1
|
Zait Y, Shemer OE, Cochavi A. Dynamic responses of chlorophyll fluorescence parameters to drought across diverse plant families. PHYSIOLOGIA PLANTARUM 2024; 176:e14527. [PMID: 39291421 DOI: 10.1111/ppl.14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Chlorophyll fluorescence measurement is a quick and efficient tool for plant stress-level detection. The use of Pulse amplitude modulation (PAM), allows the detection of the plant stress level under field conditions. Over the years, several parameters estimating different parts of the chlorophyll and photosystem response were developed to describe the plant stress level. Despite all fluorescence parameters being based on the same measurements, their relationship remains unclear, and their response to drought stress is significantly influenced by the incoming light intensity. In this study, we use six different annual plants from different families, both C3 and C4 photosynthesis types, to describe the plant response to drought through the fluorescence parameters response (NPQ, Y(NPQ), and qN). To describe the dynamic response to drought, we employed light-response curves, adapting and fitting an equation for each curve to compare the drought response for each fluorescence parameter. The results demonstrated that the non-photochemical quenching (NPQ) and the quantum yield of non-photochemical quenching [Y(NPQ)] maximal values decrease when the PSII functionality (Fv/Fm) is lower than ~0.7. The basal fluorescence level (F 0 $$ {F}_0 $$ andF s ) $$ {F}_s\Big) $$ remained unaffected by the stress level and stayed stable across the various plants and stress levels. Our results indicate that the response of different stress parameters follows a distinct order under continuous drought. Consequently, monitoring just one parameter during long-term stress assessments may result in biased analysis outcomes. Incorporating multiple chlorophyll fluorescence parameters offers a more accurate reflection of the plant's stress level.
Collapse
Affiliation(s)
- Yotam Zait
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Or Emma Shemer
- Department of Plant Science, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Center, Ramat Yishay, Israel
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences and the Institute of Evolution, University of Haifa, Haifa, Israel
| | - Amnon Cochavi
- Department of Plant Science, Newe Ya'ar Research Center, Agricultural Research Organization, Volcani Center, Ramat Yishay, Israel
| |
Collapse
|
2
|
Dias MC, Silva S, Galhano C, Lorenzo P. Olive Tree Belowground Microbiota: Plant Growth-Promoting Bacteria and Fungi. PLANTS (BASEL, SWITZERLAND) 2024; 13:1848. [PMID: 38999688 PMCID: PMC11244348 DOI: 10.3390/plants13131848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The olive tree is one of the most significant crops in the Mediterranean region. Its remarkable adaptability to various environments has facilitated olive cultivation across diverse regions and agricultural scenarios. The rising global demand for olive products, coupled with climate challenges, is driving changes in cultivation methods. These changes are altering the traditional landscape and may potentially reshape the structure and composition of orchard microbial communities, which can impact productivity and stress tolerance. Bacterial and fungal communities naturally associated with plants have long been recognized as crucial for plant growth and health, serving as a vital component of sustainable agriculture. In this review, we aim to highlight the significance of olive cultivation and the impact of abiotic stresses. We update the current knowledge on the profiles of rhizosphere and root fungal and bacterial communities in olive orchards and examine how (a)biotic factors influence these communities. Additionally, we explore the potential of plant growth-promoting bacteria and fungi in enhancing olive physiological performance and stress tolerance. We identify knowledge gaps and emphasize the need for implementing new strategies. A comprehensive understanding of olive-associated microbiota will aid in developing sustainable agronomic practices to address climatic challenges and meet the growing demand for olive products.
Collapse
Affiliation(s)
- Maria Celeste Dias
- Associate Laboratory TERRA, Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Cristina Galhano
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - Paula Lorenzo
- Associate Laboratory TERRA, Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
3
|
Liu J, Hochberg U, Ding R, Xiong D, Dai Z, Zhao Q, Chen J, Ji S, Kang S. Elevated CO2 concentration increases maize growth under water deficit or soil salinity but with a higher risk of hydraulic failure. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:422-437. [PMID: 37715996 DOI: 10.1093/jxb/erad365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023]
Abstract
Climate change presents a challenge for plants to acclimate their water relations under changing environmental conditions, and may increase the risks of hydraulic failure under stress. In this study, maize plants were acclimated to two different CO2 concentrations ([CO2]; 400 ppm and 700 ppm) while under either water stress (WS) or soil salinity (SS) treatments, and their growth and hydraulic traits were examined in detail. Both WS and SS inhibited growth and had significant impacts on hydraulic traits. In particular, the water potential at 50% loss of stem hydraulic conductance (P50) decreased by 1 MPa in both treatments at 400 ppm. When subjected to elevated [CO2], the plants under both WS and SS showed improved growth by 7-23%. Elevated [CO2] also significantly increased xylem vulnerability (measured as loss of conductivity with decreasing xylem pressure), resulting in smaller hydraulic safety margins. According to the plant desiccation model, the critical desiccation degree (time×vapor pressure deficit) that the plants could tolerate under drought was reduced by 43-64% under elevated [CO2]. In addition, sensitivity analysis showed that P50 was the most important trait in determining the critical desiccation degree. Thus, our results demonstrated that whilst elevated [CO2] benefited plant growth under WS or SS, it also interfered with hydraulic acclimation, thereby potentially placing the plants at a higher risk of hydraulic failure and increased mortality.
Collapse
Affiliation(s)
- Junzhou Liu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization Volcani Center, Bet Dagan, 7505101, Israel
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| | - Dongliang Xiong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Qing Zhao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| | - Jinliang Chen
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| | - Shasha Ji
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733009, China
| |
Collapse
|
4
|
Wagner Y, Volkov M, Nadal-Sala D, Ruehr NK, Hochberg U, Klein T. Relationships between xylem embolism and tree functioning during drought, recovery, and recurring drought in Aleppo pine. PHYSIOLOGIA PLANTARUM 2023; 175:e13995. [PMID: 37882273 DOI: 10.1111/ppl.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 10/27/2023]
Abstract
Recent findings suggest that trees can survive high levels of drought-induced xylem embolism. In many cases, the embolism is irreversible and, therefore, can potentially affect post-drought recovery and tree function under recurring droughts. We examined the development of embolism in potted Aleppo pines, a common species in hot, dry Mediterranean habitats. We asked (1) how post-drought recovery is affected by different levels of embolism and (2) what consequences this drought-induced damage has under a recurring drought scenario. Young trees were dehydrated to target water potential (Ψx ) values of -3.5, -5.2 and -9.5 MPa (which corresponded to ~6%, ~41% and ~76% embolism), and recovery of the surviving trees was measured over an 8-months period (i.e., embolism, leaf gas-exchange, Ψx ). An additional group of trees was exposed to Ψx of -6.0 MPa, either with or without preceding drought (Ψx of -5.2 MPa) to test the effect of hydraulic damage during repeated drought. Trees that reached -9.5 MPa died, but none from the other groups. Embolism levels in dying trees were on average 76% of conductive xylem and no tree was dying below 62% embolism. Stomatal recovery was negatively proportional to the level of hydraulic damage sustained during drought, for at least a month after drought relief. Trees that experienced drought for the second time took longer to reach fatal Ψx levels than first-time dehydrating trees. Decreased stomatal conductance following drought can be seen as "drought legacy," impeding recovery of tree functioning, but also as a safety mechanism during a consecutive drought.
Collapse
Affiliation(s)
- Yael Wagner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mila Volkov
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Nadal-Sala
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Campus de Bellaterra (UAB) Edifici C, Cerdanyola del Vallès, Spain
| | - Nadine Katrin Ruehr
- Institute of Meteorology and Climate Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Tamir Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Villagra M, di Francescantonio D, Munaretto N, Campanello PI. Yerba mate ( Ilex paraguariensis) agroforestry systems: intraspecific differences in water relations and hydraulic architecture. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:585-598. [PMID: 37194220 DOI: 10.1071/fp22300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/25/2023] [Indexed: 05/18/2023]
Abstract
Intensive farming systems benefit from the additional ecosystem services provided by tree integration, which generate different growing conditions for the main crop. We studied yerba mate (Ilex paraguariensis ) responses to growing conditions in monoculture (the conventional cropping system of yerba mate) and in three agroforestry systems: (1) yerba mate+Balfourodendron riedelianum ; (2) yerba mate+Peltophorum dubium ; and (3) yerba mate+Toona ciliata . Mainly, we focused on water relations and the hydraulic architecture of yerba mate. Agroforestry cropping systems provided a shade cover of around 34-45% and yielded as high as the conventional system. The shade cover influenced the allocation pattern to enhance leaf light capture, incrementing the leaf area to the sapwood area at the branch level. We also found a higher specific hydraulic conductivity in stems of yerba mate plants in consortium with T. ciliata than in the conventional cropping system, as well as higher resistance to water deficits due to lower vulnerability to embolism in the stems. During a severe drought, yerba mate plants had a similar stem and leaf water potential in both agricultural systems. Still, plants in monoculture had lower hydraulic safety margins and higher signs of leaf damage and mortality. This indicates that integrating trees into the yerba mate cultivation increases water stress resistance which would be beneficial to avoid restrictions on crop productivity under severe droughts induced by climate change.
Collapse
Affiliation(s)
- Mariana Villagra
- Instituto de Biología Subtropical, UNAM-CONICET, Av. Tres Fronteras 183, Puerto Iguazú, Misiones, Argentina; and Centro de Investigaciones del Bosque Atlántico, Puerto Iguazú, Misiones, Argentina
| | - Débora di Francescantonio
- Instituto de Biología Subtropical, UNAM-CONICET, Av. Tres Fronteras 183, Puerto Iguazú, Misiones, Argentina; and Centro de Investigaciones del Bosque Atlántico, Puerto Iguazú, Misiones, Argentina
| | - Nestor Munaretto
- Instituto Nacional de Tecnología Agropecuaria (INTA), Santo Pipó, Misiones, Argentina
| | - Paula I Campanello
- Instituto de Biotecnología Esquel, Universidad Nacional de la Patagonia San Juan Bosco, CONICET, Esquel, Chubut, Argentina; and Facultad de Ingeniería, Universidad Nacional de la Patagonia San Juan Bosco, Esquel, Argentina
| |
Collapse
|
6
|
Engelen C, Wechsler T, Bakhshian O, Smoly I, Flaks I, Friedlander T, Ben-Ari G, Samach A. Studying Parameters Affecting Accumulation of Chilling Units Required for Olive Winter Flower Induction. PLANTS (BASEL, SWITZERLAND) 2023; 12:1714. [PMID: 37111937 PMCID: PMC10143890 DOI: 10.3390/plants12081714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
With global warming, mean winter temperatures are predicted to increase. Therefore, understanding how warmer winters will affect the levels of olive flower induction is essential for predicting the future sustainability of olive oil production under different climactic scenarios. Here, we studied the effect of fruit load, forced drought in winter, and different winter temperature regimes on olive flower induction using several cultivars. We show the necessity of studying trees with no previous fruit load as well as provide evidence that soil water content during winter does not significantly affect the expression of an FT-encoding gene in leaves and the subsequent rate of flower induction. We collected yearly flowering data for 5 cultivars for 9 to 11 winters, altogether 48 data sets. Analyzing hourly temperatures from these winters, we made initial attempts to provide an efficient method to calculate accumulated chill units that are then correlated with the level of flower induction in olives. While the new models tested here appear to predict the positive contribution of cold temperatures, they lack in accurately predicting the reduction in cold units caused by warm temperatures occurring during winter.
Collapse
Affiliation(s)
- Chaim Engelen
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Tahel Wechsler
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Ortal Bakhshian
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Ilan Smoly
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Idan Flaks
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Tamar Friedlander
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Giora Ben-Ari
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7528809, Israel
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Barazani O, Dag A, Dunseth Z. The history of olive cultivation in the southern Levant. FRONTIERS IN PLANT SCIENCE 2023; 14:1131557. [PMID: 36909452 PMCID: PMC9996078 DOI: 10.3389/fpls.2023.1131557] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The olive tree (Olea europaea L. subsp. europaea var. europaea) is one of the most important crops across the Mediterranean, particularly the southern Levant. Its regional economic importance dates at least to the Early Bronze Age (~3600 BCE) and its cultivation contributed significantly to the culture and heritage of ancient civilizations in the region. In the southern Levant, pollen, pits and wood remains of wild olives (O. europaea subsp. europaea var. sylvestris) has been found in Middle Pleistocene sediments dating to approximately 780 kya, and are present in numerous palynological sequences throughout the Pleistocene and into the Holocene. Archeological evidence indicates the olive oil production from at least the Pottery Neolithic to Chalcolithic transition (~7600-7000 BP), and clear evidence for cultivation by, 7000 BP. It is hypothesized that olive cultivation began through the selection of local genotypes of the wild var. sylvestris. Local populations of naturally growing trees today have thus been considered wild relatives of the olive. However, millennia of cultivation raises questions about whether genuine populations of var. sylvestris remain in the region. Ancient olive landraces might thus represent an ancient genetic stock closer to the ancestor gene pool. This review summarizes the evidence supporting the theory that olives were first cultivated in the southern Levant and reviews our genetic work characterizing local ancient cultivars. The significance and importance of old cultivars and wild populations are discussed, given the immediate need to adapt agricultural practices and crops to environmental degradation and global climate change.
Collapse
Affiliation(s)
- Oz Barazani
- Agricultural Research Organization, Institute of Plant Sciences, Department of Vegetables and Field Crops, Rishon LeZion, Israel
| | - Arnon Dag
- Agricultural Research Organization, Institute of Plant Sciences, Department of Fruit Tree Sciences, Gilat Research Center, Gilat, Israel
| | - Zachary Dunseth
- Joukowsky Institute for Archaeology and the Ancient World, Brown University, Providence, RI, United States
| |
Collapse
|