1
|
Siqueiros-Sanchez M, Bussu G, Portugal AM, Ronald A, Falck-Ytter T. Genetic and environmental contributions to individual differences in visual attention and oculomotor control in early infancy. Child Dev 2024. [PMID: 39445681 DOI: 10.1111/cdev.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Infants differ in their level of eye movement control, which at the extreme could be linked to autism. We assessed eye movements in 450 twins (225 pairs, 57% monozygotic, 46% female, aged 5-6 months) using the gap-overlap eye-tracking task. Shorter latency in the gap condition was associated with having more parent-rated autistic traits at 2 years. Latency across the task's three conditions was primarily explained by one highly heritable latent factor likely representing individual differences in basic oculomotor efficiency and/or in visual information processing. Additionally, disengagement of attention was linked to unique genetic factors, suggesting that genetic factors involved in visual attention are different from those involved in basic visual information processing and oculomotor efficiency.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Department of Women's and Children's Health, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Giorgia Bussu
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Ana Maria Portugal
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Uppsala, Sweden
| | | | - Terje Falck-Ytter
- Department of Women's and Children's Health, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Breuer F, Meyhöfer I, Lencer R, Sprenger A, Roesmann K, Schag K, Dannlowski U, Leehr EJ. Aberrant inhibitory control as a transdiagnostic dimension of mental disorders - A meta-analysis of the antisaccade task in different psychiatric populations. Neurosci Biobehav Rev 2024; 165:105840. [PMID: 39103067 DOI: 10.1016/j.neubiorev.2024.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/29/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
This meta-analysis examined inhibitory control performance in the antisaccade task across mental disorders. Following PRISMA guidelines, we analyzed data from k = 146 studies (n = 13,807 participants) on antisaccade performance. Effect sizes were estimated using random-effects models and restricted maximum-likelihood estimation, with robustness tests for study heterogeneity and publication bias. Most disorders displayed elevated error rates, with schizophrenia showing the greatest impairments, followed by autism spectrum disorder, bipolar disorder and attention deficit hyperactivity disorder. Small to medium impairments were also found in eating disorders, major depressive disorder, obsessive-compulsive disorder and substance use disorder. Results were robust against corrections for publication bias and largely unaffected by confounding variables. Prolonged latencies were observed in schizophrenia, attention deficit hyperactivity disorder, bipolar disorder and obsessive compulsive disorder, with smaller and less robust effect sizes. Results indicate inhibitory control deficits in the antisaccade task across mental disorders, especially evident for error rates. While present in most disorders, results imply varying degrees of impairments, ranging from small to large in effect sizes, with largest impairments in schizophrenia.
Collapse
Affiliation(s)
- Fabian Breuer
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Inga Meyhöfer
- Institute for Translational Psychiatry, University of Münster, Germany; Otto-Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Münster, Germany; Otto-Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany; Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Andreas Sprenger
- Department of Psychiatry and Psychotherapy, University of Lübeck, Germany; Institute of Psychology II, University of Lübeck, Germany
| | - Kati Roesmann
- Institute for Psychology, Unit for Clinical Psychology and Psychotherapy in Childhood and Adolescence. University of Osnabrück, Germany; Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany
| | - Kathrin Schag
- Medical University Hospital Tübingen, Department of Psychosomatic Medicine and Psychotherapy, Tübingen, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Germany
| | | |
Collapse
|
3
|
Smith ES, Crawford TJ. Positive and Negative Symptoms Are Associated with Distinct Effects on Predictive Saccades. Brain Sci 2022; 12:brainsci12040418. [PMID: 35447950 PMCID: PMC9025332 DOI: 10.3390/brainsci12040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/10/2022] [Accepted: 03/19/2022] [Indexed: 02/05/2023] Open
Abstract
The predictive saccade task is a motor learning paradigm requiring saccades to track a visual target moving in a predictable pattern. Previous research has explored extensively anti-saccade deficits observed across psychosis, but less is known about predictive saccade-related mechanisms. The dataset analysed came from the studies of Crawford et al, published in 1995, where neuroleptically medicated schizophrenia and bipolar affective disorder patients were compared with non-medicated patients and control participants using a predictive saccade paradigm. The participant groups consisted of medicated schizophrenia patients (n = 40), non-medicated schizophrenia patients (n = 18), medicated bipolar disorder patients (n = 14), non-medicated bipolar disorder patients (n = 18), and controls (n = 31). The current analyses explore relationships between predictive saccades and symptomatology, and the potential interaction of medication. Analyses revealed that the schizophrenia and bipolar disorder diagnostic categories are indistinguishable in patterns of predictive control across several saccadic parameters, supporting a dimensional hypothesis. Once collapsed into predominantly high-/low- negative/positive symptoms, regardless of diagnosis, differences were revealed, with significant hypometria and lower gain in those with more negative symptoms. This illustrates how the presentation of the deficits is homogeneous across diagnosis, but heterogeneous when surveyed by symptomatology; attesting that a diagnostic label is less informative than symptomatology when exploring predictive saccades.
Collapse
Affiliation(s)
- Eleanor S. Smith
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK;
| | - Trevor J. Crawford
- Centre for Ageing Research, Department of Psychology, Lancaster University, Lancaster LA1 4YF, UK
- Correspondence:
| |
Collapse
|
4
|
Harper J, Liu M, Malone SM, McGue M, Iacono WG, Vrieze SI. Using multivariate endophenotypes to identify psychophysiological mechanisms associated with polygenic scores for substance use, schizophrenia, and education attainment. Psychol Med 2021; 52:1-11. [PMID: 33731234 PMCID: PMC8448784 DOI: 10.1017/s0033291721000763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND To better characterize brain-based mechanisms of polygenic liability for psychopathology and psychological traits, we extended our previous report (Liu et al. Psychophysiological endophenotypes to characterize mechanisms of known schizophrenia genetic loci. Psychological Medicine, 2017), focused solely on schizophrenia, to test the association between multivariate psychophysiological candidate endophenotypes (including novel measures of θ/δ oscillatory activity) and a range of polygenic scores (PGSs), namely alcohol/cannabis/nicotine use, an updated schizophrenia PGS (containing 52 more genome-wide significant loci than the PGS used in our previous report) and educational attainment. METHOD A large community-based twin/family sample (N = 4893) was genome-wide genotyped and imputed. PGSs were constructed for alcohol use, regular smoking initiation, lifetime cannabis use, schizophrenia, and educational attainment. Eleven endophenotypes were assessed: visual oddball task event-related electroencephalogram (EEG) measures (target-related parietal P3 amplitude, frontal θ, and parietal δ energy/inter-trial phase clustering), band-limited resting-state EEG power, antisaccade error rate. Principal component analysis exploited covariation among endophenotypes to extract a smaller number of meaningful dimensions/components for statistical analysis. RESULTS Endophenotypes were heritable. PGSs showed expected intercorrelations (e.g. schizophrenia PGS correlated positively with alcohol/nicotine/cannabis PGSs). Schizophrenia PGS was negatively associated with an event-related P3/δ component [β = -0.032, nonparametric bootstrap 95% confidence interval (CI) -0.059 to -0.003]. A prefrontal control component (event-related θ/antisaccade errors) was negatively associated with alcohol (β = -0.034, 95% CI -0.063 to -0.006) and regular smoking PGSs (β = -0.032, 95% CI -0.061 to -0.005) and positively associated with educational attainment PGS (β = 0.031, 95% CI 0.003-0.058). CONCLUSIONS Evidence suggests that multivariate endophenotypes of decision-making (P3/δ) and cognitive/attentional control (θ/antisaccade error) relate to alcohol/nicotine, schizophrenia, and educational attainment PGSs and represent promising targets for future research.
Collapse
Affiliation(s)
- Jeremy Harper
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Twin Cities, MN, USA
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota, Twin Cities, MN, USA
| | - Stephen M. Malone
- Department of Psychology, University of Minnesota, Twin Cities, MN, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Twin Cities, MN, USA
| | - William G. Iacono
- Department of Psychology, University of Minnesota, Twin Cities, MN, USA
| | - Scott I. Vrieze
- Department of Psychology, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
5
|
Siqueiros Sanchez M, Falck‐Ytter T, Kennedy DP, Bölte S, Lichtenstein P, D'Onofrio BM, Pettersson E. Volitional eye movement control and ADHD traits: a twin study. J Child Psychol Psychiatry 2020; 61:1309-1316. [PMID: 32020616 PMCID: PMC7754462 DOI: 10.1111/jcpp.13210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Top-down volitional command of eye movements may serve as a candidate endophenotype of ADHD, an important function underlying goal-directed action in everyday life. In this twin study, we examined the relation between performance on a response inhibition eye-tracking paradigm and parent-rated ADHD traits in a population-based twin sample. We hypothesized that altered eye movement control is associated with the severity of ADHD traits and that this association is attributable to genetic factors. METHODS A total of 640 twins (320 pairs, 50% monozygotic) aged 9-14 years) from the Child and Adolescent Twin Study in Sweden (CATSS) participated. Twins performed the antisaccade task indexing inhibitory alterations as either direction errors (following exogenous cues rather than instructions) or premature anticipatory eye movements (failure to wait for cues). We calculated the associations of eye movement control and ADHD traits using linear regression mixed-effects models and genetic and environmental influences with multivariate twin models. RESULTS Premature anticipatory eye movements were positively associated with inattentive traits (β = .17; 95% CI: 0.04, 0.31), while controlling for hyperactive behaviors and other covariates. Both premature anticipatory eye movements and inattention were heritable (h2 = 0.40, 95% CI: 0.22, 0.56; h2 = 0.55; 95% CI: 0.42, 0.65; respectively), and their genetic correlation was small but statistically significant (r = .19, 95% CI: 0.02, 0.36). However, the genetic correlation did not remain significant after adjusting for covariates (age, sex, hyperactivity traits, IQ). No link was found between direction errors and ADHD traits. CONCLUSIONS This study indicates that there is a specific, genetically influenced, relation between top-down eye movement control and the inattentive traits typical of ADHD.
Collapse
Affiliation(s)
- Monica Siqueiros Sanchez
- Karolinska Institutet Center of Neurodevelopmental Disorders (KIND)Department of Women’s and Children’s HealthKarolinska InstitutetStockholmSweden
| | - Terje Falck‐Ytter
- Karolinska Institutet Center of Neurodevelopmental Disorders (KIND)Department of Women’s and Children’s HealthKarolinska InstitutetStockholmSweden,Department of PsychologyUppsala UniversityUppsalaSweden,Swedish Collegium for Advanced Study (SCAS)UppsalaSweden
| | - Daniel P. Kennedy
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| | - Sven Bölte
- Karolinska Institutet Center of Neurodevelopmental Disorders (KIND)Department of Women’s and Children’s HealthKarolinska InstitutetStockholmSweden,Child and Adolescent PsychiatryStockholm Health Care ServicesStockholmSweden,Curtin Autism Research GroupSchool of Occupational Therapy, Social Work and Speech PathologyCurtin UniversityPerthWAAustralia
| | - Paul Lichtenstein
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Brian M. D'Onofrio
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA,Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Erik Pettersson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| |
Collapse
|
6
|
Chen C, Chen C, Xue G, Dong Q, Zhao L, Zhang S. Parental warmth interacts with several genes to affect executive function components: a genome-wide environment interaction study. BMC Genet 2020; 21:11. [PMID: 32019487 PMCID: PMC7001336 DOI: 10.1186/s12863-020-0819-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Background Executive function (EF) is vital to human beings. It has been linked to many genes and family environmental factors in separate studies, but few studies have examined the potential interactions between gene(s) and environmental factor(s). The current study explored the whole genome to identify SNPs, genes, and pathways that interacted with parental warmth (PW) on EF. Results Nine EF tasks were used to measure its three components (common EF, updating, shifting) based on the model proposed by Miyake et al. (2000). We found that rs111605473, LAMP5, SLC4A7, and LRRK1 interacted significantly with PW to affect the updating component of EF, and the GSE43955 pathway interacted significantly with PW to affect the common EF component. Conclusions The current study is the first to identify genes that interacted with PW to affect EF. Further studies are needed to reveal the underlying mechanism.
Collapse
Affiliation(s)
- Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Libo Zhao
- Department of Psychology, BeiHang University, Beijing, 100191, China
| | - Shudong Zhang
- Faculty of Education, Beijing Normal University, Beijing, China.
| |
Collapse
|
7
|
Bey K, Lennertz L, Grützmann R, Heinzel S, Kaufmann C, Klawohn J, Riesel A, Meyhöfer I, Ettinger U, Kathmann N, Wagner M. Impaired Antisaccades in Obsessive-Compulsive Disorder: Evidence From Meta-Analysis and a Large Empirical Study. Front Psychiatry 2018; 9:284. [PMID: 30008679 PMCID: PMC6033994 DOI: 10.3389/fpsyt.2018.00284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/11/2018] [Indexed: 01/23/2023] Open
Abstract
Increasing evidence indicates that patients with obsessive-compulsive disorder (OCD) exhibit alterations in fronto-striatal circuitry. Performance deficits in the antisaccade task would support this model, but results from previous small-scale studies have been inconclusive as either increased error rates, prolonged antisaccade latencies, both or neither have been reported in OCD patients. In order to address this issue, we investigated antisaccade performance in a large sample of OCD patients (n = 169) and matched control subjects (n = 183). As impaired antisaccade performance constitutes a potential endophenotype of OCD, unaffected first-degree relatives of OCD patients (n = 100) were assessed, as well. Furthermore, we conducted a quantitative meta-analysis to integrate our data with previous findings. In the empirical study, OCD patients exhibited significantly increased antisaccade latencies, intra-subject variability (ISV) of antisaccade latencies, and antisaccade error rates. The latter effect was driven by errors with express latency (80-130 ms), as patients did not differ significantly from controls with regards to regular errors (>130 ms). Notably, unaffected relatives of OCD patients showed elevated antisaccade express error rates and increased ISV of antisaccade latencies, as well. Antisaccade performance was not associated with state anxiety within groups. Among relatives, however, we observed a significant correlation between antisaccade error rate and harm avoidance. Medication status of OCD patients, symptom severity, depressive comorbidity, comorbid anxiety disorders and OCD symptom dimensions did not significantly affect antisaccade performance. Meta-analysis of 10 previous and the present empirical study yielded a medium-sized effect (SMD = 0.48, p < 0.001) for higher error rates in OCD patients, while the effect for latencies did not reach significance owing to strong heterogeneity (SMD = 0.51, p = 0.069). Our results support the assumption of impaired antisaccade performance in OCD, although effects sizes were only moderately large. Furthermore, we provide the first evidence that increased antisaccade express error rates and ISV of antisaccade latencies may constitute endophenotypes of OCD. Findings regarding these more detailed antisaccade parameters point to potentially underlying mechanisms, such as early pre-stimulus inhibition of the superior colliculus.
Collapse
Affiliation(s)
- Katharina Bey
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Leonhard Lennertz
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Rosa Grützmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephan Heinzel
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.,Clinical Psychology and Psychotherapy, Freie Universität Berlin, Berlin, Germany
| | - Christian Kaufmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.,Biomedical Sciences and Psychology, Florida State University, Tallahassee, FL, United States
| | - Anja Riesel
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Inga Meyhöfer
- Department of Psychology, University of Bonn, Bonn, Germany
| | | | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany.,Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Lencer R, Mills LJ, Alliey-Rodriguez N, Shafee R, Lee AM, Reilly JL, Sprenger A, McDowell JE, McCarroll SA, Keshavan MS, Pearlson GD, Tamminga CA, Clementz BA, Gershon ES, Sweeney JA, Bishop JR. Genome-wide association studies of smooth pursuit and antisaccade eye movements in psychotic disorders: findings from the B-SNIP study. Transl Psychiatry 2017; 7:e1249. [PMID: 29064472 PMCID: PMC5682604 DOI: 10.1038/tp.2017.210] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 02/07/2023] Open
Abstract
Eye movement deviations, particularly deficits of initial sensorimotor processing and sustained pursuit maintenance, and antisaccade inhibition errors, are established intermediate phenotypes for psychotic disorders. We here studied eye movement measures of 849 participants from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study (schizophrenia N=230, schizoaffective disorder N=155, psychotic bipolar disorder N=206 and healthy controls N=258) as quantitative phenotypes in relation to genetic data, while controlling for genetically derived ancestry measures, age and sex. A mixed-modeling genome-wide association studies approach was used including ~4.4 million genotypes (PsychChip and 1000 Genomes imputation). Across participants, sensorimotor processing at pursuit initiation was significantly associated with a single nucleotide polymorphism in IPO8 (12p11.21, P=8 × 10-11), whereas suggestive associations with sustained pursuit maintenance were identified with SNPs in SH3GL2 (9p22.2, P=3 × 10-8). In participants of predominantly African ancestry, sensorimotor processing was also significantly associated with SNPs in PCDH12 (5q31.3, P=1.6 × 10-10), and suggestive associations were observed with NRSN1 (6p22.3, P=5.4 × 10-8) and LMO7 (13q22.2, P=7.3x10-8), whereas antisaccade error rate was significantly associated with a non-coding region at chromosome 7 (P=6.5 × 10-9). Exploratory pathway analyses revealed associations with nervous system development and function for 40 top genes with sensorimotor processing and pursuit maintenance (P=4.9 × 10-2-9.8 × 10-4). Our findings suggest novel patterns of genetic variation relevant for brain systems subserving eye movement control known to be impaired in psychotic disorders. They include genes involved in nuclear trafficking and gene silencing (IPO8), fast axonal guidance and synaptic specificity (PCDH12), transduction of nerve signals (NRSN1), retinal degeneration (LMO7), synaptic glutamate release (SH3GL2), and broader nervous system development and function.
Collapse
Affiliation(s)
- R Lencer
- Department of Psychiatry and Psychotherapy, Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - L J Mills
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - N Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - R Shafee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - A M Lee
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - J L Reilly
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - A Sprenger
- Department of Neurology, University of Luebeck, Luebeck, Germany
| | - J E McDowell
- Department of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - S A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - M S Keshavan
- Department of Psychiatry, Harvard Medical School, Beth Israel Deacones Medical Center, Boston, MA, USA
| | - G D Pearlson
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, CT, USA
- Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - C A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - B A Clementz
- Department of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - E S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - J A Sweeney
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - J R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota College of Medicine, Minneapolis, MN, USA
| |
Collapse
|
9
|
The utility of twins in developmental cognitive neuroscience research: How twins strengthen the ABCD research design. Dev Cogn Neurosci 2017; 32:30-42. [PMID: 29107609 PMCID: PMC5847422 DOI: 10.1016/j.dcn.2017.09.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023] Open
Abstract
The ABCD twin study will elucidate the genetic and environmental contributions to a wide range of mental and physical health outcomes in children, including substance use, brain and behavioral development, and their interrelationship. Comparisons within and between monozygotic and dizygotic twin pairs, further powered by multiple assessments, provide information about genetic and environmental contributions to developmental associations, and enable stronger tests of causal hypotheses, than do comparisons involving unrelated children. Thus a sub-study of 800 pairs of same-sex twins was embedded within the overall Adolescent Brain and Cognitive Development (ABCD) design. The ABCD Twin Hub comprises four leading centers for twin research in Minnesota, Colorado, Virginia, and Missouri. Each site is enrolling 200 twin pairs, as well as singletons. The twins are recruited from registries of all twin births in each State during 2006-2008. Singletons at each site are recruited following the same school-based procedures as the rest of the ABCD study. This paper describes the background and rationale for the ABCD twin study, the ascertainment of twin pairs and implementation strategy at each site, and the details of the proposed analytic strategies to quantify genetic and environmental influences and test hypotheses critical to the aims of the ABCD study.
Collapse
|
10
|
Liu M, Malone SM, Vaidyanathan U, Keller MC, McGue M, Iacono WG, Vrieze SI. Psychophysiological endophenotypes to characterize mechanisms of known schizophrenia genetic loci. Psychol Med 2017; 47:1116-1125. [PMID: 27995817 PMCID: PMC5352523 DOI: 10.1017/s0033291716003184] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Endophenotypes are laboratory-based measures hypothesized to lie in the causal chain between genes and clinical disorder, and to serve as a more powerful way to identify genes associated with the disorder. One promise of endophenotypes is that they may assist in elucidating the neurobehavioral mechanisms by which an associated genetic polymorphism affects disorder risk in complex traits. We evaluated this promise by testing the extent to which variants discovered to be associated with schizophrenia through large-scale meta-analysis show associations with psychophysiological endophenotypes. METHOD We genome-wide genotyped and imputed 4905 individuals. Of these, 1837 were whole-genome-sequenced at 11× depth. In a community-based sample, we conducted targeted tests of variants within schizophrenia-associated loci, as well as genome-wide polygenic tests of association, with 17 psychophysiological endophenotypes including acoustic startle response and affective startle modulation, antisaccade, multiple frequencies of resting electroencephalogram (EEG), electrodermal activity and P300 event-related potential. RESULTS Using single variant tests and gene-based tests we found suggestive evidence for an association between contactin 4 (CNTN4) and antisaccade and P300. We were unable to find any other variant or gene within the 108 schizophrenia loci significantly associated with any of our 17 endophenotypes. Polygenic risk scores indexing genetic vulnerability to schizophrenia were not related to any of the psychophysiological endophenotypes after correction for multiple testing. CONCLUSIONS The results indicate significant difficulty in using psychophysiological endophenotypes to characterize the genetically influenced neurobehavioral mechanisms by which risk loci identified in genome-wide association studies affect disorder risk.
Collapse
Affiliation(s)
- M. Liu
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - S. M. Malone
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | | | - M. C. Keller
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - M. McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - W. G. Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - S. I. Vrieze
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
11
|
Iacono WG, Malone SM, Vrieze SI. Endophenotype best practices. Int J Psychophysiol 2017; 111:115-144. [PMID: 27473600 PMCID: PMC5219856 DOI: 10.1016/j.ijpsycho.2016.07.516] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 01/19/2023]
Abstract
This review examines the current state of electrophysiological endophenotype research and recommends best practices that are based on knowledge gleaned from the last decade of molecular genetic research with complex traits. Endophenotype research is being oversold for its potential to help discover psychopathology relevant genes using the types of small samples feasible for electrophysiological research. This is largely because the genetic architecture of endophenotypes appears to be very much like that of behavioral traits and disorders: they are complex, influenced by many variants (e.g., tens of thousands) within many genes, each contributing a very small effect. Out of over 40 electrophysiological endophenotypes covered by our review, only resting heart, a measure that has received scant advocacy as an endophenotype, emerges as an electrophysiological variable with verified associations with molecular genetic variants. To move the field forward, investigations designed to discover novel variants associated with endophenotypes will need extremely large samples best obtained by forming consortia and sharing data obtained from genome wide arrays. In addition, endophenotype research can benefit from successful molecular genetic studies of psychopathology by examining the degree to which these verified psychopathology-relevant variants are also associated with an endophenotype, and by using knowledge about the functional significance of these variants to generate new endophenotypes. Even without molecular genetic associations, endophenotypes still have value in studying the development of disorders in unaffected individuals at high genetic risk, constructing animal models, and gaining insight into neural mechanisms that are relevant to clinical disorder.
Collapse
|
12
|
Myles JB, Rossell SL, Phillipou A, Thomas E, Gurvich C. Insights to the schizophrenia continuum: A systematic review of saccadic eye movements in schizotypy and biological relatives of schizophrenia patients. Neurosci Biobehav Rev 2016; 72:278-300. [PMID: 27916709 DOI: 10.1016/j.neubiorev.2016.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 10/05/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
Abstract
Myles, J.B., S. Rossell, A. Phillipou, Thomas, E and C. Gurvich. A systematic review of saccadic eye movements across the schizophrenia continuum: Characterisation, pathophysiology and genetic associations. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2015. One of the cognitive hallmarks of schizophrenia is impaired eye movements, particularly for the antisaccade task. Less saccade research has been conducted in relation to the broader schizophrenia continuum, that is, people with high schizotypy or first-degree relatives of people with schizophrenia. This systematic review sought to identify, collate and appraise prosaccade, antisaccade and memory-guided saccade studies involving behavioural, neuroimaging and genetic data published between 1980 and September 2016 in individuals with high schizotypy and first-degree relatives. A systematic literature search was conducted, using Ovid MEDLINE, PsycINFO, PubMed and SCOPUS databases. Of 913 references screened, 18 schizotypy, 29 family studies and two schizotypy and relatives articles studies were eligible for inclusion. Antisaccade error rate was the most consistent deficit found for high schizotypy. Relatives had intermediate antisaccade error rates between patients and healthy controls. Results from the limited genetic and neuroimaging studies echoed schizophrenia findings. Confounds were also identified. It was concluded that future research is required to refine the saccade endophenotype and to expand genetic and neuroimaging research.
Collapse
Affiliation(s)
- Jessica B Myles
- Monash Alfred Psychiatry research centre, The Alfred Hospital and Monash University Central Clinical School, Melbourne, Australia
| | - Susan L Rossell
- Monash Alfred Psychiatry research centre, The Alfred Hospital and Monash University Central Clinical School, Melbourne, Australia; Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Melbourne, Australia; Department of Psychiatry, St Vincent's Hospital, Melbourne, Australia
| | - Andrea Phillipou
- Department of Psychiatry, St Vincent's Hospital, Melbourne, Australia; Department of Psychiatry, The University of Melbourne, Melbourne, Australia; Department of Mental Health, The Austin Hospital, Melbourne, Australia
| | - Elizabeth Thomas
- Monash Alfred Psychiatry research centre, The Alfred Hospital and Monash University Central Clinical School, Melbourne, Australia
| | - Caroline Gurvich
- Monash Alfred Psychiatry research centre, The Alfred Hospital and Monash University Central Clinical School, Melbourne, Australia.
| |
Collapse
|
13
|
What can time-frequency and phase coherence measures tell us about the genetic basis of P3 amplitude? Int J Psychophysiol 2016; 115:40-56. [PMID: 27871913 DOI: 10.1016/j.ijpsycho.2016.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 11/21/2022]
Abstract
In a recent comprehensive investigation, we largely failed to identify significant genetic markers associated with P3 amplitude or to corroborate previous associations between P3 and specific single nucleotide polymorphisms (SNPs) or genes. In the present study we extended this line of investigation to examine time-frequency (TF) activity and intertrial phase coherence (ITPC) in the P3 time window, both of which are associated with P3 amplitude. Previous genome-wide research has reported associations between P3-related theta and delta activity and individual genetic variants. A large, population-based sample of 4211 subjects, comprising male and female adolescent twins and their parents, was genotyped for 527,828 single nucleotide polymorphisms (SNPs), from which over six million SNPs were accurately imputed. Heritability estimates were greater for TF energy than ITPC, whether based on biometric models or the combined influence of all measured SNPs (derived from genome-wide complex trait analysis). The magnitude of overlap in the specific SNPs associated with delta energy and ITPC and P3 amplitude was significant. A genome-wide analysis of all SNPs, accompanied by an analysis of approximately 17,600 genes, indicated a region of chromosome 2 around TEKT4 that was significantly associated with theta ITPC. Analysis of candidate SNPs and genes previously reported to be associated with P3 or related phenotypes yielded one association surviving correction for multiple tests: between theta energy and CRHR1. However, we did not obtain significant associations for SNPs implicated in previous genome-wide studies of TF measures. Identifying specific genetic variants associated with P3 amplitude remains a challenge.
Collapse
|
14
|
Abstract
Endophenotypes are quantitative, heritable traits that may help to elucidate the pathophysiologic mechanisms underlying complex disease syndromes, such as schizophrenia. They can be assessed at numerous levels of analysis; here, we review electrophysiological endophenotypes that have shown promise in helping us understand schizophrenia from a more mechanistic point of view. For each endophenotype, we describe typical experimental procedures, reliability, heritability, and reported gene and neurobiological associations. We discuss recent findings regarding the genetic architecture of specific electrophysiological endophenotypes, as well as converging evidence from EEG studies implicating disrupted balance of glutamatergic signaling and GABAergic inhibition in the pathophysiology of schizophrenia. We conclude that refining the measurement of electrophysiological endophenotypes, expanding genetic association studies, and integrating data sets are important next steps for understanding the mechanisms that connect identified genetic risk loci for schizophrenia to the disease phenotype.
Collapse
Affiliation(s)
- Emily Owens
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - David C Glahn
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
15
|
Yoon HH, Malone SM, Iacono WG. Longitudinal stability and predictive utility of the visual P3 response in adults with externalizing psychopathology. Psychophysiology 2015; 52:1632-45. [PMID: 26402396 DOI: 10.1111/psyp.12548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/20/2015] [Indexed: 12/18/2022]
Abstract
We determined whether time-domain P3 amplitude and time-frequency principal component (TF-PC) reductions could serve as stable and predictive developmental endophenotypes of externalizing psychopathology. Participants from the Minnesota Twin Family Study were assessed at age 17 and again at age 29 for lifetime externalizing (EXT) disorders. Comparisons of P3 amplitude and TF-PCs at delta and theta frequencies were made between EXT and unaffected comparison subjects. P3 amplitude and all five extracted TF-PCs were significantly reduced in those presenting lifetime EXT disorders at both ages 17 and 29 and showed substantial 12-year rank-order stability. P3 amplitude and delta TF-PCs measured at age 17 also predicted subsequent development of EXT by age 29, with every 1-microvolt decrease in age 17 amplitude associated with an approximately 5% increase in risk for an EXT diagnosis by age 29. Overall, results from this study further confirm that these P3-derived brain measures maintain their potential as putative EXT endophenotypes through the third decade of life.
Collapse
Affiliation(s)
- Henry H Yoon
- Department of Psychology, Augsburg College, Minneapolis, Minnesota, USA
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - William G Iacono
- Department of Psychology, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
16
|
Vaidyanathan U, Vrieze SI, Iacono WG. The Power of Theory, Research Design, and Transdisciplinary Integration in Moving Psychopathology Forward. PSYCHOLOGICAL INQUIRY 2015; 26:209-230. [PMID: 27030789 PMCID: PMC4809358 DOI: 10.1080/1047840x.2015.1015367] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
While the past few decades have seen much work in psychopathology research that has yielded provocative insights, relatively little progress has been made in understanding the etiology of mental disorders. We contend that this is due to an overreliance on statistics and technology with insufficient attention to adequacy of experimental design, a lack of integration of data across various domains of research, and testing of theoretical models using relatively weak study designs. We provide a conceptual discussion of these issues and follow with a concrete demonstration of our proposed solution. Using two different disorders - depression and substance use - as examples, we illustrate how we can evaluate competing theories regarding their etiology by integrating information from various domains including latent variable models, neurobiology, and quasi-experimental data such as twin and adoption studies, rather than relying on any single methodology alone. More broadly, we discuss the extent to which such integrative thinking allows for inferences about the etiology of mental disorders, rather than focusing on descriptive correlates alone. Greater scientific insight will require stringent tests of competing theories and a deeper conceptual understanding of the advantages and pitfalls of methodologies and criteria we use in our studies.
Collapse
Affiliation(s)
- Uma Vaidyanathan
- Department of Psychology, University of Minnesota, N218 Elliot Hall, 75 East River Road, Minneapolis, MN 55455
| | - Scott I Vrieze
- Institute for Behavioral Genetics, University of Colorado – Boulder, 1480 30 Street, Boulder, CO 80303
| | - William G. Iacono
- Department of Psychology, University of Minnesota, N218 Elliot Hall, 75 East River Road, Minneapolis, MN 55455
| |
Collapse
|
17
|
Hatzimanolis A, Bhatnagar P, Moes A, Wang R, Roussos P, Bitsios P, Stefanis CN, Pulver AE, Arking DE, Smyrnis N, Stefanis NC, Avramopoulos D. Common genetic variation and schizophrenia polygenic risk influence neurocognitive performance in young adulthood. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:392-401. [PMID: 25963331 PMCID: PMC5008149 DOI: 10.1002/ajmg.b.32323] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/29/2015] [Indexed: 12/29/2022]
Abstract
Neurocognitive abilities constitute complex traits with considerable heritability. Impaired neurocognition is typically observed in schizophrenia (SZ), whereas convergent evidence has shown shared genetic determinants between neurocognition and SZ. Here, we report a genome-wide association study (GWAS) on neuropsychological and oculomotor traits, linked to SZ, in a general population sample of healthy young males (n = 1079). Follow-up genotyping was performed in an identically phenotyped internal sample (n = 738) and an independent cohort of young males with comparable neuropsychological measures (n = 825). Heritability estimates were determined based on genome-wide single-nucleotide polymorphisms (SNPs) and potential regulatory effects on gene expression were assessed in human brain. Correlations with general cognitive ability and SZ risk polygenic scores were tested utilizing meta-analysis GWAS results by the Cognitive Genomics Consortium (COGENT) and the Psychiatric Genomics Consortium (PGC-SZ). The GWAS results implicated biologically relevant genetic loci encoding protein targets involved in synaptic neurotransmission, although no robust individual replication was detected and thus additional validation is required. Secondary permutation-based analysis revealed an excess of strongly associated loci among GWAS top-ranked signals for verbal working memory (WM) and antisaccade intra-subject reaction time variability (empirical P < 0.001), suggesting multiple true-positive single-SNP associations. Substantial heritability was observed for WM performance. Further, sustained attention/vigilance and WM were suggestively correlated with both COGENT and PGC-SZ derived polygenic scores. Overall, these results imply that common genetic variation explains some of the variability in neurocognitive functioning among young adults, particularly WM, and provide supportive evidence that increased SZ genetic risk predicts neurocognitive fluctuations in the general population.
Collapse
Affiliation(s)
- Alex Hatzimanolis
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Pallav Bhatnagar
- McKusick‐Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Anna Moes
- McKusick‐Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Ruihua Wang
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Panos Roussos
- Department of PsychiatryFriedman Brain Institute and Department of Genetics and Genomics ScienceInstitute of Multiscale BiologyIcahn School of Medicine at Mount SinaiNew YorkNew York
- James J. Peters Veterans Affairs Medical CenterBronxNew YorkNew York
| | - Panos Bitsios
- Department of Psychiatry and Behavioral SciencesFaculty of MedicineUniversity of CreteHeraklionGreece
| | | | - Ann E. Pulver
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Dan E. Arking
- McKusick‐Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Nikolaos Smyrnis
- University Mental Health Research InstituteAthensGreece
- Department of PsychiatryEginition HospitalUniversity of Athens Medical SchoolAthensGreece
| | - Nicholas C. Stefanis
- University Mental Health Research InstituteAthensGreece
- Department of PsychiatryEginition HospitalUniversity of Athens Medical SchoolAthensGreece
| | - Dimitrios Avramopoulos
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMaryland
- McKusick‐Nathans Institute of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMaryland
| |
Collapse
|
18
|
The importance of endophenotypes in schizophrenia research. Schizophr Res 2015; 163:1-8. [PMID: 25795083 DOI: 10.1016/j.schres.2015.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 11/21/2022]
Abstract
Endophenotypes provide a powerful neurobiological platform from which we can understand the genomic and neural substrates of schizophrenia and other common complex neuropsychiatric disorders. The Consortium on the Genetics of Schizophrenia (COGS) has conducted multisite studies on carefully selected key neurocognitive and neurophysiological endophenotypes in 300 families (COGS-1) and then in a follow up multisite case-control study of 2471 subjects (COGS-2). Endophenotypes are neurobiologically informed quantitative measures that show deficits in probands and their first degree relatives. They are more amenable to statistical analysis than are "fuzzy" qualitative clinical traits or confoundingly heterogeneous diagnostic categories. Endophenotypes are also viewed as uniquely informative in traditional diagnosis-based as well as emerging NIMH Research Domain (RDoC) contexts, offering a bridge between the two approaches to psychopathology classification and research. Endo- or intermediate phenotypes are heritable, and in the COGS-1 cohort their level of heritability is in the same range as is the heritability of schizophrenia itself, using the same statistical methods and subjects to assess both. Because we can demonstrate endophenotypes link to both gene networks and neural circuits on the one hand and also to real-life function, endophenotypes provide a critically important bridge for "connecting the dots" between genes, cells, circuits, information processing, neurocognition and functional impairment and personalized treatment selection in schizophrenia patients. By connecting schizophrenia risk genes with neurobiologically informed endophenotypes, and via the use of association, linkage, sequencing, stem cell and other strategies, we can provide our field with new neurobiologically informed information in our efforts to understand and treat schizophrenia. Evolving views, data and new analytic strategies about schizophrenia risk, pathology and treatment are described in this Viewpoint and in the accompanying Special Issue reports.
Collapse
|
19
|
Iacono WG, Malone SM, Vaidyanathan U, Vrieze SI. Genome-wide scans of genetic variants for psychophysiological endophenotypes: a methodological overview. Psychophysiology 2014; 51:1207-24. [PMID: 25387703 PMCID: PMC4231489 DOI: 10.1111/psyp.12343] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This article provides an introductory overview of the investigative strategy employed to evaluate the genetic basis of 17 endophenotypes examined as part of a 20-year data collection effort from the Minnesota Center for Twin and Family Research. Included are characterization of the study samples, descriptive statistics for key properties of the psychophysiological measures, and rationale behind the steps taken in the molecular genetic study design. The statistical approach included (a) biometric analysis of twin and family data, (b) heritability analysis using 527,829 single nucleotide polymorphisms (SNPs), (c) genome-wide association analysis of these SNPs and 17,601 autosomal genes, (d) follow-up analyses of candidate SNPs and genes hypothesized to have an association with each endophenotype, (e) rare variant analysis of nonsynonymous SNPs in the exome, and (f) whole genome sequencing association analysis using 27 million genetic variants. These methods were used in the accompanying empirical articles comprising this special issue, Genome-Wide Scans of Genetic Variants for Psychophysiological Endophenotypes.
Collapse
Affiliation(s)
- William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
20
|
Vrieze SI, Malone SM, Pankratz N, Vaidyanathan U, Miller MB, Kang HM, McGue M, Abecasis G, Iacono WG. Genetic associations of nonsynonymous exonic variants with psychophysiological endophenotypes. Psychophysiology 2014; 51:1300-8. [PMID: 25387709 PMCID: PMC4231532 DOI: 10.1111/psyp.12349] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We mapped ∼85,000 rare nonsynonymous exonic single nucleotide polymorphisms (SNPs) to 17 psychophysiological endophenotypes in 4,905 individuals, including antisaccade eye movements, resting EEG, P300 amplitude, electrodermal activity, affect-modulated startle eye blink. Nonsynonymous SNPs are predicted to directly change or disrupt proteins encoded by genes and are expected to have significant biological consequences. Most such variants are rare, and new technologies can efficiently assay them on a large scale. We assayed 247,870 mostly rare SNPs on an Illumina exome array. Approximately 85,000 of the SNPs were polymorphic, rare (MAF < .05), and nonsynonymous. Single variant association tests identified a SNP in the PARD3 gene associated with theta resting EEG power. The sequence kernel association test, a gene-based test, identified a gene PNPLA7 associated with pleasant difference startle, the difference in startle magnitude between pleasant and neutral images. No other single nonsynonymous variant, or gene-based group of variants, was strongly associated with any endophenotype.
Collapse
Affiliation(s)
- Scott I. Vrieze
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen M. Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Uma Vaidyanathan
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael B. Miller
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hyun Min Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gonçalo Abecasis
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - William G. Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
21
|
Vrieze SI, Malone SM, Vaidyanathan U, Kwong A, Kang HM, Zhan X, Flickinger M, Irons D, Jun G, Locke AE, Pistis G, Porcu E, Levy S, Myers RM, Oetting W, McGue M, Abecasis G, Iacono WG. In search of rare variants: preliminary results from whole genome sequencing of 1,325 individuals with psychophysiological endophenotypes. Psychophysiology 2014; 51:1309-20. [PMID: 25387710 PMCID: PMC4231480 DOI: 10.1111/psyp.12350] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Whole genome sequencing was completed on 1,325 individuals from 602 families, identifying 27 million autosomal variants. Genetic association tests were conducted for those individuals who had been assessed for one or more of 17 endophenotypes (N range = 802-1,185). No significant associations were found. These 27 million variants were then imputed into the full sample of individuals with psychophysiological data (N range = 3,088-4,469) and again tested for associations with the 17 endophenotypes. No association was significant. Using a gene-based variable threshold burden test of nonsynonymous variants, we obtained five significant associations. These findings are preliminary and call for additional analysis of this rich sample. We argue that larger samples, alternative study designs, and additional bioinformatics approaches will be necessary to discover associations between these endophenotypes and genomic variation.
Collapse
Affiliation(s)
- Scott I Vrieze
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|