of 94 phenotypic tests: 71 carbon source utilization assays and 23 chemical sensitivity tests showed that the engineered E. coli 78-7, E. coli JM109 and JM109/pHY300PLK gave similar patterns of utilization of various substrates as carbon and energy sources. Furthermore, the effect of carbon source, nitrogen source, culture temperature on the nitrogenase activity of the engineered E. coli 78-7 was investigated. Our study demonstrates that the nif capacity of E. coli 78-7 was affected significantly by the different culture condition. The significant nitrogenase activity of E. coli 78-7 were obtained when cells were cultivated in the medium containing 4 g/l glucose (carbon source) and 2 mM glutamate (nitrogen source) and at 30 °C.
Collapse
Affiliation(s)
- Li-hong Zhang
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Yuanmingyuan Road, Haidian District, Beijing, 100193, China,
| | | |
Collapse
|
27
|
Eichner M, Thoms S, Kranz SA, Rost B. Cellular inorganic carbon fluxes in Trichodesmium: a combined approach using measurements and modelling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:749-59. [PMID: 25429001 PMCID: PMC4321539 DOI: 10.1093/jxb/eru427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To predict effects of climate change on phytoplankton, it is crucial to understand how their mechanisms for carbon acquisition respond to environmental conditions. Aiming to shed light on the responses of extra- and intracellular inorganic C (Ci) fluxes, the cyanobacterium Trichodesmium erythraeum IMS101 was grown with different nitrogen sources (N2 vs NO3 (-)) and pCO2 levels (380 vs 1400 µatm). Cellular Ci fluxes were assessed by combining membrane inlet mass spectrometry (MIMS), (13)C fractionation measurements, and modelling. Aside from a significant decrease in Ci affinity at elevated pCO2 and changes in CO2 efflux with different N sources, extracellular Ci fluxes estimated by MIMS were largely unaffected by the treatments. (13)C fractionation during biomass production, however, increased with pCO2, irrespective of the N source. Strong discrepancies were observed in CO2 leakage estimates obtained by MIMS and a (13)C-based approach, which further increased under elevated pCO2. These offsets could be explained by applying a model that comprises extracellular CO2 and HCO3 (-) fluxes as well as internal Ci cycling around the carboxysome via the CO2 uptake facilitator NDH-14. Assuming unidirectional, kinetic fractionation between CO2 and HCO3 (-) in the cytosol or enzymatic fractionation by NDH-14, both significantly improved the comparability of leakage estimates. Our results highlight the importance of internal Ci cycling for (13)C composition as well as cellular energy budgets of Trichodesmium, which ought to be considered in process studies on climate change effects.
Collapse
Affiliation(s)
- Meri Eichner
- Marine Biogeosciences, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Silke Thoms
- Marine Biogeosciences, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Sven A Kranz
- Department for Geosciences, Princeton University, Princeton, NJ 08540, USA Present address: Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, Fl 32306, USA
| | - Björn Rost
- Marine Biogeosciences, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|